
characteristics from the raw HSI [17]–[36]. 
According to whether the class label information is uti- 

categories, i.e. supervised, semi-supervised and unsupervised.

With the aid of the prior knowledge of the labeled pixels,

(semi-)supervised methods select the optimal subset of bands 

Index Terms—Unsupervised band selection; hyperspectral im- 
age; autoencoder; concrete random variable; information en- lized, band selection methods can be grouped into three 
tropy. 
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their rich spectral information spanning from visible to (near) 
DL. Secondly, relying heavily on the classification perfor-

infrared wavelengths. With the capability in identifying minor 
mance can easily lead to overfitting and poor generalisity. Be-

changes or differences of certain physical properties, such as 
sides, the results can be of poor robustness as the selected band

moisture and temperature, and chemical components, HSIs 
subset is subject to the randomly chosen training samples. As

have been successfully applied in a wide range of applications 
the label information is rarely available in real applications,

[1]–[4], especially in remote sensing, such as land cover 
unsupervised band selection (UBS) is focused in this paper. 

analysis [5]–[7], precision agriculture [8], and object detection 

P. Yuen is with Electro-Optics & Remote Sensing, Centre for Electronics tasks in HSI, there is no available ground truth in band
Warf

J. Tschannerl is with Apeel Sciences, California, U.S.
are, Information & Cyber (CEWIC), Cranfield University, Swindon, U.K; 

selection to evaluate the chosen band subset for training the DL 
networks. Therefore, it is extremely challenging to determine 
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Abstract—As an important topic in hyperspectral image (HSI)
analysis, band selection has attracted increasing attention in
the last two decades for dimensionality reduction in HSI. With
the great success of deep learning (DL)-based models recently,
a robust unsupervised band selection (UBS) neural network is
highly desired, particularly due to the lack of sufficient ground
truth information to train the DL networks. Existing DL models
for band selection either depend on the class label information or
have unstable results via ranking the learned weights. To tackle
these challenging issues, in this paper, we propose a gumbel-
softmax (GS) trick enabled concrete autoencoder based UBS
framework (CAE-UBS) for HSI, in which the learning process
is featured by the introduced concrete random variables and the
reconstruction loss. By searching from the generated potential
band selection candidates from the concrete encoder, the optimal
band subset can be selected based on an information entropy (IE)
criterion. The idea of the CAE-UBS is quite straightforward,
which does not rely on any complicated strategies or metrics.
The robust performance on four publicly available datasets
have validated the superiority of our CAE-UBS framework in
classification of the HSIs.

[9], [10], etc. Although the high-dimension spectral data is

beneficial in discriminating different materials and objects, it

has evitablly led to the ‘Hughes phenomenon’ [11], where

the performance of the designed algorithms can be severely
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affected by insufficient training samples in comparison to the

large number of spectral dimension. Moreover, the vast data

volume of HSI also results in a huge computation cost, and

the difficulty of data storage, transmission, and processing. Be-

sides, the redundant information in HSIs may bring undesired

properties and lower the efficiency of data analysis. Therefore,

it is crucial to reduce the data dimension of the HSI data whilst

preserving the essential discriminative information.

Although most of the feature extraction methods, such as

the principal component analysis (PCA) [12], [13], the inde-

pendent component analysis (ICA) [14], the wavelet transform

[15], and the maximum noise reduction (MNF) [16] etc., can

generate a discriminative and low dimensional feature set, the

obtained features fail to preserve the physical characteristics of

data acquired from the optical sensors. On the contrary, feature

selection methods, which are also known as band selection,

can choose a desired band subset and maintain the physical

Nowadays, DL-based methods have been successfully ap-

plied in many computer vision tasks and beyond [38]–

[44], [46], [47]. In comparison to the conventional methods,

DL-based approaches can automatically generate favourable

features, not relying on manual intervention and subjective

parameter settings. Many deep-learning models have already

been applied in HSI, such as convolutional neural network

(CNN) [39]–[41] and autoencoder (AE) [44], [46], [47], which

are mainly for feature extraction and data classification [41],

anomaly detection [46], [47], etc. Unlike the aforementioned
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In ranking-based band selection, many efforts have been 
In this paper, we have proposed a novel AE-based DL made to evaluate and rank the importance of the raw spec- 

framework for UBS in HSI. By training an AE with the defined tral bands so as to determine the most significant bands

reconstruction loss, the optimal band subset can be determined from the raw spectral cube. In [22], a maximum-variance

for reconstructing the original HSI cube. Different from our PCA (MVPCA) criterion was utilized to estimate the band

previous work in [44], the optimal band subset is obtained prioritization. As MVPCA considers the representative and

directly from the trained AE without the assistance of ranking discriminative ability of each individual band but ignores

the significance of each band. The major contribution of this the correlation between the chosen bands, the selected band

subset is generally lack of robustness. In Chang and Wang 
1) A concrete end-to-end AE-based UBS framework, CAE- [23], a constraint band correlation (CBS) strategy is proposed

UBS, is proposed, in which the optimal band subset with for ranking-based UBS. Four criteria are adopted in the

the desired number of bands can be easily determined CBS framework for choosing the highly correlated dependent

according to the best reconstruction of the original bands, including the band correlation minimization (BCM), the

HSI. Rather than using continuous real-numbers as the band dependence minimization (BDM), the band correlation

weights in the encoder module, a novel concrete layer is constraint (BCC), and the band dependence constraint (BDC).

implemented with a binary weight of 1 and 0 to indicate Although noisy band which has less correlation to all other

whether the corresponding band is selectable or not. bands will be discarded, similar to MVPCA, the band subset

It is only because of the introduced Gumbel-Softmax, selected from CBS still contains a high degree of redundancy.

the obtained discrete weight matrix can be transformed For ranking-based methods, the result is usually quite redun-

to continuous variables for optimization of the selected dant because of the high correlation between the selected

band subset during the backpropagation. To the best bands, due mainly to focusing only on the performance of each 

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 2 

a desired band subset by using a DL-based UBS method. 

paper can be highlighted as follows: 

of our knowledge, this is the first time to employ the band rather than the relationship between different bands. 
Unlike ranking-based approaches, clustering-based methods

firstly group all the bands into clusters before selecting the 
Gumbel-Softmax trick to obtain the desired band subset

directly in AE deep learning-based UBS in HSI. 
2) Being implemented in an unsupervised manner, the most representative band from each cluster. By clustering

proposed CAE-UBS network is found to be efficient and adajacent bands together under various similarity metrics, the

robust for UBS according to the reconstruction loss and correlation of the bands chosen from different clusters can

the classification accuracy of the HSI. With the aid of be naturally reduced. In [24], a hierarchy clustering algorithm

an information entropy-based criterion, the desired band (WaLuDi/WaLuMi) is proposed based on the Ward’s linkage,

subset can be determined with much less computational which clusters the bands by maximizing the inter-cluster vari- 
ance whilst minimizing the intra-cluster variance. According cost than other DL methods. 

3) In the proposed CAE-UBS framework, a weight matrix to the Ward’s linkage theory, the chosen band from each

from a fully connected (FC) layer has been utilized to cluster is the most representative one hence the formed band

initialize the class probabilities, which can effectively subset will be robust. However, the WaLuDi/WaLuMi method

improve the classification performance. The superior suffers from a huge computational cost due to its hierarchy 
performance of our proposed CAE-UBS framework has architecture. 

Some researchers have dedicated their work to improving been validated on four commonly used HSI datasets to 
demonstrate its merits over a number of state-of-the-art the clustering-based method by combining with some ranking

(SOTA) UBS and one supervised methods, especially a strategies. Inspired by the fast density-peak-based clustering

more robust performance with less trainable parameters (FDPC) [45], an enhanced FDPC (E-FDPC) [26] was proposed 
to rank each band by considering the local density and the and no label information needed. 

The rest of this paper is organized as follows. Section intra-cluster distance simultaneously, where the introduction

II introduces the related UBS methods and AE-based DL of the intra-cluster distance has effectively reduced the cor-

methods. Section III details the proposed framework, including relation between the selected bands. In [27], Wang et al.

CAE-based band selection and optimal band subset searching. have proposed an optimal clustering framework (OCF) for

The experimental results on four HSI datasets are presented UBS in HSI with two objective functions, inspired by the

and discussed in Section IV. Finally, Section V concludes the top-ranked cut and the normalized cut for effective band 
clustering. Afterwards, three ranking strategies are utilized 
to rank the bands within each cluster for band selection, 
where the top-ranked band in each cluster is chosen to form 
the selected band subset. Although these clustering methods 

In the last two decades, a number of UBS approaches have achieve a good performance, noisy bands are prone to become

been proposed, which can be grouped into four main cate- a single cluster and lower the robustness. To tackle this, an

gories, i.e. ranking-based, clustering-based, searching-based adaptive distance-based band hierarchy (ADBH) [28] has been

methods, and sparsity-based. For each category, a detailed proposed recently to reflect the hierarchy structure of HSI and

literature review is summarized below. In addition, the back- produce any number of desired band subsets, whilst the effect

ground information of the AE and AE-based UBS methods of noisy bands can be suppressed. In clustering-based methods, 

paper along with some future directions. 

II. RELATED WORK 

will also be introduced in this section. choosing only the most representative band from each cluster 
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may be insufficient as the second representative band in one their significance. Besides, the aforementioned methods rely

cluster may contain more information than the first one in on the ranking value or the weight to choose the desired band,

another cluster. Thus it is more important to rank the band which can inevitably suffer from the disadvantages of ranking-

subset as a whole rather than individually, which can also based UBS methods, especially the high redundancy between

avoid the effect of noisy bands, as it can easily form a separate the chosen bands. These will be tackled in our proposed

cluster in such approaches. approach as detailed in the next section. 
With a given objective function and a search strategy,

searching-based methods determine an optimal band subset

by exploring different possible combinations of the bands. In
[30], the Volume Gradient band selection (VGBS) method is
introduced, where the defined ‘volume’ information can be

obtained from the estimated covariance matrix of all bands. By

assuming the most redundant band has the maximum gradient,

the VGBS can iteratively remove redundant bands until the

desired number of bands is reached. By developing a structure-

aware metric for measuring band informativeness and indepen-

dence, Zhu et al [34] proposed a dominant-set extraction UBS

(DSEBS)method. As a greedy search-based method, DSEBS

tackles the UBS as a clustering problem. As searching for

the optimal subset is an NP-hard problem and too costly,

the used meta-heuristic or evolutionary algorithms usually

produces a suboptimal solution [34]. In [52], the relationship

between each band and the entire hypercube is determined

through the linear reconstruction, and a desired band subset

can be searched by removing the effect of noisy bands, the

proposed optimal neighborhood reconstruction (ONR) method 

III. METHODOLOGY 

has achieved a good performance on UBS. 
Apart from the searching-based methods, the sparsity-based

methods utilize the sparse representation (SR) to explore the

underlying structures within the HSI data [32]. The multitask

sparsity pursuit (MTSP) [31] searches the optimal band subset

with the aid of the SR and the immune clonal strategy.

Although in SR based methods it is quite straightforward to

select the informative bands based on the estimated sparse

coefficients, the overall computational complexity is still quite

high especially in constructing the SR matrix for large-scale 
HSI datasets [27]. 

Recently, DL and its variations have shown great superiority

in extracting more effective features in HSI. Cai et al [40] have

proposed an end-to-end CNN-based model for band selection,

where the final band subset is determined by ranking the

average of the learned weights for each band. Unlike other

deep learning-based neural networks, the basic idea of AE-

based feature selection is to learn the hidden representations

that can effectively reconstruct the input data. Due to its strong

ability to explore both linear and nonlinear structures among

the extracted features, AE has been successfully applied for

feature selection in high dimensional data in an unsupervised

manner [44]. For UBS in HSI, the AE-based methods are not

as popularly used as the aforementioned other categories of

the methods. In our previous work [44], the input weights of

the AE are utilized to select the most significant bands in an

unsupervised way. However, there are several drawbacks for

this kind of methods. The generated representation from the

encoder is more like a combination of the raw data, where the

weight values of nodes in the encoder layer can be both pos-

itive and negative. Some bands are chosen only because they

have large absolute weights, which does not fully represent 

Fig. 1: The flowchart of the proposed CAE-UBS framework. 

In this section, our proposed CAE-UBS framework will be

presented in detail, including the concept of CAE-based band

selection, determing the optimal band subset, and computa-

tional complexity analysis. According to the flowchart shown

in Fig. 1, first a HSI hypercube is taken as the input to the

designed CAE. Potential band subsets can be acquired based

on minimizing the reconstruction error of the hypercube with

the designed CAE. After calculating the IE of each candidate

of band subsets, the band subset with the maximum IE will

be chosen as the result of band selection. Relevant details are 
presented as follow. 

A. CAE based band selection 

Fig. 2: Weight values of one column in the learned weight ma-

trix W en, the horizontal and vertical axes represent the band

index and weight values of Indian Pine dataset, respectively. 



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 4

In general, a standard AE includes one encoder and one

decoder module. The encoder represents the mapping be-

tween the input data and the hidden representation while

the decoder is to reconstruct the input data from the hidden

representation. Let us project an HSI image into a matrix

X = [X1, . . .Xi, . . . , Xm] ∈ RD×m denote the projected data

from a hypercube, where m represents the total number of

samples in the HSI image and D is the number of spectral

bands. Based on that, the encoder function can be depicted

as Hi = σen(XiW
en + ben) and the decoder function that

reconstructs the input data as X̂i = σde(HiW
de+ bde), where

the Hi is the hidden representation of the input data and the

X̂i is the reconstructed data. σen and σde are the activation

functions, and W and b are the weighted matrices and bias vec-

tor of each module, respectively. For the UBS work, the wen
d

within the input weight matrix W en = (wen
1
, ..., wen

d , ..., wen
D )

actually measures the dth band and represents the contribution

of the dth band in the reconstruction process. The AE can be

trained with the supervision of the reconstruction loss:

L =
1

2m
||X − X̂||F (1)

In our previous work [44] and other similar work [40], the

desired band subset can be chosen by ranking the learned

weight W en from the encoder part. The basic assumption here

is that a highly ranked weight indicates more important of

the corresponding band. However, the weight learned from

AE in general cannot represent the significance of each band.

For example, Fig. 2 shows the learned input weight with one

column in the learned weights matrix W en of the Indian Pines

dataset. Although the positive values represent the contribution

of this band, it has several negative values. Besides, the

motivation of AE-based band selection is to select the most

significant bands for spectrum reconstruction, yet the input

weight based band selection strategy seems not linked to this

objective. Therefore, it is inappropriate to choose the band

according to the weight values.

As the purpose of the AE-based band selection is to learn

an important hidden representation from the input data for

HSI reconstruction, it would be more reasonable to extract

the desired band subset from the encoder part as the key latent

features of the raw data. Inspired by this, we aim to determine

a sparse input weight matrix, whose values can be only 1 and

0, indicating the corresponding band is selected or not. In

this manner, the weight of the bands that do not contribute to

the reconstruction will be 0, otherwise will be 1. Moreover,

the extracted band subset will be optimal as the weights of

the chosen bands are jointly learned. However, this sparse

weight matrix cannot be updated during the backpropagation

in a standard AE as each column of this matrix is a one-

hot vector, i,e, a non-differentiable discrete variable. To tackle

this problem, we have introduced a novel concrete AE for the

UBS, where the sparse matrix can be estimated with the aid of

concrete distribution [48], [49] as detailed in next subsection.

In our proposed CAE-UBS framework, we have employed

the above concrete random variables to select the input bands.

Let the desired number of bands in the band subset be k, a new

Fig. 3: The diagram of the designed concrete autoencoder,

where the Xi,D represents the Dth band of the original HSI

data Xi and X̂i,D is its corresponding reconstructed value, the

Hi denotes the chosen band subset with k bands

sparse weight matrix S will be built with a size of D×k. For

each column of the weight matrix S, a D-dimensional concrete

random variable Sk is sampled following (3). In this way, the

output of the encoder module is Hi = XiS for an input sample

Xi. As Sk is a one-hot vector, it can select a band to recon-

struct the original data. Thus, the composed weight matrix S
becomes a desired sparse matrix, in which the selected k bands

can be directly identified without introducing another criterion.

With the aid of the introduced concrete random variable and

reparameterization, the forward propagation can generate a

band subset, and the backpropagation will optimize the band

selection result.

B. Concrete distribution

The GS distribution, also referred as the concrete distribu-

tion, is defined to produce a continuous distribution over a

discrete variable, e.g., a one-hot vector. As a reparameteriza-

tion trick, the Gumble-softmax trick can efficiently sample z,

i.e. a one-hot vector, from a catergorical distribution with class

probabilities αk, where gk is the sample drawn from Gumbel

(0, 1)1 and k is the element-wise index of the generated one-

hot vector z.

z = one hot

{

argmax
k

[gk + log(αk)]

}

(2)

As the above operation is non-differentiable, which cannot

be back-propagated in the network for optimization. To tackle

this issue, the GS distribution [48] using the softmax function

is proposed as a continuous differentiable approximation to

replace the argmax function in (2) for calculating the contin-

uous relaxation of the one-hot vector z, where the kth element

of the generated sample S from the concrete distribution is

given by:

Sk =
exp((gk + log(αk))/T )

∑D

d=1
exp((gk + log(αk))/T )

(3)
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the temperature parameter T controls the relaxation of the

one-hot vector, where Sk will nearly equal to 1 when T ap-

proaches to 0. With the reparameterization trick, Sk becomes

differentiable when estimating the gradient in the process of

backpropagation.

C. Optimal band subset searching

Fig. 4: Top-right: Training loss curve in 200 training epochs on

the Indian Pines dataset. Bottom-left: The training loss from

the 100th training epoch on the Indian Pines dataset, where

the number of iterations equals to the number of batches.

For searching the desired band subset efficiently, we ran-

domly divide all samples from an hypercube into different

batches in a similar way as other DL models [38]. In this way,

multiple band subsets can be obtained during each epoch. Let

N be the number of band subsets determined in one epoch, it

actually equals to the number of iterations, i.e. the number of

batches, in each epoch. Although a band subset is selected

according to the minimized reconstruction error, it can be

potentially only the local optimal solution due to the random

selection of the batch, where searching for a global optimal

band subset is still needed. To this end, a simple yet robust

IE-based searching strategy is introduced in our CAE-UBS

framework as detailed below [35].

Generally, there are several motivations for considering the

global searching strategy. The first is to find an efficient way

to determine the optimal band subset whilst avoiding a huge

computational cost. Nowadays, most of the efficient UBS

methods are still not DL-related, where in AE-based UBS

the optimal band subset is assumed to be the one with the

best reconstruction ability. We have further speculated that

the desired band groups contain more information than other

subsets, which is beneficial for spectrum reconstruction. To

this end, we have defined a global searching strategy using

information theory [35], the Shannon IE, where the IE of band

Xi is defined as:

IE(Xi) = −
∫

Xi

P (Xi)log(P (Xi))dx (4)

where P (Xi) denotes the probability density function of Xi,

which can be usually estimated by [27], [35]. Based on the

determined IE for each band, the band subset with the largest

accumulated IE is chosen as the desired band subset, and the

result is considered as the global optimal solution [27], [35].

As this search strategy is quite straightforward and efficient,

it has been adopted in the proposed CAE-UBS approach.

D. New weights initialization for improved efficiency

To further improve the efficiency of DL-based UBS in

HSI, a rapid convergence of the designed network is essential

for significantly reducing the computational complexity. In

existing GS-based methods [48], [49], the class probability

αk is often randomly initialized in small positive values for

exploring different linear combinations of the inputs, which

may affect the convergence of the network and the result of

band selection. In our CAE-UBS framework, we initialize the

αk with the weight matrix from a FC layer to regularize the

learning process, where the initialized weight matrix has the

same size of the composed weight matrix S. In this way, αk

are initialized within (−
√
D,

√
D), adaptive to the number of

bands, which is further normalized to (0, 1) to indicate the

class probability. The efficacy of the proposed initialization

has been further validated in the comparison experiments in

the next section.

To obtain the desired band subsets without too much compu-

tational cost, another key point is the efficiency in generating

potential candidates. As one training epoch can produce N
candidates, this will end up with a large search space after

a few epochs. Besides, more training epochs increase the

running time of the whole framework. To find the optimal band

subset efficiently, we need to reduce the number of training

epochs. With our proposed CAE, we have found that the

convergence is faster due to the data volume as the HSI data

is around 100 thousands pixels about several hundreds MB

but RGB dataset is usually GB level. In Fig. 4, the training

loss, i.e. the reconstruction loss, of 200 training epochs on the

Indian Pines dataset is presented. As seen, the training loss is

obviously reduced in each epoch in Fig. 4. Based on that, we

conclude that the proposed network can converge within only

one epoch, and the optimal band subset can be chosen from

the generated N candidates. In this manner, the efficiency of

the proposed CAE-UBS framework can be ensured.

E. Merits of CAE-UBS

With the concrete random variable-based AE and IE based

searching strategy, our CAE-UBS framework can determine

an optimal band subset for the effective reconstruction of the

original spectral data. Different from other AE-based band

selection frameworks, we have formulated the band selection

task as a searching-based task by maximizing the accumulated

IE of the desired band group instead of ranking the significance

of each band. Moreover, the proposed CAE can solve the

problem of backpropagation even with a discrete variable in

the UBS task, which enables the designed network able to be

trained with the reconstruction loss L. Being trained in a self-

learning way without introducing any class label information,

the proposed CAE-UBS has the potential to inspire more

related research on the DL-based band selection in the future.
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Algorithm 1 CAE-UBS 
1: Input: Raw HSI data X = [X1, . . . Xi, . . . , Xm] ∈ 

Rm×D, desired number of bands k. 
2: Initialize: Hyperparameters Initialization :Adam opti-

mizer with learning rate lr, Temperature parameter T , 
Batch size B. 

3: BEGIN 
4: Estimate IE of each band in X 
5: while the first epoch do 

Encoder module: Initialize αk; 
Encoder module: learn S based on (3); 
Hi = XiS; 
Save N band subsets 
Decoder module; 
Update reconstruction loss L based on (1); 
Backpropagation with optimizer; 

6: 

7: 

8: 

9: 

10: 

11: 

12: 

13: end while 
14: Global optimal band subset searching with IE (4) of each 

band and N band subsets; 
15: Output: Band subset n. 
16: END 

IV. EXPERIMENTAL RESULTS 

Due to the lack of the ground truth in the UBS task, the SOTA UBS algorithms are introduced as follows: 
1) OCF [27]: a SOTA clustering-based method with a 

2) DSEBS [34]: one of the most representative searching-

based UBS methods. By developing a structure-aware 
measurement for band informativeness and indepen- 
dence, it tackles the UBS as a greedy-searching problem, 
which has achieved a relatively good performance on 

The third is the Salinas dataset, which was also acquired

by the AVIRIS over the Salinas Valley, California, USA in

1998. Therefore, it shares the same wavelength range with the

Indian Pines dataset in 224 spectral bands. The spatial size is
512×217, in which 54129 pixels are labelled in 16 classes.

After removing the noisy and water absorption bands, 204 
bands are remained for experiments. 

The last is the Botswana dataset, which was captured by

NASA EO-1 satellite sensor over OKAvango Delta, Botswana

in 2011. The original dataset contain 242 bands ranging from

400-2500nm. With a spatial size 1476×256 pixels, in total

3248 pixels are labelled in 16 semantic classes. After the

removal of 97 noise-corrupted bands, a corrected dataset with 
145 bands is often utilized.

B. Settings 
For quantitative evaluation of the classification results with

the selected bands as features, three commonly used metrics

derived from the confusion matrix are adopted, including the

overall accuracy (OA), the average accuracy (AA), and the

Kappa coefficient. OA represents the percentage of corrected

classified pixels, and AA is the mean classification accuracy

over all classes. The Kappa coefficient is introduced to esti- 
mate the reliability of the obtained results. 

For performance evaluation, we have compared our method 
with a few SOTA UBS algorithms, including the optimal 
clustering framework (OCF) (TRC-OC-EFDPC) [27], the band 

The whole process of the proposed CAE-UBS is summarized selection with dominant set extraction (DSEBS) [34], the vol-
in Algorithm 1, where the performance is further discussed in ume gradient band selection (VGBS) [30], WaLuDi/WaLuMi 
the next section. [24], the enhanced fast-peak-based clustering (E-FDPC) [26],

the Adaptive Subspace Partition Strategy (ASPS) [29], and the

Adaptive Distance based Band Hierarchy (ADBH) [28]. These 

performance of band selection is usually indirectly assessed by

evaluating the classification accuracy with the selected bands.

In our experiments, the proposed CAE-UBS is compared with

several SOTA methods based on the classification performance

as detailed below. 

leading performance in the UBS of HSI. 

A. Datasets several public datasets. 
3) VGBS [30]: also a searching-based method, frequently 

cited in UBS [27], [28] 
Four commonly used HSI remote sensing datasets are used

in our experiments. The first is the Indian Pines dataset,

which was captured by the Airborne Visible Infrared Imaging

Spectrometer (AVIRIS) sensor over the North-Western Indian,

USA in 1992. The raw data has 224 spectral bands with the

wavelength ranging from 0.4-2.5µm. It has a spatial size of

145×145 pixels, in which 10249 pixels are manually labelled

in 16 land-cover categories. Often, the dataset is corrected

to have 200 bands after the removal of 24 noisy and water 

4) WaLuDi/WaLuMi [24]: Although being proposed earlier

than other compared methods, they are still classical 
clustering-based methods and frequently cited in many 
literatures [27]–[29], [34]. 

5) E-FDPC [26]: Different from other ranking-based meth-

ods, an enhanced fast density-peak-based clustering pro- 
posed to rank each band by considering the local density 
and the intra-cluster distance simultaneously, which has absorption bands. 

The second is the Pavia University (PaviaU) dataset, which

was collected by the Reflective Optics System Imaging Spec-

trometer (ROSIS) system over the Engineering School of the

University of Pavia, Italy. The commonly used PaviaU dataset

is a cropped version, which consists of 610×340 pixels with a
spectral range of 0.43-0.86 µm. This dataset has 42776 pixels 

a leading performance in ranking-based methods. 
6) ASPS [29]: a novel clustering-based method with a 

robust performance in the UBS of HSI. 
7) ADBH [28]: an adaptive distance-based band hierarchy

based UBS to reflect the hierarchy structure of HSI for 
easily producing any number of desired band subsets 

labelled in 9 land-cover classes. whilst suppressing the effect of noisy bands. 
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TABLE I: Classification results for the Indian Pines dataset using the raw data or selected bands (averaged on 3-30 bands).

Classifier OCF VGBS DSEBS WaLuDi WaLuMi E-FDPC ADBH ASPS Ours Raw data

OA by KNN(%) 64.52±3.45 59.06± 3.26 68.74±3.39 63.35±2.89 51.90±8.28 61.21±1.76 67.93±3.32 64.27±5.24 67.94±2.74 67.65±0.02

AA by KNN(%) 55.03±3.96 46.98±2.73 54.99±2.68 51.48±3.01 39.67±9.42 47.01±2.87 57.76±3.78 52.77±5.66 57.55±2.3 54.22±0.01

Kappa by KNN 0.59±0.04 0.53±0.04 0.64±0.04 0.58±0.04 0.45±0.1 0.55±0.03 0.63±0.04 0.59±0.06 0.64±0.03 0.62±0.01

OA by SVM(%) 75.39±6.21 66.66±5.51 74.34±5.6 73.99±4.03 65.89±12.63 69.52±5 76.43±5.48 73.29±7.75 75.98±5.4 79.33±0.01

AA by SVM(%) 73.36±9.02 62.2±7.56 71.89±8.83 72.33±5.72 57.84±21.51 65.76±10.57 74.13±9.02 70.66±12.03 74.12±6.96 71.47±0.01

Kappa by SVM 0.72±0.07 0.62±0.07 0.70±0.07 0.70±0.05 0.60±0.16 0.65±0.06 0.73±0.08 0.70±0.1 0.73±0.07 0.75±0.01

TABLE II: Classification results for the PaviaU dataset using the raw data or selected bands (averaged on 3-30 bands).

Classifier OCF VGBS DSEBS WaLuDi WaLuMi E-FDPC ADBH ASPS Ours Raw data

OA by KNN(%) 83.19±1.72 83.91±1.84 81.92±2.36 83.96±1.94 85.07±2.05 84.24±0.92 83.18±1.86 85.69±1.68 85.34±2.4 85.73±0.02

AA by KNN(%) 79.12±2.03 80.38±2.29 76.38±3.2 79.86±2.27 81.88±2.38 80.68±1.56 78.76±2.86 82.45±1.92 81.18±3.43 82.02±0.01

Kappa by KNN 0.77±0.02 0.78±0.03 0.75±0.03 0.78±0.03 0.80±0.03 0.79±0.01 0.77±0.03 0.81±0.02 0.80±0.03 0.81±0.01

OA by SVM(%) 88.4±3.42 88.47±4.28 87.52±4.07 89±3.33 89.15±3.02 87.06±2.02 88.69±3.57 83.49±3.73 89.92±4.01 91.64±0.01

AA by SVM(%) 86.11±4.95 84.93±7.91 84.55±5.68 86±5.75 86.32±4.75 83.97±3.68 85.61±6.34 77.29±3.65 86.24±6.47 88.12±0.01

Kappa by SVM 0.85±0.05 0.85±0.07 0.83±0.05 0.85±0.05 0.86±0.05 0.83±0.03 0.86±0.06 0.78±0.03 0.87±0.00 0.89±0.00

For a fair comparison, the original codes from the authors

and the default parameters are used. Besides, the classification

results from the original data are also included (shown as ‘Raw

data’ in this paper).

The proposed CAE-UBS method also has several param-

eters. In the training process, we have employed the Adam

optimizer with a learning rate of 1e-3, where the training epoch

is set to 1 for efficiency. In DL, a large batch size can improve

the training efficiency than a small one, yet it may suffer from

poor convergence and poor generalization. As a result, a proper

batch size needs to be determined, which is suggested to be

linked to the size of the image [38]. In our experiments, the

batch sizes for Indian Pines, PaviaU, Salinas, and Botswana

datasets are empirically set to 512, 8192, 8192, and 8192 by

considering their spatial sizes, i.e. the number of pixels. These

parameters are found to produce particular good results in band

selection in our proposed approach. In addition, the activation

function of the designed stacked decoder is ReLU. For the

temperature parameter, we follow the schedule in [49].

For the classification part, two commonly used classifiers,

K-Nearest Neighbourhood (KNN) [50] and Support Vector

Machine (SVM) [11], are employed with the selected band

subsets from each method as features. In our experiments, the

parameters of KNN and the SVM are optimized through a 10-

folds cross-validation. We use 10% of the randomly chosen

labelled samples as the training set, and the rest for testing.

For the compared methods, the experiments are repeated 10

times, and the average metrics are reported. As our approach

is DL-based, the chosen band subset can be affected by some

stochastic issues. Therefore, the output band subset slightly

different in each run of experiments.

Nowadays, DL-based methods usually report their best

results from the trained models in other computer vision tasks

such as image segmentation and object detection [38]. Con-

sidering that non-deep-learning based conventional approaches

may produce fixed results, it is unfair they are compared with

the best results from DL approaches. Therefore, we randomly

choose five groups of the band selection results from our

CAE-UBS framework, where the selected bands are taken

as features for classification in 10 repeated runs. Afterwards,

the average metrics of these five subsets in 50 total runs are

reported for comparison with the peers.

For the hardware and software settings, the proposed CAE-

UBS framework is implemented on the Pytorch 1.1.0 package

without CUDA. All other band selection methods and the

classification part are implemented on the MATLAB 2019a.

All experiments are done with an Intel i5-8400 CPU, 16GB

rem, with the results reported below.

Fig. 5: OA curves on the Indian Pines dataset with different

UBS methods. Bottom-Left: OA by KNN; Top-right: OA by

SVM.

C. Results and discussions

For performance assessment, the OA curves of all methods

on the four HSI datasets are generated 3-30 chosen bands
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Fig. 6: OA curves on the PaviaU dataset with different UBS

methods. Bottom-Left: OA by KNN; Top-right: OA by SVM.

and shown in Figs. 5-8. As seen, most of the comparing

methods compete with the performance using raw data when

the number of chosen bands is around 30. Besides, we have

compared the average OA, AA, and the Kappa coefficient and

their corresponding standard variation under various number

of selected bands. A detailed comparison of each method on

the four datasets is given in Tables I-IV, respectively, where

the best result is highlighted in bold except those from the raw

data.

To summarize the experimental results from the four

datasets, some extended discussions are given below. In par-

ticular, we will discuss in three aspects, i.e. the performance

of our method, the comparison between our method and BS-

Net, another SOTA DL-based UBS method, and analysis of

the computational time of each method.

1) Comparison results in different datasets: For the In-

dian Pines dataset, the classification results from different

approaches are presented in Fig. 5 and Table I. As seen

in Fig. 5, our method has a robust performance on both

KNN and SVM classifiers. Although the performance is the

second best on the KNN classifier, the difference to the first

place, the DSEBS, is marginal. When more than 20 bands

are selected, only the DSEBS, ADBH and our CAE-UBS

approaches performance well. For the SVM classifier, our

results are also quite stable, especially when the number of

selected bands is beyond 20. Although our approach does not

outperform others in all cases, a robust OA curve has validated

its superiority. Table I shows the classification results of all

methods. As seen, the proposed method along with the ADBH

and DSEBS methods have better performance than the rest on

the KNN classifier. However, the performance of DSEBS with

on SVM seems not as good as on the KNN classifier. For our

approach, it has achieved the second best results with both

classifiers, indicating its robustness.

For the PaviaU dataset, the results are compared in Fig. 6

and Table II, and again our proposed method has shown quite

stable performance. For the KNN classifier, our approach has

an increasing OA. Although the WaLuMi method produces the

best results with the KNN classifier when more than 25 bands

are selected, it does not perform well with a small number of

selected bands, and the performance with the SVM seems not

robust as shown in Fig. 6. With the SVM classifier, our method

has achieved a more robust OA than all others. Considering

both the classifiers, our generated OA curves are steadier,

which has validated the robustness of our CAE-UBS method.

This has been further verified in the quantitative results in

Table II, where our approach has achieved the best OA on

SVM and the second best OA on the KNN classifier. Although

the ASPS has achieved the best classification result on the

KNN, its performance on the SVM is rather poor. For the

OCF and ADBH, their performance on the PaviaU dataset are

not good.

Fig. 7 and Table III show the classification results for the

Salinas dataset. In Fig. 7, our method again has achieved

nearly the best performance on the KNN classifier and a

robust performance on the SVM. Although our approach is

not the best on the KNN when less than 15 bands are chosen,

its superiority accelerates when more bands are selected.

Although OCF has a better performance when less than 15

bands are selected, its OA curve on the KNN classifier is not

as stable as ours. For the VGBS and the WaLuDi methods,

they fail to produce satisfying results on the KNN. For the

SVM classifier, most of the methods have achieved a robust

performance except for the WaLuDi, whilst our is the third

best slightly behind the ADBH and OCF methods. This is also

consistent with the results in Table III, where our approach is

the thrid best on the KNN and the SVM, whilst the difference

between ours and the two leading ones are minor.

For the Botswana dataset, the classification results from

different UBS approaches are presented in Fig. 8 and Table IV.

As seen in Fig. 8, our method has the most robust OA curves

than all others on both classifiers. Although the WaLuDi has

a better performance when 5 or less bands are chosen, our

CAE-UBS method has a more stable OA curve. With the SVM

classifier, the WaLuDi does not perform well when more than

5 bands are chosen. The VGBS has a poor performance with

less selected bands even though it has the best result when

30 bands are chosen. As shown in Table IV, our approach

has the best average OA on the SVM classifier. For the

KNN classifier, we have the second best averaged OA with a

marginal difference to the WaLuDi, which demonstrates again

its robustness.

2) Further Result Analysis: Although the proposed method

has obtained quite good results with the two popular classifiers

on the four HSI datasets, the OA is not always the best which

can be explained as follows. In fact, the network architecture

and the strategy for searching the optimal band subset used

in the proposed method are relatively simple. Taking the

proposed CAE-UBS framework as a baseline, its performance

can be further improved by introducing a larger neural network

or certain regularization terms such as spatial constraints.
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TABLE III: Classification results for the Salinas dataset using the raw data or selected bands (averaged on 3-30 bands).

Classifier OCF VGBS DSEBS WaLuDi WaLuMi E-FDPC ADBH ASPS Ours Raw data

OA by KNN(%) 88.33±0.73 84.84±1.39 87.28±2.37 85.65±1.02 86.81±2.1 87.43±1.43 88.48±0.65 86.58±1.73 88.18±1.34 87.70±0.01

AA by KNN(%) 93.32±0.64 88.94±2.15 92.36±1.87 91.32±1.45 91.24±2.79 92.61±1.49 93.3±0.75 91.82±1.69 92.95±1.22 93.27±0.01

Kappa by KNN 0.87±0.01 0.83±0.02 0.86±0.03 0.84±0.01 0.85±0.02 0.86±0.01 0.87±0.01 0.85±0.01 0.87±0.01 0.86±0.01

OA by SVM(%) 92.22±1.71 91.66±1.92 90.87±3.46 90.14±2.15 91.46±3.21 91.82±1.59 92.45±1.61 90.84±3.27 91.95±2.04 92.87±0.00

AA by SVM(%) 95.8±1.26 95.18±1.64 94.91±2.58 94.27±2.38 94.53±3.82 95.38±1.55 95.85±1.24 94.63±2.69 95.51±1.6 96.42±0.00

Kappa by SVM 0.91±0.02 0.91±0.02 0.90±0.04 0.89±0.02 0.90±0.04 0.91±0.02 0.92±0.02 0.90±0.04 0.92±0.00 0.92±0.01

TABLE IV: Classification results for the Botswana dataset using the raw data or selected bands (averaged on 3-30 bands).

Classifier OCF VGBS DSEBS WaLuDi WaLuMi E-FDPC ADBH ASPS Ours Raw data

OA by KNN(%) 80.53±2.95 78.21±2.9 79.99±3.71 82.36±0.66 80.76±2.9 79.6±4.13 81.15±1.66 77.52±7.83 82.25±2.85 82.44±0.01

AA by KNN(%) 77.81±3.06 75.22±3.15 77.39±3.76 79.72±0.75 78.16±2.74 76.98±4.13 78.52±1.69 74.95±7.77 79.21±3.79 80.11±0.01

Kappa by KNN 0.79±0.03 0.76±0.03 0.78±0.04 0.81±0.01 0.79±0.03 0.78±0.05 0.8±0.02 0.76±0.09 0.81±0.03 0.81±0.02

OA by SVM(%) 86.37±3.47 86.43±4.39 85.11±4.19 87.72±1.11 86.97±3.84 85.35±4.17 86.41±2.94 83.06±7.83 88.1±2.96 89.94±0.01

AA by SVM(%) 87.21±3.59 87.26±4.73 86.14±4.23 88.6±1.05 87.94±3.82 86.15±4.33 87.45±2.89 84.04±7.88 88.82±3.44 91.54±0.02

Kappa by SVM 0.85±0.04 0.85±0.05 0.84±0.05 0.87±0.01 0.86±0.04 0.84±0.04 0.85±0.03 0.82±0.08 0.87±0.03 0.89±0.01

Fig. 7: OA curves on the Salinas dataset with different UBS

methods. Bottom-Left: OA by KNN; Top-right: OA by SVM.

Actually, the quite satisfactory results on four datasets from

three different sensors, i.e. the AVIRIS, ROSIS, and the NASA

EO-1 sensors, have validated the robust performance and high

generalization capability of the proposed network. To this end,

it is safely to say that the proposed method can generate a

global optimal solution in most cases.

As shown in the previous subsection, our proposed CAE-

UBS framework can usually produce better results when more

bands are selected. For example, our OA curve in Fig. 6

outperforms all others when more than 15 bands are chosen.

As our method is searching-based, a larger search space with

more bands tends to produce better results. Therefore, it is

prone to find the optimal band subset from the increased

number of band combinations, which validates the searching

Fig. 8: OA curves on the Botswana dataset with different UBS

methods. Bottom-Left: OA by KNN; Top-right: OA by SVM.

ability of our developed DL-based UBS method.

3) Comparison with other deep learning-based UBS meth-

ods: To further evaluate the effectiveness of the proposed

method, we have compared it with one SOTA DL-based UBS

method, the BS-Net [40], and the AE-UBS [44]. For BS-Net,

the indexes of selected bands provided by the authors are used

to test the classification accuracy. For the three test datasets,

Indian Pines, PaviaU, and Salinas, the numbers of selected

bands given in [40] are 25, 15, and 20, respectively. As a

result, we compare our approach with BS-Net using the same

number of selected bands. The selected bands by BS-Net and

our method are listed in the Appendix, where the BS-Net

has two groups of results, i.e. by using FC networks (BS-

Net-FC) and convolutional neural networks (BS-Net-Conv) for

evaluation and comparison. In addition, we have listed five

groups of results from our approach and one group of results

from our previous approach [44]. Taking the selected bands
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TABLE V: Comparison results between other deep

learning-based UBS methods [40], [44] and the proposed

method on the first three datasets.

Dataset Classifier CAE-UBS AE-UBS [44] BS-Net-FC [40] BS-Net-Conv [40]

Indian Pines

OA by KNN(%) 68.36±0.01 68.07±0.01 64.76±0.00 71.91±0.02

AA by KNN(%) 58.77±0.01 51.70±0.01 53.18±0.01 61.97±0.02

Kappa by KNN 0.65±0.01 0.64±0.01 0.59±0.01 0.68±0.03

OA by SVM(%) 79.31±0.01 77.99±0.01 76.85±0.01 80.66±0.00

AA by SVM(%) 79.62±0.011 76.18±0.01 73.96±0.00 80.39±0.00

Kappa by SVM 0.78±0.011 0.75±0.01 0.74±0.01 0.78±0.01

PaviaU

OA by KNN(%) 85.66±0.00 84.70±0.01 87.11±0.01 83.99±0.01

AA by KNN(%) 82.31±0.00 81.04±0.00 84.38±0.01 79.92±0.01

Kappa by KNN 0.81±0.01 0.79±0.01 0.83±0.01 0.78±0.01

OA by SVM(%) 92.84±0.01 85.00±0.01 92.63±0.01 92.75±0.01

AA by SVM(%) 90.93±0.01 75.79±0.01 90.75±0.01 90.59±0.00

Kappa by SVM 0.91±0.01 0.79±0.00 0.90±0.00 0.90±0.01

Salinas

OA by KNN(%) 88.77±0.01 88.49±0.01 88.18±0.01 87.11±0.01

AA by KNN(%) 93.70±0.00 93.16±0.01 93.45±0.01 92.87±0.01

Kappa by KNN 0.87±0.01 0.87±0.01 0.87±0.01 0.86±0.00

OA by SVM(%) 93.18±0.01 92.80±0.00 92.70±0.00 91.99±0.01

AA by SVM(%) 96.35±0.01 96.20±0.01 96.23±0.01 95.96±0.00

Kappa by SVM 0.92±0.01 0.92±0.01 0.92±0.00 0.91±0.01

Fig. 9: OA curves on the three datasets with different methods,

‘Ours’ represents the proposed method, ‘General’ is the pro-

posed method with general GS initialization, and the ‘efdpc’

denotes the proposed method with the E-FDPC ranking instead

of IE. Bottom-left: Indian Pines; Mid: PaviaU, Top-right:

Salinas.

as the spectral features, we can then use the classification

results as an indicator to evaluate the efficacy of the band

selection approaches. In Table V, quantitative results in terms

of OA, AA and Kappa from the BS-Net, AE-UBS, and CAE-

UBS are given for comparison, using the KNN and SVM

classifiers on the three datasets. As seen in Table V, the BS-

Net-Conv has the best performance on the Indian Pines dataset

with both classifiers, followed slightly behind, especially for

SVM, is our CAE-UBS method. Nevertheless, our method

significantly outperforms the BS-Net-FC with both classifiers.

For the PaviaU dataset, the proposed approach has the best

performance with the SVM classifier and the second best

performance with the KNN classifier, while the BS-Net-FC

has achieved the best performance with the KNN classifier.

Surprisingly, BS-Net-Conv has produced much worse results

than the BS-Net-FC, especially for the KNN classifier, al-

though it has the best results on the Indian Pines dataset.

This has indicated relevant lack of robustness of the BS-Net

model in different datasets. Finally, for the Salinas dataset,

our CAE-UBS method has yielded the best performance with

both classifiers, though it seems BS-Net-FC performs slightly

better than BS-Net-Conv. Besides, our proposed CAE-UBS

method has outperformed the AE-UBS with both classifiers

in the three validated datasets.

It is worth noting that the reported band subsets chosen

from the BS-Net are selective the best to produce the highest

classification accuracies. For our approach, we have used the

averaged classification results from five randomly chosen band

subsets. To this end, the superior performance has validated the

robustness and efficacy of the proposed CAE-UBS method. As

our method is implemented using a less complicated network

with only the FC layers, the performance could be further

improved by introducing the convolutional kernels or adding

more layers, which will be explored in the future.
4) Effect of αk initialization: Generally, the GS distribution

initializes the αk with small positive values. In our CAE-UBS,

we assume the general GS initialization method cannot reflect

the class probabilities, we have employed the weight from

a FC layer to initialize the αk. To illustrate the effectiveness

of our proposed initialization approach, we have compared the

classification results with the general GS initialization methods

and ours. The classification results in terms of OA with the

SVM classifier on the first three datasets are shown in Fig.

9. As seen, our initialization method has produced a more

robust OA curve than the general one, especially in the PaviaU

dataset. Accordingly, it can consistently produce improved

classification accuracy under the same number of selected

bands, which has validated the superiority of the proposed

initialization scheme.
5) Analysis of the IE: To further analyse the effect of the

utilized (IE) criterion in our proposed CAE-UBS approach,

we have replaced it by E-FDPC [26], a popularly used method

to rank the band importance [27], [28]. The ranking values

obtained by E-FDPC are employed to determine the desired

band subset, and the results with the SVM classifier are also

compared in Fig. 9. As seen in Fig. 9, the proposed CAE-

UBS with the IE criterion has consistently outperformed the

variation with the E-FDPC for band ranking rather than the

IE, especially on the Salinas dataset. The robust performance

here has validated the superiority of the IE criterion used in

the proposed CAE-UBS approach.

TABLE VI: Computational time(s) of different UBS methods

with 30 selected bands vs. the average OA in 3-30 selected

bands with the SVM classifier on the four datasets.

Methods Avg. OA(%) Indian Pines Pavia U Salinas Botswana

Ours 86.49 0.75 1.9 1.5 4.7

ADBH 85.99 0.35 2.69 2.23 7.73

OCF 85.59 0.7 0.65 1.13 2.5

WaLuDi 85.21 41.95 99.7 198.51 322.25

DSEBS 84.46 0.2 1.02 1.05 8.63

E-FDPC 83.44 0.97 6.85 3.11 22.35

WaLuMi 83.37 14.04 13.82 29.68 77.59

VGBS 83.31 0.54 0.24 0.82 0.47

ASPS 82.67 0.56 1.89 1.01 7.72
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6) Comparison of computational time: To evaluate the

efficiency of the proposed approach, we have also compared

in Table VI the computational times of various methods

with 30 selected bands. Meanwhile, the average OA from

the SVM classifier in 3-30 selected bands for all the four

datasets is used to indicate the efficacy of these band selection

algorithms. As seen in Table VI, our method has outperformed

all others yet with a comparable computational complexity to

the conventional methods without DL. Although OCF seems

quite efficient, its OA is about 0.9% lower than ours. For

WaLuDi and WaLuMi, their computational complexity is quite

high due to the time-consuming process in calculating the

mutual information. As it only requires one training epoch,

the proposed CAE-UBS approach has actually provided an

efficient and effective solution for UBS in HSI.

As an indicator of the computational complexity of the DL-

based approaches, the numbers of parameters of our proposed

CAE-UBS approach, and BS-Net [40] are compared in Table

VII. As seen, our CAE-UBS has much less trainable parame-

ters than the BS-Net and AE-UBS. However, the classification

accuracies are comparable to or even superior than BS-Net

as shown in Table V. Note that the reported computational

time including the training process for HSI reconstruction is

implemented on CPU, hence the efficiency can be further

improved with the aid of GPU like other DL-based band

selection approaches such as the BS-Nets [40]. In comparison

to BS-Nets implemented on a 11GB GPU, our CAE-UBS

algorithm implemented on a CPU is about 1000 times faster,

yet the classification results are very comparable or superior.

Thanks to the GS trick and entropy constraints, this has

validated again the great potential of CAE based UBS in HSI.

TABLE VII: Number of parameters in CAE-UBS.

No.of.Parms Indian Pines PaviaU Salinas Botswana

CAE-UBS 43244 17489 51860 29669

AE-UBS 85533 25437 85760 46283

BS-Net-FC 152592 - - -

BS-Net-Conv 590288 - - -

V. CONCLUSIONS

Although a few unsupervised approaches have been pro-

posed for hyperspectral band selection in the last two decades,

the results in general show lack of robustness due to the bank

ranking schemed adopted, whilst the DL-based approaches

often suffer from huge computational burden due to numerous

training epochs requested. In this paper, we have proposed

a novel CAE-UBS framework for unsupervised hyperspectral

band selection. With the introduced CAE, the collaborative

behaviour of the bands during the HSI reconstruction process

can be exploited for searching the candidates of potential

band subsets. By implementing a novel encoder layer with

the GS trick, a discrete matrix can be generated to choose the

desired band subset, where parameters of the proposed CAE

can be learned by the constraints of the reconstruction loss.

In addition, maximizing the accumulated IE is found to be an

effective global searching strategy to determine the optimal

band subset. As the proposed CAE can produce satisfactory

results with only one training epochs, its computational time

has been significantly reduced to the same level as conven-

tional methods. The robust performance from experiments on

four publicly available datasets has fully demonstrated the

efficiency and efficacy of the proposed CAE-UBS framework.

Although the proposed approach produces overall the best

performance, the results vary in the four datasets. In the future,

we will focus the development of a multi-task network for

selecting more discriminative bands for classification, aiming

to achieve more consistent performance in different datasets.

In addition, we will explore other band selection applications

in HSI beyond image classification, such as spectral unmixing

and HSI reconstruction.
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APPENDIX

To further demonstrate the performance of our proposed

method, we have compared our method with a novel super-

vised deep learning-based method, the BHCNN [51]. Due to

the limited computational resource, we could not run the code

of [51] directly. Instead, we have compared our method with

it using the 30 selected bands in the Indian Pines and PaviaU

datasets, based on the band selection results provided by [51].

Taking these selected bands as input features, we can produce

the classification results using KNN and SVM for comparison.

As seen in Table A-I, the propsoed method outperforms the

BHCNN [51] in the selected 30 bands.

The results of selected bands by the proposed method and

the BS-Net on three HSI datasets, Indian Pines, PaviaU and

Salinas, are shown in Tabel A-II, where the number of bands

are the same as used in BS-Net, i.e. 25, 15 and 20 for

the three datasets. For visual comparison of the importance

of each band, we compute the band significance according

to the chosen times of each band divided in five repeated

experiments. The band significance from these three datasets

are shown in Fig. A. 1.
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