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 
Abstract—This paper addresses the underwater acoustical 

localization problem by using the time-difference-of-arrival 

(TDOA) and bearing-angle-of-arrival (BAOA) measurements. For 

the underwater acoustic equipment, such as the ultra-short 

baseline system (USBL), whose bearing measurements are 

different from the traditional angle-of-arrival (AOA) model, a 

closed-form solution for the hybrid TDOA/BAOA-based source 

localization problem is developed. However, the solution suffers 

from the measurement noise and cannot achieve the Cramer–Rao 

lower bound (CRLB) performance in the case of large 

measurement noise. Thus, an iterative constrained weighted least 

squares method is presented to further minimize the error in the 

case of large noise. The CRLB for hybrid TDOA/BAOA source 

localization is analyzed and the solution is proved to achieve the 

CRLB performance. Numerical simulations and field tests 

demonstrate that the proposed method outperforms the 

traditional methods in terms of estimation bias and accuracy. It 

can achieve the CRLB performance better. 

Index Terms—USBL, TDOA, BAOA, Bearing, iterative 

constrained weighted least squares, CRLB 

 

I. INTRODUCTION 

Source localization is a classical subject due to its importance 

in the applications of sensor networks, radar, and underwater 

navigation[1][2]. In such applications, the main idea of source 

localization is to use the noisy measurement, such as the time-

difference-of-arrival (TDOA)[3][4][5][6], time-of-arrival (TOA)[7] 

[8], and angle-of-arrival (AOA)[9][10]. 

TDOA-based localization problem has the advantages of no 

needing the synchronize sensor clocks with that of the target. 

Especially in the aspects of single-source passive navigation[2] 

or the underwater acoustical localization of the black box[11], 

the clock synchronization error is not known and the TDOA-

based localization method is often more effective than the 

TOA-based localization method. Chan proposed a two-stage 

weighted least squares (TWLS) algorithm for the TDOA-based 
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localization problem[12]. It is well known for its low 

computational complexity and proven approximate efficiency. 

Several improved algorithms have been proposed[13][14]. AOA-

based localization problem does not need accurate clock 

synchronization between sensors and the closed-form solution 

was developed[15][16]. Recently, the hybrid systems that combine 

two or more noisy measurements have drawn considerable 

attention. Li developed a two-step least-square location 

estimator for the TDOA/AOA location scheme for wideband 

code-division multiple-access wireless communication 

systems[17]. A geometrically constrained optimization approach 

was applied to the hybrid TDOA/AOA location scheme to 

improve the localization accuracy[18]. In 2016, a simple 

TDOA/AOA   method using two stations was developed and 

the method could be extended to more than two stations[19]. 

When the prior knowledge about the source range is not 

available, an iterative maximum likelihood estimator (MLE) for 

the source location under modified polar representation (MPR) 

was developed[20]. Note that all of the above-mentioned 

methods were presented for the source localization problem, in 

which the azimuth and elevation angles are considered in the 

AOA model. The closed-form solutions in these methods are 

designed for the traditional TDOA/AOA model. In particular, 

azimuth is the angle between the projection of slant distance, 

which is the distance between the source and the sensor, onto a 

horizontal plane and the X-axis[20]. The elevation angle is the 

angle between the projection of slant distance onto a horizontal 

plane and the slant distance[20]. This AOA model requires both 

of the azimuth and elevation angles to complete the positioning. 

However, when the underwater sensor consists of multiple 

hydrophones, such as the USBL, the AOA measurements are 

available[2] and they can be applied to the localization problem. 

The new underwater AOA model is based on the bearing 

measurements. In order to distinguish from the traditional AOA 

model, it is named as the bearing angle of arrival (BAOA). The 
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bearing angles studied in the paper are the angles between the 

slant distance and the x-axis (bearing α) and the y-axis (bearing β )[21] [22]. Bearing α  or bearing β  alone can complete the 

positioning. Since the USBL can output two bearing angles, 

both of the two bearing angle are used in the localization 

problem in the paper. Different definitions of the AOA model 

will lead to different algebraic expressions of the closed 

solutions. Thus, the above algebraic expressions of the closed 

solutions are not suitable for the new model in the manuscript. 

To the best of our knowledge, there is not yet a sufficiently 

effective solution for the new underwater acoustical 

localization model. Thus, one of the tasks of this paper is to 

derive a new algebraic expression of a closed solution based on 

the new BAOA model. Besides, the location bias caused by the 

noisy measurement will be considered in the paper. However, 

it is not considered in the above traditional TDOA/AOA 

localization model. 

For the cases where the vehicle is equipped with a USBL 

sensor, a TDOA/ BAOA -based passive navigation scheme was 

developed[2]. A two-stage weighted least squares method for the 

new TDOA/ BAOA model was proposed [2], in which the time 

difference and bearing measurements were used. Although it is 

the latest method designed for the new TDOA/ BAOA model, 

the solution suffers from the TDOA measurement noise and 

cannot achieve the CRLB performance. The CRLB is a lower 

bound on the variance of any unbiased estimator. It tells us the 

best we can ever expect to be able to do. Thus, for a given 

localization scenario, the best (smallest) achievable accuracy 

can be represented by the Cramer-Rao lower bound and many 

researchers take it as a benchmark for performance 

evaluation[23][24]. Besides, there are some other performance 

criteria such as Cramer-Rao bound (CRB)[19] or hybrid 

Bhattacharyya-Barankin (HBB)[20] bound. In this paper, CRLB 

is used as a benchmark for performance evaluation.  

The goal of the paper is to solve the problem in reference [2]. 

One of that is to derive a new closed-form solution of TDOA/ 

BAOA -based localization problem in the USBL system, which 

can achieve the CRLB performance in the case of small 

measurement noise. The other goal of the paper is that an 

iterative constrained weighted least squares method based on 

Taylor expansion is presented to further minimize the 

localization error in the case of large noise. Although several 

iteration-based methods were developed based on the closed-

form solution[23][24][25], the solution will still suffer from the 

noisy measurements if the noise is large as the time difference 

and bearing measurements are coupled in the traditional 

iteration equation. The proposed bias-reduction method can 

deal with the problem of low iteration accuracy. It can improve 

the iteration accuracy and reduce the position bias compared 

with the closed-form solutions used in the traditional 

TDOA/AOA model, where the azimuth and elevation angles 

are considered. 

The structure of the paper is as follows. The first section is 

the introduction and includes the current research status and the 

contributions of the paper. The second section introduces the 

system models of the source location. The third section 

introduces the closed-form solution method and the iteration-

based method. The fourth section is the analysis of the proposed 

method. The fifth section verifies the effectiveness of the 

proposed algorithm through simulation and field tests. The sixth 

section is the future works. The last section presents summary. 

II. SYSTEM MODEL 

Consider a localization scenario with M basic sensors and 

their positions are known and denoted by 𝒔𝑖 = (𝑥𝑖 𝑦𝑖 𝑧𝑖)𝑇  (𝑖 = 1,2,3, …𝑀). The source  position (𝒖𝑜 = (𝑥 𝑦 𝑧)𝑇) in 

N-dimensional (N = 2 or 3) space is unknown and needs to be 

located. The localization scenario is shown in Fig. 1. 
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Fig. 1 Source location scenario 

We select the first sensor (𝒔1) as the reference. The sensor 

array computes the relative time delays of the signals at 

different sensors with respect to the reference. The TDOA 

measurement, denoted by 𝑡𝑖1, between sensor pairs i and 1 and 

the corresponding actual range difference of arrival (RDOA) 

denoted by 𝑟𝑖1 are 𝑟𝑖1=c𝑡𝑖1 + 𝑛𝑖1 = 𝑟𝑖10 + 𝑛𝑖1 = 𝑟𝑖 − 𝑟1 + 𝑛𝑖1 (1) 

where 𝑟𝑖 = ‖𝒖𝑜 − 𝒔𝑖‖, (𝑖 = 2,3, …𝑀). 𝑛𝑖1 is the measurement 

noise. Note that 𝑟𝑖10  is actually the range difference which is the 

TDOA multiplied by the known signal propagation speed c. We 

shall use time differences and range differences 

interchangeably throughout the paper as they are differed by a 

constant scaling factor[26]. It is assumed that the TDOA noise 

vector 𝒏 = [𝑛21 ⋯ 𝑛𝑖1]𝑻 is zero-mean Gaussian distributed 

with covariance matrix 𝑸𝒓 = 𝐸𝑛(𝒏𝒏𝑻). 𝑟𝑖10  is the true TDOA 

measurement.  

 Take the sensor 𝒔𝑖  as an example in Fig. 2. The bearing 

measurements diagram is shown below.  
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Fig. 2 Bearing information diagram 
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The bearing angles can be obtained by the phase difference. 

Four transducers are installed along the x-axis and y-axis. The 

transducer array along the x-axis is used to get α𝑖  and 

transducer array along the y-axis is used to get β𝑖 .The phase 

difference is estimated by the adaptive phase difference 

estimator, where the Least Mean Square method is used[27]. 

 The bearings are related to the source position and it can be 

represented as[21]. 

{𝛼𝑖 = 𝑎𝑟𝑐𝑐𝑜𝑠 (𝑥 − 𝑥𝑖𝑟𝑖 ) + 𝜀𝑖 = 𝛼𝑖0 + 𝜀𝑖𝛽𝑖 = 𝑎𝑟𝑐𝑐𝑜𝑠 (𝑦 − 𝑦𝑖𝑟𝑖 ) + 𝛿𝑖 = 𝛽𝑖0 + 𝛿𝑖 (2) 

where 𝜀𝑖 is the measurement noise of bearing 𝛼𝑖 and 𝛿𝑖 is the 

measurement noise of bearing 𝛽𝑖. It is assumed that the bearing α  noise vector 𝛆 = [𝜀1 ⋯ 𝜀𝑖]𝑇  and bearing β noise vector 𝛅 = [𝛿1 ⋯ 𝛿𝑖]𝑇  are zero-mean Gaussian distributed with 

covariance matrix 𝑸𝜶 = 𝐸(𝛆𝛆𝑻) and 𝑸𝜷 = 𝐸(𝛅𝛅𝑻). 𝛼𝑖0 and 𝛽𝑖0 

are the true bearing information. 

III. PROPOSED METHOD 

In this section, we will develop a closed-form solution 

method and an iterative constrained bias-reduction method for 

the system model described in section II. 

A. Closed-form solution 

According to the analysis in paper [12], the TDOA model can 

be simplified as 𝑟𝑖12 + ‖𝒔1‖2 − ‖𝒔𝑖‖2 + 2(𝒔𝑖 − 𝒔1)𝑇𝒖𝑜 + 2𝑟𝑖1‖𝒖𝑜 − 𝒔1‖= 2‖𝒖𝑜 − 𝒔𝑖‖𝑛𝑖1 + 𝑛𝑖12  
(3) 

Taking all the TDOA measurements into consideration, (3) 

can be extended as follows. 𝒉𝟏 − 𝑮𝟏𝒚 = 𝑩1𝒏+ 𝒏 ⊙ 𝒏 (4) 

where 𝒉𝟏 = [ 𝑟212 + ‖𝒔1‖2 − ‖𝒔2‖2⋮𝑟𝑀12 + ‖𝒔1‖2 − ‖𝒔𝑀‖2], 𝑮𝟏 = −2 [(𝒔2 − 𝒔1)𝑇 𝑟21⋮ ⋮(𝒔𝑀 − 𝒔1)𝑇 𝑟𝑀1], 𝒚 = [𝒖𝑜𝑇 𝑟1]𝑻, 𝑩1 = 2𝑑𝑖𝑎𝑔([𝑟2 … 𝑟𝑀]) . 
and “⊙” denotes the element-by-element product. 

We will derive the pseudo linear equations for the BAOA 

model. (2) can be reformulated as {𝑥 − 𝑥𝑖 = 𝑟𝑖𝑐𝑜𝑠(𝛼𝑖0)𝑦 − 𝑦𝑖 = 𝑟𝑖𝑐𝑜𝑠(𝛽𝑖0)  (5) 

Combine (1) with (5), it can be reformulated as {𝑥 − 𝑥𝑖 = (𝑟𝑖10 + 𝑟1)𝑐𝑜𝑠(𝛼𝑖0)𝑦 − 𝑦𝑖 = (𝑟𝑖10 + 𝑟1)𝑐𝑜𝑠(𝛽𝑖0)  (6) 

In the above equation, 𝛼𝑖0 , 𝑟𝑖10  and 𝛽𝑖0 are the true values and 

use their noisy values, (6) becomes {𝑥 − 𝑥𝑖 − (𝑟𝑖1 + 𝑟1)𝑐𝑜𝑠(𝛼𝑖) = 𝜂𝛼𝑦 − 𝑦𝑖 − (𝑟𝑖1 + 𝑟1)𝑐𝑜𝑠(𝛽𝑖) = 𝜂𝛽  (7) 

When the measurement noise is small, 𝑐𝑜𝑠(𝜀𝑖) ≈ 1  and 𝑠𝑖𝑛(𝜀𝑖) ≈ 𝜀𝑖. So we have the following approximation. 𝑐𝑜𝑠(𝛼𝑖0 + 𝜀𝑖)=cos𝛼𝑖0-𝜀𝑖𝑠𝑖𝑛𝛼𝑖0 (8) 

Take 𝑥 − 𝑥𝑖 − (𝑟𝑖1 + 𝑟1)𝑐𝑜𝑠(𝛼𝑖) = 𝜂𝛼 as an example. It can 

be rewritten as. 

𝑥 − 𝑥𝑖 − (𝑟𝑖1 + 𝑟1)𝑐𝑜𝑠(𝛼𝑖) = 𝑥 − 𝑥𝑖 − (𝑟𝑖10 + 𝑛𝑖1 + 𝑟1) 𝑐𝑜𝑠(𝛼𝑖0 + 𝜀𝑖) ≈ 𝑥 − 𝑥𝑖 − (𝑟𝑖10 + 𝑟1)𝑐𝑜𝑠(𝛼𝑖0) − cos𝛼𝑖0𝑛𝑖1 + 𝑟𝑖𝑠𝑖𝑛(𝛼𝑖0)𝜀𝑖 (9) 

Thus, we have 𝜂𝛼 = 𝑟𝑖𝑠𝑖𝑛(𝛼𝑖0)𝜀𝑖 − cos𝛼𝑖0𝑛𝑖1 (10) 

The derivation of 𝜂𝛽  is the same as 𝜂𝛼  and it can be 

represented as 𝜂𝛽 = 𝑟𝑖𝑠𝑖𝑛(𝛽𝑖0)𝛿𝑖 − cos𝛽𝑖0𝑛𝑖1 (11) 

From (7), (10), and (11), the pseudo linear equations for the 

BAOA model can be represented as 𝒉𝟐 − 𝑮𝟐𝒚 = 𝑩2𝜼 (12) 

where 𝒉𝟐 =
[  
   
  𝑥1𝑥2 + 𝑟21𝑐𝑜𝑠(𝛼2)⋮𝑥𝑀 + 𝑟𝑀1𝑐𝑜𝑠(𝛼𝑀)𝑦1𝑦2 + 𝑟21𝑐𝑜𝑠(𝛽2)⋮𝑦𝑀 + 𝑟𝑀1𝑐𝑜𝑠(𝛽𝑀)]  

   
  
, 

𝑮𝟐 = [  
   1⋮10⋮0

0⋮01⋮1
0⋮00⋮0

−𝑐𝑜𝑠(𝛼1)⋮−𝑐𝑜𝑠(𝛼𝑀)−𝑐𝑜𝑠(𝛽1)⋮−𝑐𝑜𝑠(𝛽𝑀)]  
   , 𝑩2 = [ 𝑩21 0𝑀×𝑀 𝑩220𝑀×𝑀 𝑩23 𝑩24]. 

𝑩21 = 𝑑𝑖𝑎𝑔([−𝑟1𝑠𝑖𝑛(𝛼10) … −𝑟𝑀𝑠𝑖𝑛(𝛼𝑀0 )]), 𝑩23 = 𝑑𝑖𝑎𝑔([−𝑟1𝑠𝑖𝑛(𝛽10) … −𝑟𝑀𝑠𝑖𝑛(𝛽𝑀0 )]), 𝑩22 = [01×𝑀−1𝑩22−1 ], 𝑩22−1 =  𝑑𝑖𝑎𝑔([𝑐𝑜𝑠(𝛼10) … 𝑐𝑜𝑠(𝛼𝑀0 )]), 𝑩24 = [01×𝑀−1𝑩24−1 ], 𝑩24−1 =  𝑑𝑖𝑎𝑔([𝑐𝑜𝑠(𝛽10) … 𝑐𝑜𝑠(𝛽𝑀0 )]), 𝜼 = [𝛆𝑻 𝛅𝑻 𝒏𝑻]𝑻. 

From (4) and (12), the hybrid TDOA/BAOA pseudo linear 

equation can be represented as 𝒉 − 𝑮𝒚 = 𝑩𝜼 (13) 

where 𝒉 = [𝒉𝟐𝒉𝟏], 𝑮 = [𝑮𝟐𝑮𝟏], 𝑩 = [ 𝑩20𝑀−1×2𝑀 𝑩1]. 
Applying the weighted least squares method to (13) yields to 

the solution. 𝒚̃ = (𝑮𝑻𝑾𝑮)−1𝑮𝑻𝑾𝒉 (14) 

where the weighted matrix 𝑾 = (𝑩𝑸𝑩𝑇)−1. 𝑸 = 𝐸(𝜼𝜼𝑻) 
The estimated 𝒚̃ is as follows. 𝒚̃ = [𝒖̃𝑜𝑇 𝑟1̃]𝑻 (15) 

The estimation error in (15) is defined as {𝒖̃𝟎 = 𝒖𝟎 + ∆𝒖𝑟1̃ = 𝑟1 + ∆𝑟1  (16) 

The pseudo linear equation (13) is established under the 

assumption that the parameters in 𝒚 are independent. However, 𝒖0 and 𝑟1 have the following relationship.  𝑟1 = ‖𝒖𝑜 − 𝒔1‖ (17) 

Thus, a further step will be carried out to improve the 

estimation accuracy. 

We take the Taylor series expansion of (15) around 𝒖̃𝑜 and 

retaining up to the first-order terms to arrive at 𝑟1 = ‖𝒖𝑜 − 𝒔1‖ = ‖𝒖̃𝟎 − 𝒔1‖ − 𝝆𝒖̃𝟎,𝒔1𝑇 ∆𝒖 (18) 

where 𝝆𝒖̃𝟎,𝒔1𝑇 = (𝒖̃𝟎−𝒔1)𝑇‖𝒖̃𝟎−𝒔1‖ . 

Combing (18) and (16) yields the solution.  
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𝝐 = [−∆𝒖∆𝑟1 ] = [ 0 − ∆𝒖𝑟1̃ − ‖𝒖̃𝟎 − 𝒔1‖ + 𝝆𝒖̃𝟎,𝒔1𝑇 ∆𝒖]                                    = 𝒉𝟑 − 𝑮𝟑∆𝒖                                    = 𝑩3∆𝒚 

(19) 

where 𝒉𝟑 = [ 03×1𝑟1̃ − ‖𝒖̃𝟎 − 𝒔1‖], 𝑮𝟑 = [ 𝑰𝟑×𝟑−𝝆𝒖̃𝟎,𝒔1𝑇 ],  𝑩3 = [−𝑰𝟑×𝟑 03×101×3 1 ].  
The estimated error of (14) can be obtained by ∆𝒖 = (𝑮𝟑𝑻𝑾𝟑𝑮𝟑)−1𝑮𝟑𝑻𝑾𝟑𝒉𝟑 (20) 

where 𝑾𝟑 = (𝑬(𝝐𝝐𝑻))−𝟏 = (𝑩3𝑐𝑜𝑣(𝑦)𝑩3𝑇)−𝟏 𝑐𝑜𝑣(𝑦) is the covariance matrix of (14). According to the 

analysis in [28], the covariance matrix can be represented as. 𝑐𝑜𝑣(𝑦) = (𝑮𝑻𝑾𝑮)−1 (21) 

The covariance matrix of ∆𝒖 can be shown as[28] 𝑐𝑜𝑣(∆𝒖) = (𝑮𝟑𝑻𝑾𝟑𝑮𝟑)−1 (22) 

Thus, the optimal solution of the source location is 𝒖𝑜 = 𝒖̃𝟎 − ∆𝒖 (23) 

B. An improved iterative constrained method based Taylor 

expansion 

Take the Taylor series expansion of ‖𝒖𝑜 − 𝒔1‖ around 𝒖̃𝑜 

and retaining up to the first-order terms as (18) shows. 

Substituting (18) and 𝒖̃𝑜 (𝒖̃𝑜 = 𝒖𝑜 + ∆𝒖) into (3) yields. 𝑟𝑖12 + ‖𝒔1‖2 − ‖𝒔𝑖‖2 + 2(𝒔𝑖 − 𝒔1)𝑇(𝒖̃𝑜 − ∆𝒖)+ 2𝑟𝑖1(‖𝒖̃𝟎 − 𝒔1‖ − 𝝆𝒖̃𝟎,𝒔1𝑇 ∆𝒖)= 2‖𝒖𝑜 − 𝒔𝑖‖𝑛𝑖1 + 𝑛𝑖12  

(24) 

Taking all the TDOA measurements into consideration, (24) 

can be extended as follows. 𝒉𝟑 − 𝑮𝟑∆𝒖 = 𝑩1𝒏+ 𝒏 ⊙ 𝒏 (25) 

where  𝒉𝟑 =[𝑟212 + ‖𝒔1‖2 − ‖𝒔2‖2 + 2(𝒔2 − 𝒔1)𝑇𝒖̃𝑜 + 2𝑟21‖𝒖̃𝟎 − 𝒔1‖⋮𝑟𝑖12 + ‖𝒔1‖2 − ‖𝒔𝑖‖2 + 2(𝒔𝑖 − 𝒔1)𝑇𝒖̃𝑜 + 2𝑟𝑖1‖𝒖̃𝟎 − 𝒔1‖ ], 𝑮𝟑 = 2 [(𝒔2 − 𝒔1)𝑇 + 𝑟21𝝆𝒖̃𝟎,𝒔1𝑇⋮(𝒔𝑖 − 𝒔1)𝑇 + 𝑟𝑖1𝝆𝒖̃𝟎,𝒔1𝑇 ]. 
Similarly,  substituting (18)  into (7) yields. 𝑥̃ − ∆𝑥 − 𝑥𝑖 − (𝑟𝑖1 + ‖𝒖̃𝟎 − 𝒔1‖ − 𝝆𝒖̃𝟎,𝒔1𝑇 ∆𝒖)𝑐𝑜𝑠(𝛼𝑖)= 𝜂𝛼 𝑦̃ − ∆𝑦 − 𝑦𝑖 − (𝑟𝑖1 + ‖𝒖̃𝟎 − 𝒔1‖ − 𝝆𝒖̃𝟎,𝒔1𝑇 ∆𝒖)𝑐𝑜𝑠(𝛽𝑖)= 𝜂𝛽 

(26) 

Taking all the BAOA measurements into consideration, (26) 

can be extended as follows. 𝒉𝟒 − 𝑮𝟒∆𝒖 = 𝑩2𝜼 (27) 

 

where 𝒉𝟒 =
[  
   
  𝑥1 − 𝑥̃ + 𝑐𝑜𝑠(𝛼1)‖𝒖̃𝟎 − 𝒔1‖𝑥2 − 𝑥̃ + 𝑟21𝑐𝑜𝑠(𝛼2) + 𝑐𝑜𝑠(𝛼2)‖𝒖̃𝟎 − 𝒔1‖⋮𝑥𝑀 − 𝑥̃ + 𝑟𝑀1𝑐𝑜𝑠(𝛼𝑀) + 𝑐𝑜𝑠(𝛼𝑀)‖𝒖̃𝟎 − 𝒔1‖𝑦1 − 𝑦̃ + 𝑐𝑜𝑠(𝛽1)‖𝒖̃𝟎 − 𝒔1‖𝑦2 − 𝑦̃ + 𝑟21𝑐𝑜𝑠(𝛽2) + 𝑐𝑜𝑠(𝛽2)‖𝒖̃𝟎 − 𝒔1‖⋮𝑦𝑀 − 𝑦̃ + 𝑟𝑀1𝑐𝑜𝑠(𝛽𝑀) + 𝑐𝑜𝑠(𝛽𝑀)‖𝒖̃𝟎 − 𝒔1‖]  

   
  
, 

𝑮𝟒 =
[  
   
 𝑐𝑜𝑠(𝛼1)𝜌𝑥 − 1 𝑐𝑜𝑠(𝛼1)𝜌𝑦 𝑐𝑜𝑠(𝛼1)𝜌𝑧⋮ ⋮ ⋮𝑐𝑜𝑠(𝛼𝑀)𝜌𝑥 − 1𝑐𝑜𝑠(𝛽1)𝜌𝑥⋮𝑐𝑜𝑠(𝛽𝑀)𝜌𝑥

𝑐𝑜𝑠(𝛼𝑀)𝜌𝑦𝑐𝑜𝑠(𝛽1)𝜌𝑦 − 1⋮𝑐𝑜𝑠(𝛽𝑀)𝜌𝑦 − 1
𝑐𝑜𝑠(𝛼𝑀)𝜌𝑧𝑐𝑜𝑠(𝛽1)𝜌𝑧⋮𝑐𝑜𝑠(𝛽𝑀)𝜌𝑧]  

   
 
. 

𝝆𝒖̃𝟎,𝒔1𝑇 = [𝜌𝑥 𝜌𝑦 𝜌𝑧]. 
From (25) and (27), the hybrid TDOA/BAOA equation can 

be represented as 𝒉 − 𝑮∆𝒖 = 𝑩𝜼 (28) 

where 𝒉 = [𝒉𝟐𝒉𝟏], 𝑮 = [𝑮𝟐𝑮𝟏], 𝑩 = [ 𝑩20𝑀−1×2𝑀 𝑩1]. 
Applying the iteration method to (28) yields to the solution. 𝒖̃𝟎𝒌+𝟏 = 𝒖̃𝟎𝒌 − ∆𝒖 = 𝒖̃𝟎𝒌 + (𝑮𝑻𝑾𝑮)−1𝑮𝑻𝑾𝒉 

(29) 

where 𝑘 represents the kth iteration. 

However, the solution will suffer from the noisy 

measurement. For example, the TDOA measurements are 

coupled in 𝒉𝟒 and the estimated results cannot attain the CRLB 

performance if the TDOA noise is large. Thus, we will further 

consider the noisy measurement in the coefficient matrix of the 

iteration method. 

We expand the parameters and coefficient matrix as follows. 𝑨 = [−𝑮 𝒉] 𝑽 = [∆𝒖𝑻 1]𝑇 
(30) 

Define the cost function with the expanded parameters as 

follows. 𝑱 = 𝒎𝒊𝒏(𝑨𝑽)𝑻𝑾𝑨𝑽 (31) 

Since 𝑨  contains the measurement noise and it can be 

decomposed as. 𝑨 = ∆𝑨 + 𝑨0 (32) 

where 𝑨0  is a matrix without any measurement noise. ∆𝑨 =[−∆𝑮 ∆𝒉]  is the noise term, which can be expressed as 

follows. ∆𝑨 = [𝑪1𝜼 𝑪2𝜼 𝑪3𝜼 𝑪4𝜼] (33) 

where 𝑪1 = −[ 𝑪11 02𝑀×𝑀−10𝑀−1×2𝑀 𝑪12 ], 𝑪11 = [𝑪11−1 0𝑀×𝑀0𝑀×𝑀 𝑪11−2] 𝑪11−1 = 𝑑𝑖𝑎𝑔([−sin(𝛼10)𝜌𝑥 … −sin(𝛼𝑀0 )𝜌𝑥  ]), 𝑪11−2 = 𝑑𝑖𝑎𝑔([−sin(𝛽10)𝜌𝑥 … −sin(𝛽𝑀0 )𝜌𝑥  ]), 𝑪12 = 𝑑𝑖𝑎𝑔 ([𝜌𝑥  … 𝜌𝑥 ]⏟        𝑀−1 ), 𝑪2 = [ 𝑪21 02𝑀×𝑀−10𝑀−1×2𝑀 𝑪22 ], 𝑪21 = [𝑪21−1 0𝑀×𝑀0𝑀×𝑀 𝑪21−2], 𝑪21−1 = 𝑑𝑖𝑎𝑔([−sin(𝛼10)𝜌𝑦 … −sin(𝛼𝑀0 )𝜌𝑦 ]), 𝑪21−2 = 𝑑𝑖𝑎𝑔([−sin(𝛽10)𝜌𝑦 … −sin(𝛽𝑀0 )𝜌𝑦 ]), 𝑪22 = 𝑑𝑖𝑎𝑔 ([𝜌𝑦 … 𝜌𝑦 ]⏟        𝑀−1 ), 𝑪3 = [ 𝑪31 02𝑀×𝑀−10𝑀−1×2𝑀 𝑪32 ], 𝑪31 = [𝑪31−1 0𝑀×𝑀0𝑀×𝑀 𝑪31−2], 𝑪31−1 = 𝑑𝑖𝑎𝑔([−sin(𝛼10)𝜌𝑧 … −sin(𝛼𝑀0 )𝜌𝑧 ]), 𝑪31−2 = 𝑑𝑖𝑎𝑔([−sin(𝛽10)𝜌𝑧 … −sin(𝛽𝑀0 )𝜌𝑧 ]), 𝑪32 = 𝑑𝑖𝑎𝑔 ([𝜌𝑧 … 𝜌𝑧 ]⏟        𝑀−1 ), 𝑪4 = [ 𝑪41 𝑪420𝑀−1×2𝑀 𝑪43], 𝑪41 = [𝑪41−1 0𝑀×𝑀0𝑀×𝑀 𝑪41−2], 
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𝑪41−1 = 𝑑𝑖𝑎𝑔([0 −𝑟210 𝑠𝑖𝑛(𝛼10) − ‖𝒖𝑜 − 𝒔1‖𝑠𝑖𝑛(𝛼10) … −𝑟𝑀10 𝑠𝑖𝑛(𝛼𝑀0 ) − ‖𝒖𝑜 − 𝒔1‖𝑠𝑖𝑛(𝛼𝑀0 )]) 𝑪41−2 = 𝑑𝑖𝑎𝑔([0 −𝑟210 𝑠𝑖𝑛(𝛽10) − ‖𝒖𝑜 − 𝒔1‖𝑠𝑖𝑛(𝛽10) … −𝑟𝑀10 𝑠𝑖𝑛(𝛽𝑀0 ) − ‖𝒖𝑜 − 𝒔1‖𝑠𝑖𝑛(𝛽𝑀0 )]) 
𝑪42 = [  

 01×𝑀𝑑𝑖𝑎𝑔([𝑐𝑜𝑠(𝛼10) … 𝑐𝑜𝑠(𝛼𝑀0 )]))01×𝑀𝑑𝑖𝑎𝑔([𝑐𝑜𝑠(𝛽10) … 𝑐𝑜𝑠(𝛽𝑀0 )]) ]  
 
, 

𝑪43 = 2𝑑𝑖𝑎𝑔([𝑟210 … 𝑟𝑀10 ])+ 2𝑑𝑖𝑎𝑔([‖𝒖𝑜 − 𝒔1‖ … ‖𝒖𝑜 − 𝒔1‖]). 
Substituting (32) into (31) yields the cost function 𝐽 = 𝑽𝑇𝑨0𝑇𝑾𝑨0𝑽 + 𝑽𝑇∆𝑨𝑇𝑾∆𝑨𝑽 + 2𝑽𝑇∆𝑨𝑇𝑾𝑨0𝑽 (34) 

If we take the expectation of 𝐽  and the third term 𝑽𝑇∆𝑨𝑇𝑾𝑨0𝑽 will vanish due to the fact that ∆𝐴 is zero-mean. 

The expectation of 𝐽 can be obtained. 𝐸(𝐽) = 𝑽𝑇𝐴0𝑇𝑾𝑨0𝑽 + 𝑽𝑇𝐸[∆𝑨𝑇𝑾∆𝑨]𝑽 (35) 

In (30), we treat the second term as a constant constraint to 

(31). Thus, the cost function can be reformulated as 𝑚𝑖𝑛𝑽𝑇𝑨𝑇𝑾𝑨𝑽 

s.t. 𝑽𝑇𝛀𝑽 = 𝑘 
(36) 

where 𝛀 = 𝐸[∆𝑨𝑇𝑾∆𝑨] and the constant k can be any value. 𝛀 = 𝐸[∆𝑨𝑇𝑾∆𝑨] 
= [𝛀𝟏𝟏 𝛀𝟏𝟐 𝛀𝟏𝟑 𝛀𝟏𝟒𝛀𝟐𝟏𝛀𝟑𝟏𝛀𝟒𝟏 𝛀𝟐𝟐𝛀𝟑𝟐𝛀𝟒𝟐 𝛀𝟐𝟑𝛀𝟑𝟑𝛀𝟒𝟑 𝛀𝟐𝟒𝛀𝟑𝟒𝛀𝟒𝟒] (37) 

where 𝛀𝟏𝟏 = 𝑡𝑟(𝑪1𝑾𝑪𝟏𝑻𝑸), 𝛀𝟏𝟐 = 𝑡𝑟(𝑪1𝑾𝑪𝟐𝑻𝑸), 𝛀𝟏𝟑 = 𝑡𝑟(𝑪1𝑾𝑪𝟑𝑻𝑸), 𝛀𝟏𝟒 = 𝑡𝑟(𝑪1𝑾𝑪𝟒𝑻𝑸), 𝛀𝟐𝟏 = 𝛀𝟏𝟐𝑻 , 𝛀𝟐𝟐 = 𝑡𝑟(𝑪2𝑾𝑪𝟐𝑻𝑸), 𝛀𝟐𝟑 = 𝑡𝑟(𝑪2𝑾𝑪𝟑𝑻𝑸),  𝛀𝟐𝟒 = 𝑡𝑟(𝑪2𝑾𝑪𝟒𝑻𝑸), 𝛀𝟑𝟏 = 𝛀𝟏𝟑𝑻 , 𝛀𝟑𝟐 = 𝛀𝟐𝟑𝑻 , 𝛀𝟑𝟑 = 𝑡𝑟(𝑪3𝑾𝑪𝟑𝑻𝑸), 𝛀𝟑𝟒 = 𝑡𝑟(𝑪3𝑾𝑪𝟒𝑻𝑸), 𝛀𝟒𝟏 = 𝛀𝟏𝟒𝑻 , 𝛀𝟒𝟒 = 𝑡𝑟(𝑪4𝑾𝑪𝟒𝑻𝑸), 𝛀𝟒𝟐 = 𝛀𝟐𝟒𝑻 , 𝛀𝟒𝟑 = 𝛀𝟑𝟒𝑻 . 

The Lagrange multiplier can be used to solve the constrained 

minimization problem. Combine the Lagrange multiplier with 

(36) and it can be reformulated as. 𝑚𝑖𝑛𝑽𝑇𝑨𝑇𝑾𝑨𝑽 − 𝝀(𝑘 − 𝑽𝑇𝛀𝑽) (38) 

Taking the derivative with respect to 𝑽 and setting it to zero 

yield (𝑨𝑇𝑾𝑨)𝑽 = 𝝀𝛀𝑽 (39) 

According to the generalized singular value decomposition 

(GSVD) theory, the solution 𝑽 is the eigenvector of the pair (𝑨𝑇𝑾𝑨 𝛀) which corresponds to the minimum generalized 

eigenvalue.  

The estimated ∆𝒖 can be obtained by. ∆𝒖 = 𝑽(1：3)𝑽(𝟒)  (40) 

Thus, the whole algorithm can be summarized as follows. 

Algorithm 1: A TDOA/BAOA-based localization method based on 

iterative constrained weighted least squares 

Step 1. Set 𝑩 = 𝑰𝟑𝑴−𝟏  and solve the WLS problem (14). A rough value 𝒚̃ 

can be obtained. 

Step 2. Reformulate the weighting matrix W with the rough value 𝒚̃ and 

get the closed-form of the TDOA/BAOA localization problem using (14) 

and (23). 

Step 3. Initialize k = 0. Define a convergence threshold 𝜀, a divergence 

threshold 𝜎 , and a maximum number of iterations 𝜏 . Set the initial value 𝒖̃𝟎 with the closed-form solution in step 2. 

Step 4. Set k=k+1. Formulate the constraint WLS optimization problem 

(31) with 𝒖̃𝒌. 

Step 5. Solve the constraint WLS optimization (31) based on GSVD to 

obtain the estimated value ∆𝒖. 

Step 6. Obtain the optimal value 𝒖̃𝒌+𝟏 = 𝒖̃𝒌 − ∆𝒖 and reformulate the 

weighting matrix W with  𝒖̃𝒌+𝟏 

Step 7. If ∆𝒖 < 𝜀 or k> 𝜏, go to step 8, otherwise, go to step 4. 

Step 8. 𝒖𝑜 =  𝒖̃𝒌+𝟏. 

End   

The above iteration algorithm is based on the closed-form 

solution in section III.A. In the case of small noise, the closed-

form solution is very close to the CRLB performance. Usually, 

two or three iterations are sufficient to ensure the convergence. 

IV. CRLB AND PERFORMANCE ANALYSIS 

A. CRLB for TDOA/BAOA 

The logarithmic probability density function of the bearing 

information vector is. ln(𝒎;𝒖𝟎) = 𝑘 − 12 (𝒎 −𝒎𝒐)𝑇𝑄𝑚−1(𝒎 −𝒎𝒐) (41) 

where 𝒎 = [𝜶; 𝜷] is the actual bearing information with noise 

and 𝒎𝒐 = [𝜶𝒐; 𝜷𝒐] is the real bearing.  𝑄𝑚  is block diagonal 

with diagonal blocks 𝑸𝜶  and 𝑸𝜷 . 𝑘  is a constant which is 

independent with the measurement[29]. 𝜶 = [𝛼1 … 𝛼𝑀]𝑻,  𝜶𝒐 = [𝛼1𝑜 … 𝛼𝑀𝑜 ]𝑻, 𝜷 = [𝛽1 … 𝛽𝑀]𝑻,  𝜷𝒐 = [𝛽1𝑜 … 𝛽𝑀𝑜 ]𝑻. 
The CRLB matrix of 𝒖𝟎 with bearing measurement is CRLB𝐴𝑂𝐴(𝒖𝟎) =𝐹𝐼𝑀−1(𝒖𝟎) (42) 

where 𝐹𝐼𝑀  is the Fisher information matrix and it can be 

represented as. 𝐹𝐼𝑀(𝒖𝟎) = (𝜕𝒎𝒐𝜕𝒖𝟎 )𝑇 𝑄𝑚−1 (𝜕𝒎𝒐𝜕𝒖𝟎 ) (43) 

The detailed  derivation of  
𝜕𝒎𝒐𝜕𝒖𝟎  can be found in Appendix A. 

The CRLB for the hybrid TDOA/BAOA measurement can 

be represented as. CRLB𝑇𝐷𝑂𝐴/𝐴𝑂𝐴(𝒖𝟎) = [(𝜕𝒕𝒐𝜕𝒖𝟎)𝑇 𝑄−1 (𝜕𝒕𝒐𝜕𝒖𝟎)]−1 (44) 

where 𝒕 = [𝜶; 𝜷; 𝑹]  is the actual bearing and TDOA 

information with noise and 𝒕𝒐 = [𝜶𝒐; 𝜷𝒐; 𝑹𝒐] is the real value 

without noise.   𝑸 = 𝐸(𝜼𝜼𝑻) . 𝑹 = [𝑟21 … 𝑟𝑀1]𝑻 ,  𝑹𝒐 =[𝑟21𝑜 … 𝑟𝑀1𝑜 ]𝑻. 𝜕𝒕𝒐𝜕𝒖𝟎 can be expressed as follows. 𝜕𝒕𝒐𝜕𝒖𝟎 = [(𝜕𝜶𝒐𝜕𝒖𝟎)𝑇 (𝜕𝜷𝒐𝜕𝒖𝟎)𝑇 (𝜕𝑹𝒐𝜕𝒖𝟎)𝑇]𝑇 (45) 

The detailed derivation of 
𝜕𝑹𝒐𝜕𝒖𝟎 can be found in [12]. Thus, the CRLB𝑇𝐷𝑂𝐴/𝐴𝑂𝐴 can be obtained. 

B. Algorithm performance 

One of the contributions of the paper is to derive the closed-
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form solution using the time difference and bearing 

measurements in the USBL system. 

We will compare the estimation covariance with the CRLB 

to establish the approximate efficiency of the closed-form 

solution. 

From (20), (21), and (22), the inverse of the estimated 

covariance matrix can be expressed as. (𝑐𝑜𝑣(∆𝒖))−1 = 𝑮𝟑𝑻𝑾𝟑𝑮𝟑                           = 𝑮𝟑𝑻(𝑩3𝑐𝑜𝑣(𝑦)𝑩3𝑇)−𝟏𝑮𝟑                           = 𝑮𝟑𝑻(𝑩3(𝑮𝑻(𝑩𝑸𝑩𝑇)−1𝑮)−1𝑩3𝑇)−𝟏𝑮𝟑                           = 𝑮𝟑𝑻(𝑩3𝑇)−1𝑮𝑇(𝑩𝑇)−1𝑸−1𝑩−1𝑮𝑩3−1𝑮𝟑                           = 𝐺4𝑇𝑸−1𝐺4 

(46) 

where 𝐺4=𝑩−1𝑮𝑩3−1𝑮𝟑. 

Compare (46) with the (CRLB𝑇𝐷𝑂𝐴/𝐴𝑂𝐴)−1 and it shows that 

they have the same functional form. To prove the performance 

of the closed-form solution, we just need to prove that 𝐺4 ≈(𝜕𝒕𝒐𝜕𝒖𝟎) holds.  𝐺4 can be expressed as follows. 𝐺4 = [𝐺41𝐺42] (47) 

The detailed derivation of 𝐺41  and 𝐺42  can be found in 

Appendix B. 

According to the analysis in [28], 𝐺42 can be proved to have 

the following relationship. 𝐺42 = 𝑀2−1𝑮𝟏𝑩3−1𝑮𝟑 = −𝜕𝑹𝒐𝜕𝒖𝟎 (48) 

Take the measurement vector 𝜶 as an example. 

Consider the following relationship. 𝑟1𝑠𝑖𝑛(𝛼1𝑜) = √𝑟12 − 𝑟12𝑐𝑜𝑠2(𝛼1𝑜) = √𝑟12 − (𝑥 − 𝑥1)2 (49) 

Put (49) and the definitions of 𝝆𝒖̃𝟎,𝒔1𝑇  into 𝐺41. The first row 

of 𝐺41 can be expressed as follows. 𝐺41(1,1) = 1‖𝒖𝟎−𝒔1‖𝑠𝑖𝑛(𝛼1𝑜)− 𝝆𝒖̃𝟎,𝒔1𝑇 (𝑥)𝑐𝑜𝑠(𝛼1𝑜)‖𝒖𝟎−𝒔1‖𝑠𝑖𝑛(𝛼1𝑜)   = 1√1−( 𝑥−𝑥1‖𝒖𝟎−𝒔1‖)2 [ 1‖𝒖𝟎−𝒔1‖ − (𝑥−𝑥𝑖)2((𝒖𝟎−𝒔𝑖)𝑇(𝒖𝟎−𝒔𝑖))1.5]  
𝐺41(1,2) = − 𝝆𝒖̃𝟎,𝒔1𝑇 (𝑦)𝑐𝑜𝑠(𝛼1𝑜)‖𝒖𝟎−𝒔1‖𝑠𝑖𝑛(𝛼1𝑜) =1√1−( 𝑥−𝑥1‖𝒖𝟎−𝒔1‖)2 (− (𝑥−𝑥1)(y−𝑦1)((𝒖𝟎−𝒔1)𝑇(𝒖𝟎−𝒔1))1.5)  

𝐺41(1,3) = − 𝝆𝒖̃𝟎,𝒔1𝑇 (𝑧)𝑐𝑜𝑠(𝛼1𝑜)‖𝒖𝟎−𝒔1‖𝑠𝑖𝑛(𝛼1𝑜) =1√1−( 𝑥−𝑥1‖𝒖𝟎−𝒔1‖)2 (− (𝑥−𝑥1)(z−𝑧1)((𝒖𝟎−𝒔1)𝑇(𝒖𝟎−𝒔1))1.5)  

(50) 

According to the analysis in Appendix C, the ith rows of  𝐺41 

can be expressed as follows. (𝑖 = 2,…𝑀). 𝐺41(𝑖, 1) = 1√1−(𝑥−𝑥𝑖𝑟𝑖 )2 [1𝑟𝑖 − (𝑥−𝑥𝑖)2𝑟𝑖3 ]  
(51) 

𝐺41(𝑖, 2) = 1√1−(𝑥−𝑥𝑖𝑟𝑖 )2 [− (𝑥−𝑥𝑖)(𝑦−𝑦𝑖)𝑟𝑖3 ]  
𝐺41(𝑖, 3) = 1√1−(𝑥−𝑥𝑖𝑟𝑖 )2 [− (𝑥−𝑥𝑖)(𝑧−𝑧𝑖)𝑟𝑖3 ]   

The jth rows of 𝐺41 have the same functional form as the ith 

rows. (𝑖 = 2,…𝑀), (𝑗 = 𝑀 + 1,…2𝑀).Thus, the jth rows of  𝐺41 can be expressed as follows. 𝐺41(𝑗, 1) = 1√1−(𝑦−𝑦𝑖𝑟𝑖 )2 [− (𝑥−𝑥𝑖)(𝑦−𝑦𝑖)𝑟𝑖3 ]  
𝐺41(𝑗, 2) = 1√1−(𝑦−𝑦𝑖𝑟𝑖 )2 [1𝑟𝑖 − (𝑦−𝑦𝑖)2𝑟𝑖3 ]  
𝐺41(𝑗, 3) = 1√1−(𝑦−𝑦𝑖𝑟𝑖 )2 [− (𝑧−𝑧𝑖)(𝑦−𝑦𝑖)𝑟𝑖3 ]   

(52) 

From (50)-(52), it can be obtained. 𝐺41 = −𝜕𝒎𝒐𝜕𝒖𝟎  (53) 

According to (48) and (53), it can be obtained. 

𝐺4 = [   
 − 𝜕𝒎𝒐𝜕𝒖𝟎−𝜕𝑹𝒐𝜕𝒖𝟎 ]   

 = (𝜕𝒕𝒐𝜕𝒖𝟎) (54) 

Thus, the estimation covariance can be expressed as follows. (𝑐𝑜𝑣(∆𝒖))−1 ≈ CRLB𝑇𝐷𝑂𝐴/𝐴𝑂𝐴 (55) 

This completes the proof that the proposed closed-form 

solution can achieve the CRLB accuracy. 

V. SIMULATION AND FIELD TEST ANALYSIS 

A. simulation test 

To verify the effectiveness of the proposed algorithm, 

simulations are performed in this section. Several tests are 

carried out and 1000 Monte Carlo simulations are performed 

for each test. 

Symbols used for the simulations are as follows: 

1) ‘TDOA’ denotes that only the time difference 

measurement is used for the source localization and the 

positioning method is described in [12]. 

2) ‘BAOA’ denotes only the bearing information is used 

for the source localization and the positioning method 

is the Gauss-Newton iteration method with the true 

value. The number of iterations is set to 2. 

3) ‘T-TDOA/BAOA’ denotes the existing method for the 
source localization with the time difference and bearing 

information, which is described in [2]. 

4) ‘ML’ denotes the maximum likelihood estimation 

method based on Gauss-Newton iteration as (29) shows. 

5) ‘Proposed method’ denotes the proposed method 

described in section III. The number of iterations is set 

to 4. 

The root mean square error (RMSE) and the bias norm of the 

source position is used to evaluate the localization accuracy. 

They are defined as follows. 
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RMSE = √∑ ‖𝒖̂𝑜 − 𝒖𝑜‖2𝐿𝑖=1 𝐿  

BiasNorm=‖∑ 𝒖̂𝑜𝐿𝑖=1𝐿 − 𝒖𝑜‖ 

(56) 

where 𝒖𝑜  denotes the true source position. L=50000 is the 

number of ensemble runs. 

The TDOA/BAOA noise is Gaussian and the covariance 

matrix is modeled as 𝑸𝒎 = 𝑑𝑖𝑎𝑔(𝜎𝑠2𝑰𝑀 𝜎𝑠2𝑰𝑀)𝑸𝒓 = 𝜎𝑑2(𝑰𝑀−1 + 𝟏𝑀−1𝟏𝑀−1𝑇 )/2 (57) 

The sensor positions are given by 𝑠𝑖 = [50𝑐𝑜𝑠 (𝜋4 (𝑖 − 2)) 50𝑠𝑖𝑛 (𝜋4 (𝑖 − 2)) 𝑧𝑖]𝑇 (58) 

where 𝑖 = 2,… . M is the sensor number.  𝑧𝑖  is generated 

randomly between (-4,4).  

The reference sensor is located at 𝑠1 = [0 0 0]𝑇 . The 

sensors are distributed uniformly in a circle. Two different 

source locations are selected in the following simulation. One 

is outside of the circle formed by the sensors and 𝑢0 is chosen 

randomly as 𝑢0 = [150 65 −30]𝑇. And the other is inside 

of the circle formed by the sensors. Thus, 𝑢0  is chosen 

randomly as 𝑢0 = [20 40 −30]𝑇. 

I. Test 1- The impact of the TDOA noise on Localization 

Accuracy 

In this scenario, 𝜎𝑠2 is a constant value (𝜎𝑠2 = 0.001𝑟𝑎𝑑2), 
M=7.  

When the source is located inside of the circle formed by the 

sensors, compare the RMSE and the bias norm of the estimated 

source position with different methods.  

 
Fig. 3 Comparison of RMSE with different methods. (𝑢0 =[20 40 −30]𝑇) 

 
Fig. 4 Comparison of bias norm with different methods. (𝑢0 =[20 40 −30]𝑇) 

When the source is located outside of the circle formed by 

the sensors, compare the RMSE and the bias norm of the 

estimated source position with different methods.  

 
Fig. 5 Comparison of RMSE with different methods. (𝑢0 =[150 65 −30]𝑇) 

 
Fig. 6 Comparison of bias norm with different methods. (𝑢0 =[150 65 −30]𝑇) 

Fig. 3 and Fig. 5 show the estimation accuracy of the 

proposed method is higher than that of using only TDOA or 

BAOA. The performance superiority of the hybrid 

TDOA/BAOA CRLB is still obvious than that of using TDOA 
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only or BAOA only. Compared with the T-TDOA/BAOA 

method, the proposed method achieves the CRLB accuracy 

better. The T-TDOA/BAOA method can only achieve the 

CRLB accuracy in the case of small noise. When the TDOA 

noise is large, the estimation accuracy of the T-TDOA/BAOA 

method will decrease. Due to the noisy measurements, the 

traditional iteration method cannot attain the CRLB 

performance with the noise increases. However, the proposed 

method still has the best estimation accuracy. Take the scenario 

where the source is inside of the circle formed by the sensors as 

an example. When 𝜎𝑑2=1 𝑚2, that is to say the following results 

would correspond to a range error of 1 meter, the RMSE of the 

proposed method is 1.16m, which is smaller than the T-

TDOA/BAOA (3.04m) and ML (1.50m). It has a 1.88-m 

reduction in RMSE as compared with the T-TDOA/BAOA and 

a 0.34-m reduction in RMSE as compared with the ML. Take 

the scenario where the source is outside of the circle formed by 

the sensors as an example. When 𝜎𝑑2=1 𝑚2, that is to say the 

following results would correspond to a range error of 1 meter, 

the RMSE of the proposed method is 9.35m, which is smaller 

than the T-TDOA/BAOA (17.46m) and ML (11.62m). It has an 

8.11-m reduction in RMSE as compared with the T-

TDOA/BAOA and a 2.27-m reduction in RMSE as compared 

with the ML. 

It can be seen from both Fig. 3 and Fig. 5 that the values for 

the proposed method are sometimes below the CRLB, e.g. 

when 𝑢0 = [20 40 −30]𝑇 , the value is below CRLB at a 

range error of 1 meter (𝜎𝑑2=1 𝑚2). It can be attributed to the 

fact that the method is biased compared to an unbiased 

CRLB. 

Fig. 4 and Fig. 6 show the bias norm of the source position 

with different methods. It’s obvious that the bias norm of the 

proposed method is the smallest among these methods. Take the 

scenario where the source is inside of the circle formed by the 

sensors as an example.  When 𝜎𝑑2=1 𝑚2, the bias norm of the 

proposed method is 0.08m, which is smaller than the T-

TDOA/BAOA (0.36m) and ML (0.31m). It has a 0.28-m 

reduction in bias norm as compared with the T-TDOA/BAOA 

and a 0.23-m reduction in bias norm as compared with the ML. 

Take the scenario where the source is outside of the circle 

formed by the sensors as an example.  When 𝜎𝑑2=1 𝑚2, the bias 

norm of the proposed method is 0.91m, which is smaller than 

the T-TDOA/BAOA (7.20m) and ML (6.91m). It has a 6.29-m 

reduction in bias norm as compared with the T-TDOA/BAOA 

and a 6.0-m reduction in bias norm as compared with the ML. 

Although the proposed method has an only 2-m reduction in 

RMSE compared with the ML method, the localization bias is 

greatly reduced.  

This completes the analysis that the proposed method has a 

higher position accuracy and smaller estimation bias when the 

TDOA noise changes. It achieves the CRLB accuracy well even 

when the TDOA noise is large. 

II. Test 2- The impact of BAOA noise on Localization 

Accuracy 

In this scenario, 𝜎𝑑2 is a constant value (𝜎𝑑2 = 0.3162𝑚2), 
M=7.  

When the source is located inside of the circle formed by the 

sensors, compare the RMSE and the bias norm of the estimated 

source position with different methods. 

 
Fig. 7 Comparison of RMSE with different methods.(𝑢0 =[20 40 −30]𝑇) 

 
Fig. 8 Comparison of bias norm with different methods. (𝑢0 =[20 40 −30]𝑇) 

When the source is located inside of the circle formed by the 

sensors, compare the RMSE and the bias norm of the estimated 

source position with different methods. 

 
Fig. 9 Comparison of RMSE with different methods..(𝑢0 =[150 65 −30]𝑇) 
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Fig. 10 Comparison of bias norm with different methods. (𝑢0 =[150 65 −30]𝑇) 

Fig. 7 and Fig. 9 show the estimation accuracy of the 

proposed method is higher than that of using only TDOA or 

BAOA. The performance superiority of the hybrid CRLB of 

TDOA/BAOA is still obvious than that of using TDOA only or 

BAOA only. Compared with the T-TDOA/BAOA method, the 

proposed method achieves the CRLB accuracy better. When the 

BAOA noise is small, the T-TDOA/BAOA method still cannot 

achieve the CRLB accuracy. It ignores the influence of the 

TDOA measurement noise in the noise coefficient matrix 𝑩2. 

Thus, the TDOA measurement will affect the estimation 

accuracy more even if the BAOA noise is small. The proposed 

method and the ML method can achieve the CRLB accuracy in 

the case of small BAOA noise. With the increase of the BAOA 

noise, the proposed method has the best estimation accuracy. 

Take the scenario where the source is inside of the circle formed 

by the sensors as an example. When  𝜎𝑠2 = 0.0032𝑟𝑎𝑑2, that is 

to say the following results would correspond to a range error 

of 3.24 degree. the RMSE of the proposed method is 1.37m, 

which is smaller than the T-TDOA/BAOA (1.53m) and ML 

(1.48m). It has a 0.16-m reduction in RMSE as compared with 

the T-TDOA/BAOA and a 0.11-m reduction in RMSE as 

compared with the ML. Take the scenario where the source is 

outside of the circle formed by the sensors as an example. When 𝜎𝑠2 = 0.0032𝑟𝑎𝑑2 , the RMSE of the proposed method is 

13.04m, which is smaller than the T-TDOA/BAOA (22.00m) 

and ML (17.34m). It has an 8.96-m reduction in RMSE as 

compared with the T-TDOA/BAOA and a 4.3-m reduction in 

RMSE as compared with the ML. Thus, the proposed method 

can attain the CRLB performance no matter the BAOA noise is 

small or large.  

Fig. 8 and Fig. 10 show the bias norm of the source position 

with different methods. It’s obvious that the bias norm of the 

proposed method is smaller than the T-TDOA/BAOA and ML 

methods, which further proves that the proposed method cannot 

only improve the estimation accuracy but also reduce the 

position bias. However, the bias norm from BAOA-based 

localization model is better than the results from the 

TDOA/BAOA-based localization model (the proposed method 

and the T-TDOA/BAOA method). This is because the bias is 

caused by the nonlinearity issue and the noisy measurement[30]. 

In the case of the same BAOA noise, large TDOA noise in the 

TDOA/BAOA localization model will lead to greater 

positioning bias than BAOA model. Take the scenario where 

the source is inside of the circle formed by the sensors as an 

example.  When 𝜎𝑠2 = 0.0032𝑟𝑎𝑑2 , the bias norm of the 

proposed method is 0.16m, which is smaller than the T-

TDOA/BAOA (0.29m) and ML (0.52m). It has a 0.13-m 

reduction in bias norm as compared with the T-TDOA/BAOA 

and a 0.36-m reduction in bias norm as compared with the ML. 

Take the scenario where the source is outside of the circle 

formed by the sensors as an example.  When 𝜎𝑠2 = 0.0032𝑟𝑎𝑑2, 

the bias norm of the proposed method is 1.36m, which is 

smaller than the T-TDOA/BAOA (14.20m) and ML (13.27m). 

It has a 12.84-m reduction in bias norm as compared with the 

T-TDOA/BAOA and a 11.91-m reduction in bias norm as 

compared with the ML. 

This completes the analysis that the proposed method has a 

higher position accuracy and smaller estimation bias when the 

BAOA noise changes. It achieves the CRLB accuracy well even 

when the BAOA noise is large. 

III. Scenario 3- The impact of the sensor numbers 

In this scenario, 𝜎𝑑2 is a constant value (𝜎𝑑2 = 0.3162𝑚2) 
and 𝜎𝑠2 is a constant value (𝜎𝑠2 = 0.0032𝑟𝑎𝑑2) . The sensor 

number is varied from 6 to 10.  

Take the scenario where the source is outside of the circle 

formed by the sensors as an example. Compare the RMSE and 

the bias norm of the estimated source position with different 

methods. 

 
Fig. 11 Comparison of RMSE with different methods. 
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Fig. 12 Comparison of bias norm with different methods. 

Fig. 11 shows the proposed method has the best estimation 

performance no matter how the sensor number changes, e.g., 

when the sensor number is 10, the RMSE of the proposed 

method is 5.48m, which is smaller than the T-TDOA/BAOA 

(6.50m) and ML (6.56m). It has a 1.02-m reduction in RMSE 

as compared with the T-TDOA/BAOA and a 1.08-m reduction 

in RMSE as compared with the ML. And the estimation 

accuracy is increased with the increase of the sensor number.  

Fig. 12 shows the bias norm of the source position with 

different methods. It’s obvious that the bias norm of the 
proposed method is the smallest among these methods. e.g., 

when the sensor number is 10, the bias norm of the proposed 

method is 0.40m, which is smaller than the T-TDOA/BAOA 

(3.26m) and ML (3.69m). It has a 2.86-m reduction in bias norm 

as compared with the T-TDOA/BAOA and a 3.29-m reduction 

in bias norm as compared with the ML.  

This completes the analysis that the proposed method has a 

higher position accuracy and smaller estimation bias when the 

sensor number changes. 

The average computation times, using MATLAB in a 

personal computer with core (TM) i5-4460, and the main 

frequency is 3.2 GHz are listed in Table I. 
TABLE I  

AVERAGE COMPUTATION TIMES 

algorithms TDOA BAOA 
T-

TDOA/BAOA 
ML 

Proposed 

method 

Average 

time (s) 
0.004 0.013 0.009 0.025 0.034 

It shows that the computational cost of the traditional 

methods such as the TDOA and the T-TDOA/BAOA is less 

than that of the proposed method and the ML method. Although 

the average computation time of the proposed method is larger, 

it has a better estimation performance. In the engineering aspect, 

if the algorithms are implemented on some chips with high 

configurations, which will meet the requirements of the 

computational efficiency, the proposed method is a suitable 

choice. 

B. Field test 

 To verify the effectiveness of the proposed algorithm, the 

TDOA/BAOA-based localization problem will be verified with 

the field test data in this section.  

As described in the paper [2], the USBL can provide time 

difference and bearing measurements and USBL can be applied 

to the underwater TDOA/BAOA-based localization problem. 

Thus, the USBL data is utilized to verify the effectiveness of 

the TDOA/BAOA algorithm. 

The transponder is placed on the underwater equipment and 

the transceiver array is equipped on the vessel. The schematic 

diagram of USBL is as follows.  

Transponder

transduce array123
4

 
Fig. 13 Schematic diagram of USBL 

The four transducers are distributed along the x-axis and y-

axis, which are marked with a red circle. The distribution of 

transducer array is the same as that in Fig. 2. Bearing α  is 

obtained by the phase difference of transducer 1 and 3 and 

Bearing β is obtained by the phase difference of transducer 2 

and 4. 

The transponder is treated as a source with an unknown 

position. The ship is equipped with transceiver array voyages 

around the source. The ship position is measured by RTK GPS 

and the accuracy of RTK can reach the level of a centimeter. 

The TDOA/BAOA-based localization problem is treated as the 

underwater source localization problem with the known ship 

position and the USBL data, which is shown below. 

S1
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S3

S4
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r3r2
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source

hydrophone 

array of USBL

Source 

Ship 

 
Fig. 14 Simplified underwater source localization problem 

The true position of the transponder is calibrated by the long 

baseline method, which is the author's previous work. The 

detailed calibration process can be found in [31]. As the 

accuracy of the long-baseline method reaches the level of a 

centimeter, it can be used as the truth value of algorithm 

verification. The altitude coordinate of the transponder is -9m. 

The altitude coordinates of the USBL position are around 9.5m. 

The underwater experiment was carried on the Yangtze River 

in Nanjing city. With the available USBL data and the ship 

position, the positioning results of different algorithms will be 

compared. 

I. Test 1 

The ship's trajectory is a circle and it moves slowly around 

the source. The trajectory is marked as the black line in Fig. 15. 
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Several ship positions are selected as the reference to calculate 

the source, which is marked as a blue circle. In this test, the 

source is inside of the circle formed by the sensors. Take the 

first ship position as the reference position and show their 

positions in rectangular coordinates as the right picture in Fig. 

15 shows. The true source position is marked as a red square, 

which is shown below. 

 
Fig. 15 the diagram of the localization scenario 

Note that the estimation result of the source position will be 

different if different numbers of the ship position are selected. 

However, the results are convincing if all the algorithms are 

performed under the same sensor numbers. Only nine ship 

positions are selected to calculate the source position. 

The source position error and bias norm with different 

algorithms are shown below.  

 
Fig. 16 Comparison of position error with different methods. 

 
Fig. 17 Comparison of bias norm with different methods. 

Fig. 16 shows the proposed method has the best estimation 

performance among these methods. In terms of the bias norm, 

the bias norm of the proposed method is 2.17m, which is 

smaller than the TDOA (3.21m), BAOA (3.72m), T-

TDOA/BAOA (2.87m), and ML (2.60m). This completes the 

proof that the proposed method has a higher position accuracy 

and smaller estimation bias than the traditional methods. 

II. Test 2 

A different ship trajectory is considered in this test. The ship 

moves slowly around the source. The trajectory is marked as 

the black line in Fig. 18. Several ship positions are selected as 

the reference to calculate the source, which is marked as a blue 

circle. In this test, the source is outside of the circle formed by 

the sensors. Take the first ship position as the reference position 

and show their positions in rectangular coordinates as the right 

picture in Fig. 18 shows. The true source position is marked as 

a red square, which is shown below. 

Note that the estimation result of the source position will be 

different if different numbers of the ship position are selected. 

However, the results are convincing if all the algorithms are 

performed under the same sensor numbers. Only ten ship 

positions are selected to calculate the source position. 

 
Fig. 18 the diagram of the localization scenario 

The source position error and bias norm with different 

algorithms are shown below.  
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Fig. 19 Comparison of position error with different methods. 

 
Fig. 20 Comparison of bias norm with different methods. 

Fig. 19 shows the proposed method has the best estimation 

performance among these methods. In terms of the bias norm, 

the bias norm of the proposed method is 2.74m, which is 

smaller than the TDOA (6.19m), BAOA (10.56m), T-

TDOA/BAOA (9.39m), and ML (8.50m). This completes the 

proof that the proposed method has a higher position accuracy 

and smaller estimation bias than the traditional methods. 

VI. FUTURE WORKS 

This paper focuses on the underwater acoustical localization 

problem based on the time difference and bearing 

measurements, which is first proposed in [2] using the onboard 

USBL system. Our future work includes studying underwater 

single-source passive navigation model with the onboard USBL 

system and applying the proposed algorithm to the passive 

inertial navigation system (INS) /TDOA/BAOA navigation 

model successfully. 

The single-source navigation model is a passive navigation, 

where the underwater vehicles receive the time difference or the 

bearings sent by the sound source installed on the bottom of the 

sea to complete the positioning. It was named as single-source 

navigation as the positioning of the underwater vehicles can be 

accomplished with only one sound source. The detailed 

information about the single-source navigation model can be 

seen in [2]. The proposed method can be an appropriate solution 

for the single-source positioning. 

The inertial navigation system can provide attitude, velocity 

and position information for the underwater vehicles. However, 

the errors of INS will accumulate and diverge with time.  The 

solution of single-source positioning can correct the position 

error of INS.  

Based on the completion of TDOA/BAOA localization, 

some key technologies need to be studied in the future. 

Considering the complex underwater environment, the robust 

TDOA/BAOA localization method should be further 

researched in the presence of outliers. Then the 

INS/TDOA/BAOA integrated navigation algorithm should be 

studied. It can provide high precision attitude and position 

information for the underwater vehicles.  

VII. CONCLUSION 

We consider a localization scenario that the time difference 

and bearing information are used. The localization model is 

analyzed and the closed-form solution is developed. To 

improve the estimation accuracy in the case of large noise, an 

iterative constrained bias-reduction method is also designed. 

We have derived the CRLB of the hybrid TDOA/BAOA system. 

Several tests have been illustrated to verify the effectiveness of 

the proposed algorithm. The proposed method is proved to have 

better estimation accuracy than that of using TDOA only or 

BAOA only. It still outperforms the existing methods no matter 

the TDOA or BAOA noise changes. The proposed method can 

achieve the CRLB accuracy better. In the underwater 

experiment with the onboard USBL system, the algorithm is 

proved to have the best estimation performance and it is an 

efficient underwater acoustical localization method.  

APPENDIX A 

We will give the detailed  derivation of  
𝜕𝒎𝒐𝜕𝒖𝟎 . 

𝜕𝒎𝒐𝜕𝒖𝟎 = [   
 𝜕𝜶𝒐𝜕𝒖𝟎𝜕𝜷𝒐𝜕𝒖𝟎]   

 
= [(𝜕𝛼1𝑜𝜕𝒖𝟎)𝑇 … (𝜕𝛼𝑀𝑜𝜕𝒖𝟎)𝑇 (𝜕𝛽1𝑜𝜕𝒖𝟎)𝑇 ⋯ (𝜕𝛽𝑀𝑜𝜕𝒖𝟎)𝑇]𝑇 

(59) 

Take 
𝜕𝛼𝑖𝑜𝜕𝒖𝟎 as an example. (𝑖 = 1,2, …𝑀) 𝜕𝛼𝑖𝑜𝜕𝒖𝟎 = [𝜕𝛼𝑖𝑜𝜕x 𝜕𝛼𝑖𝑜𝜕y 𝜕𝛼𝑖𝑜𝜕z ] (60) 

where   𝜕𝛼𝑖𝑜𝜕x = 𝑎 ( 1‖𝒖𝟎−𝒔𝑖‖− (𝑥−𝑥𝑖)2((𝒖𝟎−𝒔𝑖)𝑇(𝒖𝟎−𝒔𝑖))1.5). 

𝜕𝛼𝑖𝑜𝜕y = 𝑎 (− (𝑥−𝑥𝑖)(y−𝑦𝑖)((𝒖𝟎−𝒔𝑖)𝑇(𝒖𝟎−𝒔𝑖))1.5). 

𝜕𝛼𝑖𝑜𝜕z = 𝑎 (− (𝑥−𝑥𝑖)(z−𝑧𝑖)((𝒖𝟎−𝒔𝑖)𝑇(𝒖𝟎−𝒔𝑖))1.5). 𝑎 = −1√1−( 𝑥−𝑥𝑖‖𝒖𝟎−𝒔𝑖‖)2. 
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Thus, 
𝜕𝛽𝑖𝑜𝜕𝒖𝟎 has the same form as 

𝜕𝛼𝑖𝑜𝜕𝒖𝟎. It can be represented as. 𝜕𝛽𝑖𝑜𝜕𝒖𝟎 = [𝜕𝛽𝑖𝑜𝜕x 𝜕𝛽𝑖𝑜𝜕y 𝜕𝛽𝑖𝑜𝜕z ] (61) 

where 𝜕𝛽𝑖𝑜𝜕x = 𝑏 (− (𝑥−𝑥𝑖)(y−𝑦𝑖)((𝒖𝟎−𝒔𝑖)𝑇(𝒖𝟎−𝒔𝑖))1.5). 

𝜕𝛼𝑖𝑜𝜕y = 𝑏 ( 1‖𝒖𝟎−𝒔𝑖‖− (𝑦−𝑦𝑖)2((𝒖𝟎−𝒔𝑖)𝑇(𝒖𝟎−𝒔𝑖))1.5). 

𝜕𝛼𝑖𝑜𝜕z = 𝑏 (− (𝑦−𝑦𝑖)(z−𝑧𝑖)((𝒖𝟎−𝒔𝑖)𝑇(𝒖𝟎−𝒔𝑖))1.5). 𝑏 = −1√1−( 𝑦−𝑦𝑖‖𝒖𝟎−𝒔𝑖‖)2. 
APPENDIX B 

Matrix B in (13) can be expressed as 𝐵 = [ 𝑀1 𝑀120𝑀−1×2𝑀 𝑀2 ] (62) 

where 𝑀1 = [ 𝑩21 0𝑀×𝑀0𝑀×𝑀 𝑩23 ] ,𝑀12 = [𝑩22𝑩24] ,𝑀2 = 𝑩1 . 𝑩1, 𝑩21, 𝑩22, 𝑩23, 𝑩24 are defined in (13). 

The inverse of matrix B can be expressed as. 𝐵−1 = [ 𝑀1−1 −𝑀1−1𝑀12𝑀2−10𝑀−1×2𝑀 𝑀2−1 ] (63) 

Thus, 𝐺4 can be expressed as follows 𝐺4 = [ 𝑀1−1 −𝑀1−1𝑀12𝑀2−10𝑀−1×2𝑀 𝑀2−1 ] [𝑮𝟐𝑮𝟏] 𝑩3−1𝑮𝟑 = [𝑀1−1𝑮𝟐 −𝑀1−1𝑀12𝑀2−1𝑮𝟏𝑀2−1𝑮𝟏 ]𝑩3−1𝑮𝟑 = [𝑀1−1𝑮𝟐𝑩3−1𝑮𝟑 −𝑀1−1𝑀12𝑀2−1𝑮𝟏𝑩3−1𝑮𝟑𝑀2−1𝑮𝟏𝑩3−1𝑮𝟑 ] = [𝐺41𝐺42] 
(64) 

where 𝐺41 = 𝑀1−1𝑮𝟐𝑩3−1𝑮𝟑 −𝑀1−1𝑀12𝑀2−1𝑮𝟏𝑩3−1𝑮𝟑  and 𝐺42 = 𝑀2−1𝑮𝟏𝑩3−1𝑮𝟑. 

Put the definitions of 𝑮𝟏, 𝑮𝟐, 𝑮𝟑 and 𝑩𝟑 into 𝐺41. The first 

and M+1 rows of 𝐺41 are 𝐺41(1,1) = 1‖𝒖𝟎 − 𝒔1‖𝑠𝑖𝑛(𝛼1𝑜) − 𝝆𝒖̃𝟎,𝒔1𝑇 (𝑥)𝑐𝑜𝑠(𝛼1𝑜)‖𝒖𝟎 − 𝒔1‖𝑠𝑖𝑛(𝛼1𝑜) 𝐺41(1,2) = − 𝝆𝒖̃𝟎,𝒔1𝑇 (𝑦)𝑐𝑜𝑠(𝛼1𝑜)‖𝒖𝟎 − 𝒔1‖𝑠𝑖𝑛(𝛼1𝑜) 𝐺41(1,3) = − 𝝆𝒖̃𝟎,𝒔1𝑇 (𝑧)𝑐𝑜𝑠(𝛼1𝑜)‖𝒖𝟎 − 𝒔1‖𝑠𝑖𝑛(𝛼1𝑜) 𝐺41(𝑀 + 1,1) = − 𝝆𝒖̃𝟎,𝒔1𝑇 (𝑥)𝑐𝑜𝑠(𝛽1𝑜)‖𝒖𝟎 − 𝒔1‖𝑠𝑖𝑛(𝛽1𝑜) 𝐺41(𝑀 + 1,2) = 1‖𝒖𝟎 − 𝒔1‖𝑠𝑖𝑛(𝛽1𝑜) − 𝝆𝒖̃𝟎,𝒔1𝑇 (𝑦)𝑐𝑜𝑠(𝛽1𝑜)‖𝒖𝟎 − 𝒔1‖𝑠𝑖𝑛(𝛽1𝑜) 𝐺41(𝑀 + 1,3) = − 𝝆𝒖̃𝟎,𝒔1𝑇 (𝑧)𝑐𝑜𝑠(𝛽1𝑜)‖𝒖𝟎 − 𝒔1‖𝑠𝑖𝑛(𝛽1𝑜) 

(65) 

where 𝝆𝒖̃𝟎,𝒔1𝑇 (𝑥) = 𝑥−𝑥1‖𝒖̃𝟎−𝒔1‖ ,  𝝆𝒖̃𝟎,𝒔1𝑇 (𝑦) = 𝑦−𝑦1‖𝒖̃𝟎−𝒔1‖ , 𝝆𝒖̃𝟎,𝒔1𝑇 (𝑧) =𝑧−𝑧1‖𝒖̃𝟎−𝒔1‖. 
The ith rows (𝑖 = 2,…𝑀) of 𝐺41 is 

𝐺41(𝑖, 1) = 1‖𝒖𝟎 − 𝒔𝑖‖𝑠𝑖𝑛(𝛼𝑖𝑜) − 𝑐𝑜𝑠(𝛼𝑖𝑜)(𝑥1 − 𝑥𝑖)‖𝒖𝟎 − 𝒔𝑖‖2𝑠𝑖𝑛(𝛼𝑖𝑜) −𝝆𝒖̃𝟎,𝒔1𝑇 (𝑥) [ 𝑐𝑜𝑠(𝛼𝑖𝑜)‖𝒖𝟎 − 𝒔𝑖‖𝑠𝑖𝑛(𝛼𝑖𝑜) − 𝑟𝑖10𝑐𝑜𝑠(𝛼𝑖𝑜)‖𝒖𝟎 − 𝒔𝑖‖2𝑠𝑖𝑛(𝛼𝑖𝑜)] 𝐺41(𝑖, 2) = − 𝑐𝑜𝑠(𝛼𝑖𝑜)(𝑦1 − 𝑦𝑖)‖𝒖𝟎 − 𝒔𝑖‖2𝑠𝑖𝑛(𝛼𝑖𝑜) −𝝆𝒖̃𝟎,𝒔1𝑇 (𝑦) [ 𝑐𝑜𝑠(𝛼𝑖𝑜)‖𝒖𝟎 − 𝒔𝑖‖𝑠𝑖𝑛(𝛼𝑖𝑜) − 𝑟𝑖10𝑐𝑜𝑠(𝛼𝑖𝑜)‖𝒖𝟎 − 𝒔𝑖‖2𝑠𝑖𝑛(𝛼𝑖𝑜)] 𝐺41(𝑖, 3) = − 𝑐𝑜𝑠(𝛼𝑖𝑜)(𝑧1 − 𝑧𝑖)‖𝒖𝟎 − 𝒔𝑖‖2𝑠𝑖𝑛(𝛼1𝑜) −𝝆𝒖̃𝟎,𝒔1𝑇 (𝑧) [ 𝑐𝑜𝑠(𝛼𝑖𝑜)‖𝒖𝟎 − 𝒔𝑖‖𝑠𝑖𝑛(𝛼𝑖𝑜) − 𝑟𝑖10𝑐𝑜𝑠(𝛼𝑖𝑜)‖𝒖𝟎 − 𝒔𝑖‖2𝑠𝑖𝑛(𝛼𝑖𝑜)] 
(66) 

The jth rows (𝑗 = 𝑀 + 1,… 2𝑀) of 𝐺41 is 𝐺41(𝑗, 1) = − 𝑐𝑜𝑠(𝛽𝑖𝑜)(𝑥1 − 𝑥𝑖)‖𝒖𝟎 − 𝒔𝑖‖2𝑠𝑖𝑛(𝛽𝑖𝑜) −𝝆𝒖̃𝟎,𝒔1𝑇 (𝑥) [ 𝑐𝑜𝑠(𝛽𝑖𝑜)‖𝒖𝟎 − 𝒔𝑖‖𝑠𝑖𝑛(𝛽𝑖𝑜) − 𝑟𝑖10𝑐𝑜𝑠(𝛽𝑖𝑜)‖𝒖𝟎 − 𝒔𝑖‖2𝑠𝑖𝑛(𝛽𝑖𝑜)] 𝐺41(𝑗, 2) = 1‖𝒖𝟎 − 𝒔𝑖‖𝑠𝑖𝑛(𝛽𝑖𝑜) − 𝑐𝑜𝑠(𝛽𝑖𝑜)(𝑦1 − 𝑦𝑖)‖𝒖𝟎 − 𝒔𝑖‖2𝑠𝑖𝑛(𝛽𝑖𝑜) −𝝆𝒖̃𝟎,𝒔1𝑇 (𝑦) [ 𝑐𝑜𝑠(𝛽𝑖𝑜)‖𝒖𝟎 − 𝒔𝑖‖𝑠𝑖𝑛(𝛽𝑖𝑜) − 𝑟𝑖10𝑐𝑜𝑠(𝛽𝑖𝑜)‖𝒖𝟎 − 𝒔𝑖‖2𝑠𝑖𝑛(𝛽𝑖𝑜)] 𝐺41(𝑗, 3) = − 𝑐𝑜𝑠(𝛽𝑖𝑜)(𝑧1 − 𝑧𝑖)‖𝒖𝟎 − 𝒔𝑖‖2𝑠𝑖𝑛(𝛽𝑖𝑜) −𝝆𝒖̃𝟎,𝒔1𝑇 (𝑧) [ 𝑐𝑜𝑠(𝛽𝑖𝑜)‖𝒖𝟎 − 𝒔𝑖‖𝑠𝑖𝑛(𝛽𝑖𝑜) − 𝑟𝑖10𝑐𝑜𝑠(𝛽𝑖𝑜)‖𝒖𝟎 − 𝒔𝑖‖2𝑠𝑖𝑛(𝛽𝑖𝑜)] 
(67) 

APPENDIX C 

Put (44) and the definitions of 𝝆𝒖̃𝟎,𝒔1𝑇  into 𝐺41. The ith rows 

of  𝐺41 can be expressed as follows. (𝑖 = 2,…𝑀). 𝐺41(𝑖, 1) = 1‖𝒖𝟎 − 𝒔𝑖‖𝑠𝑖𝑛(𝛼𝑖𝑜) − 𝑐𝑜𝑠(𝛼𝑖𝑜)(𝑥1 − 𝑥𝑖)‖𝒖𝟎 − 𝒔𝑖‖2𝑠𝑖𝑛(𝛼𝑖𝑜) −𝝆𝒖̃𝟎,𝒔1𝑇 (𝑥) [ 𝑐𝑜𝑠(𝛼𝑖𝑜)‖𝒖𝟎 − 𝒔𝑖‖𝑠𝑖𝑛(𝛼𝑖𝑜) − 𝑟𝑖10𝑐𝑜𝑠(𝛼𝑖𝑜)‖𝒖𝟎 − 𝒔𝑖‖2𝑠𝑖𝑛(𝛼𝑖𝑜)] = 1𝑟𝑖√1 − (𝑥 − 𝑥𝑖𝑟𝑖 )2 −
(𝑥 − 𝑥𝑖)𝑟𝑖 (𝑥1 − 𝑥𝑖)𝑟𝑖2√1 − (𝑥 − 𝑥𝑖𝑟𝑖 )2 

−𝑥 − 𝑥1𝑟1 [  
 (𝑥 − 𝑥𝑖)𝑟𝑖𝑟𝑖√1 − (𝑥 − 𝑥𝑖𝑟𝑖 )2 − (𝑟𝑖 − 𝑟1) (𝑥 − 𝑥𝑖)𝑟𝑖𝑟𝑖2√1 − (𝑥 − 𝑥𝑖𝑟𝑖 )2]  

 
 

= 1√1 − (𝑥 − 𝑥𝑖𝑟𝑖 )2 [1𝑟𝑖 − (𝑥1 − 𝑥𝑖)(𝑥 − 𝑥𝑖)𝑟𝑖3
− (𝑥 − 𝑥1)𝑟1 (𝑥 − 𝑥𝑖)𝑟𝑖2+ 𝑟𝑖 𝑥 − 𝑥1𝑟1 (𝑥 − 𝑥𝑖)𝑟𝑖3− 𝑟1 𝑥 − 𝑥1𝑟1 (𝑥 − 𝑥𝑖)𝑟𝑖3 ] 

(68) 
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= 1√1 − (𝑥 − 𝑥𝑖𝑟𝑖 )2 [1𝑟𝑖 − (𝑥 − 𝑥𝑖)2𝑟𝑖3 ] 
Thus, 𝐺41(𝑖, 2) and 𝐺41(𝑖, 3) can be obtained. 𝐺41(𝑖, 2) = − 𝑐𝑜𝑠(𝛼𝑖𝑜)(𝑦1 − 𝑦𝑖)‖𝒖𝟎 − 𝒔𝑖‖2𝑠𝑖𝑛(𝛼𝑖𝑜) −𝝆𝒖̃𝟎,𝒔1𝑇 (𝑦) [ 𝑐𝑜𝑠(𝛼𝑖𝑜)‖𝒖𝟎 − 𝒔𝑖‖𝑠𝑖𝑛(𝛼𝑖𝑜) − 𝑟𝑖10𝑐𝑜𝑠(𝛼𝑖𝑜)‖𝒖𝟎 − 𝒔𝑖‖2𝑠𝑖𝑛(𝛼𝑖𝑜)] = 1√1 − (𝑥 − 𝑥𝑖𝑟𝑖 )2 [− (𝑥 − 𝑥𝑖)(𝑦 − 𝑦𝑖)𝑟𝑖3 ] 

𝐺41(𝑖, 3) = − 𝑐𝑜𝑠(𝛼𝑖𝑜)(𝑧1 − 𝑧𝑖)‖𝒖𝟎 − 𝒔𝑖‖2𝑠𝑖𝑛(𝛼𝑖𝑜) −𝝆𝒖̃𝟎,𝒔1𝑇 (𝑧) [ 𝑐𝑜𝑠(𝛼𝑖𝑜)‖𝒖𝟎 − 𝒔𝑖‖𝑠𝑖𝑛(𝛼𝑖𝑜) − 𝑟𝑖10𝑐𝑜𝑠(𝛼𝑖𝑜)‖𝒖𝟎 − 𝒔𝑖‖2𝑠𝑖𝑛(𝛼𝑖𝑜)] = 1√1 − (𝑥 − 𝑥𝑖𝑟𝑖 )2 [− (𝑥 − 𝑥𝑖)(𝑧 − 𝑧𝑖)𝑟𝑖3 ] 
(69) 
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