nanomaterials

Article

Natural Antimicrobial Nano Composite Fibres Manufactured
from a Combination of Alginate and Oregano Essential Oil

Hao Lu !, Jonathan A. Butler 2, Nicole S. Britten 2, Prabhuraj D. Venkatraman 3%

check for

updates
Citation: Lu, H.; Butler, J.A.; Britten,
N.S.; Venkatraman, P.D.; Rahatekar,
S.S. Natural Antimicrobial Nano
Composite Fibres Manufactured from
a Combination of Alginate and
Oregano Essential Oil. Nanomaterials
2021, 11,2062. https://doi.org/
10.3390/nano11082062

Academic Editor: Miguel Gama

Received: 11 June 2021
Accepted: 4 August 2021
Published: 13 August 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Sameer S. Rahatekar 1*

Enhanced Composites and Structures Centre, School of Aerospace, Transport and Manufacturing,
Cranfield University, Bedfordshire MK43 0AL, UK; hao.lu@cranfield.ac.uk

Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University,
Chester Street, Manchester M1 5GD, UK; jonathan.butler@mmu.ac.uk (J.A.B.);
nicole.s.britten@stu.mmu.ac.uk (N.S.B.)

Manchester Fashion Institute, Faculty of Arts and Humanities, Manchester Metropolitan University,
Cavendish Street, Manchester M15 6BH, UK

*  Correspondence: p.venkatraman@mmu.ac.uk (P.D.V.); S.S.Rahatekar@cranfield.ac.uk (S.S.R.)

Abstract: Alginate is a linear biodegradable polysaccharide polymer, which is bio-renewable and
widely used for various biomedical applications. For the next generation of medical textiles, alginate
nanofibres are desirable for their use in wound dressings that are biocompatible, sustainable, and
abundantly available. This study has developed a unique manufacturing process for producing
alginate nanofibres with exceptional antimicrobial properties of oregano essential oil (OEO) as a
natural antimicrobial agent. OEO with varying degrees of concentration was incorporated in an
aqueous alginate solution. Appropriate materials and electrospinning process parameter selection
allowed us to manufacture alginate fibres with a range of diameters between 38 and 105 nm. A unique
crosslinking process for alginate nanofibres using extended water soaking was developed. Mechan-
ical characterisation using micro-mechanical testing of nonwoven electrospun alginate/oregano
composite nanofibres revealed that it was durable. An extensive antimicrobial study was carried
out on alginate/oregano composite nanofibres using a range of Gram-positive (methicillin-resistant
Staphylococcus aureus (MRSA) and Listeria monocytogenes) and Gram-negative bacteria (Klebsiella
pneumoniae and Salmonella enterica), which are common wound and food pathogens. The results
indicated that increasing the concentration of OEO from 2 to 3 wt % showed improved antimicrobial
activity against all pathogens, and activity was significantly improved against MRSA compared to a
non-alginate-based control disk containing OEO. Therefore, our research suggests that all-natural
alginate/oregano nanofibre composite textiles offer a new generation of medical textiles for advanced
wound dressing technology as well as for food packaging applications.

Keywords: electrospinning; nanofibres; sodium alginate; oregano oil; antimicrobial resistance

1. Introduction

With the advancement of polymer science and chemistry, there has been a tremendous
demand for ultra-fine fibres (nanofibres) for varied applications, particularly for biomedical
applications, drug delivery systems, bone tissue engineering [1-3], tissue regeneration,
and wound dressing technology [4]. Electrospinning enables the production of fibres with
diameters of 100 nm or less [5] that have a larger surface area to volume ratio and are
highly porous [6,7]. A typical electrospinning apparatus consists of a high voltage supply,
flow control pump, a spinneret, and a collector [7]. During the electrospinning process,
high voltage is applied to produce an electrically charged jet of polymer solution directed
by electrostatic forces resulting in an interconnected fibrous membrane [8]. The polymer
solution that is extruded from the spinneret is electrified to generate a jet, followed by
stretching and elongation to generate fibres [6]. Initially, the jet from the spinneret extends
in a straight line and then undergoes instability where it extends to form a conical shaped
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jet; finally, the jet stretches and solidifies and deposits onto the grounded collector. Various
process parameters affect the properties of the electrospun fibrous membrane, including
precursor solution (conductivity, surface tension, viscosity), processing parameters (voltage
applied, flow rate, and distance between nozzle and collector), and ambient conditions
(temperature and humidity) [8,9]. When gathered on a stationary collector, electrospun
fibres form a porous and random structure that resembles the 3D architecture of collagen
fibres found in the skin extracellular matrix [10,11]. Recently, there has been a surge toward
the need for biodegradable polymers for medical applications.

Alginate is a biodegradable polymer derived from brown seaweed and is read-
ily soluble in water [12]. Alginate, also called algin or alginic acid, is composed of
1-4-linked B-D-mannuronic and a—L-guluronic acid residues [13] obtained from cell
walls of brown algae [13]. Alginate acid residues are arranged in egg-box-like structures
(Figure 1) and are composed of linear polysaccharides with monomeric acid residues linked
together in different compositions and have a polyelectrolytic tendency inadequate for
electrospinning [6,14]. Hence, alginate has been blended with hydrosoluble polymers
(polyvinyl alcohol (PVA) and polyethylene oxide (PEO)) to become electro-spinnable and
to produce bead-free fibres [13]. Alginate has unique properties, including being easily
mouldable, biodegradable, biocompatible, renewable, and abundantly available, making it
an ideal biomaterial for biomedical applications [13]. Recent advances have resulted in an
increase in the consumption of alginate for a range of applications. The global alginate con-
sumption for wound care applications is predicted to grow by 4.2% CAGR (compounded
annual growth rate) from 2016 to 2025 and is expected to reach $923.8 million by 2025 [15].
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Figure 1. Structure of alginate and egg-box model with guluronic and mannuronic acid.

Antimicrobial resistance is a major global issue [16], and mortality rates associated
with antimicrobial-resistant infections are predicted to exceed 10 million people per annum
by 2050 [17]. The development of novel systems for delivering antimicrobial agents to
sites of infection/contamination is one strategy for combatting antimicrobial resistance.
Although alginate has excellent functional characteristics, it does not possess natural
antimicrobial properties against microorganisms. Hence, it becomes essential to blend
or combine it with suitable constituents that inhibit microbial growth. Oregano essential
oil (OEO) is an effective natural and sustainable antimicrobial agent obtained from plant
species derived from Origanum (family: Lamiaceae) and Lippia (family: Verbenaceae) [18,19].

Plant-based components such as clove, coriander, cinnamon, thyme, mint, rosemary,
mustard, and cilantro, in addition to OEO, possess natural antimicrobial properties and are
being further investigated for biomedical applications [20]. Carvacrol and thyme are the
main compounds identified within OEO, which provide a distinct odour and antimicrobial
and antioxidant activity [20]. Preus et al. (2005) studied the antimicrobial efficacy of
several aromatic oils and reported that OEO was potent against two bacterial strains of
Staphylococcus aureus termed ATCC 14154 and ATCC 14775 [21]. The fungicidal properties
of OEO have also been reported [22]. Plant-based antimicrobial compounds possess several
advantages over synthetic chemicals as they are often non-toxic, have limited side effects,
and are environmentally friendly [23]. Alginate films with varying concentrations of
OEO (0.5-1.5 wt %) were characterised for their mechanical and antimicrobial properties.
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Crosslinking of alginate films with calcium carbonate increased the tensile strength and had
low elongation. Researchers reported that a minimum concentration of 1% was required
to show antimicrobial efficacy. Alginate films with OEO were more effective against
Gram-positive bacteria (S. aureus and L. monocytogenes) than Gram-negative bacteria (E. coli
and S. enteritidis) [24]. Sodium alginate, PEO, and curcumin-based composite nanofibres
were also crosslinked with biocompatible trifluoroacetic acid with improved mechanical
properties [25]. Therefore, it could be noted that crosslinking improves the mechanical
properties of alginate.

As alginate is challenging to extrude via electrospinning, in this study, sodium alginate
was blended with PEO solution, and OEO was uniformly added to produce an electrospun
solution resulting in an ultra-fine nanofibre composite. Physical properties of the resulting
nanofibres were examined, and the antimicrobial efficacy against the major wound and
foodborne infection-causing bacterial pathogens was characterised, and suitable biomedical
and consumer applications were identified. This research contributes to the literature,
particularly in the electrospinning and manufacturing of all-natural antimicrobial alginate
nanofibres composites, which has advantages over synthetic antimicrobial compounds that
are harmful to the environment. Various process parameters have been modified, and the
best possible method has been described to produce nanofibre morphology incorporated
with OEO.

2. Materials and Methods
2.1. Reagents

Alginate acid sodium salt from brown algae (SA, medium viscosity, SIGMA A2033,
Sigma-Aldrich, MO, USA), polyethylene oxide (PEO, MW 1,000,000, Alfa Aesar, Haverhill,
MA, USA) powder (Pluronic® F-127, PL, SIGMA P2443, Sigma-Aldrich, MO, USA), calcium
chloride powder (Fisher Scientific, Loughborough, UK) and oregano essential oil (OEO)
were used to produce electrospun nanofibres. Oregano essential vulgare oil (100%) was
obtained from Athina Greece, with its main constituents comprised of carvacrol, 80%;
thymol, 4.2%; p-cymol, 4.2%; gamma-terpinen, 1.6%; limonen, 0.22%; sabinen, 0.25%; and
linalool, 0.12%; the rest of the components were less than 0.1%.

2.2. Solution Preparation

Alginate electrospun fibres were prepared using the following methods. First, 3.75 wt %
of sodium alginate and 4.0 wt % PEO solutions were prepared individually in deionised
water with continuous stirring at 20 °C temperature for 24 to 36 h until complete disso-
lution. Sodium alginate and PEO solution were then mixed in a ratio of 80:20. Pluronic®
F-127 at 1 wt % and OEO at 2 and 3 wt % of the whole solution were further added and
incubated at approximately 50 °C with stirring for 24 h to reach complete and uniform
dissolution. The solution was placed in a vacuum oven and removed once no bubbles were
seen in the solution.

Viscosity Measurements

The viscosity measurements were carried out using a Rheometer AR2000ex (TA Instru-
ments, Crawley, UK). The viscosity measurements were carried out at room temperature
(25 °C) using a parallel plate arrangement (plate size 40 mm) with shear rate ranging from
1s1t0200s 1.

2.3. Electrospinning

Prior to the electrospinning process, the syringe with target solution, catheter, and
needle were connected, and tin foil was placed on the collector for sample collection. An
LE-50 FLUIDNATEK™ Electro Spinning tool (Bioinicia, Valencia, Spain) was used for
electrospinning experiments for a duration of approximately 8 h, with the main parameters
set as follows: 1) the diameter of the needle was 0.4 mm; 2) the distance between needle and
collector was kept at 15 cm; 3) both the board collector and rotator were used to collect the
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sample with the rotator speed set to 600-900 rpm; 4) the voltage was applied as 24-30 kV
while the feed rate of the syringe stayed at 0.8-1.2 mL/h; 5) all spinning processes were
performed at room temperature (18-25 °C) and humidity of 40-60%.

The conditions of the electrospinning and the solution viscosity differed; hence, the
setting parameters for electrospinning were always presented as a range. The Taylor
cone formed in the spinning tip of the needle and the transition zone (the zone with
rapid acceleration, which is between the liquid discharged from the needle and the fibre
formation) were examined periodically, which was also to determine if the electrospinning
process was carried out correctly. The voltage and feed rate were adjusted until a stable

Taylor cone and conversion area were formed (Figure 2).
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Figure 2. Simple schematic diagram of electrospinning process. The formation of Taylor cones and transition zone can be

clearly seen at the tip of the needle (rapid acceleration) and crosslinking process.

2.4. Crosslinking Process

Crosslinking of alginate with calcium chloride improves the mechanical properties,
particularly tensile strength, due to a crosslinking reaction between Ca®* ions and carboxyl
groups of sodium alginate [26]. Alginate polymer consists of blocks containing two uronic
acids and two chain-forming heteropolysaccharides made up of blocks f—(1-4) linked D
mannuronic (M) and a—(1-4) linked L-guluronic acids. Their structure varies depending
on the monomer position forming homopolymeric or heteropolymeric blocks. The physical
and mechanical properties of alginate gels depend on the relative proportion of blocks [26].
In this study, oregano oil was blended within the fibre. There were some changes in the
crosslinking process and had two main steps. First, the electrospun fibre samples were
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removed from the tin foil collector, and 4 wt % calcium chloride solution with deionised
water was prepared. The samples were immersed in calcium chloride for 10 min, soaked
in deionised water for 24 h, and dried in the open air. Figure 3 illustrates the typical
crosslinking process of sodium alginate with calcium chloride.
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Figure 3. Crosslinking of sodium alginate with calcium chloride.

The ionic crosslinking of sodium alginate is a well-established process as reported
in the literature [27,28]. Further to the above-mentioned studies, Liling et al. [29] showed
that sodium alginate films achieved complete ionic crosslinking by immersing the films
in 2 wt % calcium chloride for 2 min. The completion of the crosslinking process was
confirmed by the distinct increase in the mechanical properties of the ionically crosslinked
films compared to non-crosslinked sodium alginate films. Similarly, Ibrahim et al. [26]
showed the ionic crosslinking process of sodium alginate films by immersing it in calcium
chloride for 2-8 min; their ionic crosslinking process also confirmed superior mechanical
properties (tensile strength and tensile modulus).

2.5. Analysis of Physical Properties
2.5.1. Scanning Electron Microscopy (SEM)

SEM was used to measure the diameter of the nanofibres. Samples were analysed us-
ing an S8000 Environmental Scanning Electron Microscope (ESEM) (TESCAN, Kohoutovice,
Czech Republic). Samples were coated with AU10 (gold) prior to analysis using an electron
beam of 15-20 keV. Micrographs were analysed using Photoshop with samples evenly
divided into 25 grids to measure the diameter of the fibres. The diameter of nanofibres
were measured by counting the fibres between the grids using ‘Image ]’ software (Java
based image processing program, National Institutes of Health, University of Wisconsin,
USA) and the scale bar from the micrographs.

2.5.2. Mechanical Test

A DEBEN 200N Microtest Tensile Stage Controller (Suffolk, UK) was used to measure
the tensile strength of fibres. Samples were slowly stretched with a minor force, slowly
rising until breakage to determine the tensile strength and deformation. For the tensile test,
the sample was sandwiched between two square plates with 10 mm wide rectangular cut-
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outs to ensure the sample was aligned such that stretch was carried out in the lengthwise
direction of the fibres and to maintain stability (Figure 4).

Sample with cut out

Figure 4. (a) Electrospun sample sandwiched between the rectangular plates 10mm wide, (b) close-up view of the sample,

and (c) sample placed between the upper and lower jaws of the tensile equipment.

2.6. Antimicrobial Susceptibility
2.6.1. Bacterial Strains

Methicillin-resistant Staphylococcus aureus strain USA300 (ST8) JE2, Pseudomonas aerug-
inosa strain PAO1, Salmonella enterica serotype Typhimurium strain 14028, and Listeria
monocytogenes strain Scott A were cultured using Mueller Hinton (MH) agar (Oxoid, Bas-
ingstoke, UK) and incubated under aerobic conditions at 37 °C for 24 h.

2.6.2. Contact Assay

Contact assays were performed using a modified Deutsches Institut fiir Normung
(DIN) 58940-3 agar diffusion standard method [30,31]. Briefly, 6 mm diameter circular
discs of each respective sample was added to MH agar plates pre-inoculated with bacterial
cultures, which were adjusted to a McFarland standard of 0.5. Inoculated agar plates were
incubated for 24 h at 37 °C under aerobic conditions, and bacterial growth inhibitory zones
were determined using a digital calliper gauge. Filter paper discs (6 mm diameter; What-
man, Cytiva, Buckinghamshire, UK) with 3% final concentration Oregano oil (EssentialOils
Online, Norfolk, UK) were included as a control. All assays were performed in triplicate
with biological replicates (n = 3).

2.6.3. Statistical Analysis

One-way ANOVA with Tukey’s statistical tests for post hoc analysis were performed
using GraphPad Prism version 8.4.2 (GraphPad Software, San Diego, CA, USA).

3. Results and Discussion

It is worth noting that during the electrospinning process many changes have taken
place to ensure optimal conditions were generated to produce alginate nanofibres. Sample
S1 was produced initially using the above process and is discussed later in the section.
Table 1 shows the various samples produced in this study using various manufacturing
process parameters.
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Table 1. Samples produced: preparation of solution for electrospinning and manufacturing process parameters.

.l Crosslinking A
Addition of . . Water Soak * Applied
Sample ID with Calcium Notes
OEO (Y/N) Chloride(Y/N) (Y/N) Voltage (kV)
s1, 510 Y (2%) y Y 30 Used for dlamet?r measurement,
mechanical test
S2 N N 30 Influence of adding Oregano and
S3 Y (20/0) N N 30 Viscosity
S4 Y (2%) N N 26
S5 Y (2%) Y N 26 Influence of different crosslinking
S6 Y (2%) Y Y 26 process
S7 Y (2%) N N 22
S8 Y (2%) N N 2% Influence of different spinning
S9 Y (2%) N N 30 voltage

* Water soaking was carried out post-crosslinking process as an additional step.

3.1. The Influence of Adding OEO

To determine the effect of adding OEO to the target solution (alginate/PEO solu-
tion) on the spinning process, solution S2 (without OEO) and solution S3 (with 2% OEO)
were prepared. It was noted that the solution without OEO was a transparent yellow
colour, while the solution with OEO was more turbid than the solution without OEO
(Figure 5, inset S2 and S3). The viscosity of solutions S2 and S3 was examined, as shown in
Figure 5, where OEO reduced the viscosity of the solution (Figure 5, line with diamond). In
this study, electrospinning was carried out using a voltage of 28 kV; the distance between
the needle and plate was 15 cm, at room temperature.

16

Viscosity (Pa/s)
[o]

0 T T T T T T T
0 25 50 75 100 125 150 175 200

Shear rate (1/s) radiant per second

Figure 5. Solution without OEO (inset S2) and solution with OEO (inset S3). Viscosity of solution
without OEO (line with dark squares, S2) and solution with Oregano (line with diamond shape, S3).

According to Figure 6a,b, when a stable Taylor cone was formed, it can be clearly
seen that the transition zone and spread angle of S2 were significantly larger than those
of S3. SEM images revealed formation of nanofibres with larger beads in S2 (Figure 6¢)
compared to sample S3 (Figure 6d). Adding OEO into alginate and PEO solution reduced
the viscosity of the solution, resulting in nanofibres with smaller bead formation.
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Figure 6. Influence of OEO towards density of electrospun fibres: (a) spinneret showing fibre jet with the spinning solution
without OEO and (b) with OEO; (c) the microscopic image of fibre mat without OEO (S2); (d) the microscopic image of fibre

mat with OEO (S3).

3.2. The Influence of Voltage on Fibre Morphology

In the electrospinning process, the influence of voltage affects the structural morphol-
ogy of nanofibres [5]. An increase in voltage from 16 kV to 25 kV produced nanofibres
[poly (d, L-Lactic acid)] with varying fibre morphology. The diameter of the beads was
smaller when compared to low voltage, and the average distance between the beads was
shorter at 25 kV. Any increase in the voltage produced nanofibres with a large diameter
and changed the shape of the beads (spindle to spherical shaped) [32]. Previous research
on sodium alginate produced cylindrical nanofibres (90 &+ 20 nm) when maintaining a
voltage of 17 kV, flow rate of 0.8 mL/h, and tip to collector distance of 17 cm [33].

Interestingly, in this study at 22 kV, we observed that the nanofibres were spaced
out with smaller beads (Figure 7a). At 26 kV, micrographs (Figure 7b) revealed that
the nanofibres were denser, with distinct spindle-shaped beads; however, at 30 kV, the
nanofibres were more prominent in diameter with a smaller size of beads, and the average
distance between the beads was smaller (Figure 7c). These findings were in agreement
with a previous study [32].
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Figure 7. SEM micrographs—the influence of voltage on fibre morphology: (a) 22 kV; (b) 26 kV; and
(c) 30 kV.

3.3. The Influence of Different Crosslinking Processes

In this study, crosslinking was successfully developed, and in addition, different
settings were modified to produce optimum nanofibre mesh. For crosslinking, calcium
chloride was used, and three different samples were prepared, as shown in Figure 8 (also
refer to Section 2.4 for experimental sample details). The process of adding reagents affected
the electrospun fibres, as illustrated in the micrographs. The effect of crosslinking and the
water soaking procedure is illustrated in Figure 8a—c. Therefore, at this stage, three types of
samples were produced:
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Sample without crosslinking (referred to as S4);
Sample after crosslinking for ten minutes using calcium chloride aqueous solution
(referred to as Sb);

e  Sample after crosslinking with calcium chloride and soaked in deionised water for
24 h (referred to as S6).

%4

5 \'_‘:/Q \/i

’fD\/;

300 pA

Cranfield University

Figure 8. SEM of different samples with and without crosslinking: (a) S4—without crosslinking;
(b) S5—after crosslinking with CaCly, and (c) S6—after crosslinking with calcium chloride and water
soak procedure for 24 h.

As observed from Figure 8a, the SEM nanofibre structure of sample S4 was without
crosslinking, and before soaking it with the aqueous crosslinking medium (calcium chloride
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solution), the fibre morphology was clear. However, the sample shown in Figure 8b was
soaked in the aqueous crosslinking medium for ten minutes. The alginate was crosslinked
with calcium chloride after exposure for ten minutes. However, PEO was not crosslinked
with calcium chloride. Hence, PEO was leached out. This PEO leaching can be observed in
Figure 8b, where the nanofibres are embedded in PEO film layers. After leaving the same
sample in an aqueous medium (deionised water) for 24h, PEO was completely removed.
Hence, we observed a clear nanofibre morphology, as shown in Figure 8c.

The alginate nanofibres are water soluble; they need a crosslinking procedure after
the electrospinning process using ionic crosslinking solvent (calcium chloride), unlike
synthetic polymers (polystyrene, polyvinyl chloride, (PVC), poly-lactic acid (PLA)), which
do not need the crosslinking procedure following the electrospinning process. Therefore,
our alginate nanofibre electrospinning process cannot be directly compared with synthetic
nanofibre manufacturing (polystyrene, polyvinyl chloride, PVC, poly-lactic acid (PLA)).

The bead formation in our manufacturing process was a result of crosslinking pro-
cesses. Even if we could reduce the formation of beads during the electrospinning process,
by controlling the voltage and viscosity of the solution, during the crosslinking process,
there would be a relatively smaller number of beads while maintaining a majority of nanofi-
bres (Figure 8c). Hence, the drop-like bond formation leading to bead formation at the
intersection of the nanofibres could not be completely avoided using the ionic crosslinking
process.

The crosslinking process is necessary to prevent the alginate nanofibres from dis-
solving in water for their end-use. We obtained a majority of nanofibres with a relatively
small number of beads. Overall, we showed that we could obtain ionically crosslinked
nanofibres embedded with oregano oil, and such a nanofibre mat can be used for antimi-
crobial applications, which is sufficient for the proposed application in medical textiles
(see Section 3.6).

3.4. Measurement of Nanofibre Diameter Distribution

After a series of parameter verification tests, a set of production processes that pro-
duced alginate fibre mesh with OEO with a good nanoscale microstructure were established,
and mechanical properties were evaluated. S1 and S10 were both produced by this process.
Due to the limitation of experimental conditions and sample size, it was not possible to
perform multiple tests on a sample at the same time. Therefore, these two samples were
used for measurements of diameter and mechanical tensile strength, respectively.

There were four-electron micrographs taken from different positions (Figure 9a—d),
and these were used to count the fibre diameter (leading to 100 fibre diameter data sets). A
histogram plot showed the variation of fibre diameter from 38-105 nm. According to these
assays, there were 80-90% of fibres in the range of 38-78 nm in diameter, and approximately
50% of fibres were in the range of 48-68 nm in diameter. Because of the crosslinking reaction,
there was a certain degree of adhesion between the fibres at the intersection. Likewise,
there were still some beads (diameter around 200-400 nm) in the fibre bundle, but these
were not enough to affect the overall appearance of the fibre structure.
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Figure 9. Nanofibre diameter distribution; SEM micrographs for sample S1; (a—d) different locations of S1 sample.

3.5. Mechanical Testing of Alginate/OEO Fibre Mesh

Figure 10d illustrates a typical stress—strain curve of the sample (510) with OEO. The
highest peak value corresponds to tensile strength, which was found out to be 36 MPa.
Figure 10a shows the stretched alginate/OEO nanofibre mesh. Further strain resulted
in failure of material in three steps, as shown in Figure 10a—c. The final strain to failure
of the nanofibre sample was 8.2%. Figure 10e illustrates a typical cross-section of the
alginate/OEO mesh, with a thickness of 3.8 um. Results indicated that the alginate/OEO
mesh possessed sufficient strength and Young’s modulus (676.79 MPa; calculated in the
region of 0.5-1.5% strain).
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Figure 10. Mechanical testing of electrospun alginate/OEO fibre mesh: real-time close-up photos of sample (a) fibre

mesh crack initiation, (b) crack propagation, and (c) complete failure of sample; (d) the stress—strain plot; (e) typical fibre

cross-section.

3.6. Antimicrobial Activity of Alginate Nanofibres

Alginate nanofibre samples were subjected to antimicrobial contact assays against
two common causes of bacterial wound infections (MRSA and K. pneumoniae) and two
foodborne pathogens (S. enterica and L. monocytogenes). Nanofibres without OEO demon-
strated no antimicrobial activity against all bacterial pathogens (data not shown). Upon
addition of 3% OEO, nanofibres demonstrated antimicrobial efficacy by producing mean
inhibitory zones between 6 and 8.5 mm against all four bacterial strains. When nanofibre
samples were crosslinked, antimicrobial efficacy was retained and enhanced against MRSA
(Figure 11A (b)). Similar levels of antimicrobial activity were observed when crosslinked
samples were subjected to a water soak procedure (Figure 11A-D (c)). Nanofibres sup-
plemented with additional OEO (0.02 mL/ cm?) demonstrated enhanced antimicrobial
activity against all four bacterial pathogens and was significantly more active against K.
pneumoniae (p < 0.01) compared to the crosslinked sample post water soak (Figure 11B,
compare (d) with (c)). The additional OEO sample was also significantly more active
against MRSA than all other alginate samples (p < 0.0001) (Figure 11A, compare (d) with
(a), (b), and (c)) and the OEO only control (p < 0.01) (Figure 11A, compare (d) with (e)).
Comparable activity was observed between the additional OEO nanofibres and OEO only
control against K. pneumoniae and L. monocytogenes, indicating that the nanofibre technology
represents a successful delivery system for OEO, which could be used in wound care
management (dressings) or food packaging technology.
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Figure 11. Antimicrobial efficacy of (a) with OEO (2%) before crosslinking, (b) with OEO (2%) after crosslinking, (c) with
OEO (3%) crosslinked after water soak, (d) with additional OEO, (e) OEO control against (A) MRSA, (B) K. pneumoniae,
(C) S. enterica, and (D) L. monocytogenes. Error bars represent standard error of the mean of n = 3 biological replicates.
e p <0.0001, *** p < 0.001, ** p <0.01, * p <0.05.

The chemical composition of OEO was reported in the previous research, which
mainly consists of p-cymene (35.86%), carvacrol (28.85%), y-terpinene (8.41%), and thy-
mol (4.86%), [34]. These components are responsible for the antimicrobial behaviour of
OEO [35,36]. The composition of OEO may vary depending upon the oregano growing
conditions [37-42]. Future research will be conducted to determine the effect of OEO
composition and the production methods to reduce the impact of harvest and growing
conditions on the chemical composition of OEO.

4. Conclusions

In this study, we have shown the electrospinning of sodium alginate nanofibres
incorporated with OEO. We have demonstrated a novel method of producing a clear
alginate nanofibre morphology by carrying out a two-step crosslinking process. The first
step gives us crosslinking of alginate, and the second step involving the use of deionised
water soaking procedure for 24h gives a clear nanofibre morphology. Various process
parameters (applied voltage and solution feed rate) were suitably optimised to ensure a
stable Taylor cone formation was obtained. SEM analysis revealed alginate-OEO nanofibre
diameter distribution between 38 and 105 nm. Mechanical tests revealed that alginate
nanofibre mesh had adequate strength and thickness.

Antimicrobial assays showed that alginate nanofibres with incorporated OEO success-
fully inhibited the growth of clinically relevant Gram-positive and Gram-negative bacterial
wound and foodborne pathogens. Notably, nanofibres containing OEO demonstrated
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greater antimicrobial efficacy (as determined by larger bacterial inhibitory zones) than
OEO alone against multidrug-resistant MRSA bacteria, which is a major cause of bacterial
healthcare-associated and wound infections [43]. Furthermore, the observed antimicrobial
activity against both S. enterica and L. monocytogenes, the causative agents of foodborne
illness, demonstrated a potential role for antimicrobial incorporated alginate nanofibre
technology for use in food packaging. Overall, this study demonstrated that OEO could be
incorporated within alginate nanofibres while maintaining physical and antimicrobial prop-
erties. Indeed, this study could potentially explore the successful delivery of antimicrobial
medical textiles in biomedical applications and food packing applications.
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