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Discovering Latent Spatial Invariance of Urban
Wireless Data using Compression and Deep

Learning

Abstract—Increasingly available high resolution geospatial
wireless demand data is available from high density base stations,
wireless localisation, and geo-tagged social media posts. Mapping
the evolving spatiotemporal demand is critical for a wide range
of infrastructure services, including future network planning
and operations. However, monitoring geospatial data demand
across a whole city is computationally and financially expensive.
Here, we show that geospatial traffic demand data from both 0.4
million Twitter posts and 3.2 million base stations records can
be compressed to spatially invariant points in London. These
points correspond to major sources of human movement activity
that act as either facilitators (e.g. public multi-modal transport
hubs) or drivers (e.g. tourist attractions and business hubs). This
demonstrates that by monitoring these spatially invariant critical
points, we can obtain an accurate understanding of the human
demand dynamics elsewhere in the city. Indeed, the operator
which maps the dynamics between these points uncover the
latent human connected dynamics embedded in complex urban
ecosystems.

We use both the latest signal processing technique of Graph
Fourier Transform (GFT) and a AutoDecoder inspired deep
learning neural network to demonstrate spatially invariant com-
pression and both error-free and noisy recovery. These promising
results show that we can exploit the connected structure of
complex cities to dramatically reduce data monitoring.

Index Terms—social media; data compression; data analysis;
neural network;

I. INTRODUCTION

Data-driven services are critical to future smart cities,
whereby geospatial consumer demand data is used to con-
tinuously improve and adapt services. In wireless networks,
demand data is critical to understanding the profitability of
base station deployments, tailor user-centric services, and
optimise the network load balancing using mobility patterns
[1]. Whilst, we have strong engineering-based and statis-
tical modeling of infrastructure deployment (e.g. stochastic
geometry), or understanding of user demand is still limited
due to the lack of geospatial data [2], [3]. In recent times,
increasingly available proxy geospatial data via online social
network (OSN) data sets such as Twitter and other data sets
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have been used successfully to measure wireless demand [4]–
[7], understand consumer reaction to poor services [8], and
improve 5G deployment [9]. Other smart city applications
include tracking and quantifying crowds [10], analysing crime
patterns [11], and natural disaster response [12]. In general, the
feedback loop between consumer demand, human experience,
and personalized service provisioning is achieved through both
data and statistical models where there is a shortage of data.

A. Compression of Dynamic Geospatial Data for Latent Struc-
tural Inference

It is widely acknowledged that there are a variety of over-
lapping latent underlying spatial structures in cities [13] which
could be closely related to human mobility, cyber-physical
and socioeconomic interactions, as well as social networking.
Theories related to demand forecasting via spatial interaction
theory goes back to the 1970s [14], but the data science or
big data component of it remains an open challenge. Recent
work have started to conduct urban structural inference from
large data sets [15] and explore its structure properties [16] and
how one part of the city influence other parts. For example, the
dynamic demand in one place, could be highly connected to
the time-lagged demand in other places. However, very little is
understood about how this might inform monitoring and we do
not yet know how to recover invariant positions that represent
other places. Nor do we know the context of such places
should they exist. Here, we seek to use different methods
to uncover the underlying latent structure and its orthogonal
points.

One obvious approach that considers the data-structure is
compressed sensing (CS) [17], which compresses the data by
transforming them into a sparse representation. For a data ma-
trix X with N data points, K time-steps and r = rank(X), the
main challenge lies in the unknown positions of sparse non-
zeros elements, which will inevitably lead to an approximately
(N +K− r)× r/K points for monitoring [18]. This is not to
mention that most of the CS approaches do not guarantee the
spatially invariant position of monitoring points, which is not
helpful in real sensor deployment actions. To further reduce
the number of sampling points, our previous work in [19]
proposed a data-driven GFT sampling method, which is able
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Fig. 1: Geo-tagged Tweets (0.4 million) in London with
coloured clusters.

to characterize the data matrix into an r-bandlimited space, and
thereby ensures the recovery accuracy with the monitoring of
only r spatially invariant orthogonal points.

B. Innovation and Contribution

In this paper, we aim to generate sparse spatially invariant
monitoring points to infer the demand dynamics in all of
London. We first use Graph Fourier Transform (GFT) to derive
the operator that reveals the minimum number of spatially
invariant monitoring points for both geo-tagged Twitter and 4G
base station data. This enables error-free recovery of dynamics
in other London locations. This approach was outlined in our
recent paper [19], which minimized sensor deployment num-
ber on a dynamic complex network. Whilst we are exploiting
the low-rank property, like all CS approaches, we are able to
achieve a lower set of positions at the cost of losing generality,
i.e., r < (N +K − r)× r/K for any r-rank tensor.

In this paper, we also advance this by designing a
AutoDecoder (AD) inspired a neural network representation
of the GFT and under-sampling the process to achieve
noisy recovery of dynamics in other London locations. By
developing a neural network (NN), we can sample from
an extremely sparse set and still recover general trends
(e.g. extreme value demand spikes), significantly saving
monitoring costs. Through the NN, there is a natural trade-off
between reconstruction accuracy and size of the sample, and
we discuss their smart city application potential.

II. DATA & METHOD

A. Data Set

Our data set comprised more than 430,000 geo-tagged
Tweets posted in a 40km radius disc centred in Trafalgar
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Fig. 2: 4G Traffic Demand and Number of Tweets in London
(1 Example Week).

Square, London over a 2 week period - see example in Fig. 1.
This data was purchased from Twitter and represents the
most comprehensive geo-tagged data set for that time period
(acknowledgement of open data set on Dryad [20] and was
used to underpin our prior research [5]). We also have 4G base
station data over the same period of time, comprised of 3.2
million uplink and downlink demands over 100 base stations in
the same area - see example of temporal fluctuation in Fig. 2.

B. Data Pre-Processing

In order to analyse the problem (see below), we cluster the
Tweets into N potential sampling points. For demonstration
purposes, we used k-means clustering with a well defined
k = N (informed by number of base stations in order to
compare across data sets), but we also acknowledge that den-
sity based methods such as DBSCAN maybe more suitable. A
visualization of the (clustered) Tweets posted during weekdays
can be found in Fig. 1.

C. GFT Sampling Process

We assume that there is a latent underlying structure in
cities which could be closely related to human mobility, cyber-
physical and socioeconomic interactions, as well as social
networking. As such, the dynamic demand in one place, could
be highly connected to the time-lagged demand in other places.
We seek to use Graph Fourier Transforms (GFT) to uncover
the underlying latent structure and its orthogonal (spatially in-
variant) points. The prior work on our GFT spatially invariant
sampling process is outline here [21].

We first use GFT to develop an operator that can transform
the traffic demand tensor into a band-limited set of sampling
points for guaranteed error-free inference performance. We
then use the sampling set to hierarchically down-sample and
recover the noisy dynamics via a neural network.

Graph sampling theory over a spatial domain (e.g., a map,
a network, or a process with latent topological representation)
aim at sampling and recovering the time-varying linearly
connected signals (e.g. connection via human movement). Let
the raw data tensor be X ∈ RN×K which is (r < N)-
bandlimited to a given GFT operator, denoted as F−1. That
is to say: X̃ = F−1 · X has only r non-zero rows. Here,
we consider a fixed map with time-varying demand signals
represented by the geotagged Tweets and the 4G base station
traffic data. The N rows of X present the time-varying signals
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Fig. 3: Compressing dynamic demand data to spatially invariant points on map and recovering the dynamics: (a) full
GFT compression and recovery by either inverse-GFT or Neural Network with hierarchical down-sampling option, and (b)
AutoDecoder neural network realisation of inverse GFT with recovery dynamic example and normalised MSE tracking.

on N potential sampling points (see in Fig. 1 for the N
clusters), and K > N denotes the total number of time-
indices.

We denote R is the set of subscripts of the nonzero rows in
X̃, and V = {1, · · · , N}. Then, we say there exists a subset
S ⊂ V such that:

X = FVR · (FT
SR · FSR)−1 · FT

SR ·XSK, (1)

if and only if:
rank(FSR) = |R| = r. (2)

In Eqs. (1)-(2), XSK denotes the sample of X from points
that belongs to S. FSR denotes the selection of the matrix F
with row indices from set S, and column indices from set R.
The sampling and recovering processes can be pursued after

(I) designing the GFT operator, and (II) the selection of S
satisfying Eq. (2).

1) GFT Operator Design: Our design of the GFT operator
(see Fig 3a-i) is based on QR factorisation: we derive the
maximally linearly independent columns of X, denoted as
XVM = [xm1

, · · · ,xmr
], such that the GFT operator can be

computed as:
F−1 = Q−1, (3)

where XVM = Q · R. This F−1 ensures the r-bandlimited
property of X, since:

X̃ =F−1 ·X.
(4)

2) Recovery: After the computation of the GFT operator in
Eq. (3), one needs to ensure a complete recovery is to select
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S that satisfies Eq. (2). One can refer to [22] for details.
Here, in order to achieve a robust sampling scheme on the
sparse points, we consider the selection of S that maximizes
the minimum singular of FSR, i.e.,

Sopt = argmax
S⊂V

σmin (FSR) , (5)

where σmin(·) denotes the smallest singular value. As such,
the importance of the spatially invariant monitoring points in
S can be ranked with the descending order of the singulars -
see Fig 3a-ii.

D. AutoDecoder Neural Network Enables Hierarchical
Under-Sampling & Recovery

The GFT in the previous subsection achieves an error-free
guaranteed recovery of the demand signal in other parts of
the city. However, in order to further reduce this sampling set,
we can train a NN to achieve under-sampled performance.
Whereas the forward GFT is performing an AutoEncoder
(AE) neural network role of transforming a large data space
into a sparse representation, we draw inspiration from the
AutoDecoder (AD) neural network architecture, which uses
sparse samples to recover back to the original data set. As
such, the input layer is a set of neurons, one for each spatially
invariant monitoring location found via the GFT. The input
to the AE neural network is N×K array. The first, second,
and third hidden layers are fully connected and consists of
N/2 rectifier units, and the final layer is a linear layer with
r outputs. This is then reversed in the AD neural network to
produce an output of all N monitoring points (clusters) in the
city - see Fig 3a-ii. We are inferring the time-series demand of
other locations from the spatially invariant locations found via
GFT. The training epoch of the network snap-shot is shown
in Fig 3b, with the panel plots i) showing an example of the
recovered signal in one of the unsampled points, and ii) the
normalised Mean Square Error (MSE) of the recovered signal
over learning epochs.

This should work, because underneath the city are latent
human mobility dynamics that connect demand patterns to-
gether. The innovation here is not to optimise the overall NN
architecture (e.g. via neuroevolutionary learning), but rather to
demonstrate that the NN can:

1) perform equivalent inverse-GFT driven inference using
the orthogonal points data and achieve near-identical
error-free recovery;

2) hierarchically down-sample the critical data such that
noisy recovery is possible, which is not achievable via
the inverse-GFT approach.

It is worth noting that we are not performing time-series
prediction (e.g. predicting next part of data using previous
part, which would involve LSTM, CNN, or Gaussian Process
approaches).

III. RESULTS

In this paper, we first cluster the 0.4 million geo-tagged
Twitter posts (which have been shown to be representative

TABLE I: Spatially invariant locations in descending rank for
4G.

Week Days Context Weekend Context

Euston Transport British Museum Tourism
City of London Business Charing Cross Tourism
Westminster Government Westminster Tourism
King’s Cross Transport Oxford Street Shopping
St. Pancras Transport West End Entertainment
Canary Warf Business London Eye Tourism
Southwark Business London Bridge Transport
Liverpool St. Transport Highbury Islington Sport
Waterloo Transport Tower of London Tourism
Victoria Transport St. Pancras Transport
Paddington Transport Buckingham Palace Tourism
Camden Islington Business
Stratford Transport

of wireless traffic [5]) to N clusters, where the number of
clusters is the same as the number of base stations (BSs). We
then find spatially invariant clusters, as a sparse representation
of all other clusters. We then show that these clusters are also
the spatially invariant base stations using the 3.2 million BSs
demand data set.

A. Spatial Invariant Locations

Our results in Table I for 4G data set show that there is a
split behaviour between work days and weekends, with Fridays
being closer to work day behaviour than weekend behaviour.
A similar set of results were found for Twitter. We show that
the following spatially invariant locations with a compression
ratio of approximately 88%, that is to say we only require to
sample approx. 10-12 locations out of 100:

1) Week Days: Dominated by inter-city transport hubs
(e.g. King’s Cross, Euston, Victoria) and business hubs
(e.g. Canary Warf), which demonstrates the commuting
nature of London, where most of the work force travels
from outside London into the city.

2) Weekends: Dominated by intra-city transport hubs (e.g.
London Bridge, Stratford) and entertainment / shopping
areas (e.g. West End, Oxford Street), which demon-
strates the multi-cultural entertainment strength of the
city, and the complete lack of business in the weekend
(most of the business hubs are closed or operating at
very low numbers).

The fact that other 88% places are dynamically synchronized
to these spatially invariant places demonstrates the degree of
approximately linear synchrony in London, whereby trans-
portation and other activities hinge on the ability of these
areas to move and attract people. For example, the rate of
flow of people through a major multi-modal transport hub,
entirely determines how the other locations demand services
later on in time, or how a stadium attracts spectators entire
determine the activity of restaurants across London before
kick-off. The latent mapping between transportation hubs and
activity attractors (e.g. business or entertainment) is embedded
in our GFT operator and NN.
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Fig. 4: Error-free recovery of demand dynamics using inverse
GFT operator for Twitter and 4G telecom data during week-
days and weekend.
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Fig. 5: Noisy recovery of demand dynamics using deep
learning NN for Twitter and 4G telecom data during weekdays
and weekend.

B. Error-Free and Noisy Demand Recovery

In Fig. 4 we demonstrate the error-free recovery of demand
dynamics using inverse GFT operator for Twitter and 4G
telecom data during weekdays and weekend. We can see
that past a certain sampling point of 10-20% of points, we
are guaranteed very low MSE. The arbitrarily small errors
beyond that are a result of matrix operation errors for large
data sets. In general the weekends require fewer sampling
points than week days due to their lower rank property. In
Fig. 5 we demonstrate the noisy recovery of demand dynamics
using deep learning NN for Twitter and 4G telecom data
during weekdays and weekend. As before, we can see that
past a certain sampling point of 10-20% of points, we are
guaranteed very low MSE. The arbitrarily small errors beyond
that are a result of inaccurate neural network representation
of the inverse GFT operator. This can be improved with
optimising the NN architecture and activation functions using
neuroevolution learning techniques, but this is beyond the
scope and novelty of this paper.

C. Uncertainty from Temporal Evolution of Urban Demand

Despite the promising performances from both GFT and NN
approaches, we are uncertain the pattern of spatially invariant
monitoring points will hold over time. We use long-term 2G
and 3G traffic data over a year to see how the auto-correlation
within downlink (DL) and uplink (UL) traffic varies, as well
as the cross-correlation (indicator of how well DL and UL
are mutual indicators of each other). In Fig. 6, we can see
that we fall below 50% auto-correlation for both 2G and 3G
DL and UL traffic data after 1 month, demonstrating that our
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results should be re-examined after a month, or that we can
only guarantee spatial invariance using weekly data for up to
a month. This is the scope of further work to find long term
spatial invariance, which requires long term geospatial data.
This is reinforced by our earlier work in [5], where we found
highly correlated spatiotemporal patterns.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we used two approaches to reconstruct demand
dynamics using spatially invariant sampling points: (1) human
designed GFT operator and (2) AutoDecoder inspired neural
network. Here, we show that geospatial traffic demand data
from both 0.4 million Twitter posts and 3.2 million base
stations records can be compressed to spatially invariant points
in London. These points correspond to major sources of human
movement activity that act as either facilitators (e.g. public
multi-modal transport hubs) or drivers (e.g. tourist attractions
and business hubs). This demonstrates that by monitoring these
spatially invariant critical points, we can obtain an accurate
understanding of the human demand dynamics elsewhere in
the city.

When conducting a sensitivity analysis using long-term
proxy 2G and 3G data, we show that our results are perhaps
only representative of a month. As such, we acknowledge that
further work is needed to develop a more general framework
that can track nonlinear changes across long term urban
evolution and transfer to different cities. Nonetheless, these
promising results show that we can exploit the connected struc-
ture of complex cities to dramatically reduce data monitoring.

For application and impact, we will apply this to optimize
smart city services ranging from crowd management to
5G optimisation. Many of the urban applications require
modeling of crowds of users [10], including safeguarding
protests and festivals, tracking urban happiness [23], and
quantifying consumer demand for service deployment (e.g.
5G small cells [5], [9]). Whilst research has shown that
this can be accurately measured for enclosed events (e.g.



6

stadiums) [10], measuring mobile crowd mobility [24], [25]
in open spaces is far more challenging.
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“Graph signal processing: Overview, challenges, and applications,” Pro-
ceedings of the IEEE, vol. 106, no. 5, pp. 808–828, 2018.

[23] A. Tsakalidis, M. Liakata, T. Damoulas, B. Jellinek, W. Guo, and
A. Cristea, “Combining heterogeneous user generated data to sense
well-being,” in International Conference on Computational Linguistics,
Osaka, Japan, Dec. 2016, pp. 3007–3018.

[24] N. Yang, X. Kong, F. Wang, and P. S. Yu, When and Where:
Predicting Human Movements Based on Social Spatial-Temporal
Events. SIAM, 2014, pp. 515–523. [Online]. Available: https:
//epubs.siam.org/doi/abs/10.1137/1.9781611973440.59

[25] G. Chen, A. C. Viana, and M. Fiore, “Takeaways in large-scale human
mobility data mining : (invited paper),” in 2018 IEEE International
Symposium on Local and Metropolitan Area Networks (LANMAN), June
2018, pp. 55–60.



Cranfield University

CERES https://dspace.lib.cranfield.ac.uk

School of Aerospace, Transport and Manufacturing (SATM) Staff publications (SATM)

2020-07-27

Discovering latent spatial invariance of

urban wireless data using compression

and deep learning

Guo, Weisi

IEEE

Guo W. (2020) Discovering latent spatial invariance of urban wireless data using compression

and deep learning. In: ICC 2020 - 2020 IEEE International Conference on Communications

(ICC), 7-11 June 2020, Dublin

https://doi.org/10.1109/ICC40277.2020.9148727

Downloaded from Cranfield Library Services E-Repository


