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Improved soil moisture estimation with Sentinel-1 for
arable land at the field scale

Summary
This presentation describes an approach to retrieve a useful field-scale soil moisture estimate
from Sentinel-1 C-band SAR at times when the vegetation in the field is growing so rapidly that
the radar does not directly measure soil moisture as it cannot penetrate the canopy. The
approach is a two-dimensional interpolation solution, building on the change detection method,
which gives good results. This plugs a significant gap in the capability for remote sensing of
soil moisture in the main growing season, for the benefit of farmers and agronomists.

If you have any suggestions or further questions then please contact me via email at
john.e.beale@cranfield.ac.uk.
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Introduction

SAR data from satellites, such as ESA’s Sentinel-1, are being exploited to estimate
surface soil moisture (SM) at scale

Change detection (CD) algorithms [1, 2, 3, 4], do not need model training or a priori
information

CD assumptions are not valid for arable fields [5, 6, 7]; typical errors in volumetric water
content (VWC) are [8, 9]:

I Up to 20 vol.% during the crop main growth period
I 4 to 10 vol.% when the soil is bare

Limited benefit to agriculture (5 vol.% desired)

A new method of Inverse Distance and Confidence Weighting (IDCW) is proposed for
implementing CD at field-scale that is effective for arable crops at all times of year
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Arable Field Performance of CD Algorithm - Example 1

Winter wheat field time series
plot 2018 (#161407 at
Fincham)

I Field Scale SM estimate by
CD (black)

I 2 cm SM (red)
I Crop and tillage activities -

vertical, dotted, green lines
I Blue dots - days of snow or

ice

CD estimate very low in
spring/early summer

Good match after ploughing
(bare soil)
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Arable Field Performance of CD Algorithm - Example 2

Potato field time series plot
2018 (#1359276 at Spen
Farm)

I Field Scale SM estimate by
CD (black)

I 2 cm SM (red)
I Crop and tillage activities -

vertical, dotted, green lines
I Blue dots - days of snow or

ice

CD estimate very high in
summer

Good match after harvesting
(bare soil)

Jan Mar May Jul Sep Nov Jan

0
1

0
2

0
3

0
4

0
5

0
6

0

Date, 2018

V
o

lu
m

e
tr

ic
 W

a
te

r 
C

o
n

te
n

t 
(%

)

Field 1359276

SAR FIELD SCALE

2 cm SIMULATION

Dormant

Snow

Potatoes Planted

Growth

Harvested

Bare Soil

6



Arable Field Performance of CD Algorithm - Regression

Winter Wheat
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Arable Fields Summary of Performance

Crop Type Year Round Winter Dormancy Growth Phase Ripening Post-harvest/Cut Bare Soil

Winter Wheat (Trad. Till) LOW LOW NONE LOW MEDIUM HIGH
Winter Wheat (Min. Till) MEDIUM MEDIUM LOW MEDIUM MEDIUM HIGH

Oil-seed Rape MEDIUM LOW NONE NONE MEDIUM MEDIUM
Grass (Pasture) HIGH

Grass (Ley) LOW HIGH LOW HIGH
Potatoes LOW HIGH LOW LOW HIGH

Using C-band Sentinel-1 SAR data, CD has no capability to estimate SM in most arable
crops at a crucial time of crop development

An alternative strategy must be found to provide a soil moisture capability during these
periods.
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Materials and Methods

Field geospatial information
I Boundaries (erode 20 m)
I Centroid locations

Classify by CD confidence level, c

Field-scale SM estimate, SMi , by CD

Spatial interpolation and confidence
weighting

Alternative field-scale SM estimate SMx

for field x
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Test Sites

Five test sites
I Arable farming
I Locations within the COSMOS-UK

network [10]
I Soil hydraulic parameters and 2 cm

soil moisture profiles for 2018 were
calculated for Beale et al. [9]

Processing extents (at each site)
I 3 km for IDCW (> 100 fields at each

test site)
I 5 km for Sentine1-1 and Sentinel-2

analysis
I 8 to 10 assessment fields selected
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Data

UKCEH Land Cover Plus:Crops 2018 [11] (LCPC)
for field boundaries - eroded by 20 m to exclude
field margins, hedges and buildings

Field scale SM derived from C-band SAR
(Sentinel-1 GRD Level 1 IW VV) using CD
algorithm [3, 4] implemented in Google Earth
Engine (GEE), and scaled to volumetric SM [9].

Sentinel-2 Level 2 MSI data for confidence level
assessment

Reference soil moisture at 2 cm depth [9]
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Filtering of field-scale
SAR-derived SM

Potential causes
The presence of scattering centres

Structured soil surface roughness

Errors in normalisation of backscatter

SM differences due to times of day

Layover affects

After smoothing Savitzky-Golay filtering
(window of 7, 3rd order)
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CD confidence level classification (1)

Based the relative fractional land cover of bare soil (BS), photosynthetically active
vegetation (PV) and non-photosynthetically active vegetation (NPV)

Triangle space method adapted from Yue and Tian [12]

Vegetation indices – Sentinel-2 bands

NDVI =
(NIR − red)
(NIR + red)

=
(B8 − B4)
(B8 + B4)

Surrogate of Cellulose Absorption Index (CAI) [13]
proposed for Sentinel-2 [14]:

CAI∗ =
B12
B11
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CD confidence level classification (2)

Cover fractions established by spectral
unmixing

End member determination by scatter plot
of all CAI/NDVI pairs at each site

Confidence level assigned as below

Classification scheme
Class, c Confidence Level BS NPV PV Logic

1 HIGH > 0.6 < 0.2 < 0.3 AND
2 MEDIUM > 0.4 < 0.2 < 0.5 AND
3 LOW 6 0.4 > 0.2 > 0.5 OR
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Example: winter wheat field (2303484) at Fincham in 2018
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Spatial interpolation algorithm

Inverse distance and
confidence weighting
(IDCW)

SMx =

∑n
i=1

SMi
|di→x |p∗c

q
i∑n

i=1
1

|di→x |p∗c
q
i

Based on IDW [15]

16



Results (1)
Increase in coefficient of determination, R2
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Results (2)
Reduction of mean absolute error, MAE
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Results (3) - Benefits of IDCW to the accuracy of field-
scale, SAR-derived surface SM

Period of confidence level:
Crop All Year Low Low/Medium Headline

All N N N
Oil-Seed Rape N � N MAE down from 7.42 vol.% to 6.01 vol.% over the whole year
Winter Wheat N NN NN For LOW confidence MAE down from 16.1 vol.% to 7.39 vol.%
Spring Wheat � O O Reduction in R2

Winter Barley N NN NN MAE down from 20.5 vol.% to 10 vol.% in low conf.
Spring Barley N N N R2 up from 0.39 to 0.53 in low conf.
Field Beans � � � No benefit
Potatoes NN NN NN MAE down from 15 vol.% to 4.7 vol.% in low conf.
Maize NN NN NN MAE down from 11.5 vol.% to 4.5 vol.% in low conf.
Beet N N NN R2 up from 0.09 to 0.62 in low conf.
Ley Grass � N N MAE down from 10 vol.% to 8 vol.% in low conf.
Grass � � � No benefit

NN = Large benefit, N = Small benefit, � = No benefit, O = Small disbenefit.
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Prototype field-scale soil moisture map

A selection of fields around the
Fincham COSMOS-UK site, on
1st July 2018
SM values derived from
Sentinel-1 C-band SAR by
field-scale CD followed by
IDCW
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Conclusions

Field-scale arable crop performance of CD for SM estimation from Sentinel-1 SAR data is
a function of crop canopy development and tillage state

SM estimation errors of up 20 vol.% were found during the peak growth period

The proposed automated process based on spectral vegetation indices is effective at
identifying these periods of poor performance

The proposed IDCW is effective for arable crops at all times of year, reducing errors to 5
vol.% as required for agricultural use [16]

IDCW benefit is greatest for autumn-sown cereal crops

These methods require no model training or a-priori knowledge of land use and crop type

The output from this study is a step towards providing a useful and reliable field-scale soil
moisture product that works as well on arable fields as it does for other land uses
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Recommendations

The proposed method is capable of further refinement and enhancements

Extension to consider landscape heterogeneity/topography

Modify interpolation according to soil maps and rainfall radar

Use SAR data to identify periods of poor performance

Find a solution to differentiate between grazed grass fields and ley grass
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