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Abstract: Internet of things (IoT)-generated data from industrial systems are often collected in non-

actionable form, thus not directly aiding maintenance actions. Context information management is often 

seen as an enabler for interoperability and context-based service adaptation, acting as a mechanism for 

linking data with knowledge to adaptive data and services. Ontology-based approaches for semantic 

maintenance have been proposed in the past as a data and service mediation mechanism and are adopted 

here as the starting point employed to develop a context resolution service for industrial diagnostics. The 

underlying ontology of the context resolution mechanism is relevant to failure analysis of mechanical 

components. The terminology and relationship between concepts are structured on the basis of relevant 

standards with a reliability-oriented knowledge grounding. A reasoning mechanism is employed to 

deliver context resolution and the derived context can add a metadata layer on data or events generated 

by automated and human-driven means. The approach is applied on a gearbox test rig appropriate for 

emulating complex misalignment cases met in many manufacturing and aerospace applications.  

Keywords: Context Management, Maintenance Ontology, Industrial Diagnostics 



1. INTRODUCTION 

The introduction of internet of things (IoT) technologies has 

expanded the ability of industries to generate data with 

devices that are capable of sensing and communicating in 

real-time, supporting decision-making processes for 

monitoring the state of equipment and offering guidance for 

proactive maintenance (Bousdekis et al., 2015). The 

explosive growth of IoT-generated and managed data 

nonetheless requires substantial further effort for the effective 

management and exploitation of the data. Among the key 

instruments to tackle such complexity is the concept of 

context information management (Al-shdifat and 

Emmanouilidis, 2018). Appropriate maintenance knowledge 

representations can exploit both standard knowledge as well 

as generated maintenance data. Ontologies offer appropriate 

formalisation of knowledge and allow context resolution via 

traversing scalable semantic graphs (Kamsu-Foguem and 

Noyes, 2013). Domain-specific ontologies are appropriate for 

modelling key maintenance concepts and drive such 

reasoning (Karray et al., 2011; Matsokis and Kiritsis, 2012).  

In the application domain of asset and maintenance 

management, context is relevant to the asset and its hierarchy, 

the user, the production or service business circumstances, as 

well as overall system and operating environment aspects 

(Emmanouilidis et al., 2019). The resolution of asset context 

is needed to analyse mechanical systems and logically 

connect measurements, observed behaviour and intended 

function, with machinery operating condition and faults. To 

this end, Fault Modes Effects and Criticality Analysis 

(FMECA) or simply Fault Modes and Effects Analysis 

(FMEA) offer appropriate grounding for the baseline of the 

knowledge mapping (IEC60812, 2018) for several reasons. 

Firstly, its qualitative part makes it appropriate for abstracting 

maintenance reliability–oriented knowledge. Secondly, its 

quantitative part enables prioritisation of maintenance actions 

based on metrics appropriate for a risk-based approach. 

Lastly, its bottom up nature enables failure assessment from 

the base level of production systems, namely data from 

machinery components, all the way to system-level analysis. 

According to ISO 17359 (2011), failure mode analysis based 

on FMECA is recommended to ensure that maintenance 

activities are consistent with established fundamental 

practice-oriented knowledge. Therefore, such fundamental 

knowledge pertaining to mechanical component failure at a 

sufficiently abstract and descriptive level can be employed as 

a sound knowledge basis for diagnostics (Du et al., 2013; 

Yuan et al., 2013; Zhou et al., 2015; Guillén et al., 2016).  

This paper presents the development of a context resolution 

service mechanism for industrial diagnostics, based on the 

design of a maintenance ontology focused on modelling 

failure analysis of mechanical components. Section 2 briefly 

places the present work in the context of the broader body of 

relevant literature. Section 3 presents the ontology 

development process, based on established practice and 

maintenance vocabulary standards. An instantiation of the 

developed ontology is implemented for testing on an 

industrially relevant test rig and is presented in section 4. The 

concluding section offers a discussion on the evaluation of 

the approach and summarises the paper’s contribution and 
potential future research pathways. 

2. RESEARCH BACKGROUND 

It is beyond the purpose of the present paper to review past 

research on FMEA/FMECA-based ontological modelling but 

instead there is a specific interest in determining how such a 

knowledge construct can be used to resolve context 

resolution requests in order to drive maintenance services 
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(Karray et al., 2014). In this regard, various different 

ontological modelling approaches have been pursued in the 

fields of production, maintenance, and asset management 

over the years. Using ontologies to model domain knowledge 

is a valid approach and therefore several research efforts 

utilising or recommending ontologies in the domain of asset 

and maintenance management are reported in the literature. 

Some of them seek to adopt relevant standards as the baseline 

for the ontology concepts. For example, an asset management 

ontology based on the PAS55 recommendation, which was 

later subsumed by the ISO5000 standard has been reported 

(Frolov et al., 2010), but the scope is broader compared to 

maintenance and while it serves well asset management 

purposes, it does not specifically target maintenance. When 

considering maintenance within the manufacturing domain, it 

is of interest to capture the functional impact of the asset 

integrity level on the actual production process. The 

anticipated integrity level would then require a predictive 

approach (Cao et al., 2019). Although such an approach can 

be highly relevant, prediction based only on historical data 

without accounting for predicted future operating aspects is 

appropriate only insofar as historical data align also with 

future expectations, which is often not the case. However, if 

the intended use of an ontology is to serve maintenance 

action determination, planning and scheduling, then 

operational semantics need to be included in the modelling.  

An appropriate knowledge construct that links assets, their 

function, and their faults, with potential impact is FMEA or 

FMECA analysis (Nuñez & Borsato, 2018). However, an 

FMECA approach would still be limited in that while it 

associates assets and component faults with detectability, it 

does not include explicit information about measurement 

methods per asset and fault type or specific measured 

parameters for the measurement methods. While this is 

appropriate for the original intended purposes of an FMECA 

study, it falls short of the requirements for a knowledge 

formalism that would serve operational purposes.  

A more promising approach is to extend FMECA by 

including in the ontology concepts that link failure modes 

with more detailed diagnostic information and associate 

recommended actions to resources that would be needed for 

implementing the actions, such as spare parts and human 

resources (Jin et al., 2009). Such an extension can look into 

the recommendations of relevant standards (ISO 13374:1, 

2003)(ISO 17359, 2011) that link monitoring parameters and 

fault indicators to failure modes and recommended (D’Elia et 
al., 2010). Overall, a maintenance ontology may comprise 

multiple layers: an upper-level ontology to abstract the key 

domain concepts; and a lower-level ontology contextualised 

around specific operational factors (Koukias et al., 2013). 

A knowledge construct can be used to resolve context 

resolution requests in order to drive maintenance services. 

Such resolution can be achieved by ontological reasoning 

based on semantic similarity, determined through ontological 

distance metrics or other appropriate methods (Teoh and 

Case, 2004). This bears relevance to similarity based 

reasoning, such as typically employed in Case-Based-

Reasoning (CBR) systems, which have been employed in the 

past in the maintenance domain (Cândea et al., 2014). 

However, modelling and reasoning capabilities in ontologies 

go beyond CBR similarity. For OWL2-based the formulation 

of queries can be done via SPARQL queries in RDF 

documents. Additionally, depending on the complexity of a 

given ontology model, the process of semantic matching can 

be served using the Semantic Web Rule Language (SWRL). 

Overall, there is a need to further develop ontological-based 

modelling and inference to drive maintenance services by 

extending currently employed ontologies concepts to include 

key additional and operational ones typically included in 

relevant standards but less so in relevant literature.  

3. MAINTENANCE ONTOLOGY DEVELOPMENT 

Ontology development can follow one of many processes 

cited in the literature, including Uschold and King, Grüninger 

and Fox, Methodology, Ontology Development 101 (OD1) 

and KACTUS. The process can be aided by using ontology 

development tools, such as TopBraid and OntoStudio 

(commercial) or OntoEdit, HOZO and Protégé (open). 

 

Fig. 1: The ontology development stages 

 



 

 

     

 

 

The OD1 is adopted here as it is widely used (Gong and 

Janssen, 2013; Lau et al., 2014), has been shown to be well-

suited for maintenance modelling and is well documented for 

implementation in Protégé environment (Ren et al., 2019). 

Protégé was selected here as beyond it’s support for XML 

and RDF schema and OWL, it also provides graphic 

taxonomy, queries in SPARQL, rules in SWRL language, 

and a reasoner (Pellet). OD1 involves 6 phases (Noy and 

McGuinness, 2001) and the way it has been applied here is 

shown in Fig.1. These steps are outlined next.  

3.1 Determine Scope 

The initial stage in the methodology is to determine the 

scope. It requires to define what the ontology will cover, how 

it will be utilised, and the types of supported questions. The 

responses to such questions generally evolve throughout the 

process of constructing the ontology. In this work the focus 

of the maintenance ontology is on modelling failure analysis 

of mechanical components to answer queries regarding how 

faults manifest themselves and how they can be prevented or 

addressed, so as to adapt relevant diagnostics or maintenance 

actions in a Condition-Based Maintenance setting. 

3.2 Consider Reuse 

The evaluation of the degree to which ontologies can be 

reused or expanded is a significant factor to consider. While 

other maintenance ontologies exist, the specific interest here 

is on application-specific, operational, and diagnosability 

concepts, thus existing ontologies adoption would not apply.  

3.3 Enumerate terms 

The terminology considered for the present ontology is 

associated with predictive maintenance. Therefore, the main 

terminology and the associated definitions are based on 

consolidated academic literature and mostly on established 

international standards, such as condition monitoring, 

diagnostics and maintenance (ISO 13372, 2012, 13306), 

vibration analysis (ISO 2041, 2009), asset management (ISO 

55000, 2014), and MIMOSA (www.mimosa.org) standards. 

3.4 Define classes and hierarchies 

The techniques used to define class hierarchies (Uschold and 

Gruninger, 1996) are Top-Down; Bottom-Up; and Mixed. In 

this work, the Top-Down method was employed, in which 

general classes are added first, followed by the sub-classes, a 

process well aligned with asset hierarchies. The process starts 

with a super-class, i.e. the asset type, and diagnostic methods 

and condition monitoring parameters. Then classes are 

divided in sub-classes: for example second tier sub-classes 

include: types of 

components, FMECA 

data, data collection 

parameters, and 

measurement methods. 

An example of class 

hierarchy is shown in 

Fig. 2. A more detailed 

view of the first, 

second, and third-level 

classes hierarchy is 

shown in Fig. 3, using 

the OntoGraf plug-in.  

3.5  Define properties and constraints 

Class hierarchies alone are insufficient to represent 

knowledge. They need to be accompanied by three distinct 

types of properties: data properties, object properties, and 

annotation properties. The object attribute explains the 

associations among distinct classes. The data property 

explains the properties of certain occurrences both 

quantitatively and quantitatively. The annotation property is 

frequently employed in the description or explanation of 

particular occurrences. Table 1 shows the aforementioned 

properties with their relevant Domain and Ranges.  

 

 

Fig. 3: Hierarchy of level 1, 2 and 3 classes 

 

Fig. 2: Ontology classes 



 

 

     

 

Table 1: Object Properties 

Object Property Domain Range 

HasFailureCause FailureMode PotentialCause 

HasFailureEffect FailureMode FailureEffect 

HasMeasurement Measurement 

Techniques 

Measurement 

Location 

UseCollector Measurement 

Location 

CollectorType 

UseMagnitude CollectorType Magnitude 

IsPartOf TestRigItem TestRigItem 

HasFailureMode Component FailureMode 

 

3.6 Create instances 

The creation of individual class instances involves: (1) 

selection of the class, (2) creation of an individual occurrence 

of the class and (3) filling slot values. These instances are 

used in the representation of particular elements. A class is 

selected for every instance in a way that binds the properties 

of the object, data and/or annotations. 

4. IMPLEMENTATION 

To test the applicability of the ontology a physical gearbox 

test rig available at Cranfield University laboratories was 

employed. This has been designed for emulating complex 

cases of misalignment, relevant to manufacturing and 

aerospace engineering assets (Fig. 4). Digital twinning of the 

gearbox is implemented in a local cloud-based deployment of 

an IoT platform (Thingsboard). The rig is instrumented with 

industry-grade sensing, data acquisition and networking with 

both edge and cloud-based computing support for a complete 

data process workflow. Data acquisition employs a data 

acquisition panel with 16 channels (ICP, ac, dc), including 

eight 24 bit ones, supporting 51.2kHz sampling rate, and anti-

aliasing filters, with PLC interfaces and WiFi, LAN and 4G 

connectivity. The employed sensors are of ICP industry-

grade type vibration sensors with 10kHz sampling frequency.  

The intended use of the ontology at the next stage after the 

research presented in this paper is to serve the needs for 

deploying edge-driven and cloud-based monitoring services 

for this test rig. The current process involves the 

determination of measurement location points with a view to 

selecting the ones which are likely to provide informative 

data for detecting and quantifying various types of 

misalignment. Following this, the necessary functions of each 

component that enable the machine to operate correctly are 

determined. The FMEA technique is used to map failure 

modes, causes, effects, symptoms and measuring techniques 

appropriate for the given components and failure modes.  

A typical usage scenario is that during the undertaking of 

condition monitoring, queries may be raised to resolve the 

context of the monitoring service. For example, this may 

involve the determination of possible failure modes for a 

component, the functional impact of the faults on the rig’s 
operation, the measurement options appropriate for given 

faults and components, as well as measurement parameters 

associated with them. For the purposes of this 

implementation SPARQL queries were built to resolve such 

queries. SPARQL enables also federated queries over various 

data sources. Linking other relevant sources was not 

considered in the present work but is an option for potential 

extensions. Through the following query, we can find “what 

are the main components of a given mechanical machine?” 

SELECT  ?ComponentType 

WHERE {?ComponentType rdfs:subClassOf 

as:ComponentType } 

ORDER BY ?ComponentType 

 

Fig. 5 shows the results of a query to identify the main 

components of an asset type. These components are bearing, 

coupling, lubricant, rotor, seals, and shaft. The present 

implementation allows a query in the maintenance ontology 

to resolve key analysis characteristics, such as components 

function, failure modes, causes, effects, occurrence, severity, 

detection and applicable measurement technique. 

 

 

Fig. 4: The physical gearbox transmission test rig for emulating misalignment cases 

 



 

 

     

 

 

Fig. 5: Query result to identify the main components. 

Table 2: Query result to identify the components functions 

Component function 
Shaft It transfers torsional power with the help of 

transmission components. 
Bearing Supports shaft and reduces friction 
Motor Convert energy into mechanical energy. 

Dynamometer Controls available torsional load on 

dynamometer. 
Coupling Its function is to connect two shafts. 

Gears To transmit shaft power on predetermined or 

designed angular velocities. 

Lubrication lubricating the teeth and bearing 
Cooling 

system 
To fill the engine's cooling system, to act as a 

heat exchange fluid. 

Table 2 shows the results of a query to identify the functions 

of the main components of the test rig. A component that has 

high significance in failure analysis is the bearing (Table 3). 

The most critical failure mode is fracture and the typical 

failure mechanism for this is fatigue. Another query can be 

applied to determine failure modes, failure causes, failure 

effects, symptoms, and fault severity (SEV), but also 

determine the faults with highest diagnostic potential (DGN). 

SEV and DGN scale from 1 to 10, with the higher number 

representing the higher seriousness or risk.   

Table 3: Query outcome for failure mode with highest DGN 

 

However, misalignment faults can be the primary causes of 

fatigue and in turn of bearing faults for this test rig and 

therefore applying condition monitoring for misalignment 

will be a key target for the next steps of the research. 

5. EVALUATION AND RESULTS DISCUSSION  

Several ontology evaluations have been proposed, which can 

take an implementation or a design viewpoint (Degbelo, 

2017) (Kumar & Baliyan, 2018). The scope of the present 

case study was exploratory, i.e. the aim was to present the 

development of a context resolution service mechanism for 

industrial diagnostics, based on the design of a maintenance 

ontology focused on modelling failure analysis of mechanical 

components. Therefore, it was considered appropriate to 

focus on a subset of evaluation criteria, namely effectiveness, 

internal consistency, and applicability, within the viewpoint 

of the targeted application case study.  

To assess the model functionality a number of queries have 

been constructed in SPARQL and tested on the ontology 

model. The process was considered satisfactory when all tests 

were shown to produce satisfactory responses for the given 

operation scenario. To assess the reasoning consistency the 

Pellet reasoned was employed. This verified the structure of 

the ontology’s properties and that classes were implemented 

as specified. The results of the queries provide evidence for 

the effectiveness of the ontology in representing key concepts 

and the relationship between them in the employed test case. 

This verified the lack of conflicts or inconsistencies between 

the ontology properties, classes, and instances.  

Although the OD1 procedure was implemented, other 

approaches can be applicable. A comprehensive ontology 

validation would require a thorough set of query test cases 

and the application of the ontology to other more complex 

and operational assets. The Pellet reasoner was applied in this 

work because it can detect inconsistencies and can verify the 

class hierarchies, range, domain and conflicting disjoint 

assertions. The Protegé editor provides a warning with a red 

triangular alert symbol when a consistency error occurs. The 

Pellet reasoner is subsequently activated in order to detect 

any inconsistency and it was employed here until making 

sure that no inconsistencies were present.  

6. CONCLUSION 

This paper presented a study for the development of an 

approach to developing a context resolution service for IoT-

enabled industrial diagnostics. It has followed an established 

ontology development process but its design differs from 

other approaches in that it expands FMEA/FMECA – based 

ontology constructs with additional concepts adopted from 

available standards in the field that link the key reliability-

based concepts of the knowledge constructs with asset level 

and fault – specific relevant diagnosability concepts. The 

ontology development was further applied on a physical 

mechanical transmission test rig and it intended to be used in 

the next phase of the research as the applied context 

resolution mechanism in condition monitoring. Context 

resolution is determined through a reasoning mechanism and 

the next aim is to apply this mechanism to enable a metadata 

producing mechanism to annotate events generated by 

automated and human-driven means. While the application 

focus is quite specific, the ontology abstraction level is 

actually such that it could also be implemented on other 

application cases, as it offers a sound baseline for further 

customisation or extensions. Consequently, further research 

should be carried out to link the current ontology 

implementation with a live condition monitoring service, as 

well as to apply it to real industrial environments as an 

enabler of more efficient IoT-enabled monitoring services. 
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