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 Abstract 

 The problem of trajectory tracking control for a Blended-Wing-Body (BWB) large aircraft with model parameter uncertainties 

and unknown disturbances is considered. A Linear Parameter-Varying (LPV) model is derived from the nonlinear dynamics of 

the BWB aircraft from which a robust linear parameter-varying controller is designed to track a desired trajectory. Using a Single 

Quadratic Lyapunov Function (SQLF) and an infinite number of linear matrix inequalities to be evaluated at all vertices, a pair of 

positive definite symmetric matrix solutions is determined via Lyapunov stability theory and linear matrix inequality technique. 

Furthermore, a disturbance-observer is designed to process the unknown disturbances. Considering the plant exists some model 

errors except for disturbances, a Radial Basis Function Neural Network (RBFNN) approximation is embedded into the SQLF 

LPV controller to improve tracking performances, and a composite disturbance-observer based Neural Network Single Quadratic 

Lyapunov Function (NNSQLF) controller can realize desired trajectory tracking of the linear parameter-varying system through 

regulating performance weighting functions. The closed-loop system of trajectory tracking control is proved to be asymptotically 

stable by using Lyapunov theory. Simulation results of forward flight speed and altitude tracking control of the BWB aircraft 

show that the proposed disturbance-observer based NNSQLF control can robustly stabilize the LPV system and precisely track 

the desired trajectory by comparing with conventional SQLF control and Parameter-Dependent Lyapunov Functions (PDLF) 

control, even in unknown exterior disturbances and model uncertainties. 
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I. INTRODUCTION 

 Blended-Wing-Body (BWB) aircraft have attracted considerable interest for their potential in delivering significant improvements 

in carbon emissions performance as well as reduced noise, higher speed, longer flight range, and broader internal volume 

compared with traditional “tube-and-wing” configurations [1]. However, the longitudinal stability of the BWB aircraft decreases 

as the angle of attack increases, even at small angles of attack, i.e., the lift curve shows a nonlinear increase at small angles of 
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attack because of flow separation [2], and the nonlinear change of pitching moment easily make the BWB aircraft unstable due 

to the aerodynamic center to move forward. Meanwhile, as pitch arm of the BWB aircraft is shorter, pitch trim ability of the 

BWB aircraft is insufficient when climbing at low speed and high angle of attack. These make the BWB aircraft design and 

flight control become more challenge [3]. 

The increased aspect ratios and large wing spans of BWB aircraft means it is possible to equip more flaps and engines to 

improve the aircraft control capability. Castro analyzed the flying qualities of a BWB aircraft designed by Cranfield University 

[4] and proposed a stability augmentation controller for their improvement. Rahman and Whidborne [5] proposed augmenting 

the control surfaces with the propulsion system and developed an integration strategy for the blended wing body aircraft. Yann et 

al. [6] used non-smooth optimization techniques for the simultaneous control gains and control surface total span for the BWB 

aircraft under handling quality constraints. However, these considered the BWB aircraft as a linear time-invariant plant and then 

used traditional linear control methods to design the controllers. 

The dynamics of BWB aircraft are nonlinear so small perturbation Linear Time Invariant (LTI) dynamic models vary 

following their operating conditions. Although conventional gain-scheduling techniques can be used to handle this nonlinear 

property in a local range, they come with no guarantees on the robustness, performance, or even nominal stability over the entire 

operating range of the system. An alternative approach is to use linear parameter-varying control to handle the nonlinearity and 

plant uncertainty, and this guarantees stability, robustness, and performance properties of the closed-loop system [7]. Algebraic 

manipulation methods such as Jacobian linearization [8], state transformation or function substitution [9], are normally used to 

derive an LPV model from the original nonlinear model. Zhao and Nagamune suggested a switching LPV control to deal with 

inexact measurement of scheduling parameters [10]. Gahinet et al. proposed a LMI-based test for the robust 

stability/performance of linear systems with affine and possibly time varying parameter uncertainty [11]. Sato used LPV gain 

scheduling control to suppress gust effect and validated by an in-flight simulator [12]. Baranyi proposed TP model 

transformation for Quasi-LPV [13]. Most of them are belongs to the LPV models. 

LPV control is an extension of H∞ control. An LPV controller is designed with all possible operating points considered 

simultaneously, so the resulting controller gain is automatically scheduled as system dynamics varies. The closed-loop system 

theoretically guarantees stability and performance throughout the operating range of the system. Gain-scheduled H∞ control 

synthesis and analysis for the LPV plant is usually based on SQLFs [14] or a Parameter-Dependent Lyapunov function [15]. 

Using SQLFs, for both the affine LPV models and the polytopic models, a finite number of linear matrix inequalities (LMIs) 

need only be evaluated at all vertices while, for  grid LPV models, an infinite number of LMIs have to be evaluated at all points 

over the entire parameter space to determine feasible solutions[16]. Thus for a grid LPV model case, the resulting gain-scheduled 

controller has high computational on-line complexity [16]. Meanwhile, the SQLF method is usually more conservative than the 
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PDLF design when the parameters are time-invariant or slowly varying [15], but there are an infinite number of LMIs to be 

evaluated for PDLFs at all points over the entire space of parameters, so the resulting gain-scheduled controller requires more 

complex on-line computations[16,17].  

Since operating aircraft are subject to unknown disturbances such as wind, gust, turbulence and environmental noises, a 

Disturbance Observer-Based Control (DOBC) approach is introduced in this paper to enhance the disturbance attenuation ability 

and robustness performance of the LPV control. The DOBC technique has been applied to the control of nonlinear systems and 

systems with unknown disturbances for three decades [18], whereby an observer is designed to estimate external disturbances or 

ignore nonlinear dynamics and then compensate for them. Sun et al. [19] proposed a Disturbance-Observer (DO) Based robust 

relative pose control for spacecraft rendezvous and proximity operations under input saturation. Liu and Chen [20] proposed a 

DOBC for disturbance attenuation and rejection for a fixed wing UAV with wind disturbances. Li et al. [21] provided detailed 

design methods of DOBC and applied them to control a hypersonic vehicle. 

Motivated by the work of Castro [4], Chumalee and Whidborne [15] and Chen et al. [18], a Disturbance-Observer based 

Neural Network Single Quadratic Lyapunov Function (DO-NNSQLF) LPV control scheme is proposed here to robustly stabilize 

the LPV system of the BWB aircraft with unknown disturbances. This method compensates for bounded disturbances by DO 

based control and provides robustness to model parameter uncertainties. And this DO-NNSQLF design is adaptive for varying 

flight parameters such as airspeed and altitude. 

The main contributions of this paper can be summarized the following: the LPV system derived from a nonlinear dynamics 

model of the BWB aircraft with unknown disturbances, is controlled using a DO-NNSQLF control design. And the DO-

NNSQLF LPV design involves a DO based forward feedback control for active compensation of observable disturbances.  The 

LPV system of the BWB aircraft, subject to model uncertainty and bounded disturbance, is also robust stabilized using the DO-

NNSQLF control.  The L2 induced norm index is considered in DO-NNSQLF LPV design to process the bounded residual 

disturbances. The LPV system of the BWB aircraft, with unknown bounded disturbances, is stabilized by using the DO-

NNSQLF LPV design. The desired speed and altitude trajectories are tracked by using this trajectory tracking controller. 

The paper is organized as follows. Section II establishes an LPV dynamics model of a BWB aircraft. Section III proposes a 

DO-NNSQLF LPV design of the BWB aircraft. Section IV gives examples of trajectory tracking control based on DO-NNSQLF 

LPV control. Section V gives some conclusions. 

 

II. DYNAMICS MODELING OF THE BWB AIRCRAFT 
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A. The BWB aircraft dynamics modeling 
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Fig.1 The BWB aircraft dynamics and structure geometry 
  

  The configuration of the BWB vehicle is as Fig.1. The considered model is a 50.8m length, 80m wing span BWB aircraft [4, 

5], which is developed by Cranfield University for future airliner. Due to blended-wing-body configuration this aircraft has 

better aerodynamic and economical efficiency, and non-lift aerodynamic components are reduced. Hence, compared with 

conventional aircrafts, the lift-drag ratio of the BWB aircraft is enhanced and operating cost is decreased. It is feasible as the next 

generation of the advanced conventional aircraft. The structure parameters of the BWB aircraft are listed in Table 1. 

Table 1 Parameters and coefficients for the studied BWB aircraft [4] 

 

Parameter 
Value Unit 

Coefficient Value 
Unit 

m 3.7×105 kg Tδa 15 sec 
S 841.7 m2 Tδe 15 sec 

c  12.31 m Tδr 15 sec 

b 80 m Tδp 1 sec 
xG,  30.4  m zG 0 m 
Ixx 4.703×107 kg·m2 Iyy 2.507×107 kg·m2 
Izz 9.973×107 kg·m2 Ixz 0.0 kg·m2 

 

The BWB vehicle is considered as a rigid body moving in air, which has fifteen flaps. Flap 1 and Flap 15 are the rudders, which 

are not in the wing. Flap 4 and Flap 12 are elevon-aileron, Flap 2~Flap 14 act as the elevators, see Fig.1. 

The dynamics models of the BWB aircraft can be established and linearized using the Jacobian method about an equilibrium 

point, and a LTI model is obtained [4]. A number of equilibrium points can be defined for the BWB aircraft and, at each 
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equilibrium point, some operating parameters are chosen as time-varying parameters ρ. When the time-varying parameters vary 

slowly, the linear time invariant model becomes an LPV model. And disturbances act on the BWB aircraft, which adversely 

affect the performance or stability of the flight control system. So a linearized parameter-varying dynamic model of the BWB 

aircraft with disturbances is established as follows 

 1 2 3

1 11 12

2 21

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

x t A x t B t B u t B d t

z t C x t D t D u t

y t C x t D t





   


  
  

  
  
 

                                       (1) 

where ( ) p
x t  is the state vector, 2( ) m

u t  is the control input vector, 2( ) q
y t  is the measurement output vector, the 

scheduled parameters  T1 2= ( ) ( ) ( )nt t t   is not known in advance, but can be measured in real time and lies in some 

set bounded by known minimum and maximum possible values, i.e., i ii
( ) [ , ]t   , i=1,2,…,n. A(.), B2(.), Ci(.), and Dij(.), are 

known functions of time-varying parameters, and continuous mapping matrix functions. 3( ) m
d t  denotes unknown bounded 

disturbance vector, 1( ) m
t  is the generalized disturbance vector, 1( ) q

z t  is the controlled variable or error vector, 

continuous mapping matrix functions A: n p p , B1: 1p mn  , C1: 1q pn  , D11: 1 1q mn  , B3 is the disturbance 

effective matrix. 

Assumption 1 [14]:  Consider the LPV system (1), (i) D22 = 0, (ii) (B2, C2, D12, D21) are parameter independent (constant) 

matrices, and (iii) the pairs (A(ρ), B2) and (A(ρ), C2) are quadratically stabilizable and quadratically detectable over parameter 

space Θ respectively. 

Note that Assumption 1- (i) can be overcome by a loop-shifting argument [22], and Assumption 1- (ii) is to reduce calculation 

overload due to infinite number of LMI constraints, which can be overcome by pre-filtering of the control inputs or post-filtering 

the measured outputs [14]. So the model (1) can be simplified as 

 1 2 3

1 11 12

2 21

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

x t A x t B t B u t B d t

z t C x t D t D u t

y t C x t D t






   


  
  

 
                                                (2) 

To match the disturbances from the control inputs, we set 3 2=B B , and suppose the disturbance is generated by a linear 

exogenous system,  

( )= ( )

( ) ( )

d

d

t W t

d t V t

 



 

                                                                                      (3) 

where p  ,Wd, Vd are matrices with corresponding dimensions. For the LPV plant (2), design a dynamic output feedback 

LPV controller K(ρ) as follows to meet the desired objective where the controller has the form 
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

k k k k

k k k

x t A x t B y t

u t C x t D y t

 
  

 
 

                                                                          (4) 

and 

1

( ) ( )
( )

( ) ( )

r
k k

i i

ik k

A B
K K

C D




 
  
 


 


 

, =
i i

i i

k k

i

k k

A B
K

C D

 
  
 

,    i=1,2,…,r                                              (5) 

For the LPV control design, first the observable disturbance d (t) is neglected, then the closed-loop system of (2) and (4) is 

described by the state-space equations 

( ) ( )
( ) ( ) ( )

( ) ( )

( )
( ) ( ) ( ) ( )

( )

cl cl

k k

cl cl

k

x t x t
A B t

x t x t

x t
z t C D t

x t





   
    

   


      

 

 
,                                                  (6) 

where 

1

( ) 0 ˆ( )= + ( )
0 0 i

r

cl i cl

ip p

A
A BK C A



 
 

 



  ,

ˆ 0ˆ +
0 0i

i

cl i

p p

A
A BK C



 
  
  

,                                        (7) 

1

21
1

( ) ˆ( )= + ( )
0 i

r

cl i cl

i

B
B BK D B



 
 

 



  , 1

21

ˆ
ˆ +

0

i

icl i

B
B BK D

 
  
  

,                                                     (8) 

 1 12
1

ˆ( ) ( ) 0 + ( )
i

r

cl i cl

i

C C D K C C


    , 1 12
ˆ ˆ 0 +

i icl i
C C D K C    ,                                           (9) 

11 12 21
1

ˆ( ) + ( )
i

r

cl i cl

i

D D D K D D


   , 11 12 21
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i icl i
D D D K D

                                                   
(10) 
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,  12 120D D , 21

21

0
D

D

 
  
 

.                                          (11) 

 

B Problem formulation  

      To handle external disturbances and model parameter uncertainties with input constraints, we are now ready to state the 

robust control problem: Find a dynamic output feedback controller (4) combination with a disturbance observer of the LPV 

system (2) such that the following requirements are simultaneously satisfied: 

(a) The closed-loop system, (2) and (4), is asymptotically stable with unknown observable disturbances d(t); 

(b) The closed-loop system ensures the induced L2-norm of the operator mapping the disturbance signal  (t) into the controlled 

signal z(t) is bounded by γ,  i.e., 
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2 2
( ) ( )z t t   for all non-zero 2( ) [0, )t   ,                                                 (12) 

2

1/2

0
( ) = ( ) ( )dT

z t z t z t t
 

   ,                                                                (13) 

where γ > 0 is the quadratic H∞ performance index. 

III DO-SQLF DESIGN OF THE BWB aircraft 

A. Control synthesis based on SQLF   

In this section, we shall derive sufficient conditions for the closed-loop system, (2) and (4), to satisfy the performance 

requirements of (a) and (b) in section II.B. 

    The system state matrix ( )A  in (2) can be written as a convex combination of the matrix vertices as 

 1 2 1 1 2 2
ˆ ˆ ˆ ˆ ˆ ˆ( )=Co , , , r r rA A A A A A A                                                         (14) 

where r = 2n,  and 

1 1 2 1
0

2 1 2 1
2

13 1 2

1 2 1

ˆ 1

ˆ 1

ˆ 1

ˆ 1

n n

nn

n n

n

n nr

A
A

A
A

A

A
A

   

   

   

   









   
    
    
        
    
           

,                                                     (15) 

Similarly, 1( )B  , 1( )C   and 11( )D   in (2) can also be written as a convex combination of the matrix vertices as (14), i.e.,  

1 2
1 2

1 11 12 1 11 12
1

2 21 2 21

ˆ ˆ
( ) ( )

ˆ ˆ( ) ( )

0 0

i

i i

i
r

i

i

A B B
A B B

C D D C D D

C D C D




 
   
          

 


 
                                                  (16) 

In order to compute αi, we first calculate the normalized co-ordinate, 

( )
=

i

i i

i i

t


 


 



, 1,2, ,i n .                                                                      (17) 

Then, for each vertex, j =1, 2,…, r, the corresponding polytopic co-ordinates are calculated by[23] 

1

=
i

n

j

i

 

 ,

,      if  is a co-ordinate of  

1 ,  if  is a co-ordinate of 

i

i

i

ji

i j






 


 

 
 

,                                        (18) 
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Lemma 1 [24] Given a symmetric matrix polytope, ( ) p p
M   , for which 

1

( )=
r

i i

i

M M 

 , is a negative definite 

symmetric matrix for all possible parameter trajectories, where i  is determined by (17)and (18), ( ) 0M   ,  , if and only 

if 0iM  , i = 1,2,…,m. 
The gain-scheduled output feedback H∞ control problem using SQLFs is to compute a dynamic LPV controller K(ρ) as (4), 

which stabilizes the closed-loop system of (2) and (4), and minimizes the closed loop quadratic H∞ performance  as (12) along all 

possible parameter trajectories,   . 

Based on the SQLFs ( )= T
V x x Px , there is an LPV controller K(ρ) that stabilizes the closed-loop system, (2) and (4), and 

ensures the L2-induced norm of the operator mapping the disturbance signal into the controlled signal is bounded by along all 

possible parameter trajectories if and only if there exists = T
P P  such that 

0P  ,   2 0T T Td
x Px z z

dt
     ,   ,                                                     (19) 

Inequality (19) leads to the scaled bounded real lemma inequality [25] 

( ) ( ) ( ) ( )

* ( ) 0

* *

T T
cl cl cl cl

T
cl

A P PA PB C

I D

I

   

 


 
 
  
 

 
 

,                                               (20) 

where * denotes a symmetric matrix element. Substitute (7) ~ (11) into (20) yields 

1

ˆ ˆ ˆˆ

ˆ* 0

* *

i i i i

i

T T

cl cl cl cl
r

T

i cl

i

A P PA PB C

I D

I

 




 
 
  
 

  

                                                        (21) 

Inequality (21) can be rewritten as [26] 

                                                                              
1

+ 0
i

r
T T T

i cl i cl cl i

i

Q K P P K Q


                                                               (22) 

where 

1
1

1
11

1 11

ˆˆ ˆ0 0 ˆ 0
0 0 0 0 0

ˆ
ˆ=

0

ˆ ˆ0

i
i

i
i i

i i

T
T

i i

p p p p

T

T
cl

BA A
P P P C

B
P I D

C D I





 

                         
 

     
   

     
 
 
 

,                                       (23) 
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2 121 ( )= 0 p q qQ C D   
  ,                                                                   (24) 

2 1( ) 120T T
cl p m mP B P D 

    .                                                            (25) 

To determine the quadratic Lyapunov variable P, a typical structure of P can be selected as follows [15] 

1

1 1

( )

( )

X X Y
P

X Y X Y



 

  
 
    

, 1
1( )

Y Y
P

Y X Y XY




 
  

  
,                                             (26) 

where positive definite symmetric matrix pair, ( , ) p p
X Y

 , meets 1( ) 0X Y
  , and rank 1( )X Y p

  .  

Lemma 2 [27, Finsler’s Lemma] Given an inequality problem of the form 

                                                                                   + 0T T
Q K P PKQ   ,                                                                            (27) 

where m m is a symmetric matrix, Q and P are matrices with column dimension m. Let σ be any real number,   ; the 

above problem is solvable for a matrix K of compatible dimensions if and only if  

0

0

T

T

Q Q

P P





  

  

.                                                                                (28) 

By Lemma 2, LMIs (22) are solvable for Ki if and only if there exist a pair of positive definite symmetric matrices (X, Y) 

satisfying the following LMIs: 

1 1

1 11
1

1 11

ˆ ˆ ˆˆ

0 0ˆ ˆ 0
0 0

ˆ ˆ

i i

i i

i i

T T
i i

Tr
X XT T

i

i

A X XA XB C

N N
B X I D

I I

C D I

 




    
           
     

  
  

                                          (29) 

11

1 11
1

1 11

ˆ ˆ ˆ ˆ

0 0ˆ ˆ 0
0 0

ˆ ˆ

ii

i i

i i

T T
i i

Tr
Y Y

i

i
T T

A Y YA YC B

N N
C Y I D

I I

B D I

 




    
                

    

                                               (30) 

0
X I

I Y

 
 

 
                                                                                (31) 

where XN and YN  denote bases of the null spaces of  2 21,C D and 2 12,T T
B D 
  , respectively. Eq. (31) guarantees , 0X Y  and

1( ) 0X Y
  . By Lemma 1, (29) ~ (31) need only be evaluated at all vertices. 
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B  Disturbance-observer based control design  

 For some applications, not only the precise system model is hard to obtain, but the uncertainty bound is hard to know in 

advance. This is obvious for flight control systems. The wind and turbulence occur at uncertain time and with unknown 

magnitudes. Hence a disturbance observer method is introduced into the LPV control to accommodate the large unknown 

external disturbances. A disturbance-observer based robust synthesized controller is proposed for the LPV system with system 

dynamic uncertainties and external disturbances. A disturbance observer to estimate and compensate for the disturbance in the 

control system Eq. (2), is given by [18] as 

 3 2ˆ( ( ) ) ( ) ( )

ˆ ( )

ˆ ˆ

d d d

d

d

z W L x B V L x A x B u

z L x x

d V







    
  






                                          (32) 

where d̂ , L(x), and zd are estimated disturbance, the observer gains to be tuned for performance, and the internal state 

respectively. To prove the ability of the disturbance observer, the disturbance estimation error between the true values and 

estimated ones can be expressed as: ˆ
de d d  , taking the derivative de  along with Eqs.(2)-(4) and Eq.(32) gives  

 3 1( ) ( ) ( ) ( )d de t W L x B V e t B                                                           (33) 

where the term of 1( )B    can be stabilized by the LPV controller. Provided that the disturbances vary slowly related to the 

observer dynamics, and the observer gain L(x) is appropriately determined such that 3( )d dW L x B V  is Hurwitz, then the Eq. (33) 

is shown that disturbance estimation error is asymptotically stable.  

Remark 1 It can be seen that the error dynamics of Eq. (33) actually follows a linear form with a relatively simple structure. 

Moreover, it can be verified that the eigenvalues of the estimation error dynamics are constants or, more specifically, 

eig( 3( )d dW L x B V ) = {−li }, i= 1, 2 [20]. Therefore, by choosing the gain parameters li, the convergence rate of disturbance 

estimation can be intuitively adjusted regardless of state x. 

We attempt to find an appropriate ( )L x to ensure that the disturbances can be significantly reduced or removed from the 

output channel finally. Thus the workload has been reduced by the LPV control. 

Since the plant exists some model errors except for disturbances, such as actuator faults or model linearization error, a radial 

basis function neural network (RBFNN) is applied to approximate this unknown bounded model error. The architecture of the 

RBF-NN is presented in Fig.2, which includes three layers. 
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u
e

eh

eu

h
e

h1

h2

h6

∑

W1

W2

W6

ˆ ( )T

NN
W h x

Input Layer Hidden Layer Output Layer

 

Fig.2. The architecture of the RBF-NN 

First is the input layer, the net input is
T

T T

NN
x e e     , where

d de x x e x x   , ,
T

u w q h
e e e e e e    , xd 

denotes the desired state variant. Second is the hidden layer, each node performs a membership function, and the output is 

  ( )
T

NN j NN
h x h x     ,  NN

h x is the basis function which can be selected as following Gaussian function  

2

2
( ) exp

2

NN j

j NN

j

x c
h x

b

   
 
 

                                                      (34) 

where jc is the centre value of neural net j, bj is the width value of the Gaussian function of net j, j is the node number of 

the hidden layer. Third is the output layer. The output of the RBF-NN is 

 T

NN NN
y W h x                                                                                (35) 

whereW is the best weight vector, whose update law is (114) in Appendix. The model error can be described as  

   *T

NN NN
W h x x                                                             (36) 

where W* denotes the optimal weight matrix of the RBF-NN,  is approximation error. 

Based on the disturbance estimation from the DO and RBF model approximation, the composite control law with dynamic 

feedback (4) is designed as 

NN( ) ( ) ( ) ( )LPV du t u t u t u t                                                                      (37) 

where 

( ) ( ) ( ) ( )LPV d k k ku u C x t D y t                                                                      (38) 

1
2 3

ˆ ˆ
d d

u K d B B d
                                                                               (39) 

By using the condition of matching the input disturbances, substituting 3 2=B B  into Eq.(39) and yields  
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K(ρ)

G(ρ)

u(t)

h(t)

uref

href

+

+

–

–

Wp

Wu

Zu(t)
Zh(t)
Zδe(t)
Zδp(t)

d(t)

Disturbance 
observer 
Eq.(32)

∫

L(x)

dz
dz

d̂

+

+

DO

lonx

0u

1
2 d

B B




uLPV

ud

+

+

0u

RBF-NN

lon,refx

lon,refx

lonx

lon,refx

lonx

i

i
s




 
  

Prefilter

  lonx

 
 
 

Fig. 3. Block diagram of of the DO-NNLPV controller for the BWB aircraft 

1
2 2

ˆ ˆ=
d

u B B d d
   .                                                                      (40) 

By using the RBF NN output of (35), the NN control input is 

 1 1
NN 2 2( )= ( ) T

NN NN
u t B y t B W h x

                                                           (41) 

A. Gain scheduled controller design based on NNSQLF    

This section gives the overview of the DO-LPV control for the BWB aircraft. The proposed controller structure is shown in 

Fig.3, the structure of the DO- LPV control design includes a DO, a RBF-NN, and a SQLF based LPV controller. The SQLF 

approach is used here to reduce the computation time in the nominal LPV control synthesis phase. The LPV controller is to 

realize the trajectory tracking, the DO is to observe the observable disturbance d(t), and then the unobservable disturbance ω(t) 

effect is reduced by the LPV controller. The pre-filter is included to suppress high frequency signal inputs. The controller design 

is presented in detail as the next section. 

According to above analysis, the observable disturbance d(t) has been compensated by the DO based controller, and then the 

LPV controller can be designed by using the control synthesis based on SQLF in section III.A, hence, a proposition can be 

obtained as follows, 

Proposition 1 There exists a composite controller of (37)~(41) with a disturbance observer (32) that guarantees the closed-

loop system, (2) and (4), meets desired performances of (a) and (b), if the observer gain L(x) is appropriately determined such 

that 3( )d dW L x B V is Hurwitz, γw of the RBFNN meets (114) (in Appendix),  and the LMIs (29)~(31) hold for some positive 

definite symmetric matrices (X, Y ), which further satisfy rank (X−Y
−1) ≤  p. 
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Besides unknown disturbances acting on the BWB aircraft in-flight, there exist model uncertainties δ in the flight control 

system due to model mismatch of the original nonlinear model and LPV model. To handle with these uncertainties, the previous 

LPV Robust Control (LPVRC) and disturbance observer can be applied. In this paper a new Affine LPV Control (ALPVC) is 

proposed to stabilize the model uncertainties. The model mismatch uncertainties can be obtained by using the parameters of 

stability and control derivatives, thus the model is called an uncertain affine LPV model which is less conservative, for example, 

consider control derivative eM , which is related to aerodynamic coefficient mC  , define
affinee

M to be depended affinely on ρ (i.e., 

u, h) as 

affine 0
= + +

u he e e e
M M uM hM                                                                  (42) 

where
0
, ,

u he e e
M M M   can be obtained by using a least-squares regression method [28]. Then mismatch uncertainty between a 

nonlinear eM and an affine
affinee

M can be achieved as  

affineeM e e
M M

                                                                      (43) 

eM
 can be normalized as 

= e

e

M Me

M

Me

T

S









,  1,1

eM
   ,                                                      (44) 

where 

2

e
e

M M

Me
T

 
 

 ,
2

e
e

M M

Me
S

 
 

 ,                                                            (45) 

Hence, the model (2) with consideration of model uncertainty can be transformed into the uncertain affine LPV model as follows 

[29] 

 1 2 3

1 11 12

2 21

( ) ( , ) ( ) ( , ) ( ) ( ) ( )

( ) ( , ) ( ) ( , ) ( ) ( )

( ) ( ) ( )

x t A x t B t B u t B d t

z t C x t D t D u t

y t C x t D t

  
  



   


  
  

 
 

                                

   (46) 

where  1=
T

m   , 

1 21 2( , )= ( ) ( ) ( ) ( )
mm

A A A A A             ,                                                   (47) 

,00
1

( )= ( , )= +
i

m

i

i

A A u h A T A


 
 
 

  
, ,

1 1

+ +
i u i h

m m

u i h i

i i

u A T A h A T A 
 

   
    

   
  ,                                (48) 

,0 , ,
( )= ( , )=

i i i i u i hi i i
A A u h S A uS A hS A      , i =1, 2, … m.                                            (49) 
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where Ti and Si are the same as Eq.(45). By using the Linear Fraction Transform (LFT) technique [30], the parametric 

uncertainties δ in (46) can be separated from the system state-space model matrices as 

1

1 11 1 1
1

1

1

1 1

2 2
1 2

1 1 1 1 1 1 1

2 2 2 2 2 2 2
1 2

1 1 1 1 1 1 1

2 2 2 2 2 2 2
1 2

1

2
1 1 1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) (

m

m

m
m m mm m

m

A B B B B

x
C D D D Dz

z C D D D D

z

C D Dy

 

    



    

 

 

      

      



 

 

 



   
 
    
 
 
  
     
 
 

    


1

1

2
11 12

1 1

2 2
2 2 2 21

) ( )

0

m

x

D D u

C D D D





 








 



 

 
 
                             
 
  

                               (50) 

1 1 1

2 2 2

1

2

0 0

0 0
=

0 0
m m m

s

s

m s

I z

I z

I z

 

 

 

 

 

 

     
     
     
     
     
          

                                              (51) 

where
i

z , i

i

S

  ,  is a scaling matrix to be determined, 

,0 , ,
( )= ( , )= + +

i i i i u i h
B B u h B uB hB                                                                (52) 

,0 , ,
( )= ( , )= + +

i i i i u i h
C C u h C uC hC                                                              (53) 

,0 , ,
( )= ( , )= + +

ii ii ii ii u ii h
D D u h D uD hD                                                              (54) 

Denote 

 
1 2

=
m

T
T T T

         ,
1 2

=
m

T
T T T

z z z z      ,
1 2

( )= ( ) ( ) ( )
m

B B B B                               (55) 

1 2
( )= ( ) ( ) ( )

m

T
T T T

C C C C                                                             (56) 

11 12 1

21 22 2

1 2

( ) ( ) ( )

( ) ( ) ( )
( )=

( ) ( ) ( )

m

m

m m mm

D D D

D D D
D

D D D

  

  


  

 
 
 
 
 
  

  

  


  

                                                (57) 

Substituting (52)~(57) into (50)~(51) and yields 

1

1

2
1 2

1 1 1 1 1

2 2 2 2 2
1 2

1

2
1 1 11 12

1

2
2 2 21

( ) ( ) ( )

( ) ( ) ( )
=

( ) ( ) ( )

0

A B B B
x x

C D D Dz

z
C D D D

y u

C D D



    







     














 
 

    
    
    
    
    
    

  

  

  

  

                              

(58) 

= z                                                                      (59) 
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where z , S

  , 1 2 ms s s s    , 

1 21 2=diag( , , )
ms s m s

I I I                                                       (60) 

Similarly, matrices of ( )B  , 1( )B  , ( )C  , 1( )C  , ( )D  , 1( )D  , 1 ( )D   ,and 11( )D  can be written as a convex 

combination of the matrix vertices as 

1 2
1 2

1 21 2

1 1 11 12 1 1 1 11 12

2 2 21
2 2 21

ˆ ˆ ˆ
( ) ( ) ( )

ˆ ˆ ˆ( ) ( ) ( )

( ) ( ) ( ) ˆ ˆ ˆ
0

0

i i

i i i

i i i

i

r

i

i

A B B B
A B B B

C D D DC D D D

C D D D
C D D D

C D D
C D D



      

 







 
   
   
      
    
   

 



  
  
  

                                    

(61) 

By using the dynamic LPV controller, K(ρ) as Eqs.(4) and (5), the closed-loop system of (4), (58) and (59) can be rewritten as 

(59) and 

1

2
1

1 1 1 1

2 2 2 2
1

1

2
1 1 11

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

cl cl

cl cl cl

cl cl cl

cl

aug aug

A B B
x x

z C D D

z
C D D



    





    










 
 

    
        
       

 
  

  

  

  
                           

(62) 

where
( )

=
( )aug

k

x t
x

x t

 
 
 

, 

21

1

( ) ˆ( )= + ( )
0cl cli

r

i

i

B
B BK D B


  



 
 

 



  ,                                                 (63) 

21

ˆ
ˆ +

0

i

cli
i

B
B BK D


 

 
  
  

,                                                                         (64) 

 
12

1

ˆ( ) ( ) 0 + ( )
cl cli

r

i

i

C C D K C C   


    ,                                                    (65) 

121
ˆ ˆ 0 +

cl ii
i

C C D K C 
    ,                                                                   (66) 

12 21

1

ˆ( ) + ( )
cl cli

r

i

i

D D D K D D    


   ,                                                          (67) 

12 21

ˆ +
cl ii

i
D D D K D    ,                                                                      (68) 

12 211 1 1 1
1

ˆ( ) + ( )
cl cli

r

i

i

D D D K D D   


   ,                                                          (69) 

12 211 1 1
ˆ +

cl ii
i

D D D K D   ,                                                                      (70) 
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12 211 1 1 1
1

ˆ( ) + ( )
cl cli

r

i

i

D D D K D D   


   ,                                                          (71) 

12 211 1 1
ˆ +

cl ii
i

D D D K D   ,                                                                       (72) 

21

2

0
=D

D




 
 
 

,  
12 2= 0D D  ,  

121 12= 0D D ,                                                         (73) 

the other matrix parameters are the same as in (7)-(11). By Proposition 1, we have following conclusion, 

Theorem 1 There exists a composite controller of (37)~(41) with a disturbance observer (32) that guarantees the closed-loop 

system, (46) and (4), meet desired performances of (a) and (b), if the observer gain L(x) is appropriately determined such that 

3( )d dW L x B V is Hurwitz, γw of the RBFNN meets (114) (in Appendix),  and the following LMI conditions hold for some 

positive definite symmetric matrices (R, S), which further satisfy rank (R−S
−1) ≤  p. 

1 1

1

1 11

ˆ ˆ ˆ ˆˆ ˆ

ˆ ˆ* 0
0 0

0ˆ ˆ* *0 0

* * * 0

* * * *

i i i i

i i

i i

T T T
i i

T T
T

R R
T T

A R RA RB RB C C

D D
N N

I D DI I

I

 

 










 
 
              
 

 
                                        

(74) 

11

1

1 11

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ* 0
0 0

0ˆ ˆ* *0 0

* * * 0

* * * *

i ii i

i i

i i

T T T
i i

T T
T

S S
T T

A S SA SC SC B B

D D
N N

I D DI I

I



 










 
 
              
 

 
                                   

(75) 

0
R I

I S

 
 

 
                                                                     (76) 

for i = 1, …, r, where* denotes a symmetric matrix element. 

Proof.  See the Appendix. 

Remark 2 Although (74)-(76) are not standard LMI problems due to the scale matrix λ, they can be solved by an iterative 

approach, referred to as D-K iteration [25]. Like the μ-synthesis algorithms, such a scheme is not guaranteed to converge to a 

global minimum, but may find a local minimum [25]. In spite of this drawback, the D-K iteration control design technique 

appears to work well on many engineering problems. 
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Remark 3  For the problem of trajectory tracking control, the Lyapunov function T
cV x Px  can be modified as T

cV e Pe , 

thus the closed-loop error system is guaranteed to be stable, hence the input vector of the RBF neural network are chosen as 

T
T T

NN
x e e    . 

Now we return to design the trajectory tracking control as in Fig.3. The objective of mixed-sensitivity loop-shaping is to shape 

the sensitivity function S and control sensitivity function K∙S with performance weighting functions Wp and robustness weighting 

functions Wu, respectively. The desired controller meets the requirements of small tracking error, attenuation of the effect of 

disturbance on output, low sensitivity to measurement noise, with reasonably small control effort, and is robustly stable to 

additive plant perturbations. Hence, the mixed-sensitivity criterion is employed as follows, 

1
p

u

W S

W KS 

                                                                                      (77) 

To have desired tracking performances and robustness, the performance weighting function Wp, is selected as  

0.5 0.65
=

0.001 0.65up

s
W

s


 

  ,
0.5 0.65

=
0.001 0.65hp

s
W

s


 

,        (without model uncertainties)                                   (78) 

0.5 2.64
=

0.001 2.64up

s
W

s


 

  ,
0.5 0.6

=
0.001 0.6hp

s
W

s


 

,  (with model uncertainties)                                        (79) 

The robustness weighting function Wu is selected as follows  

0.65/2
=

0.001 0.65p
u

s
W

s



 ,

0.65/2
=

0.001 0.65e
u

s
W

s



,    (without model uncertainties)                                     (80) 

0.01 26.4/2
=

0.001 26.4p
u

s
W

s
 


（ ）

 ,
 100 6/2

=
0.001 6e

u

s
W

s

 


,         (with model uncertainties)                                 (81) 

The purpose of Wprefilter is to make matrices B2 and D12 of the plant model to be parameter-independent, hence, according to the 

gain-scheduled dynamic feedback H∞ controller design [16], the transfer function Wprefilter is chosen as 

,

1000
( )

1000p prefilterW s
s

 


, 
,

500
( )

500e prefilterW s
s

 


                                               (82) 

Once the longitudinal affine LPV model given by Eq.(16) and (61) are augmented with the weighting functions shown in 

(78)~(82), then a pair of positive definite symmetric matrices (R, S) can be determined using Proposition 1 and Theorem 1, for 

which the performance measure (γ) can be obtained. 
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IV. Numerical Simulation and Analysis  

To illustrate the DO-NNSQLF based LPV design, first an LPV model of the BWB aircraft designed by Cranfield University is 

constructed. The BWB aircraft flight at 0m altitude and 191.9m/s speed, the trim state 

  T

e e
x u w q h x v p r y    

 = [192.79 12.67  -2.92e-24 0.066 1.05e-23  -4.84e-26 7.05e-17 4.58e-24  1.05e-23  -1.05e-23 0 0]T, 

unit: [u v w] (m/s), [p q r] (rad/s), [x y h] (m), [φ, θ, ψ](rad). 
T

e e p a r e
u        =  [-0.11 0.28 -6e-19 -1.71e-19]T, unit: 

[δa δe δr] (rad).  

The position range for the actuators are δe [−π/6, π/6] (rad), δp [0, 1], δa [−π/6, π/6] (rad), δr [−π/6, π/6] (rad). The 

initial position 
0 = [0, 0, 0] T(m), and initial body velocity V0 = [192 m/s, 0, 0] T, initial attitude η0 = [0, 5.5◦, 0] T, initial angular 

velocity ω0= [0, 0, 0] T, and flight envelope is ( , ) ([167,218]) ([0,3048])u h    (m/s, m). 

Scenario I: Trajectory tracking control under unknown disturbances.  

In this case the LPV model of longitudinal motion is as 

( ) ( ) ( )+ ( ) ( )x t A x t B u t                                                                           (83) 

where state  Tx u q h  , and control lon p
T

eu      ,  

0( )= ( , ) u hA A u h A uA hA   , 0( )= ( , ) u hB B u h B uB hB    ,                                    (84) 

0

0.0115 0.1524 26.9900 9.4307 0

0.0715 0.3968 0.8695 3.0135 0

0.0053 0.0112 0.1293 0 0

0 0 1.0000 0 0

0.3076 0.9616 0 3.9702 0

A

   
     
   
 
 
  

,

0.0001 0.0005 0.0786 0.0018 0

0.0003 0.0045 0.9886 0.0012 0

= 0.0000 0.0002 0.0017 0 0

0 0 0 0 0

0.0012 0.0002 0 0.9806 0

uA

  
  
   
 
 
   

 , 

3

0.0005 0.0009 1.6479 0.0147 0

0.0009 0.0776 0.1890 0.0840 0

=1 e 0.0001 0.0026 0.0281 0 0

0 0 0 0 0

0.0086 0.0012 0 0.2120 0

hA


  
   
  
 
 
  

, 0

2.9995 4.4

14.1027 0

1.9749 0

0 0

0 0

B

 
 
 
 
 
 
  

,

0.0067 0.0

0.3635 0

= 0.0509 0

0 0

0 0

uB

 
  
 
 
 
  

,

0.0001 0.0

0.0034 0

= 0.0005 0

0 0

0 0

hB

  
 
 
 
 
 
  

. 

  In this scenario suppose that there is the unknown disturbance vector d acting on the BWB aircraft, given by 

 ( ) 0.05sin(0.05 )(rad) 0.1cos(0.05 )
e p

T T
d t d d t t 

     ,                                                (85) 

The weight matrices of Wd and Vd are as 
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0 0.05

0.05 0
dW

 
   

, 
3.5 0

0 7
dV

 
  
 

,                                                                   (86) 

The gains of the disturbance observer (32) are designed as follows according to section III.B and Remark 1,   

                                                               l(x)= [0 0 1e-4 0 0; 0.8e-4 0 0 0 0]                                                                            (87)  

By Proposition 1, the proposed control parameter Ki (i = 1, 2, 3,4) are obtained, and then by using (4) the dynamic controller is 

achieved, and a PDLF controller [31] is used to compare with the proposed SQLF controller. the performance obtained through 

the DO-SQLF and DO-PDLF approaches are γ= 1.3689. By using the proposed controller, the trajectory tracking responses are 

shown in Figs 4-7, 

 

Fig. 4.  Forward speed tracking output under unknown disturbances. 

 

 

Fig.5. Tracking error response of forward speed 

 

Fig.6 Altitude tracking output under unknown disturbances 
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Fig.7 Tracking error response of altitude 

 

From Figs 4-7, it can be seen that the desired forward velocity and altitude can be tracked precisely by the proposed DO-SQLF 

LPV control. Comparing with PDLF design, responses of the SQLF control have less tracking errors due to its more dependence 

on precisely model for PDLF although it can reduce control conservative. Meanwhile, comparing with SQLF design without DO, 

there are less steady tracking errors than for the SQLF LPV design, this shows DO-SQLF design can compensate for observable 

disturbances and make their responses smooth and easily approach the desired trajectories, the same case is for PDLF design. 

NNSQLF has also been simulated, the responses are listed as Figs 8-9. 

 

Fig.8 Forward speed tracking output under unknown disturbances 

 

Fig.9  Altitude tracking output under unknown disturbances 

The associated control inputs are shown in Fig.10. 
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Fig.10 control inputs, in Scenario 1 

 

Comparing with SQLF design, responses of the NNSQLF based LPV control have less overshoot and tracking errors, see Figs 

8-9, which shows RBF has better model approximate capability when the plant exists model errors. From Fig. 10 it can be seen 

that the elevator and throttle inputs of the NNSQLF LPV control are greater than those of the DO-NNSQLF LPV control. The 

unknown observable disturbances have been estimated via DO as shown in Fig.11. 

 

Fig.11 Disturbance estimations of elevator and thrust inputs 

  

From Fig.11 it can be seen that estimation values of the actuator disturbances approach the true ones, and their estimation 

errors are small within the admissible range. The harmonic wave disturbance frequency of the true values and their estimation 

ones are same. 

 

Scenario II: Trajectory tracking control under model uncertainty with unknown disturbances. 

In this scenario the LPV model of longitudinal motion is as 

( ) ( , , ) ( )+ ( , , ) ( )x t A u h x t B u h u t                                                       (88) 

where 

0( , , ) ep u hA u h A A uA hA     ,           0( , , ) ep u hB u h B B uB hB     .                            (89) 
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0

0.0063778 0.13032 20.555 9.701 0

0.065984 0.19224 0.42574 1.7615 0

0.004467 0.0054977 0.063313 0 0

0 0 1 0 0

0.1796 0.98922 0 1.5195 0

A

   
     
   
 
 
  

,

1.7763e-7 6.3938e-07 0.000307 2.1215e-6 0

5.3202e-7 3.3096e-5 8.037e-5 1.5524e-5 0

= 1.9158e-8 1.0995e-6 1.1952e-5 0 0

0 0 0 0 0

1.5909e-6 1.2083e-7 0 2.2904e-5 0

hA

  
   
 
 
 
  

2.0883e-5 0.00027913 0.15559 0.0025215 0

0.00016 0.0063239 0.014673 0.017425 0

= 1.0807e-05 0.0001959 0.0021821 0 0

0 0 0 0 0

0.0017828 0.00025771 0 0.03275 0

Xu Xw Xq X

Zu Zw Zq Z

ep Mu Mw Mq

hu hw h

A







   

   

  

  

  
 
    

  


 






,

2.653e-05 0.00023958 0.020817 0.00022431 0

0.00014241 0.0030938 0.50653 0.0029681 0

= 4.0526e-06 0.00010397 0.0011255 0 0

0 0 0 0 0

0.00030281 2.2885e-05 0 0.51116 0

uA

  
  
   
 
 
   

 

0.018241 2.629e-13

0.88089 0

= 0.12336 0

0 0

0 0

e pX X

epB

   
 

 
  
 
 
 

, 0

3.6318 4.4441

41.829 0

5.8577 0

0 0

0 0

B

 
 
 
 
 
 
  

,

0.0052267 1.2483e-14

0.26457 0

= 0.03705 0

0 0

0 0

uB

 
  
 
 
 
  

, 

2.7552e-5 5.1348e-17

0.0014081 0

= 0.0001972 0

0 0

0 0

hB

 
 
 
 
 
 
  

, 

[ 1,1]i   ,the uncertainty in (88) can be separated as (50) and (51). The unknown disturbance vector d  acting on the BWB 

aircraft is the same as (85), the weight matrices of Wd and Vd are as 

0 0.05

0.05 0
dW

 
   

, 
30 0

0 60
dV

 
  
 

,                                                      (90) 

the gains of the disturbance observer (32) are designed as 

                                                                              l(x)= [0 0 1e-4 0 0; 0.15e-4 0 0 0 0].                                                         (91) 

By Theorem 1, the proposed control parameter Ki (i = 1, 2, 3,4) can be obtained, and then by using (4) the dynamic controller 

is achieved, the scale matrix 

=diag(61433,61422,61261,61434,61412,54100,61427,61433, 61461,61452,61461,60746,61431,61433,61433,61434,59454)                       

(92) 

for all case, for which the performance obtained is  γ = 2.634. 

For the comparison analysis, the LPVRC for the model uncertainties δ is used here. For simplification, assume model 

uncertainties δ result the aerodynamic coefficients varying, that is, 
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T

x y z l m n
C C C C C C         0.3

T

x y z l m n
C C C C C C       ,                 (93) 

where α is angle of attack. By using the proposed DO-NNSQLF controller in the proposition 1 (NNLPVRC), and Theorem 1 

(NNALPVC), the trajectory tracking responses are as Figs12-13, 

 

 

Fig.12 Forward speed tracking output under model uncertainties and unknown disturbances 

 

 

Fig.13 Altitude responses under model uncertainties and disturbances 

From Figs12 and 13, it can be seen that the command inputs of uref and href are tracked well by the proposed DO-NNSQLF 

LPV controllers. In comparison with LPVRC control (regards model uncertainties as disturbances), NNALPVC has more 

precision and smaller overshoots of the responses. Meanwhile responses of the DO-NNSQLF LPV control have smaller tracking 

errors than those of the NNSQLF design without DO. This demonstrates the DO-NNSQLF LPV control can compensate for 

observable disturbances with smooth response and thus enhance the trajectory tracking control capability. The associated 

responses of the vertical speed, pitch motion are shown in Fig.14. 
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Fig.14 Responses of vertical speed, pitch angle and pitch rate 

Fig.14 shows that there are larger fluctuations of the responses of the vertical speed, pitch angle and pitch rate by the 

NNSQLF design without DO than by the DO-NNSQLF control. This is because the DO-NNSQLF LPV control can reduce the 

unknown disturbance effect by disturbance-observer compensation. The control inputs are shown in Fig.15. 

 

Fig.15 Control inputs of the elevator and thrust 

Fig.15 shows that the NNSQLF LPV control with DO requires smaller control inputs than those of NNSQLF design without 

DO. The disturbances have been observed via DOs as Fig.16. 

 

Fig.16 Disturbance estimations of elevator and thrust inputs 

  

Fig.16 shows that disturbance estimations by NNLPVRC and NNALPVC are asymptotically convergent to the true values, but 

http://www.baidu.com/link?url=6Cg6ni1HQY3UTVmplJXihXLZiF1Zwz6BcAazKqNyC9kns0fdLLxV0tu1qGhaSkPWldZet4tLgzFE5eqxNkfqqd2h1vPEqzpkcbZYjNOjzh7
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there exist some errors in transition stage because the disturbance estimations are varying with the associated states.   Meanwhile 

it can be seen that it is more easily affected by the flight speed and altitude for NNALPVC tracking outputs than for the 

NNLPVRC ones, especially for thrust disturbance estimation, this is because the NNALPVC is sensible for flight parameters.   

V. CONCLUSION AND FUTURE WORK 

 

The problem of robust flight control for a BWB aircraft with model uncertainties and unknown disturbances has been 

addressed in this paper. A novel approach to dynamic tracking control of a BWB aircraft has been presented using the DO-

NNSQLF based LPV design. The design of the system stabilization with model uncertainties and robust design for the 

requirement of the desired output responses under rejecting disturbances are investigated. Simulation results of altitude and 

speed trajectory tracking control of the BWB aircraft show that the trajectory tracking performances of the proposed controller 

are met desired requirements in the large flight envelope. Since machine learning can improve the LPV control performances, the 

future work is to enhance robustness and adaptive performance for the BWB aircraft by using that reinforcement learning and 

genetic algorithms. 

 

Appendix 

Proof. Based on the SQLF method, there is an LPV controller K(ρ) that stabilizes the closed-loop system (46) and (4) and 

guarantees the quadratic H∞ performance of (b) is bounded by γ along all possible parameter trajectories,   , if and only if 

there exists P = PT such that [31] 

0P  ,   2 ( ) 0T T T T Td
x Px z z z z

dt
           ,   ,                                      (94) 

By using bounded real lemma [30], (94) leads the following scaled inequality 

1 1

1

1 11

( ) ( ) ( ) ( ) ( ) ( )

* 0 ( ) ( )

0
* * ( ) ( )

* * * 0

* * * *

cl cl cl cl

cl cl

cl cl

T T T
cl cl

T T

T T

A P PA PB PB C C

D D

I D D

I

 

 



     

  

  




 
 
  
  

 
 

 
                                            

(95) 

Substituting (61) into (95) and yields 
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1 1

1

1 1 11

ˆ ˆ ˆ ˆˆ ˆ

ˆ ˆ* 0

0ˆ ˆ* *

* * * 0

* * * *

i cl cli cl cli i i i

cl cli i

cl cli i

T T T
clcl

T T

r

i T T
i

A P PA PB PB C C

D D

I D D

I

 

 













 
 
 

 
   
 
  
  

 ,                                          (96) 

Inequality (96) can also be rewritten as [26] 
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    
,                               (99) 

If the quadratic Lyapunov variable 2 2p p
P

 is obtained, the system matrix vertices Ki of the LPV controller K(ρ) for each 

vertex i,  i = 1, …, r, can be determined from (97). By Lemma 1, the LMIs (97) are sufficiently evaluated at all vertices. When 

Ki is known, the controller system matrices Ak(ρ), Bk(ρ), Ck(ρ), Dk(ρ) can be computed on-line in real-time using (4) with 

instantaneous measurement values of ρ. By Lemma 2, the LMIs (97) are solvable for Ki if and only if there exist a pair of 

positive definite symmetric matrices (R, S) satisfying 
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where NR and NS denote bases of the null spaces of 2 2 21C D D     and 2 2 12
T T T

B D D 
  , respectively. As the LMIs (100)-

(102) are sufficiently evaluated at all vertices according to Lemma 1, therefore, the LMIs (100) ~(102) are satisfied if the 

LMIs(74) ~(76) can be satisfied, for i =1,…, r. 

For the error system of the disturbance observer, define a Lyapunov function ( ) T
oV e e Pe   , then 

 3( )= ( )
TT

o d d dV e e W L e B V P  
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   3 1 1( ) ( ) ( )T T T
d d dP W L e B V e e PB B e                         (103) 

Using Lemma 2, we have 
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Substitute (104) into (103), and if 
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where 1 0  , then 
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holds. Recalling (94), (95) can be rewritten as 
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 Where o is a small positive scalar depending on [32] 
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 It further follows from (107) that 
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The closed-loop system under the DO-LPV composite controller is exponentially stable in the sense that for an initial state x 

and ς satisfying 0|| (0) ||x x , 0|| (0) ||  ,where 0x and 0  are given scalars, lim ( ) 0
t

x t


 and lim ( ) 0
t

e t


 . 

When RBF neural network approximation error  is considered, a candidate Lyapunov function is chosen as follows, 

1 1
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2
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                                                           (110) 

And the first equation of system (46) can be described as 
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So the derivative Lyapunov function V  is 
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where 

 1 2 3= ( ) ( ) ( ) ( ) ( )( ) ( )LPV dA x t B t B u u B d t                                                  (113) 

x is a small positive scalar depending on (20) [32]. Choose the update law of the NN weight function as: 

T

W
W x h                                                                     (114) 

Denotes  max T

NN
c x P , and let ck = min{2Kx,  min2 d  },hence, we obtain k NN

V c V c   , according to LaSalle-

Yoshizawa Lemma and Ref [33], the closed-loop system tracking error will exponentially converge. 
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