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Abstract: Icebergs have long been a threat to shipping in the NW Atlantic and the iceberg season
of February to late summer is monitored closely by the International Ice Patrol. However, reliable
predictions of the severity of a season several months in advance would be useful for planning
monitoring strategies and also for shipping companies in designing optimal routes across the North
Atlantic for specific years. A seasonal forecast model of the build-up of seasonal iceberg numbers
has recently become available, beginning to enable this longer-term planning of marine operations.
Here we discuss extension of this control systems model to include more recent years within the
trial ensemble sample set and also increasing the number of measures of the iceberg season that are
considered within the forecast. These new measures include the seasonal iceberg total, the rate of
change of the seasonal increase, the number of peaks in iceberg numbers experienced within a given
season, and the timing of the peak(s). They are predicted by a range of machine learning tools. The
skill levels of the new measures are tested, as is the impact of the extensions to the existing seasonal
forecast model. We present a forecast for the 2021 iceberg season, predicting a medium iceberg year.

Keywords: icebergs; modeling; prediction; Canada

1. Introduction

Icebergs have been a threat to shipping in the North Atlantic since humans first
ventured onto that stretch of ocean. They mostly originate from the Greenland Ice Sheet,
which has increasingly been losing mass since the 1990s under climate warming [1]. The
first recorded iceberg incident with North Atlantic shipping occurred in 1686, with the
‘Happy Return’ sinking in the Hudson Bay while on a trade operation for the North West
Fur Company [2]. Hundreds of lives were lost in collisions in the following three centuries,
with notable years include 1856, where over 300 people were killed in the first two months
alone, and 1884, where 12 vessels were damaged or sunk [2]. While these sorts of tragedies
were fairly common, the sinking of the RMS Titanic in 1912 with the loss of more than 1500
lives dramatically drew widespread public attention to iceberg risk. With 1038 icebergs
recorded south of 48◦ N that year, this would have been a high ice year for the time, but
not unusually so. There had been strong north to north-westerly winds that year, bringing
very low temperatures, which facilitated icebergs surviving further south than the average,
although not beyond the ice limit for the 20th century [3]. Therefore, while the iceberg risk
for 1912 was high, it was not unprecedented, suggesting the need for a dedicated iceberg
warning system.

The International Ice Patrol (IIP) was established in the following year to try and
prevent any more such incidents occurring. Today, combining data compiled from air
surveillance, ship reports, satellite analysis and iceberg trajectory models, the IIP release
daily charts of iceberg locations and weekly outlooks that are distributed through the
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North American Ice Service (available at https://www.navcen.uscg.gov/?pageName=
iipCharts&year=2021, accessed on 24 January 2021). In their hundred-year history, the IIP
have significantly reduced the risk to life, with no human or major commercial losses in
the patrolled region when vessels have followed IIP advice [4]. However, the potential for
a major disaster still exists.

While short term forecasts reduce the risk of serious collisions, longer term predictions
could have a significant impact on marine planning, potentially altering iceberg monitoring
and even shipping routes months in advance. This would be of great economic benefit,
particularly as in recent decades the mean annual iceberg numbers entering the shipping
lanes of the NW Atlantic have significantly increased compared to earlier in the twentieth
century [5], therefore raising the underlying risk to shipping.

Previous work on understanding the links between the NW Atlantic iceberg flux and
potential environmental causes of variability in calving and in-ocean survival has shown a
strong, although temporally evolving, non-linear connection between this iceberg number
flux across 48◦ N, henceforth to be denoted I48N; lagged variation in the Greenland
Ice Sheet surface mass balance (SMB, equivalent to snow accumulation minus surface
meltwater runoff); the sea surface temperature (LSST) of the Labrador Sea through which
the icebergs travel; and the dominant atmospheric variability of the region, the North
Atlantic Oscillation Index (NAO) [5–7]. The imclusion of lagged non-linear relationships
in these studies has raised the chance of seasonal forecasting being successful. Previous
work looked at an adaptation of [7], where only lags of at least eight months are used in
the Windowed Error Reduction Ratio (WERR) model linking I48N with the forcing terms
of SMB, LSST, and NAO. This led to development of a seasonal forecast model for the next
season’s I48N flux [8]. This was shown to have a skill level of 80% with respect to the high
or low nature of I48N compared to the long-term mean. This seasonal iceberg forecast has
now been issued each year to the International Ice Patrol since 2018.

Later discussions with the IIP suggested that the purely numerical forecast measure
of the forthcoming iceberg season provided via the WERR model is not the only one of
interest, and potential use, for seasonal iceberg risk evaluation [9]. This paper therefore
develops new machine learning approaches to generating forecasts for other more holistic
measures of the seasonal iceberg risk, and assesses their potential, as well as presenting
improvements to the WERR control systems model.

2. Materials and Methods
2.1. Data

The three-monthly input variables for prediction of I48N for both the machine learning
models and the WERR model are: SMB, which affects how many icebergs calve from
Greenland; the NAO, which affects atmospheric temperatures and precipitation in the
region; the mean Labrador Sea surface temperature (LSST), which affects both the calving
rate of icebergs and the survivability of icebergs once in the ocean. The calculation method
for Greenland SMB is given in [10,11], and is the difference between ice sheet mass gain from
snow accumulation and mass loss from ice sheet meltwater runoff, based on positive degree
day runoff retention modelling [12]. Here, SMB data extended to 2020, and based on newly-
available European Centre for Medium-Range Weather Forecasts ERA-5 meteorological
reanalysis data, are used. The LSST data can be found in the Physical Sciences Division of
NOAA, under Kaplan v2 SST, and consists of monthly sea surface temperature anomalies in
the Labrador Sea, over the area 67–55◦ N, 65–45◦ W (https://psl.noaa.gov/data/gridded/
data.kaplan_sst.html, accessed on 24 January 2021). NAO data are available at https:
//www.cpc.ncep.noaa.gov/data/teledoc/nao.shtml, accessed on 24 January 2021.

I48N, the number of icebergs south of the 48th parallel in a given month as recorded
by the IIP and available through their Annual Reports (see, for example [9]), is generally
accepted to reflect annual variability in iceberg activity in the Labrador Sea [5]. The latitude
of 48◦ N is also the point beyond which icebergs begin to enter the trans-Atlantic shipping
lanes (Figure 1).

https://www.navcen.uscg.gov/?pageName=iipCharts&year=2021
https://www.navcen.uscg.gov/?pageName=iipCharts&year=2021
https://psl.noaa.gov/data/gridded/data.kaplan_sst.html
https://psl.noaa.gov/data/gridded/data.kaplan_sst.html
https://www.cpc.ncep.noaa.gov/data/teledoc/nao.shtml
https://www.cpc.ncep.noaa.gov/data/teledoc/nao.shtml
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Figure 1. Map showing the major iceberg paths in the region, with mean April sea ice extent represented by the dashed line.
The dotted line estimates 48◦ N, while the ‘+’ shows the location of the sinking of the Titanic. (Reprinted with Open Access
CC BY permission, from [8]).

2.2. The WERR Control Systems Model

A model for I48N was developed in [5] using a Windowed Error Reduction Ratio
(WERR) control systems method, where a sliding time-window, non-linear, and time-
lagged polynomial regression model, forced with the three environmental factors of SMB,
NAO, and LSST, is optimised for the observed number of icebergs passing 48◦ N. This
method computes the linear and non-linear correlations between the input and output
signals directly to select the model terms one by one. The full mathematical basis behind
the WERR model can be seen in [7]. The WERR method was shown in [6] to produce an
output that had a correlation of 0.84 with the annual variation in the number of icebergs
passing 48◦ N between 1900 and 2008.

The original WERR model was a non-autocorrelative interpretative tool for I48N,
rather than a predictive one, and therefore, polynomial terms with time lags between 0
and 48 months were allowed within the library of candidate terms available for the model
optimisation [7]. However, the dominant terms in the original WERR model had a lag
of eight months or longer, reflecting a minimum timescale between calving and icebergs
reaching 48◦ N; therefore, the model was adapted for predictive purposes by only allowing
polynomial terms with a lag of this size to be available during the model optimisation [8].
This predictive model has a reduced, however still statistically significant (at the 1% level),
correlation of 0.60 between the January–September I48N values and the WERR model
predictions over a 20 year test period, with a confidence of 80% in assessing whether a year
was a high or low iceberg year relative to the 1997–2016 annual mean of 592.
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Seasonal forecasts produced from an ensemble of sliding-temporal windows of this
revised WERR model (see [8] for details) have been released to the IIP for several years. The
ensemble nature of the forecasts gives a measure of the error through its standard deviation.
In addition, to take account of the largely bimodal nature of the I48N iceberg number, [8]
also categorized the forecasts as “high” or “low”, relative to the mean 1997–2016 I48N
value of 497. Thus, the 2017 iceberg season forecast was 766 ± 297, with an observed total
of 1008, this was therefore a formal success, and both forecast and observed numbers fall
in the “high” category. In 2018 the forecast was 685 ± 207, with an observed number of
208. While the forecast was lower than the 2018 observed total, it was still “high”, while
the observed I48N was clearly a “low” year, thus the 2018 forecast was a failure. The 2019
forecast was for 516 ± 150 icebergs. By the end of the season, the total number had reached
1515. The 2019 forecast was therefore a formal failure, although it was predicting a “high”
year, as was observed. The 2020 forecast (including the machine learning approach) was for
a low/medium ice year with 584 ± 303 icebergs by the end of July. The observed number
by this point was 169 (personal communication, Michael Hicks, IIP), representing a “low”
iceberg year. The observed 2020 iceberg number fell outside the error bars; however, there
was an exceptionally large uncertainty in the 2020 forecast, with many of the ensemble
numbers falling into the “low” category. This spread in the forecast probability amplified
the need for alternative approaches; these are provided by the new machine learning
models discussed below and it will be seen below that their forecast for 2020 was definitely
for a “low” iceberg year.

As it was previously found that using WERR model ensemble members generated
from more recent years seemed to produce closer ensemble results to reality than those
earlier in the trial period, here, the 20-year WERR model training period has been moved
forward two years to 2018 (see Table S1 and discussion in Section 3.1).

2.3. The New Iceberg Season Measures

While a prediction of the total number of icebergs past 48◦ N in an ice year is a
useful tool in understanding iceberg risk, other factors, including how early and late in
each season icebergs will enter the shipping lanes, are also of use to shipping. Therefore,
three new measures have been included in the iceberg forecast, using a machine learning
approach. These are a prediction of the peak month, the number of peaks, and the rate
of change. The machine learning tools have also been used to create a forecast of the
maximum annual I48N number to complement the WERR model prediction.

In an average year, North Atlantic icebergs are most prevalent in the months between
March and June (Figure 2). However, which month contains the greatest flux, and so has
the greatest risk to shipping, is variable. Therefore, a prediction for the month in which the
‘peak’ occurs has been made for the 2021 ice season, estimated based on monthly values.
An outcome of ‘0’ reflects a prediction that the peak will occur between January and March.
A result of ‘1’ reflects April, and ‘2’ denotes May. A value of ‘3’ suggests the peak month
will be in June or later in the year.

Figure 2 also suggests that it is usual to have one dominant peak in monthly iceberg
number, however, this is not necessarily the case. In some years, including 2019 [9], more
than one peak was observed. Therefore, machine learning tools have been used to predict
the number of peaks in the 2021 iceberg forecast. A result of ‘1’ suggests a single peak,
whereas ‘2’ denotes a year with multiple peaks. As daily data are only available for the last
decade, monthly values have been used to estimate whether a year had one or more peaks.

The rate of change prediction (RoC) is a measure of how rapidly icebergs are passing
48◦ N and entering the shipping lanes. Iceberg numbers can vary significantly in a short
period of time, and having some warning of this would be of use to ship’s captains.
Therefore, the maximum rate of increase in each ice year from 1900 to 2020 was calculated,
and, when ordered, the lower third were categorised as low, ‘0’, the centre third as medium,
or ‘1’, and the highest third as ‘2’, or high.
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In addition to the measures predicting iceberg behaviour, a machine learning approach
has also been used to predict the annual I48N total. Here, the categories are defined by
the IIP; therefore, a low year, ‘0’, has less than 231 icebergs past 48◦ N, a medium year, ‘1’,
has between 231 and 1036, and a high year, ‘2’, has more than 1036. In order to improve
model accuracy, only three categories have been used for prediction; however, the IIP also
includes a definition for an extremely high ice year of more than 1399 icebergs.

Figure 2. Plot of the average number of icebergs past 48◦ N in each month, from 1950 to 2020.

To graphically show the main features of an iceberg year for the new prediction
measures, Figure 3 shows all these new measures. The new measures have been outlined
on the plot and can be seen to represent the main differences between one iceberg year
and another. Two recent years, 2017 and 2019, have been highlighted, as they show strong
characteristics of particular measures. The magenta line, representing 2019, clearly shows a
multiple peak year, with a high rate of change and a high I48N. As the most significant
peak that year occurs in May, this is the peak month. The blue line, showing 2017, has a
much gentler increase across the year, and therefore a low rate of change. As the greatest
increase was in April, this is the peak month for that year. 2017 also only has one iceberg
peak, and a medium I48N. The black lines show the last 50 years of cumulative iceberg
numbers across the season. It can be seen that the greatest change in iceberg numbers
usually occurs between March and June. Figure 3 also shows that there is high variation in
the total I48N, ranging from 0 to more than 2000 icebergs in a year, with the low, medium,
and high divisions being clear.

The three new measures allow for a better understanding of iceberg behaviour in past
years. However, they are as complex to predict as I48N. This is often due to sea ice trapping
icebergs along the coast and releasing them when temperatures increase, affecting the rate
at which the icebergs pass 48◦ N and the month in which the peak occurs. This is also
the dominant cause of a multiple peak year. LSST is used in the models to try and reflect
this, as sea surface temperatures are strongly correlated to sea ice extent. Atmospheric
temperatures, represented by the NAO, also contribute. Adding a sea ice input variable
into the models was explored; however, it did not increase prediction accuracy.
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Figure 3. Plot of the cumulative iceberg numbers south of 48◦ N in the last 50 years. 2019 and 2017 have been highlighted
(in magenta and blue, respectively) as they show clearly the characteristics of each new measure for prediction within the
context of an iceberg season.

2.4. The Machine Learning Models

For the new measures, three machine learning models were tested and compared:
Linear Discriminant analysis, a Linear Support Vector Machine algorithm (SVM), and a
Quadratic SVM algorithm. The models use knowledge of the annual means of the three
environmental parameters forcing the control systems model (SMB, LSST and NAO), and
allow a measure of auto-regression through having knowledge of the previous years’
value of the appropriate measure of the environmental parameters and I48N. While there
are other machine learning models, such as Random Forest or Gradient Boosting, that
could be considered, these particular models have been selected due to their strength in
classification tasks [13]. It was found in [13] that the Linear Discriminant approach was
best for model precision, especially in circumstances with relatively few input variables. It
was also suggested that the SVM method has the potential to outperform all other surveyed
models when the number of input variables increases. Therefore, these approaches seem to
complement each other, and were also all shown to have predictive skill beyond random
chance (see Section 3.2). It should be noted that this paper aims to demonstrate the proof-
of-the-concept of machine learning for this specific application, rather than optimising their
prediction performance. Further research could look at involving other relevant machine
learning models for a comprehensive comparison of prediction performance.

The first approach, linear discriminant analysis, or the Fisher discriminant, has been
a popular tool since 1936 [14]. While much has changed in the following years, the base
application remains the same. Classification is achieved by imagining the data on a line,
and maximising the distance between the different data class means [15]. Overall, it is a
variable reduction technique with strong pattern recognition ability [16]. The wide range of
real-world applications for this technique are a further testament to its longevity, appearing
in fields from earthquake-induced liquefaction [17] to text classification [16].

The other two approaches are linear and quadratic SVM algorithms. These are popular
tools that attempt to locate an optimal boundary (or hyperplane) between classes for
classification purposes [18]. A visualization of finding the optimal linear hyperplane can be
seen in Figure 4. While a quadratic boundary between classes is less easy to envision, the
general principle remains the same: divide the data into classes by finding the best possible
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boundary between them. Many examples of this practice can be seen in the medical field,
in analyzing enzymes for liver disease [19] or diagnosing whether a tumour is malignant
or benign [20]: however, examples are also beginning to be encountered in environmental
sciences, such as flood classification [21] or crop disease assessment [22].

Figure 4. Visualization of the optimal linear hyperplane (solid line) that classifies the data into two classes (diamonds and
stars) in a support vector machine approach; inspired by [23]. The support vectors are shown by the dashed lines.

The machine learning models have been run through the MATLAB Classification
Learner App. All three approaches were trained on a 30-year sliding-window method in
order to utilise the relatively short dataset of yearly values since 1901, and for consistency
with the WERR approach [6]. They are then tested on the following year, starting at 1931,
rolling forward. An average accuracy and error value can then be calculated from the
86 runs per model, as opposed to having a single accuracy value (see results section for
further discussion).

3. Results
3.1. Revised WERR Model Accuracy

As previously stated, the WERR model training period was moved forward two years
to 2018, compared to the model evaluated in [6,7]. Only the terms with a time lag time of
at least eight months were selected, which allows production of a predictive model eight
months ahead. The selected terms are also required to have an ERR (Error Reduction Ratio)
of 0.02 or higher (see [7] for a definition of ERR). The time series of the performance of the
WERR model over the latest 30-year period of 1989–2018 is shown in Figure 5. While the
model often under-estimates the peak spring value of I48N, and over-estimates iceberg
numbers in very low iceberg years, its representation of the annual cycle (upper panel) and
the annual total (lower Panel) is good, with the latter having a statistically significant (at
the 1% level) correlation of 0.87.

3.2. Sensitivity of the Machine Learning Tools

The average accuracy, F1 score, and root mean squared error (RMSE) of the various
machine learning models can be seen in Table 1. When forecasting the I48N annual total,
the output can either be low, medium, or high. As there are three possible outcomes, an
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accuracy of more than 33% is desirable to show that the method has some skill beyond
random chance. Similarly, for the maximum rate of increase in an ice year forecast, there are
also three outcomes: either low, medium or high. However, when forecasting the number
of peaks in an ice year, there are only two possible outcomes: either one or multiple.
Therefore, for the prediction to show skill beyond random chance, an accuracy of more
than 50% is required. Lastly, for the prediction of when the peak month will occur in an
ice year, there are four possible outcomes: January to March, April, May, or June onwards.
This prediction therefore has the lowest requirement, of more than 25%, of performance
better than random chance.

Figure 5. Plot of WERR model fit vs. observed data for the latest 30-year window model. Upper panel shows the monthly
fit, while the lower panel shows the annual total produced by the model, compared to observations.

Table 1. Showing the accuracy, F1 score, and root mean squared error (RMSE) of the various machine learning models over
the trial period of 1931–2017. The last row shows the mean skill level for each variable predicted, defined as the mean model
accuracy/(expected random accuracy).

I48N Annual Total Rate of Change Number of Peaks Peak Month

Accuracy
(%) F1 RMSE Accuracy

(%) F1 RMSE Accuracy
(%) F1 RMSE Accuracy

(%) F1 RMSE

Linear Dis-
criminant 54.6512 0.66 0.7924 41.8605 0.52 1 55.814 0.77 0.6647 26.7442 0.54 1.3118

Linear SVM 50 0.70 0.8627 37.2093 0.62 1.023 56.9767 0.78 0.6559 26.7442 0.59 1.2152

Quadratic
SVM 50 0.71 0.9022 41.8605 0.59 1.0173 60.4651 0.77 0.6288 30.2326 0.52 1.3725

Mean Skill
level 1.55 1.21 1.16 1.12
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From Table 1, it can be seen that the three machine learning models have similar levels
of accuracy and RMSE between models when considering each new measure. However,
the skill level, defined as the mean model accuracy/(expected random accuracy), differs
between measures modelled. The model of the annual I48N total is the most skillful by
some margin, while the skill levels for models of each of the other three measures are
similar. The F1 score, a measure of incorrectly classified cases, also agrees with this. While
the number of peaks prediction has a higher F1 score than I48N, reflecting high model
precision, this is offset by the forecast having the lowest number of possible outcomes.
Similarly, the peak month prediction has the greatest number of outcomes, and therefore
has an expected lower precision.

The Supplementary Materials (Figures S1–S4) provide a confusion matrix for each
model for every measure for the 30-year sliding window used for the 2021 forecast. These
reflect the complexity of forecasting these naturally highly variable measures, namely in the
peak month and rate of change forecasts. However, the I48N matrices show how successful
that aspect is in predicting iceberg severity. The confusion matrices for the number of peaks
measure (Figure S3) reflect the greater number of one-year peaks than multiple-year peaks.

The forecast for a particular measure is defined as a collective view of the combined
models of a given measure. While the models often agree on individual measures, the
likelihood of the models predicting all four measures the same is low. For the 2021 forecast,
when the models predicted different outcomes for a measure, the forecast was the outcome
that had been predicted more than once. Section 3.4.3 discusses the merits of weighting the
forecast, so that certain models’ outcomes are chosen over the others, even in the case of a
majority, if that model was proven to be the best at representing the individual measure.
However, at this stage, no definitive optimal model could be selected, resulting in taking
the common prediction. Future work would aim to further clarify this matter.

3.3. Machine Learning Hindcasts

Previous WERR model forecasts were discussed in Section 2.2; here the 2017–2020
machine learning hindcasts are presented, and can be seen in Table 2. Interestingly, the
Linear Discriminant and Linear SVM hindcasted the same result across all measures for
the years 2017–2020; however, this was not the case for the 2021 forecast, discussed in
Section 3.4.3, nor has this historically been the case.

Table 2. Showing the machine learning hindcasts (in order Linear Discriminant, Linear SVM and
Quadratic SVM) separated by commas. The observed class is shown in bold.

Year I48N RoC Peak Month No. of Peaks

2017 1,1,1 1 1,1,1 0 2,2,2 1 1,1,1 1
2018 1,1,1 0 0,0,1 1 2,2,1 0 2,2,1 2
2019 2,2,2 2 0,0,1 1 1,1,2 2 1,1,1 2
2020 0,0,1 0 1,1,0 2 2,2,2 1 1,1,1 1

The 2017 hindcast was for a medium iceberg year across all models, and this was
the observed case. The three models also successfully hindcasted one peak. However, all
models were incorrect in hindcasting a medium rate of change (observed low) and a peak
month of May, as opposed to the true April. Overall, the hindcast was fairly successful,
hindcasting both I48N and the number of peaks correctly. There was also high model unity
between all measures.

For 2018, all models incorrectly hindcasted a medium iceberg year, when a low year
was observed. While there is less agreement between the models for the other three mea-
sures, all incorrectly hindcasted the peak month (April and May, when January–March was
observed). Only the Quadratic SVM successfully hindcasted the rate of change (medium);
however, the Linear Discriminant and Linear SVM models successfully hindcasted the
number of peaks (two) where the Quadratic SVM failed to do so. Overall, this hindcast was
unsuccessful, with only individual models successfully hindcasting selected outcomes.
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For the 2019 season, all models successfully hindcasted a high iceberg year; however,
they also all failed to hindcast a second peak. Only the Quadratic SVM successfully
hindcasted both the rate of change and the peak month (medium and May). Overall, the
Quadratic SVM hindcast was very good for this year; however, the two linear models were
less successful.

For the 2020 hindcast, both the Linear Discriminant and the Linear SVM successfully
hindcasted a low iceberg year, and all models hindcasted one peak. However, no model
hindcasted a high rate of change or that the peak would occur in April. Overall, the
hindcast was fairly successful when looking at the linear models.

These hindcasts show that, while the individual models often fail to predict certain
measures, it is common for at least one model to successfully predict an outcome. This
is true for the long-term trend, not just the four years hindcasted here. Therefore, it is
in deciding which model results should take precedence that further work on this topic
would be of benefit.

3.4. The 2021 Forecast
3.4.1. The WERR Prediction

Following the approach of [7], using the forcing of the monthly series of SMB, LSST,
and NAO shown in Figure 6 and an ensemble of WERR models for the 11 30-year sliding
windows 1979–2008 through 1989–2018 shown in Table S1, the WERR 2021 forecast is
675 ± 123 icebergs. This is in keeping with a prediction of a medium ice year.

Figure 6. Plot of the monthly time series data of SMB, LSST, and NAO that was used for the WERR ensemble.

The predicted monthly cumulative totals can be seen in Figure 7, along with the
average iceberg numbers for the last 10 and 50 years. The plot shows a steady increase
in iceberg numbers over the years, with the greatest increase in the spring months. The
2021 forecast fits quite closely to the 10-year average, although with an earlier than normal
peak rate of change, probably by April. Using the previous WERR model from [7], with
the original training set, the forecast would have been 551 ± 297 icebergs, which would
also predict a medium year.

3.4.2. Properties of the Machine Learning Models

Table 3 shows all combinations of the four machine learning outputs that have been
predicted or observed in the testing period (1931–2017). In the Table 3 format ([I48N,
RoC, peak month, number of peaks]), the 2021 forecast is [1,0,1,1]. This combination was
previously observed twice; however, it is rarely a predicted combination, only appearing
once in the Linear SVM outputs and never in the Linear Discriminant or the Quadratic
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SVM. The most common predicted outputs for each machine learning tool, respectively,
are: [1,0,2,1], [1,0,2,1], and [0,0,2,1]. The most common observed combinations are [0,0,2,1]
and [1,1,1,1]. The similarity in the predicted outcomes is consistent with observed results,
in that one peak in May (e.g., [x,x,2,x]) is a common scenario. Likewise, one peak in
April ([x,x,1,x]) is also often predicted, as in the second common observed combination.
However, it is notable that there is a wider range of observed combinations (44) than any of
the models predict (43, 34, and 39, respectively). The Linear Discriminant Model appears to
best reflect the range of observed combinations, and also has a similar distribution across
the structure given in Table 3.

Figure 7. Plot of the 2021 iceberg forecast, including the average number of icebergs past 48◦ N by
the end of July in the last 10 and 50 years.

Table 3. Machine learning output combinations over 1931–2017. Here the order is: I48N, rate of change (RoC), the peak
month, and the number of peaks. Therefore, a combination of [0,0,2,1] is for a low ice year, with a low rate of change, and
one significant peak in May. The last row in each set shows the sub-column totals, with the total sub-set of combinations in
brackets in the first column.

Combinations
with 0 I48N

Number of
Repetitions

Combinations
with 1 I48N

Number of
Repetitions

Combinations
with 2 I48N

Number of
Repetitions

Observed
Combinations

[0,0,2,1] 6 [1,1,1,1] 6 [2,1,1,1] 3
[0,2,1,2] 3 [1,2,2,1] 3 [2,0,2,1] 2
[0,1,2,1] 3 [1,1,2,2] 2 [2,2,3,2] 2
[0,2,0,2] 3 [1,0,2,1] 2 [2,2,0,1] 2
[0,2,1,1] 3 [1,2,1,2] 2 [2,2,2,2] 2
[0,2,2,1] 3 [1,2,1,1] 2 [2,2,2,1] 1
[0,0,1,1] 3 [1,0,1,1] 2 [2,1,3,1] 1
[0,0,3,2] 2 [1,1,0,1] 1 [2,0,1,2] 1
[0,1,1,1] 2 [1,1,2,1] 1 [2,0,3,1] 1
[0,1,0,2] 2 [1,1,3,2] 1
[0,0,1,2] 2 [1,0,3,1] 1
[0,1,3,1] 2 [1,2,0,2] 1
[0,1,2,2] 2 [1,2,3,2] 1
[0,2,2,2] 2 [1,0,3,2] 1
[0,1,1,2] 1 [1,0,0,2] 1
[0,0,0,2] 1 [1,2,0,1] 1

[1,0,0,1] 1
[1,2,3,1] 1
[1,1,3,1] 1

Total (44) 16 40 19 31 9 15
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Table 3. Cont.

Combinations
with 0 I48N

Number of
Repetitions

Combinations
with 1 I48N

Number of
Repetitions

Combinations
with 2 I48N

Number of
Repetitions

Linear
Discriminant

Output
Combinations

[0,0,1,2] 5 [1,0,2,1] 6 [2,2,2,1] 2
[0,1,2,1] 4 [1,2,2,1] 4 [2,0,2,2] 2
[0,2,0,1] 3 [1,1,1,1] 4 [2,2,1,1] 2
[0,2,2,1] 3 [1,2,1,1] 4 [2,2,3,2] 1
[0,2,2,2] 3 [1,0,2,2] 3 [2,2,1,2] 1
[0,1,1,2] 3 [1,1,3,1] 2 [2,1,1,2] 1
[0,2,1,2] 3 [1,2,3,2] 2 [2,2,3,1] 1
[0,0,3,2] 2 [1,0,3,2] 1 [2,0,2,1] 1
[0,2,1,1] 2 [1,0,0,2] 1 [2,1,3,1] 1
[0,1,2,2] 2 [1,0,1,2] 1 [2,1,2,1] 1
[0,1,3,1] 2 [1,2,0,1] 1
[0,1,0,1] 2 [1,1,0,1] 1
[0,0,2,1] 1 [1,2,3,1] 1
[0,0,1,1] 1 [1,1,2,1] 1
[0,1,0,2] 1 [1,0,3,1] 1
[0,1,1,1] 1
[0,0,2,2] 1
[0,2,0,2] 1

Total (43) 18 40 15 33 10 13

Linear SVM
Output

Combinations

[0,0,2,1] 5 [1,0,2,1] 6 [2,2,1,2] 3
[0,1,2,1] 5 [1,2,2,1] 4 [2,1,2,1] 2
[0,0,1,2] 5 [1,1,2,1] 4 [2,0,3,1] 2
[0,2,2,1] 5 [1,0,2,2] 3 [2,1,1,2] 1
[0,2,1,1] 5 [1,2,0,1] 3 [2,2,2,1] 1
[0,0,2,2] 3 [1,2,1,1] 2 [2,1,2,1] 1
[0,1,1,1] 3 [1,1,1,1] 2
[0,2,1,2] 3 [1,0,1,2] 2
[0,1,2,2] 2 [1,1,3,2] 1
[0,1,1,2] 2 [1,2,3,2] 1
[0,2,0,1] 2 [1,0,1,1] 1
[0,2,2,2] 2 [1,2,1,2] 1
[0,0,1,1] 1 [1,0,3,1] 1
[0,2,3,1] 1
[0,1,0,1] 1

Total (34) 15 45 13 31 6 10

Quadratic SVM
Output

Combinations

[0,0,2,1] 7 [1,1,2,1] 5 [2,2,2,2] 2
[0,2,2,1] 5 [1,2,0,1] 3 [2,2,0,2] 2
[0,0,1,2] 4 [1,2,1,1] 3 [2,0,3,1] 1
[0,2,1,2] 4 [1,2,2,1] 2 [2,2,0,1] 1
[0,1,1,1] 4 [1,0,2,1] 2 [2,1,2,1] 1
[0,0,0,1] 3 [1,1,2,2] 2
[0,1,2,2] 3 [1,1,1,1] 2
[0,2,1,1] 3 [1,2,1,2] 2
[0,2,2,2] 3 [1,2,3,1] 2
[0,2,3,2] 2 [1,2,2,2] 1
[0,0,2,2] 2 [1,0,1,2] 1
[0,1,2,1] 2 [1,2,0,2] 1
[0,2,0,1] 2 [1,1,0,2] 1
[0,0,3,1] 1 [1,0,2,2] 1
[0,1,1,2] 1 [1,0,0,1] 1
[0,0,3,2] 1
[0,1,0,1] 1
[0,1,0,2] 1
[0,2,3,1] 1

Total (39) 19 50 15 29 5 7
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Figure 8 attempts to show in another, more graphical way, the common patterns in the
observed combinations. This clearly shows that one peak (the red circles) is significantly
more common than multiple peaks (in blue). The plot also shows that the majority of
observed combinations have a low or medium I48N and a peak month of April or May.
This seems sensible, as the average I48N has been increasing over the last century, and the
training period is 1931 to 2017. Also, as previously mentioned, the peak month is usually
April or May. Figure 9 shows, for comparison, the Linear Discriminant model distribution
which most resembles the observed results. In general, the clustering occurs at similar
locations but with the main differences at times of low rate of change. The model is also
more likely to predict multiple peaks; however, as previously stated, the observational
results may be under-representing this aspect. For reference, the 3D scatter plots of the
Linear and Quadratic SVM models have been included in the supplementary material as
Figures S5 and S6.

Figure 8. Plot of the observed combinations from the testing period of 1931–2017, where I48N,
the rate of change, and the peak month are marked on the axis. A red circle corresponds to one
peak, while blue represents multiple peaks. The larger the circle, the more times that combination
has occurred.

Figure 9. Plot of the Linear Discriminant combinations from the testing period of 1931–2017, where I48N, the rate of change,
and the peak month are marked on the axis. A red circle corresponds to one peak, while blue represents multiple peaks.
The larger the circle, the more times that combination has occurred.



Sustainability 2021, 13, 7705 14 of 17

Another question regarding how well the machine learning models perform relative
to the observed states is how well they do overall for each measure. Table 4 attempts
to show this, through a comparison of the means and standard deviation of the various
models compared to observations. The prediction of the number of peaks was excluded
here as there are only two possible outcomes, and it can be seen from Figures 8 and 9
that one peak is overwhelmingly dominant. Table 4 shows that the Linear Discriminant
outputs have the most similar distribution to the observed results, with a very small net
difference across all three measures. The Linear Discriminant model’s mean is best for two
of the three measures (I48N and rate of change), and its standard deviation is best for all of
the measures.

Table 4. Distribution of combinations. The table shows the mean and standard deviation of the predicted and observed I48N,
rate of change (RoC), and the peak month over the trial period of 1931–2017. Also shown is the total difference between the
unweighted means of each of the three quantities predicted and the observations. Models closest to observations are shown
in bold for each measure.

Observed/Model I48N RoC Peak Month Total Diff. from Obs.

Observed 0.71 ± 0.75 1.07 ± 0.82 1.51 ± 0.94
Linear Discriminant 0.69 ± 0.72 1.06 ± 0.85 1.58 ± 0.91 0.10

Linear SVM 0.58 ± 0.69 0.99 ± 0.87 1.50 ± 0.73 0.22
Quadratic SVM 0.50 ± 0.65 1.16 ± 0.85 1.41 ± 0.90 0.40

A final aspect of the machine learning models examined here is how successful the
models are in predicting individual combinations for specific years. Table 3 showed that the
Linear Discriminant Model had almost as many outcomes as in the observations, therefore
the question is how this links to successful predictions. The successfully predicted combina-
tions from the testing period of 1931–2017 can be seen in Table 5. Random chance suggests
that only 1.36% of the 86 outcomes, or just one, would be expected to be predicted by a
model if there were no skill in the models. However, 10 of the 44 observed combinations
were successfully predicted by one or another of the models. One common combination,
[0,0,2,1], which represents a low iceberg year, with a low rate of change and one peak in
May, was correctly predicted multiple times. Each of the models showed levels of skill,
with five, five, and nine successful predictions for the Linear Discriminant, Linear SVM,
and Quadratic SVM models, respectively. Overall, Table 5 shows that the Quadratic SVM
approach is the most likely to predict the entire combination, with the fewest “false alarms”.
However, as even this tool successfully predicted only just over 10% of the years’ ice states
exactly, it shows that assessment of likely iceberg season risk remains exploratory. Overall,
the three machine learning models help to build a more comprehensive practical idea of
iceberg conditions in a given year, rather than just predicting a final total.

3.4.3. The Machine Learning Forecast for 2021

All three machine learning models predict one significant peak in iceberg number and
a medium iceberg year for 2021. There is more variability in the peak month prediction,
where the models predict either 3 (June onwards) or 1 (April). However, as this measure
has four possible outcomes, it naturally has the lowest accuracy; it also has the lowest skill
level (see Table 1). As two models predict a peak in April and, as one of these, the Quadratic
SVM, has the highest accuracy, the forecast is for the peak month to occur in April. For the
final new measure, two models predict a low rate of change and one (Linear Discriminant)
predicts a medium rate of change. This combination ([1,0,1,1]) is observationally possible.
However, the more common predicted pattern similar to this would be one with a May
peak ([1,0,2,1]). All model predictions for the 2021 iceberg season can be seen in Table 6.
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Table 5. Showing all the successfully predicted combinations over the trial period of 1931–2017, with the number of times
this occurred compared to how many times it was predicted. In the list of successful combinations, the number in brackets
gives the number of years in which this combination was found.

Number of Successful Prediction Total Number of Predictions

Successful Combination Linear
Discriminant Linear SVM Quadratic

SVM
Linear

Discriminant Linear SVM Quadratic
SVM

0 0 1 2 (2) 1 1 1 5 5 4
0 0 2 1 (6) 1 2 2 1 5 7
0 1 1 2 (1) 1 0 0 3 2 1
0 1 2 1 (3) 0 1 1 4 5 2
0 2 1 1 (3) 0 0 1 2 5 3
0 2 2 1 (3) 0 0 1 3 5 5
1 0 2 1 (2) 1 1 1 6 6 2
1 2 1 1 (2) 1 0 0 4 2 3
1 2 2 1 (3) 0 0 1 4 4 2
2 2 2 2 (2) 0 0 1 0 0 2

Total 5 5 9 32 39 31

Table 6. The predictions for the 2021 iceberg season, for the different machine learning models.

Model I48N RoC Peak Month No. of Peaks

Linear Discriminant Medium Medium June onwards One
Linear SVM Medium Low April One

Quadratic SVM Medium Low April One

From Table 6 it can be seen that, while the two SVM models agree on the 2021 forecast,
the Linear Discriminant model is predicting a later peak, from June onwards, and a medium
rate of change. This would produce a combination of [1,1,3,1], which has been observed
once, and predicted by the Linear Discriminant model unsuccessfully twice. While the
Linear Discriminant model has the most similar distribution to the observed results, the
Quadratic SVM has greater accuracy in predicting the peak month. It also has the same
accuracy, but with slightly more error, for the rate of change prediction. As both SVM
models agree on the forecast, this has been the one selected.

Overall, the forecast is for one peak in iceberg numbers to occur in April, with a
low rate of change, in a medium iceberg year. Therefore, the machine learning aspect
agrees with the WERR prediction, that the 2021 ice season will be ‘medium’, with one peak
in April.

3.4.4. Mid Season Forecast Update

Mid-season iceberg numbers south of the 48th parallel suggest that the 2021 season
will be an extremely low iceberg year, with no icebergs recorded crossing 48◦ N up to
mid-May. It is worth noting that such an extreme iceberg year, while not unknown, would
always be extremely difficult to predict, as all prediction tools assume a non-zero iceberg
flux across 48◦ N at some point in each year. Nevertheless, from the IIP daily charts, it can
be seen that a wave of icebergs approached, but did not cross, 48◦ N in April. This suggests
that although the peak southward iceberg flux occurred in April, as predicted, no iceberg
actually entered the count zone. Also, from the decline in iceberg numbers further north
off Labrador in May IIP charts, it seems unlikely that a late (June onwards) peak will occur.

4. Discussion and Conclusions

This paper presents a new machine learning approach to forecasting iceberg behaviour
in the North West Atlantic. The addition of these machine learning models to an existing
and updated control systems forecast has been done to supplement the WERR result and
to try to predict more detailed and practically useful aspects of iceberg behaviour in the
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forthcoming ice year. The flexibility of the machine learning tools allows for a prediction of
practically any quantity, restricted only by the available data. The four new measures in
this paper were selected after end-user feedback from the IIP that these forecast aspects
would be of interest for monitoring purposes. The machine learning models themselves
were selected due to their established success in classification tasks in the environmental
sector [13]; however, as this paper presents a new application of these models, future work
may focus on optimizing the selection of machine learning approaches to achieve the best
prediction performance in this field.

The WERR model forecast has been released to the IIP operationally every year since
2018, and two of the machine learning predictions—I48N and the rate of change—were
also provided for the 2020 season. However, the 2021 ice season is the first to present all
of the new measures and the WERR forecast. This combined 2021 iceberg forecast is for a
medium iceberg year, with a single peak in April and a low rate of change, although as
of the time of writing, 2021 looks likely to be an extreme year with no icebergs travelling
south of 48N between March and mid-May, and therefore is effectively unforecastable by
our approaches.

Analysis of the machine learning models shows that the I48N prediction is the most
skillful, reflected in the accuracy, F1 score, and the confusion matrices provided in the
Supplementary Materials. The other measures are more experimental; however, they still
show respectable performance levels that provide a firm basis for improvement. Future
forecasts would attempt to add confidence to the prediction by utilising the combination
approach further. This could reduce the risk of one component disrupting the overall fore-
cast, notably concerning the number of peaks and the peak month prediction. These have
the lowest skill of the four measures and are therefore where future algorithm development
should be focused. It would also be beneficial to further define the procedure for when the
models disagree. Currently, this is done by using the most common prediction of the three;
however, if the Linear Discriminant model proves to be the best fit, this model should
be prioritised.

Despite the probable exceptional nature of the 2021 season, over the last century the
average number of icebergs in a season has been increasing. It can be seen in Figure 7 that
the average I48N for the last 10 years is significantly higher than for the last 50 years. The
IIP are also aware of this trend, and have variable definitions for a high, low, or medium
year, depending on the year in question (an extreme year before 1945 was for more than
844 icebergs). Sea ice extent has also been gradually decreasing, allowing shipping further
north. While iceberg detection methods have greatly improved over the last century, so
too has iceberg risk. Therefore, there is real practical application in long term iceberg
warning. A combined forecast of iceberg severity gives the shipping industry time to adjust
routes and departure times to avoid regions of high iceberg density. While this work is
not currently at a stage to be crucial to the shipping sector, it shows both the predictive
capacity of these machine learning tools in an area of high natural variability, and is of
interest to the IIP in their continued role patrolling the region.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/su13147705/s1, Table S1: The ensemble of WERR Models used for the 2021 forecast. Figure
S1: Showing the confusion matrices for the rate of change prediction. Figure S2: the confusion
matrices for the number of peaks prediction. Figure S3: Showing the confusion matrices for the I48N
prediction. Figure S4: Showing the confusion matrices for the peak month prediction. Figure S5: Plot
of the linear SVM combinations from the testing period of 1931–2017. Figure S6: Plot of the quadratic
SVM combinations from the testing period of 1931–2017.
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