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Abstract. Research into the use of artificial intelligence (AI) algorithms within the field of 
prognostics and health management (PHM), in particular for predicting the remaining useful life 
(RUL) of mechanical systems that are subject to condition monitoring, has gained widespread 
attention in recent years. It is important to establish confidence levels for RUL predictions, so as 
to aid operators as well as regulators in making informed decisions regarding maintenance and 
asset life-cycle planning. Over the past decade, many researchers have devised indicators or 
metrics for determining the performance of AI algorithms in RUL prediction. While most of the 
popularly used metrics like Mean Absolute Error (MAE), Root Mean Square Error (RMSE), etc. 
were adapted from other applications, some bespoke metrics are designed and intended 
specifically for use in PHM research. This study provides a synopsis of key performance 
indicators (KPIs) that are applied to AI-driven PHM technologies of mechanical systems. It 
presents details of the application scenarios, suitability of using a particular metric in different 
scenarios, the pros and cons of each metric, the trade-offs that may need to be made in choosing 
one metric over another, and some other factors that engineers should take into account when 
applying the metrics. 

1. Introduction 
Prognostics and Health Management (PHM) involves assessing the health state of systems, sub-systems 
or components throughout their lifecycle with a view towards avoiding unexpected failures as well as 
possibly extending their useful life [1]. A mechanical system is considered to be under a normal or healthy 
state of operation if certain parameters remain above a predetermined threshold [2]. This threshold is 
often defined based on temperature, pressure, vibration, noise or other measurable parameters. These 
measurements can be used as an indication of the current health state of the system or to alert any 
deviation from normal operating condition, which can help determine how much longer the system would 
run before its condition falls below the threshold. A key activity in PHM, therefore, is the prediction of 
the remaining useful life (RUL) of systems. 

RUL is defined as the duration between the current time and the time when system condition reaches 
the failure threshold. Up to date, many different approaches have been proposed in the literature to predict 
the RUL of mechanical systems. In general, the RUL prediction approaches can be categorized into three 
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types according to their principles: physic-based, data-driven, and hybrid (or fusion) techniques [3]. The 
data-driven RUL prediction approaches involves the use of artificial intelligence (AI) algorithms along 
with sensor data from the monitored equipment [4]. Given the recent rapid advances in the field of AI, a 
plethora of AI algorithms have been applied to predict the RUL of mechanical systems. These algorithms 
range from conventional techniques such as artificial neural network (ANN), neuro-fuzzy systems, 
support vector machine (SVM) and Gaussian process regression (GPR) [5] to more recent techniques 
such as deep learning algorithms [6]. Irrespective of the type of algorithm used, an important step in 
adopting AI in PHM science is being able to measure the performance of the algorithm. 

The performance metrics serve as indicators of the level of confidence one may have in the accuracy 
of an algorithm and the associated methodology. As the RUL prediction is inherently a regression 
problem, a performance metric is required to assess the prediction error (as opposed to classification 
problems that seek to determine right or wrong classification). The majority of key performance 
indicators (KPIs) have been adapted from the ones used in forecasting to measure forecast error, that are 
predominantly statistical. Even though the statistical-based metrics are popular and still widely in use, 
some researchers have developed bespoke performance measures for PHM algorithms. For instance, the 
readers can refer to [7-9]. 

The current study provides a synopsis of the KPIs and metrics that are being used for AI-driven PHM 
of mechanical systems and equipment. It also presents details of the application scenarios, suitability of 
using a particular metric in different scenarios, the pros and cons of each metric, and the various 
considerations that should be made when choosing a metric for assessing the performance of different AI 
algorithms. A broad classification scheme is presented using not only the conventional forecasting 
metrics but also incorporating other metrics developed by PHM researchers. The results of this study can 
serve as a useful resource to help researchers select the most suitable AI algorithm for their PHM related 
research. 

The remainder of this paper is organized as follows. Section 2 provides a classification of metrics 
used to measure the performance of AI-driven PHM algorithms. Section 3 presents details of the key 
considerations which should be made in choosing one metric over another. Section 4 briefly discusses 
some challenges that may arise when defining suitable metrics to use for AI algorithms in PHM research. 
Some concluding remarks are also provided at the end. 

2. Performance Metrics for AI Algorithms in PHM 
Currently, most performance metrics used for PHM have been adapted from other disciplines such as 
forecasting, meteorology, finance, medicine, etc. A broad classification of the PHM metrics is presented 
in reference [8]. This study not only uses the conventional forecasting metrics but also incorporates 
other metrics developed by PHM researchers. The proposed classification framework for PHM 
performance metrics is shown in Figure 1. 

 
Figure 1. A classification framework for PHM performance metrics. 
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2.1. Conventional Metrics 
Conventional metrics constitute the building block of most PHM performance measures. Given that the 
fundamental approach used to determine the performance of a PHM algorithm relies on comparing the 
predicted RUL value with the true value, the statistical-based measures are by far the most common 
metrics being adopted. Some studies have shown that the mean squared error (MSE), root mean square 
error (RMSE), mean absolute error (MAE) and mean absolute percentage error (MAPE) are the most 
widely used metrics for measuring the performance of AI algorithms [10]. These “primary” metrics are 
typically determined by a three-step approach involving (1) calculation of the point distance (between 
the estimated and true values), (2) normalization, and (3) aggregation of point results over the entire 
dataset. The conventional performance metrics are based on either accuracy or precision. In what follows, 
the accuracy-based and precision-based performance measures are briefly reviewed. 

2.1.1 Accuracy-based Metrics 
Accuracy essentially measures how close the estimated RUL value is to the actual value [11]. Most 
metrics aggregate the errors in point estimates over the complete dataset, and thus they need to take the 
mean or median as measures of performance evaluation. The disadvantage of these measures is that they 
weigh the errors equally, irrespective of when they occurred. Depending on end-user requirements, it 
may be expedient to give more weights to the errors obtained from predictions made near the end-of-
life (EOL) of the system. Directly related to this point is the notion of timeliness, which has also been 
proposed as a metric. Making accurate predictions early enough is important in order to help with 
maintenance planning and logistics. 

In this study, we define ỹ𝑖(𝑡) as the predicted RUL value and 𝑦𝑖(𝑡) as the true RUL value, both at 
time instant 𝑡, and at the ith prediction. Some conventional accuracy-based metrics for PHM applications 
are given below: 

𝑀𝑒𝑎𝑛 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐸𝑟𝑟𝑜𝑟 (𝑀𝐴𝐸) =  
1

𝑛
∑ |ỹ𝑖(𝑡) −  𝑦𝑖(𝑡)| 

𝑛
𝑖=1 .      (1) 

𝑀𝑒𝑎𝑛 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝐸𝑟𝑟𝑜𝑟 (𝑀𝐴𝑃𝐸) =  
100%

𝑛
∑

|ỹ𝑖(𝑡)− 𝑦𝑖(𝑡)|

𝑦𝑖
 𝑛

𝑖=1 .    (2) 

𝑆𝑢𝑚 𝑜𝑓 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝐸𝑟𝑟𝑜𝑟𝑠 (𝑆𝑆𝐸) =  ∑ (ỹ𝑖(𝑡) −  𝑦𝑖(𝑡))
2𝑛

𝑖=1  .      (3) 

𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝐸𝑟𝑟𝑜𝑟 (𝑀𝑆𝐸) =  
1

𝑛
∑ (ỹ𝑖(𝑡) −  𝑦𝑖(𝑡))

2𝑛
𝑖=1  .      (4) 

𝑅𝑜𝑜𝑡 𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝐸𝑟𝑟𝑜𝑟 (𝑅𝑀𝑆𝐸) =  √𝑀𝑆𝐸 .       (5) 

𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑀𝑒𝑎𝑛 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝐸𝑟𝑟𝑜𝑟 (𝑆𝑀𝐴𝑃𝐸) =  
100%

𝑛
∑

|ỹ𝑖(𝑡)− 𝑦𝑖(𝑡)|

(|ỹ𝑖(𝑡)|+|𝑦𝑖(𝑡)|)/2
 𝑛

𝑖=1  .  (6) 

𝑀𝑒𝑑𝑖𝑎𝑛 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐸𝑟𝑟𝑜𝑟 (𝑀𝑑𝐴𝐸) =  𝑀𝑒𝑑𝑖𝑎𝑛 
𝑖=1,…,𝑛

|ỹ𝑖(𝑡) − 𝑦𝑖(𝑡)| .     (7) 

𝑀𝑒𝑑𝑖𝑎𝑛 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝐸𝑟𝑟𝑜𝑟 (𝑀𝑑𝐴𝑃𝐸) = 100% × 𝑀𝑒𝑑𝑖𝑎𝑛 
𝑖=1,…,𝑛

|ỹ𝑖(𝑡)− 𝑦𝑖(𝑡)|

|𝑦𝑖(𝑡)|
 .   (8) 

The merits and demerits of these metrics are discussed later in this paper. 

2.1.2 Precision-based Metrics 
Precision refers to the spread or narrowness of the interval within which the estimates variate. Precision-
based metrics provide an indication of the spread of RUL predictions, given the same set of inputs. An 
emphasis is made here on the difference between sensitivity and precision. Sensitivity gives an 
indication of how the predictions from an algorithm would change with the changes in inputs. Thus, the 
sensitivity is a measure of robustness. Some conventional precision-based metrics for PHM applications 
are given below: 

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 (𝑆𝐷) =  (
∑ (ỹ𝑖(𝑡)− 𝑦𝑖̅̅̅)2 𝑛

𝑖=1

𝑛−1
)
1

2⁄

 ,                                          (9) 
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where 𝑦�̅� is the mean of the errors. 
𝑀𝑒𝑎𝑛 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 (𝑀𝐴𝐷) =  

1

𝑛
∑ |ỹ𝑖(𝑡) −  𝑦�̅�| 

𝑛
𝑖=1 .                                         (10) 

𝑀𝑒𝑑𝑖𝑎𝑛 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 (𝑀𝑑𝐴𝐷) =  𝑀𝑒𝑑𝑖𝑎𝑛 
𝑖=1,…,𝑛

|ỹ𝑖(𝑡) −  𝑀| ,                                   (11) 

where 𝑀 is the median of the errors. 

2.2 PHM-specific Algorithms 
Engel et al. [11] proposed the use of confidence intervals, along with accuracy and precision, to 
determine whether the RUL estimates are within acceptable bounds. In addition to these metrics, 
Vachtsevanos et al. [12] proposed also some other metrics for fault diagnosis and prognosis, including: 
timeliness, similarity, sensitivity, incorporation of uncertainty, as well as cost-benefit metrics such as 
technical value and total value. Leao et al. [7] extended the conventional metrics and proposed some 
new metrics which are discussed in section 2.2.1. Other researchers, e.g. Saxena et al. [13], proposed a 
number of hierarchical metrics for PHM. Sharp [9] argued that the hierarchical metrics proposed in [13] 
are complicated to use. Therefore, he proposed a set of metrics which could be used in a hierarchical 
manner or integrated with other metrics. 

In an attempt to develop metrics for assessing the performance of PHM algorithms, there has been a 
somewhat unintended multiplicity of proposed metrics. Thus, most researchers resort to the use of 
metrics such as MAE, RMSE, etc., instead of those designed for PHM. The PHM metrics can be 
classified into three groups: (1) the metrics that directly measure the algorithm’s performance, (2) the 
metrics that are based on a cost-benefit criterion, and (3) the metrics that can be used to measure the 
computational performance. There three groups are described in more detail below. 

2.2.1 Algorithm Performance Metrics 
Leao et al. [7] proposed a number of metrics to help with defining user requirements as well as verifying 
algorithm performance. Some of these performance metrics include: 
a. Prognostic Hits Score (PHS) – this is defined as the number of correct prognostics estimates divided 

by the total number of estimates, where the alert time is greater than or equal to actual time to failure. 
This metric gives an indication of number of useful predictions (NuP). 

b. False Alarm Rate (FAR) – this is defined as the number of false alarms due to prognostics estimates 
divided by NuP. “False alarm” in prognostics implies the occurrence of actual failure of an equipment 
later than the RUL predicted by the algorithm.  

c. Correct Rejection Rate (CRR) – this is defined as the number of correct rejections divided by total 
number of prognostics estimates that meet rejection criterion. Rejection criterion is met when alert 
time plus confidence interval is less than the ground truth RUL. Alert time in this context means 
minimum lead time required to take an action, while correct rejection implies rejecting the prediction 
when not enough time is available to take an action before a failure occurs. 

d. Imprecise Correct Estimation Rate (ICER) – this is defined as the number of correct predictions that 
do not provide enough precision in order to be useful to the user, divided by the total number of 
correct prognostics estimates. 

e. Prognostic effectivity – this is defined as the capacity of prognostics algorithm to avoid unscheduled 
maintenance. This metric is calculated by dividing the number of avoided unscheduled maintenance 
events by total number of unscheduled maintenance events caused by the failure mode of interest. 

f. Average Bias (AB) – this metric is given by: 

𝐴𝐵 =  
1

𝑛
∑ (ỹ𝑖(𝑡) − 𝑦𝑖(𝑡) 

𝑛
𝑖=0 ) ,                                               (12) 

where 𝑦𝑖(𝑡)  is the ground truth RUL at time t and n is the total number of predictions that helped to 
avoid unplanned maintenance. 

g. Average Absolute Bias (AAB) – this metric is similar to AB but uses absolute difference. This is an 
accuracy measure and is given by: 

𝐴𝐴𝐵 = 
1

𝑛
∑ |ỹ𝑖(𝑡) − 𝑦𝑖(𝑡)| 

𝑛
𝑖=0 .                                              (13) 



ISAIC 2020
Journal of Physics: Conference Series 1828 (2021) 012005

IOP Publishing
doi:10.1088/1742-6596/1828/1/012005

5

h. Coverage – this is defined as the relative frequency of occurrence of the failure mode of interest, 
which is calculated by dividing the number of failures caused by the failure mode of interest by the 
total number of recorded failures for a component. It does not directly measure the algorithm 
performance but may be used as a weighting factor when considering all failure modes of the 
component.  
The following set of hierarchical metrics were proposed in [13], with additional guidance in [14, 15] 

on how to apply them. The metrics need to be applied in a logical manner in order to make any 
meaningful deductions from them. 
i. Prognostic Horizon – this metric gives the difference between the time when prediction first meets 

the specified performance criteria (i.e. ±α% error on RUL) and the EOL, i.e. the time when prediction 
crosses the failure threshold. 

j. α-λ performance – this metric gives an indication of the prediction accuracy at specific time instances, 
i.e., it checks if prediction is within acceptable bounds (±α% of RUL) at a given time fraction λ, 
between first prediction and EoL (λ = 0 at time of first prediction; λ = 1 at EoL). 

k. Relative Accuracy – this is an instantaneous measure of error in RUL prediction relative to ground 
truth RUL. 

l. Cumulative Relative Accuracy – this is a normalised weighted sum of instantaneous relative 
accuracies over the lifetime of the prediction (i.e. from first prediction to EoL). Weights are assigned 
such that predictions at critical times, such as near the EoL, are more important than earlier 
predictions. 

m. Convergence – it measures the manner in which any metric improves with time, e.g. how quickly a 
prediction converges towards the actual RUL as it progresses towards EoL. 

n. Robustness – it attempts to quantify the sensitivity of an algorithm with respect to its parameters, like 
the size of the training data or choice of prior distributions. Confidence bounds of a robust algorithm 
are not expected to vary wildly with changes in the input parameters. 
Sharp [9] proposed four metrics intended to measure the performance of algorithms and possibly 

compare different prognostics sets, independent of the unit of RUL (e.g. time, number of cycles). These 
metrics capture fundamental aspects of accuracy, precision and timeliness. They are briefly explained 
below: 
1) Weighted Error Bias (WEB) – this is defined as the effective bias in all predictions as a percentage 

of total equipment lifetime. Therefore, 

𝑊𝐸𝐵 =
100

𝑁
∑ ∑ 𝑤𝑖(𝑡) ×

(ỹ𝑖(𝑡)− 𝑦𝑖(𝑡))

𝑇𝑜𝑡𝑎𝑙𝑈𝑛𝑖𝑡𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒𝑖
 𝑇

𝑡=1  𝑁
𝑖=1 ,         (14) 

 where ỹ𝑖(𝑡) is the predicted RUL for unit i at time instant t; 𝑤𝑖(𝑡) is the importance weight of unit i 
at time t; T is the total number of times that RUL prediction is made; and N is the number of units. 
The optimal value for the WEB is zero, indicating that the average prediction is centred on the true 
RUL value. 

2) Weighted Prediction Spread (WPS) – this metric is designed to capture prediction uncertainties and, 
simultaneously, apply weights to prediction importance across various points of the equipment 
lifetime. First, instantaneous percentage errors in RUL prediction are allocated into bins, across the 
lifetime of an equipment, with the percentage error computed by the following equation: 

%𝐸𝑟 = 100% ×
(ỹ𝑖(𝑡)− 𝑦𝑖(𝑡))

𝑈𝑛𝑖𝑡_𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒 𝑖
  .                                            (15) 

Instantaneous percentage errors can then be placed in bins divided either equally between 0% and 
100% of total unit lifetime or by points centred around (𝑡 𝑇𝑜𝑡𝑎𝑙 𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒)⁄ . The WPS can then be 
computed as: 

𝑊𝑃𝑆 = 100% ×
∑ (𝑊𝑏𝑖∗𝐶𝐼𝑏𝑖) 

𝐵
𝑏𝑖=1

∑ 𝑊𝑏𝑖
𝐵
𝑏𝑖=1

 .                                           (16) 
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where 𝐵  is the number of bins, 𝑊𝑏𝑖  is a weighting function based on the centre value of each 
reference bin. WPS values give an indication of the level of uncertainty in the prediction, with higher 
values indicating larger uncertainty. 

3) Confidence Interval Coverage (CIC) – this metric helps to check whether or not the true RUL value 
lies within the confidence interval of the prediction. This is given by: 

𝐶𝐼𝐶 = 100% ×
∑ (𝑅𝑈𝐿𝑏𝑖∈𝐵𝑏𝑖) 

𝐵
𝑏𝑖=1

𝐵
 .                                           (17) 

CIC is therefore interpreted as the sum of the percentage of true RUL values contained within their 
corresponding error bin sets divided by the number of bins. A 100% score implies that all predictions 
fall within the true RUL values. 

4) Confidence Convergence Horizon (CCH) – this metric identifies the predicted RUL value that once 
reached, all remaining predictions would fall within no more than ±10% of the true RUL, 95% of the 
time (assuming a 95% confidence level). This metric is somewhat similar to the α-λ performance 
metric as proposed in [13], however it is more focused on the quality of prediction towards EOL. 
Sharp [9] further proposed a “Total Score” metric that aggregates the above-mentioned four metrics, 

namely, WEB, WPS, CIC and CCH. This metric is calculated as below:  

𝑇𝑜𝑡𝑎𝑙𝑆𝑐𝑜𝑟𝑒 =  �⃗⃗� × [
100− |𝑊𝐸𝐵| 
100 − 𝑊𝑃𝑆

𝐶𝐼𝐶
𝐶𝐶𝐻

]  ,                                                 (18) 

where �⃗⃗�  is a normalized vector representing the importance weight of the four metrics. For example, �⃗⃗�  
= [0.25, 0.25, 0.25, 0.25] means equal weights. 

Three metrics were proposed in Zemouri and Gouriveau [16] to adopt for AI-driven PHM, in a 
scenario where M different prediction algorithms were used to make n different RUL predictions. The 
three metrics are: 
a. Overall Average Bias (OAB) – this gives the average of the absolute value of the prediction errors. 

It is calculated by: 

𝑂𝐴𝐵 =  
1

𝑀
∑

1

𝑛
∑ |ỹ𝑖(𝑡) − 𝑦𝑖(𝑡)| 

𝑛
𝑛=1

𝑀
𝑚=1 .                          (19) 

b. Overall Average Variability (OAV) – this is computed as the mean of the standard deviations. It is 
calculated by: 

𝑂𝐴𝑉 = 
1

𝑀
∑ (

∑ (ỹ𝑖(𝑡)− 𝑦�̅�)
2 𝑛

𝑖=1

𝑛−1
)
1

2⁄

 𝑀
𝑚=1  .                                         (20) 

c. Reproducibility – this represents the mean distance between RUL predictions of the M different 
algorithms. It is calculated by: 

𝑅𝑒𝑝 =  (
2

𝑀(𝑀−1)
∑ (𝑑𝑖𝑗)

2
𝑖<𝑗 )

1
2⁄  ,                                         (21) 

where 𝑑𝑖𝑗 is the Euclidean distance between the ith and jth prediction algorithms and is given by: 

(𝑑𝑖𝑗)
2 = (𝐸𝑗 − 𝐸𝑖)

2 + (𝑆𝑡𝑑𝐷𝑒𝑣𝑗 − 𝑆𝑡𝑑𝐷𝑒𝑣𝑖)
2 ,            (22) 

where 𝐸 is the error (ỹ𝑖(𝑡) − 𝑦�̅�), and 𝐸 and 𝑆𝑡𝑑𝐷𝑒𝑣 both are n-dimensional. 

2.2.2 Cost-Benefit Metrics 
The metrics discussed so far are meant to measure the quality of RUL predictions. However, the real 
benefit of making correct predictions is to record less number of unexpected failures and minimize the 
hassles associated with unplanned interventions. Cost-benefit metrics measure the anticipated benefits 
of adopting PHM in business, such as life-cycle cost savings or risk reduction. Some cost-benefit metrics 
are: 
a. Life Cycle Cost – It calculates the total cost of acquisition, operation and maintenance under a PHM 

system and compares with the costs when there is no PHM decision system. In order to justify the 
adoption of PHM, the costs with PHM should be lower. 
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b. MTBF-to-MTBUR Ratio – It is defined as the ratio of mean time between failures (which is estimated 
by conventional reliability methods) to mean time between unit replacement (after PHM 
implementation). This metric gives an indication of the effectiveness of predictions. Lower MTBF-
to-MTBUR ratio indicates the efficiency of the PHM decision system. 

c. Return-on-Investment (ROI) – this is defined as the average annual profit as a percentage of the initial 
investment made for PHM implementation [17].  

d. Technical Value and Total Value – technical value measures the benefits of correct predictions for 
critical failure modes against the cost of wrong predictions and the associated resource requirements. 
Total value, on the other hand, looks at the benefits across all the failure modes that a PHM system 
can effectively cover, less all costs associated with the PHM implementation. 
Details of the formulae associated with the above cost-benefit metrics can be found in [12, 13]. Luna 

[18] analyzed the cost implications of accurate and timely estimates of RUL on four logistics support 
scenarios: (i) lead times for ordering the spare parts required for maintenance actions; (ii) mitigation of 
consequences of failures; (iii) extension of useful operational lifetime; and (iv) reduction in maintenance 
cost. Tang et al. [19] proposed two metrics of ‘skill’ and ‘value’, which were adapted from meteorology 
literature. Skill measures how much better a prediction model is than the reference prediction; for 
example, whether the prediction of RUL using AI algorithms can help make more accurate decisions 
about maintenance. The measure of “value” represents whether the RUL estimates actually lead to lower 
maintenance expenditure, compared to the reference case. 

An important note on cost-benefit metrics is the fact that the analysis is based on historical figures 
about lifetimes of similar equipment or experimental run-to-failure data. Consequently, evaluation of 
the actual performance of AI algorithms using these cost-benefit metrics can only be correctly performed 
after PHM implementation and is thus not immediately or directly applicable to newly introduced 
equipment. This further underscores the limitation of offline PHM metrics because the actual RUL is 
required, which is not available in most cases in real practice. The concept of online PHM performance 
metrics is discussed in section 2.3 below. 

2.3 Other Performance Metrics 
Two other categories of metrics worth discussing are computational metrics and online evaluation 
metrics. Computational metrics measure the performance of an algorithm in terms of run time and 
processing capabilities of the hardware and software used to run the algorithm. Another broad 
categorization of PHM performance metrics is to distinguish between offline and online evaluations. 
Offline metrics assume a priori that run-to-failure data is sufficient to predict the RUL and perform an 
evaluation. All the metrics discussed so far make this assumption and are thus suitable for offline 
evaluations. Online performance metrics, on the other hand, involve making RUL estimates based on 
data available up to the present time, with regular updating as more data becomes available in (near) 
real-time. Liu and Sun [20] proposed two metrics, namely, relative accuracy (RA) and relative precision 
(RP) for online PHM performance evaluation. The metrics were based on the probability of predictions 
falling within a user-defined acceptance zone, the level of confidence of the predictions, and the actual 
data measured in (near) real-time during operation (as against previously collected run-to-failure data). 
Other studies have proposed online, real-time parameter tuning and updating as more operational data 
become available. For instance, Zhou et al. [21] proposed a method using long short-term memory 
(LSTM) algorithm for updating the RUL prediction model parameters. However, the performance of 
the algorithm was evaluated using the MSE metric. 

3. Considerations and Selection Criteria 
Defining user requirements and developing algorithms for PHM are processes that feed into each other. 
The choice of the cost function, the optimization objective, and performance metrics for use with AI 
algorithms in PHM will therefore necessarily depend on key factors, some of which are shown in Figure 
2. The factors have been broadly grouped into the ones related to user requirements and those that are 
necessary for algorithm design. 
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3.1. User Requirements 
Timeliness – the time of first prediction should trigger maintenance planning and determine the 
usefulness of the RUL prediction algorithm. 

• Criticality – components whose failures result in severe consequences should have stricter 
performance requirements. For instance, the lead time required to take maintenance action should 
be longer for safety-critical equipment, along with narrow confidence bounds. Furthermore, 
defining the failure threshold is a key consideration for critical equipment. 

• Maintenance logistics support – the lead time required to order spare parts would influence the 
choice of PHM metrics. For example, the prognostic horizon metric. 

• Regulation/standards – extant regulations, or lack thereof, contribute to user requirement 
specifications, since standards and regulations will have to be complied with. 

• Cost-benefit – this is perhaps of utmost importance in PHM research as it determines whether or 
not a PHM decision system is worth it. 

3.2. Algorithm Design Requirements 
• Data type and characteristics – although ground truth RUL values obtained from run-to-failure 

data attempt to simulate real life scenarios, such data will always differ from reality. Algorithm 
design must therefore factor in noise in sensor data along with other uncertainties associated with 
health state estimation and future loading conditions. 

• Algorithm optimization type – essentially, AI algorithms perform optimization by minimizing a 
loss function designed around a performance metric, e.g. MSE. 

• Computing resources – these must be compatible with data type and size, as well as choice of 
algorithm; thus influencing algorithm design. 

3.3. Other Considerations 
An algorithm that penalizes large errors may be rejected even though it makes good predictions towards 
EOL. This is because, typically, during early life, algorithms are trained using minimal data and 
predictions could result in large errors. However, the errors would tend to become smaller as the system 
approaches its EOL because more data becomes available. Typically, metrics that take an average over 
lifetime as against breaking down the lifetime into different parts exhibit this trait (e.g. MAE). However, 
in cases where the accuracy of early predictions is very important, penalizing early errors can be a 
performance requirement. PHM effectivity can also be a very useful input for maintenance planning. 

3.4. Pros and Cons of Some Selected Metrics 
In addition to discussions in section 2 on each of the metrics, Table 1 below gives the strengths and 
weaknesses of some selected metrics. As a general note regarding the units of the metrics discussed; 
accuracy-based and precision-based metrics, along with their other derivatives, are typically measured 
in the same unit as the RUL – which is either number of cycles or running hours. Weighted metrics and 
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Figure 2. Considerations for PHM metrics selection. 
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relative accuracy metrics are devoid of units and are more amenable to easy comparison of results across 
different simulations and algorithms. 

Table 1. Merits and demerits of AI-driven PHM performance metrics. 

Metric Pros Cons 
MAE; Overall Average Bias a. Easy to compute and understand. 

b. Unit is same as unit of RUL. 
c. Equal weighting for individual errors. 

a. Susceptible to outliers. 
b. Does not reveal bias. 
c. Requires ground truth RUL. 
d. Unsuitable for multiple datasets with varying scales. 

SSE; MSE a. Applies weighting to magnitude of error. 
b. Good for gradient-based algorithms (amenable to 

optimization). 

a. Requires ground truth RUL. 
b. Sensitive to outliers. 
c. Unit differs from unit of RUL (i.e. scale-dependent). 

RMSE a. Applies weighting to magnitude of error. 
b. Unit is same as unit of RUL. 

a. Requires ground truth RUL. 
b. Sensitive to outliers. 
c. Unsuitable for sparse data. 

MAPE; sMAPE a. No unit; good for comparison across different 
datasets. 

b. Easy to compute and understand 

a. Does not reveal bias. 
b. Sensitive to outliers. 
c. Requires true RUL. 

MdAE a. Less sensitive to outliers (than MAE). a. May not work well with very large datasets. 
MdAPE a. Handles outliers well. 

b. Not scale-dependent. 
a. Not intuitive or directly informative. 

Std. Deviation; 
Overall Average Variability 

a. Handles outliers well. 
b. It is a good indication of spread. 

a. Assumes a distribution for RUL. 
b. Affected by weighting of errors. 

MAD (Mean Absolute 
Deviation) 

a. Good for sparse data. 
b. Easy to compute and understand. 

a. May not work well for a large data set with lots of 
outliers. 

MdAD (Median Absolute 
Deviation) 

a. Handles outliers well. 
b. Good for sparse data. 

a. May not work well with very large data sets. 

Prognostic Horizon a. Easy to compute and understand. 
b. Amenable to user definition. 

a. May be confusing to use for multiple predictions. 

α-λ performance a. Flexibility to define user requirements. 
b. Provides a visual graph of performance. 

a. Requires ground truth RUL. 
b. Requires prediction to remain within α-bounds. 

Relative accuracy (RA); 
Cumulative RA 

a. Useful for comparing multiple algorithms. a. Requires ground truth RUL. 

Convergence a. Good indicator of EOL predictions. a. Requires ground truth RUL. 
b. Difficult to measure for predictions with large spread. 

WEB, WPS, CIS, CCH and 
Total score 

a. Assigns weights as a function of operational life. 
b. Mostly scale-independent. 
c. Incorporates uncertainties. 

a. Not easy to compute or understand. 
b. Requires true RUL. 

4. Conclusion and Future Work 
A significant amount of effort has been put into the attempt to develop performance metrics for AI 
algorithms used in PHM research. This drive has led to a multiplicity of metrics to measure the accuracy 
and precision of RUL estimates. The following are important observations and findings: 
a) There is a need to unify performance metrics for PHM applications, thereby narrowing down the list. 

This is a daunting proposal as different application scenarios, data types, algorithms, etc. pose 
different sets of challenges. 

b) The area of online PHM performance evaluation, which indeed applies to most real-life systems, still 
remains somewhat under-researched. 

c) Incorporating uncertainties into PHM remains a challenge. Even though some AI algorithms now 
incorporate Bayesian techniques to minimize uncertainty, the RUL predictions are still ultimately 
evaluated using accuracy-based measures such as MAE, MSE and RMSE. 

d) As a consequence of the foregoing points, conventional performance metrics remain popular. It will 
be of interest to see how these metrics evolve as more PHM solutions become adopted in fielded 
systems, thereby serving as sources of feedback for the suitability of the metrics. 
This work provided a synopsis of a synopsis of the performance metrics used for AI-driven PHM of 

mechanical systems, by the proposition of a comprehensive classification scheme. Conventional as well 
as PHM-specific metrics were covered, along with discussion on the key factors that should guide 
engineers in selecting metrics during algorithm design. A key finding is that although efforts have been 
made to develop bespoke metrics for use in PHM, with the recent resurgence in the use of AI algorithms 
for RUL prediction, these bespoke algorithms have not yet found wide acceptance and application. This 
work therefore serves as a good reference material to help in making a choice between the conventional 
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performance metrics, which remain popular, and PHM-specific metrics, which give more insight but 
require a specialized understanding. 
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