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Abstract—In this work, a fast chance-constrained trajectory
generation strategy incorporating convex optimization and con-
vex approximation of chance constraints is designed so as to
solve the unmanned vehicle path planning problem. A path-
length-optimal unmanned vehicle trajectory optimization model
is constructed with the consideration of the pitch angle con-
straint, the curvature radius constraint, the probabilistic control
actuation constraint, and the probabilistic collision avoidance
constraint. Subsequently, convexification technique is introduced
to convert the nonlinear problem formulation into a convex form.
To deal with the probabilistic constraints in the optimization
model, convex approximation techniques are introduced such that
the probabilistic constraints are replaced by deterministic ones,
while simultaneously preserving the convexity of the optimization
model. Numerical results, obtained from a number of case
studies, validate the effectiveness and reliability of the proposed
approach. A number of comparative studies were also performed.
The results confirm that the proposed design is able to produce
more optimal flight paths and achieve enhanced computational
performance than other chance-constrained optimization ap-
proaches investigated in this paper.

Index Terms—Chance-constrained, trajectory optimization,
unmanned vehicle, convexification, convex optimization, convex
approximation.

I. INTRODUCTION

THE problem of designing flight trajectories for unmanned

vehicles has been an active research area for the last two

decades due to its increasing applications such as regional

detection, rescue, and formation flying [1], [2]. An effective

path generator can be refer to an autonomous approach that

is able to produce a feasible flight trajectory connecting

the vehicle initial position and the pre-specified target posi-

tion. During the planning phase, a number of vehicle-related

or environment-related requirements might also need to be

taken into account. These requirements are usually mission-

dependent and modeled into different types of constraints.

In early years, geometric path planners have been con-

sidered as the primary way to plan the movement of the un-

manned aerial vehicle (UAV). In the literature, a large amount
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of geometric-based path planners have been reported for deal-

ing with the unmanned vehicle path generation problem [3]–

[5], among which the pioneering research investigation in [3]

and [4] is particularly noteworthy. The authors in [3] proposed

a 2-D dynamic trajectory generation approach to guide the

unmanned vehicle flying across a set of pre-defined waypoints.

A 3-D Dubins curve-based trajectory generation method was

designed in [4], wherein both the pitch angle and curvature

radius constraints were considered. However, it was shown that

this algorithm can only be effective for large distance flying

scenarios. In [5], the authors developed a Bezier curve-based

path generation method with the consideration of obstacle

avoidance. Although most geometric-based motion planners

are able to achieve the feasibility of the path, they can hardly

take the optimality of the path into account. Furthermore, the

consideration of mission constraints is often problematic and

the way of handling constraints might need to be re-designed

for different problems.

In recent years, path planners based on optimization

theory have attracted significant attention [6], [7]. The key idea

of this type of planner is to formulate and solve a trajectory

optimization model for the unmanned vehicle. Different types

of mission requirements can then be modeled as constraints

and entailed to the optimization model. Relative work on

developing or applying optimization-based path generation

techniques can be found in the open literature [8]–[10]. In

[8], a genetic algorithm-based path generator was developed.

This method was then applied to optimize the 3-D flight path

for military unmanned vehicles with no-fly zone constraints.

Besides, Kim and Lee developed a heuristic path generator

in [9], wherein particle swarm optimization was applied to

determine the optimal motion of the manipulator. The authors

in [10] proposed a multi-layer optimization-based trajectory

generator in order to calculate the optimal movement of an

autonomous space vehicle. Moreover, a data-driven indirect

algorithm, along with a sensitivity analysis tool, was designed

by Tang and Hauser in [11] so as to quickly generate optimal

control solutions for different benchmark problems. Although

the results presented in the aforementioned papers confirmed

the effectiveness of these optimization-based approaches, one

critical problem of implementing these path planners is that

their computational or convergence performance can hardly

meet the real-time capacity. This issue becomes more challeng-

ing when the nonlinearity of the vehicle dynamics becomes

high or complex constraints such as the path and control

chance constraints are required to be satisfied.

In [12] and [13], the authors applied a dynamic Dubins-
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Helix method to produce constrained trajectories for un-

manned vehicles. In these two works, the mission scenario

was extended from 2-D space to 3-D space. Also, the mini-

mum curvature radius as well as pitch angle constraints were

achieved in real time. However, there are three main drawbacks

of applying this technique. The first one is that there are some

points with discontinuous curvature in the trajectory presented

in [12] and [13]. This is because the algorithm divides the

entire flight into several segments and designs the path for each

segment separately. The points with discontinuous curvature

may cause relatively large position-error for the path tracker.

Secondly, based on our experiments, the optimality of the

flight path obtained via the previously-developed method is

not as comparable as the optimization results for a variety of

mission cases. Besides, this previously-designed motion plan-

ner does not have the capability in dealing with control chance

constraints and probabilistic collision avoidance constraints.

It is important to note that usually in many real-world

UAV flight circumstances, the constraint information might not

be exactly known and could be perturbed by some uncertain-

ties [14]. More precisely, uncharacterized temperature/weather

influences, errors in localization and mapping could be some

examples of uncertainty in the maximum attainable actuation

level constraints as well as the obstacle avoidance constraints.

Consequently, it is necessary to incorporate the chance con-

straints in the design of flight trajectories and new chance-

constrained unmanned vehicle trajectory planning methods are

highly demanded to serve as effective tools to explore the

solutions.

In this work, we are interested in designing a trajectory

planning algorithm that can: 1). produce the flight trajectory

of a fixed-wing UAV with minimized path length; 2). simul-

taneously satisfy deterministic path constraints, probabilistic

control and obstacle avoidance constraints; 3). achieve a real-

time performance. To fulfill these goals, the proposed strategy

incorporates convex optimization and convex approximation

of chance constraints. Recently, there are many representative

works that have been reported in the literature in terms of

applying convex optimization methods for aerospace guidance

and control problems [15]–[18]. For example, in [15] the

authors developed a sequential convex programming method in

order to convexify the nonlinear planetary-entry problem and

optimize the flight trajectory. In their follow-up research, the

developed convex trajectory optimization method was further

enhanced and extended to other applications such as the low-

thrust Earth-to-Mars orbital transfer problem [16], [17]. In

addition, the authors considered an asteroid landing problem

in [19], wherein a convex optimization method was applied

to explore the minimum landing error and the time-optimal

trajectories, respectively.

Apart from the aforementioned works, a large body of

publications on UAV path planning problems using convex

optimization can also be found in the literature [20], [21].

Specifically, a convex optimization-oriented path planning ap-

proach was proposed in [20], wherein flight experiments were

executed on a quad-rotor to assess and verify the performance

of the proposed method. In [21], a sequential convex optimiza-

tion approach , modified by a line search update process, was

established to address a UAV and unmanned ground vehicle

(UGV) rendezvous problem. Based on the reported simulation

results, enhanced convergence performance as well as real-

time capability can be successfully achieved.

Nevertheless, the main motivation for the use of convex

optimization is that if a problem can be formulated as a convex

program, then it can be addressed in polynomial time [22].

However, existing designs cannot be directly applied to solve

the problem considered in this study due to the existence of

chance constraints. This is because the probabilistic functions

are usually not deterministic. Note that in [23], the authors

developed a chance-constrained optimization strategy and suc-

cessfully applied it to address a similar chance-constrained

UAV path planning problem. However, two problems still

remain open. For instance, this method applied a nonconvex

function to approximate the probabilistic constraints, thereby

resulting in non-convexity in the transformed trajectory op-

timization model. As a result, it is likely to introduce a

large amount of computational burdens during the optimization

process. Moreover, in terms of the problem formulation, no

uncertain obstacles were taken into account, thereby making

the obtained results less attractive for practical applications.

Hence, to address the remaining problems, we make an attempt

to design a convex chance constraint approximation strategy

in this work. This convex approximation strategy has the

capability of transcribing the probabilistic control and obstacle

avoidance constraints into a deterministic and convex version,

which in turn preserves the convexity of the optimization

model. Subsequently, this approximation method is embedded

in the convexified path planning framework, thus making

it a potentially suitable alternative for solving the chance-

constrained UAV trajectory planning task.

In summary, the main contributions of this paper are

threefold. Firstly, the chance-constrained UAV trajectory plan-

ning problem considered in [23] is further extended so as to

take the uncertain effects caused by both the actuator and

obstacles into account. Compared to the previous version, the

extended problem formulation tends to be more representative

and integrated. Another main contribution lies in the efforts

on designing the convex approximation strategy such that

the extended nonlinear UAV chance-constrained trajectory

planning model can be reformulated into a deterministic and

convex one. Thirdly, a number of comparative case studies are

carried out in order to verify the effectiveness of the proposed

fast chance-constrained trajectory generation method as well

as its enhanced computational performance.

The structure of this paper is outlined as follows. Sec

II illustrates the mathematical formulation of the considered

trajectory planning problem. Sec III and Sec IV present,

respectively, the convexified version of the unmanned vehicle

trajectory optimization model as well as the convex chance

constraint approximation method. Numerical results including

the obtained optimal flight trajectories and a number of com-

parative case studies are demonstrated in Sec V. Finally, this

paper is concluded in Sec VI.
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II. TRAJECTORY PLANNING FORMULATION

In this section, the unmanned vehicle trajectory planning

model studied in this research is outlined. More precisely, Sec

II.A presents the nonlinear system equations of the unmanned

vehicle. Subsequently, in Sec II.B and Sec II.C, the geometric

constraints imposed on the model, along with the relationship

between geometric constraints and vehicle actual constraints,

will be introduced. Sec II.D and Sec II.E illustrate, respec-

tively, the control chance constraints and the probabilistic col-

lision avoidance constraints. Based on the system model and

mission constraints, a path length-optimal unmanned vehicle

trajectory optimization formulation is established in Sec II.F.

A. Unmanned Vehicle System Equations

The equations of motion of a fixed-wing unmanned

vehicle can be written as [4], [12]:
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

dpx

ds
= cos 𝛾(𝑠) cos𝜑(𝑠)

dpy

ds
= cos 𝛾(𝑠) sin𝜑(𝑠)

dpz

ds
= sin 𝛾(𝑠)

dφ
ds

= 𝜇1
dγ
ds

= 𝜇2

(1)

where 𝑝 = (𝑝x, 𝑝y, 𝑝z) ∈ R
3 denotes the pose of the

unmanned vehicle in the 3-D environment. 𝑠 stands for the

curvilinear abscissa along the path. In the last two subequa-

tions, 𝜑 and 𝛾 are, respectively, the heading and pitch angles.

𝜇1 and 𝜇2 represent the derivative value with regard to the

heading and pitch angles, and they will play the role of control

variables in the trajectory optimization model to be defined in

Sec II.F.

Different from most previous studies [4], [5], [24], in

this paper a variety of mission constraints are required to

be taken into account during the flying. They are classified

into geometric constraints, control chance constraints, and

probabilistic collision avoidance constraints.

B. Geometric Constraints

One of the geometric constraints is the unmanned ve-

hicle’s minimum curvature radius. The aim for imposing a

constraint on the curvature radius is to smoother the system

state and control profiles. Besides, certain requirement should

be given to the pitch angle for safety reasons in the 3-D space.

This is achieved by restricting the pitch angle in a certain

range. That is, the geometric constraints to be considered

during the flight are:

i) The curvature radius 𝑅(𝑠) should satisfy |𝑅(𝑠)| > 𝑅min.

ii) The pitch angle should satisfy 𝛾min ≤ 𝛾 ≤ 𝛾max.

Note that in i), 𝑅(𝑠) is computed by:

𝑅(𝑠) = 1/
√︁

𝜇2
1(𝑠) cos

2 𝛾(𝑠) + 𝜇2
2(𝑠) (2)

C. Relationship Between Geometric Constraints and Vehicle

Actual Constraints

Different from the model described by Eq.(1), other forms

of UAV dynamics may exist in the literature [7], [21]. It

is worth noting that there exist certain links between the

model given by (1) and those complicated nonlinear fixed-

wing UAV dynamics widely applied in other works (e.g.,

[7] and [21]). This will become more apparent through the

analysis of relationships between the geometric constraints

defined in Sec II.B and the vehicle actual ones (e.g., the

structural, propulsive, and envelope constraints). Specifically,

to begin with, we recall the dynamics model used in [7] and

[21]:

�̇� = (T−D)
m

− 𝑔 sin 𝛾

�̇� = L sinσ
mV cos γ

�̇� = L cosσ−mg cos γ
mV

(3)

where �̇� , �̇� and �̇� are the derivatives of vehicle velocity,

heading angle and pitch angle with respect to time 𝑡. Other

parameters such as 𝑇 , 𝑚, 𝑔, and 𝜎 stand for the thrust, vehicle

mass, gravity and roll angle, respectively. 𝐿 and 𝐷 are the

aerodynamic lift and drag forces and their expressions are:

𝐿 = ρV 2SCL

2

𝐷 = ρV 2SCD

2

(4)

in which 𝜌 and 𝑆 represent, respectively, the atmospheric

density and the reference area of the vehicle. 𝐶L is the lift

coefficient, while the drag coefficient 𝐶D can be modeled as

a function of 𝐶L.

Usually, to satisfy the vehicle propulsive and envelop

limitations, constraints can be imposed on the variable 𝜎 and

𝑇 . On the other hand, to satisfy other physical limitations

such as the structural constraints, one may limit the value of

the vertical load factor 𝑛z , which can be written as:

𝑛z = L+T
mg (5)

According to Eq.(4) and Eq.(5), two curvature radius

components (e.g., the horizontal and vertical terms) can be

defined in the form of:

𝑅h = V

cos γφ̇
= V 2

nzg sinσ

𝑅v = V
γ̇
= V 2

nzg cosσ−g cos γ

(6)

From Eqs.(3)-(6), it is possible to find functional rela-

tionships for 𝑉 , 𝛾, 𝑅h, and 𝑅v such that:

𝑉 2 = 𝐹V (𝑛z, 𝑇 )
𝛾 = 𝐹γ(𝑛z, 𝑇 )
𝑅h = 𝐹Rh

(𝑛z, 𝑇, 𝜎)
𝑅v = 𝐹Rv

(𝑛z, 𝑇, 𝜎)

(7)

Eq.(7) can be rewritten in a more compact mapping form:
⎛

⎜

⎜

⎝

𝑉 2

𝛾
𝑅h

𝑅v

⎞

⎟

⎟

⎠

= 𝐹 (𝑛z, 𝑇, 𝜎) (8)

The above equation implies that we are able to map a domain

regulated by the UAV physical variables (e.g., 𝑛z , 𝑇 , and 𝜎)

to another domain regulated by the geometric variables.

Remark 1. Note that if we compare the definition of 𝑅(𝑠)
given by Eq.(2) with Eq.(6), it is easy to find the following
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relationship:

𝑅(𝑠) = 1/
√︀

𝜇2
1 cos

2 𝛾 + 𝜇2
2

= 1/

√︁

( φ̇
V
)2 cos2 𝛾 + ( γ̇

V
)2

= 1/
√︁

1
R2

h

+ 1
R2

v

(9)

Here, 𝑉 = ds
dt

, 𝜇1 = dφ
ds

, and 𝜇2 = dγ
ds

.

D. Control Chance Constraints

For the trajectory planning task considered in this work,

the maximum and minimum attainable control actuation levels

of the unmanned vehicle are not assumed to be deterministic.

Alternatively, it is supposed that the control constraints will

be affected by some uncertain parameters (e.g. 𝜉µ1
and 𝜉µ2

).

That is,
{︃

𝑃𝑟{|𝜇1 + 𝜉µ1
| ≤ 𝜇max

1 } ≥ 𝜖µ1

𝑃𝑟{|𝜇2 + 𝜉µ2
| ≤ 𝜇max

2 } ≥ 𝜖µ2

(10a)

(10b)

where 𝜉µ1
and 𝜉µ2

are two uncertain parameters with known

probability density functions (PDFs). 𝜖µ1
and 𝜖µ2

are the

acceptable probabilities of occurrence. 𝜇max
1 and 𝜇max

2 represent

the maximum allowable values for 𝜇1 and 𝜇2, respectively.

E. Probabilistic Collision Avoidance Constraints

Collision avoidance path constraints are also imposed

to the planning model. In this paper, the obstacles can be

modeled as polygons or polyhedrons. Take the polyhedron as

an example, a safe region can be defined as:

Λ = {𝑝 ∈ R
3 :

No
⋀︁

n=1

Mj
⋁︁

m=1

𝑎Tmn𝑝+ 𝑏mn + 𝜉mn > 0} (11)

where 𝑝 = (𝑝x, 𝑝y, 𝑝z). 𝑁o and 𝑀j denote the number

of obstacles and the number of faces of the 𝑗th obstacle,

respectively. The characters
⋀︀

and
⋁︀

represent the logical

“and” and the logical “or” relations. 𝑎mn ∈ R
3 and 𝑏mn ∈ R,

while 𝜉ij ∈ R is the uncertain variable. The region occupied by

the set Λ consists of areas outside all the obstacles existing in

the environment. The pose of the unmanned vehicle must stay

in the safe region so as to avoid any potential collisions. Due to

the existence of uncertainty in the safe set Λ, we thereby model

the collision avoidance constraint in a probabilistic inequality

which is in the form of:

𝑃𝑟{𝑝 ∈ Λ} ≥ 𝜖o (12)

F. Objective and Optimization Model

The overall aim of the unmanned vehicle trajectory

planning problem is to design a smooth flight path connecting

the two poses (e.g., the initial pose 𝑃0(𝑝x, 𝑝y, 𝑝z) and the final

pose 𝑃f (𝑝x, 𝑝y, 𝑝z)) such that the flight path 𝑠 of the vehicle

can be optimized while simultaneously considering the geo-

metric constraints as well as different chance constraints. Con-

sequently, a path-length-optimal nonlinear chance-constrained

unmanned vehicle trajectory optimization formulation can be

established as follows:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

minimize
z(s)

𝐽 =

∫︁ s

0

𝑑𝑠

s.t. dpx

ds
= cos 𝛾(𝑠) cos𝜑(𝑠)

dpy

ds
= cos 𝛾(𝑠) sin𝜑(𝑠)

dpz

ds
= sin 𝛾(𝑠)

dφ
ds

= 𝜇1(𝑠)
dγ
ds

= 𝜇2(𝑠)
𝑥(𝑠0) = 𝑥0, 𝑥(𝑠f ) = 𝑥f

|𝑅(𝑠)| > 𝑅min

𝛾min ≤ 𝛾(𝑠) ≤ 𝛾max

|𝜇1| ≤ 𝜇max
1 , |𝜇2| ≤ 𝜇max

2

𝑃𝑟{|𝜇1 + 𝜉µ1
| ≤ 𝜇max

1 } ≥ 𝜖µ1

𝑃𝑟{|𝜇2 + 𝜉µ2
| ≤ 𝜇max

2 } ≥ 𝜖µ2

𝑃𝑟{𝑝 ∈ Λ} ≥ 𝜖o

(13)

In Eq.(13), 𝑠 ∈ (𝑠0, 𝑠f ) and 𝑧(𝑠) = (𝑥(𝑠), 𝑢(𝑠)), in which the

system state variables are defined as 𝑥(𝑠)=[𝑝x(𝑠), 𝑝y(𝑠), 𝑝z(𝑠),
𝜑(𝑠), 𝛾(𝑠)]T . The boundary conditions are given by 𝑥(𝑠0) =
𝑥0 and 𝑥(𝑠f ) = 𝑥f , respectively. Here, the boundary variables

are denoted as 𝑥0 and 𝑥f . The control variable 𝑢(𝑠) consists

of 𝜇1(𝑠) and 𝜇2(𝑠). That is, 𝑢(𝑠) = [𝜇1(𝑠), 𝜇2(𝑠)]
T .

III. CONVEX-PROGRAMMING-BASED TRAJECTORY

PLANNING APPROACH

Currently, there are many numerical algorithms (e.g., the

pseudospectral method [25], and the multiple shooting method

[26]) that can be applied to address standard nonlinear optimal

control problems. However, one critical issue of applying

these techniques is that they tend to have low solution-

finding efficiency due to the requirement of solving nonlinear

programming problems directly. To effectively deal with this

issue, the fast trajectory generation approach reported in this

paper suggests to transcribe the original formulation into a

convex program, thereby avoiding time-consuming nonlinear

optimization process and improving the global convergence.

A. Convexification of System Equations and Constraints

To transform the optimization model, the first step is to

linearize the system dynamics. Eq.(1) can be abbreviated as
dx
ds

= 𝑓(𝑥, 𝑢). Here, 𝑓(𝑥, 𝑢) has the following form:

𝑓(𝑥, 𝑢) =

⎡

⎢

⎢

⎢

⎢

⎣

cos 𝛾(𝑠) cos𝜑(𝑠)
cos 𝛾(𝑠) sin𝜑(𝑠)

sin 𝛾(𝑠)
𝜇1(𝑠)
𝜇2(𝑠)

⎤

⎥

⎥

⎥

⎥

⎦

(14)

A linear unmanned vehicle system model is then obtained

by differentiating 𝑓(𝑥, 𝑢) with respect to 𝑥 and 𝑢, which can

be written as:

𝑑𝑥

𝑑𝑠
= 𝐴(𝑥r, 𝑢r)𝑥+𝐵(𝑥r, 𝑢r)𝑢+ 𝑐(𝑥r, 𝑢r) (15)

where (𝑥r, 𝑢r) is the reference state and control pair and it sat-

isfies dxr

ds
= 𝑓(𝑥r, 𝑢r). 𝑐(𝑥r, 𝑢r)=𝑓(𝑥r, 𝑢r) − 𝐴(𝑥r, 𝑢r)𝑥r −

𝐵(𝑥r, 𝑢r)𝑢r.



5

In Eq.(15), 𝐴(𝑥r, 𝑢r) and 𝐵(𝑥r, 𝑢r) are, respectively, the

partial derivative of 𝑓(·, ·) with respect to 𝑥 and 𝑢 at the

operating point (𝑥r, 𝑢r). That is,

𝐴(𝑥r, 𝑢r) =
𝜕𝑓(𝑥, 𝑢)

𝜕𝑥

⃒

⃒

⃒

x=xr

u=ur

𝐵(𝑥r, 𝑢r) =
𝜕𝑓(𝑥, 𝑢)

𝜕𝑢

⃒

⃒

⃒

x=xr

u=ur

(16)

For the unmanned vehicle system given by Eq.(1),

𝐴(𝑥r, 𝑢r) and 𝐵(𝑥r, 𝑢r) can be written as:

A(xr, ur)

=











0 0 0 sinφ(s) cos γ(s) − cosφ(s) sin γ(s)
0 0 0 cosφ(s) cos γ(s) − sinφ(s) sin γ(s)
0 0 0 0 cos γ(s)
0 0 0 0 0
0 0 0 0 0











x=xr

u=ur

(17)

𝐵(𝑥r, 𝑢r) =

⎡

⎢

⎢

⎢

⎢

⎣

0 0
0 0
0 0
1 0
0 1

⎤

⎥

⎥

⎥

⎥

⎦

x=xr

u=ur

(18)

Until now, in the original optimization model (13), the

nonlinear dynamics have been transcribed into a linear form.

The next step is to transcribe the nonconvex path constrain

(e.g., the curvature radius constraint). The transformation

method is similar to that of the dynamics. Specifically, 𝑅(𝑥, 𝑢)
can be convexified as:

𝑅(𝑥, 𝑢) = 𝑅(𝑥r, 𝑢r) +𝑅x(𝑥
r, 𝑢r)(𝑥− 𝑥r)

+𝑅u(𝑥
r, 𝑢r)(𝑢− 𝑢r)

(19)

where 𝑅x and 𝑅u are partial derivatives of 𝑅 with respect to 𝑥
and 𝑢. This transformation is easy to implement and generally

applicable to a variety of inequality constraints.

B. Convex Trajectory Optimization Model

To solve the problem, discretization techniques should be

applied so as to convert the continuous-time problem into a

static convex program. The discretization method used in this

paper is the pseudospectral method (PS). Detailed formulations

and convergence properties of the PS method can be refer to

[25], [27] and are omitted here for space reasons.

It should be noted that the combination of pseudospectral

method and convex optimization in solving aerospace optimal

control problems can be found in a number of previously-

published works such as [28] and [29]. Based on the reported

results, it was verified that such a hybrid strategy has the

capability of producing more accurate results in comparison

to other standard transcriptions. Moreover, its computational

time could be maintained in a reasonable level. Therefore, we

apply this hybrid strategy in this paper to construct the convex

trajectory optimization model for the considered problem.

By applying the PS method, the linearized dynamics can

be further written as:

N
∑︁

i=0

𝐷ik𝑥i =
𝑠f − 𝑠0

2
(𝐴(𝑥r

k, 𝑢
r
k)𝑥k

+𝐵(𝑥r
k, 𝑢

r
k)𝑢k + 𝑐(𝑥r

k, 𝑢
r
k))

(20)

where 𝑠0 and 𝑠f are the initial and terminal 𝑠 values. 𝑘 =
1, ..., 𝑁 , and 𝐷ik is the differentiation matrix. With the convex

transformation and the discretization of system dynamics and

path constraints, a convexified unmanned vehicle trajectory

planning model is established:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

minimize
zk

𝐽 = 𝑠N

s.t. ∀𝑘 ∈ {1, ..., 𝑁}
N
∑︁

i=0

𝐷ik𝑥i =
𝑠f − 𝑠0

2
(𝐴(𝑥r

k, 𝑢
r
k)𝑥k

+𝐵(𝑥r
k, 𝑢

r
k)𝑢k + 𝑐(𝑥r

k, 𝑢
r
k))

|𝑅(𝑥r
k, 𝑢

r
k) +𝑅x(𝑥

r
k, 𝑢

r
k)(𝑥k − 𝑥r

k)

+𝑅u(𝑥
r
k, 𝑢

r
k)(𝑢k − 𝑢r

k)| > 𝑅min

𝑥(𝑠0) = 𝑥0, 𝑥(𝑠N ) = 𝑥f

𝑥min ≤ 𝑥k ≤ 𝑥max

|𝑢k| ≤ 𝑢max

|𝑥k − 𝑥r
k| ≤ 𝛿x

|𝑢k − 𝑢r
k| ≤ 𝛿u

(21)

Eq.(21) is a typical convex program, as the mission objective,

equality and inequality constraints are all convex functions.

In Eq.(21), 𝑥(𝑠k) and 𝑢(𝑠k) are abbreviated as 𝑥k and 𝑢k,

respectively.

Linear approximation is used to convexify the nonlinear

dynamics and constraints. However, it is well known that the

linearization is only accurate at the vicinity of the reference

trajectory. Therefore, in Eq.(21), the last two trust-region con-

straints are introduced (e.g., |𝑥k−𝑥r
k| ≤ 𝛿x and |𝑢k−𝑢r

k| ≤ 𝛿u)

to restrict the variation of the state and control profiles, thus

enhancing the effectiveness of the linearization process. Note

that based on our experiments, imposing these simple trust

region constraints with fixed radius values (𝛿x and 𝛿x) can be

effective for addressing the considered problem. However, it is

undeniable that trust region constraints with varying radius val-

ues can also be modeled and the optimization process is likely

to benefit from this modification. For example, motivated by

a related work [18], an alternative convex program can be

constructed by introducing quadratic trust region constraints:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

min
z
′

k

𝐽 = 𝑠N + 𝑤x‖𝑟x‖2 + 𝑤u‖𝑟u‖2

s.t. ∀𝑘 ∈ {1, ..., 𝑁}
N
∑︁

i=0

𝐷ik𝑥i =
𝑠f − 𝑠0

2
(𝐴(𝑥r

k, 𝑢
r
k)𝑥k

+𝐵(𝑥r
k, 𝑢

r
k)𝑢k + 𝑐(𝑥r

k, 𝑢
r
k))

|𝑅(𝑥r
k, 𝑢

r
k) +𝑅x(𝑥

r
k, 𝑢

r
k)(𝑥k − 𝑥r

k)

+𝑅u(𝑥
r
k, 𝑢

r
k)(𝑢k − 𝑢r

k)| > 𝑅min

𝑥(𝑠0) = 𝑥0, 𝑥(𝑠N ) = 𝑥f

𝑥min ≤ 𝑥k ≤ 𝑥max

|𝑢k| ≤ 𝑢max

[𝑥k − 𝑥r
k]

T [𝑥k − 𝑥r
k] ≤ 𝑟xk

[𝑢k − 𝑢r
k]

T [𝑢k − 𝑢r
k] ≤ 𝑟uk

(22)

where 𝑤x and 𝑤u stand for positive weighting parameters.

𝑟x = [𝑟x1
, 𝑟x2

, ...𝑟xN
]T and 𝑟u = [𝑟u1

, 𝑟u2
, ...𝑟uN

]T , re-

spectively. ‖ · ‖2 denotes the 2-norm. In this formulation,

the optimization variable is redefined as 𝑧
′

k=(𝑥k, 𝑢k, 𝑟xk
, 𝑟uk

).
Besides, the trust region radius is adjusted during the iteration,
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thereby further enhancing the convergence and robustness of

the optimization process.

The solution to the optimization problem (21) is usually

obtained by iteratively addressing a sequence of convex op-

timization problems. Due to the implementation of linear ap-

proximations, one critical issue called “artificial infeasibility”

identified in recent years may occur during the solution finding

process [18], [21], [30]. Specifically, this problem will appear

when a solution to the original nonconvex problem does not

satisfy the linearized dynamics equations and path constraints

in (21) and vice versa. Hence, certain treatments should be

performed so as to reduce or remove these inconsistencies

caused by the linearization errors. Otherwise, the optimization

process may suffer from slow convergence or even fail to

converge.

To overcome this issue, the works presented by Acikmese

[30] and Wang [18], [21] are of particular importance. For

instance, in [30], the authors eliminated the artificial infea-

sibility by adding a virtual control term in the linearized

dynamics. Since no constraint was imposed on the virtual

control variable, any feasible state values could be reached.

Besides, in [18] the author suggested a line-search strategy

in order to reduce the artificial infeasibility and enhance

the convergence of the sequential optimization process. In

their follow-up research [21], this line-search approach was

successfully applied to address a UAV and a UGV rendezvous

problem. It was verified that by applying the proposed line-

search method, the error caused by linear approximation could

be effectively reduced and the convergence of the successive

optimization could be improved.

It should be noted that Eq.(21) and Eq.(22) are formulated

without considering the chance constraints given by Eq.(10)

and Eq.(12). In the next section, a convex chance constraint

approximation method will be introduced and applied in order

to formulate the fast chance-constrained trajectory planning

model.

IV. DETERMINISTIC CHANCE-CONSTRAINED

TRAJECTORY PLANNING FORMULATION

In this section, we are aiming to find a proper chance con-

straint handling strategy in order to introduce the probabilistic

control and collision avoidance constraints (10) to the convex

formulation (21) or (22). The designed approach should be

easy to implement and not damage the convexity of the opti-

mization model. Actually, for the control chance constraints,

one potential way is to simply apply the min-max strategy

which is commonly-used in robust optimization tasks [31].

However, this strategy does not allow any constraint violations,

thereby restricting the searching space of the optimization

process and degrading the computational performance as well

as the solution optimality. Alternatively, a convex chance

constraint approximation strategy is suggested in this study,

which will be detailed in the following subsection.

A. Convex Approximation of Control Chance Constraints

Let us consider the control chance constraints (10) in a

general form 𝑃𝑟{𝑔(𝑢, 𝜉) > 0} ≤ 𝜖. If we treat the inequality

𝑔(·, ·) > 0 as an event, then the probability of occurrence can

be calculated via:

𝑃𝑟{𝑔(𝑢, 𝜉) > 0} = 𝐸(𝐻(𝑔(𝑢, 𝜉))) =

∫︁

Ω

𝐻(𝑔(𝑢, 𝜉))𝐿(𝜉)𝑑𝜉

(23)

where 𝐸(·) is the expectation function. 𝐿(𝜉) is the PDF of 𝜉.

𝐻(·) is the Heaviside function, which has the form of:

𝐻(𝑔(𝑢, 𝜉)) =

{︂

1 if 𝑔(𝑢, 𝜉) > 0
0 if 𝑔(𝑢, 𝜉) ≤ 0

(24)

The core idea of the convex chance constraint approxima-

tion strategy is to use a convex function Ψ(𝑔(𝑢, 𝜉)) to replace

𝐻(𝑔(𝑢, 𝜉)) in Eq.(23). The convex function suggested in this

study has a simple form:

Ψ(𝑔(𝑢, 𝜉)) = (𝑔(𝑢, 𝜉) + 1)+ (25)

where the superscript “+” stands for the max operation (e.g.,

max{𝑔(𝑢, 𝜉)+1, 0}). The next theorem indicates that by using

Eq.(23), one can obtain an upper approximation of the original

chance constraint.

Theorem 1. Given that the convex approximation function in

the form of Eq.(25), if an integral quantity can be defined in

the form of

𝑉c(𝑢) =

∫︁

Ω

Ψ(𝑔(𝑢, 𝜉))𝐿(𝜉)𝑑𝜉 (26)

then, 𝑉c is an upper bound of the control chance constraint

𝑃𝑟{𝑔(𝑢, 𝜉) > 0}.

Proof: According to the definition of Ψ(𝑔(𝑢, 𝜉)), it is

obvious that Ψ ≥ 0 for any 𝑔(𝑢, 𝜉) and Ψ > 1 for 𝑔(𝑢, 𝜉) > 0.

Hence, ∀𝜉 ∈ Ω, we have

𝑉c(𝑢) ≥

∫︁

{ξ∈Ω,g(u,ξ)>0}

Ψ(𝑔(𝑢, 𝜉))𝐿(𝜉)𝑑𝜉

≥

∫︁

{ξ∈Ω,g(u,ξ)>0}

𝐿(𝜉)𝑑𝜉

=𝑃𝑟{𝜉 ∈ Ω, 𝑔(𝑢, 𝜉) > 0}

which completes the proof.

Theorem 1 can be used to create a relaxation of the

control chance constraint. For example,

𝑉c(𝑢) ≤ 𝜖 (27)

If Eq.(27) is satisfied, the original chance constraint will

be satisfied as well. To calculate the integral value in Eq.(26),

the Markov chain Monte-Carlo (MCMC) sampling strategy

is utilized as suggested in [23]. The motivation for the use

of this method mainly relies on its simplicity in application.

A set of random parameters are firstly generated {𝜉q}
Nξ

q=1.

Subsequently, 𝑉c(𝑢) can be computed by:

𝑉c(𝑢) ≈
1

𝑁ξ

Nξ
∑︁

q=1

Ψ(𝑔(𝑢, 𝜉q)) (28)

As a result, the chance-constrained unmanned vehicle
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trajectory planning model is formulated as:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

minimize
zk

𝐽 = 𝑠N

s.t. ∀𝑘 ∈ {1, ..., 𝑁}
N
∑︁

i=0

𝐷ik𝑥i =
𝑠f − 𝑠0

2
(𝐴(𝑥r

k, 𝑢
r
k)𝑥k

+𝐵(𝑥r
k, 𝑢

r
k)𝑢k + 𝑐(𝑥r

k, 𝑢
r
k))

|𝑅(𝑥r
k, 𝑢

r
k) +𝑅x(𝑥

r
k, 𝑢

r
k)(𝑥k − 𝑥

r
k)

+𝑅u(𝑥
r
k, 𝑢

r
k)(𝑢k − 𝑢

r
k)| > 𝑅

min

1

Nξ

Nξ
∑︁

q=1

Ψ(𝑔(𝑢k, 𝜉
q)) ≤ 𝜖

𝑥(𝑠0) = 𝑥0, 𝑥(𝑠N ) = 𝑥f

𝑥min ≤ 𝑥k ≤ 𝑥max

|𝑢k| ≤ 𝑢max

|𝑥k − 𝑥r
k| ≤ 𝛿x

|𝑢k − 𝑢r
k| ≤ 𝛿u

(29)

The next theorem indicates that Eq.(27) is a convex

constraint and the constructed chance-constrained formulation

(29) is a convex optimization problem.

Theorem 2. The chance constraint approximation inequality

(27) is a convex constraint and the chance-constrained opti-

mization model given by Eq.(29) is a convex program.

Proof: From the definition of the control constraints, it

is clear that 𝑔(𝑢, 𝜉) is convex in 𝑢 for any fixed 𝜉 ∈ Ω. In

addition, function Ψ(𝑔(𝑢, 𝜉)) is convex and non-decreasing.

Hence, Ψ(𝑔(𝑢, 𝜉)) is convex in 𝑢 for ∀𝜉 ∈ Ω.

As 𝐿(𝜉) is a probability measure on Ω and 𝐿(𝜉) ≥ 0, the

integral
∫︀

Ω
Ψ(𝑔(𝑢, 𝜉))𝐿(𝜉)𝑑𝜉 is also convex. The convexity of

inequality (27), together with the convexity of the optimization

model (21), confirms the convexity of the optimization model

(29). This completes the proof.

B. Convex Approximation of Probabilistic Collision Avoidance

Constraints

In order to solve the optimization model with the con-

sideration of probabilistic obstacle avoidance constraints, we

reformulate the inequality (12) into a tractable form. This

is achieved by performing two steps. Firstly, we apply the

big-M technique to transform the logic
⋁︀

appeared in the

safe region (11) to logic
⋀︀

. Subsequently, Boole’s inequality-

based decomposition is used to split the joint constraint into

single chance constraints, thus preserving the convexity of the

optimization model and easying the solution-finding process.

Consider the disjunction shown in Eq.(11), its satisfaction

is equivalent to

Mj
⋁︁

m=1

𝑎Tmn𝑝+ 𝑏mn + 𝜉mn > 0

⇔

Mj
⋀︁

m=1

𝑎Tmn𝑝+ 𝑏mn + 𝜉mn + M𝑧mn > 0

𝑧mn ∈ {0, 1},M > 0

(30)

where 𝑧mn is a binary integer variable. There must exist a

zero element among 𝑚th-indexed 𝑧, thereby resulting in an

additional constraint
∑︀Mj

m=1 𝑧mn < 𝑀j . M denotes a positive

constant. Based on this big-M transformation, we can rewrite

constraint (12) as:

𝑃𝑟{

No
⋀︁

n=1

Mj
⋀︁

m=1

𝑎Tmn𝑝+ 𝑏mn + 𝜉mn + M𝑧mn > 0} ≥ 𝜖o

(31)

For a series of events {𝐸m}, Boole’s inequality can be

applied to split the joint in (31). Then a conservative yet

easy form of the obstacle avoidance chance constraint can be

obtained:

For ∀𝑛 ∈ {1, ..., 𝑁o}, ∀𝑚 ∈ {1, ...,𝑀j}

𝑃𝑟{𝑎Tmn𝑝+ 𝑏mn + 𝜉mn + M𝑧mn > 0} ≥ 𝜖mn

No
∑︁

n=1

Mj
∑︁

m=1

𝜖mn ≥ 𝜖o

𝑧mn ∈ {0, 1},M > 0

(32)

Until now, the original probabilistic collision avoidance

constraint has been reformulated into single chance con-

straints. It is obvious that the convex transformation method

developed in the previous subsection can be directly applied to

approximate the probabilistic term in (32). Similar with (29),

we are able to analogically construct the following mixed-

integer convex program:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

minimize
zk,zmn

𝐽 = 𝑠N

s.t. ∀𝑘 ∈ {1, ..., 𝑁}, ∀𝑛 ∈ {1, ..., 𝑁o},
∀𝑚 ∈ {1, ...,𝑀j}
N
∑︁

i=0

𝐷ik𝑥i =
𝑠f − 𝑠0

2
(𝐴(𝑥r

k, 𝑢
r
k)𝑥k

+𝐵(𝑥r
k, 𝑢

r
k)𝑢k + 𝑐(𝑥r

k, 𝑢
r
k))

|𝑅(𝑥r
k, 𝑢

r
k) +𝑅x(𝑥

r
k, 𝑢

r
k)(𝑥k − 𝑥r

k)

+𝑅u(𝑥
r
k, 𝑢

r
k)(𝑢k − 𝑢r

k)| > 𝑅min

1
Nξ

Nξ
∑︁

q=1

Ψ(𝑔(𝑢k, 𝜉
q)) ≤ 𝜖

1
Nξ

Nξ
∑︁

q=1

Ψ(𝑎Tmn𝑝k + 𝑏mn + 𝜉qmn + M𝑧mn) ≤ 𝜖mn

No
∑︁

n=1

Mj
∑︁

m=1

𝜖mn ≥ 𝜖o

𝑧mn ∈ {0, 1},M > 0
𝑥(𝑠0) = 𝑥0, 𝑥(𝑠N ) = 𝑥f

𝑥min ≤ 𝑥k ≤ 𝑥max

|𝑢k| ≤ 𝑢max

|𝑥k − 𝑥r
k| ≤ 𝛿x

|𝑢k − 𝑢r
k| ≤ 𝛿u

(33)

where 𝑝k represents the current 3-D position of the unmanned

vehicle at node 𝑘. The convexity of problem (33) is a direct

result from the definition of polyhedral obstacles, Boole’s

inequality-based decomposition, and Theorem 2. Different

from the formulation given by Eq.(29), the branch-and-bound

strategy can be applied to address this mixed-integer convex

program [32].

Remark 2. Similar to that of Eq.(22), by introducing 𝑤x

and 𝑤u (the weighting parameters), an alternative mixed-

integer convex optimization formulation with varying trust-
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region radius 𝑟x and 𝑟u can be formulated as:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪
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minimize
z
′

k
,zmn

𝐽 = 𝑠N + 𝑤x‖𝑟x‖2 + 𝑤u‖𝑟u‖2

s.t. ∀𝑘 ∈ {1, ..., 𝑁}, ∀𝑛 ∈ {1, ..., 𝑁o},
∀𝑚 ∈ {1, ...,𝑀j}
N
∑︁

i=0

𝐷ik𝑥i =
𝑠f − 𝑠0

2
(𝐴(𝑥r

k, 𝑢
r
k)𝑥k

+𝐵(𝑥r
k, 𝑢

r
k)𝑢k + 𝑐(𝑥r

k, 𝑢
r
k))

|𝑅(𝑥r
k, 𝑢

r
k) +𝑅x(𝑥

r
k, 𝑢

r
k)(𝑥k − 𝑥r

k)

+𝑅u(𝑥
r
k, 𝑢

r
k)(𝑢k − 𝑢r

k)| > 𝑅min

1
Nξ

Nξ
∑︁

q=1

Ψ(𝑔(𝑢k, 𝜉
q)) ≤ 𝜖

1
Nξ

Nξ
∑︁

q=1

Ψ(𝑎Tmn𝑝k + 𝑏mn + 𝜉qmn + M𝑧mn) ≤ 𝜖mn

No
∑︁

n=1

Mj
∑︁

m=1

𝜖mn ≥ 𝜖o

𝑧mn ∈ {0, 1},M > 0
𝑥(𝑠0) = 𝑥0, 𝑥(𝑠N ) = 𝑥f

𝑥min ≤ 𝑥k ≤ 𝑥max

|𝑢k| ≤ 𝑢max

[𝑥k − 𝑥r
k]

T [𝑥k − 𝑥r
k] ≤ 𝑟xk

[𝑢k − 𝑢r
k]

T [𝑢k − 𝑢r
k] ≤ 𝑟uk

(34)

Here, 𝑧
′

k=(𝑥k, 𝑢k, 𝑟xk
, 𝑟uk

). In Eq.(34), varying-radius trust

region constraints are considered. This can potentially enhance

the convergence and robustness of the optimization process.

C. Overall Algorithm Framework

The overall algorithm framework is summarised in Algo-

rithm 1.

Algorithm 1 Chance-constrained trajectory planning process

Input: Algorithm/mission-dependent parameters: 𝑁 , 𝑁ξ,

𝑥r, 𝑢r, 𝑥0, 𝑥f , and 𝑅min;

/*Main Iteration*/

Step 1: Perform the convexification process with respect to

system dynamics and constraints;

Step 2: Generate the differential matrix 𝐷ik and discretize

the convexified problem via PS;

Step 3: Generate the random parameter {𝜉q, 𝜉qij}
N
q=1;

Step 4: Formulate the chance-constrained convex trajectory

planning model via Eq.(33);

Step 5: Address the chance-constrained convex optimization

model;

Step 6: Obtain the solution pair and update the

reference pair (𝑥r+1, 𝑢r+1);
Step 7: Check the stopping condition for convergence:

max |𝑥r+1 − 𝑥r| ≤ 𝜖x,

max |𝑢r+1 − 𝑢r| ≤ 𝜖u;

Step 8: If the stopping conditions can be satisfied, then

output the solution. Otherwise, perform a line search

process and go back to Step 1.

Output: The optimal trajectory pair (𝑥*, 𝑢*);

Note that in Algorithm 1, Step 6 requires the solution

to the mixed-integer convex optimization model given by

Eq.(33). Therefore, the sequential mixed-integer convex pro-

gramming [32] is selected as the main optimization method to

calculate the solution.

Motivated by related works [18], [21], a line search

strategy can be established in Step 8 of Algorithm 1 to alleviate

the artificial infeasibility issue for the considered problem. For

the sake of completeness, this strategy is detailed in Algorithm

2.

Algorithm 2 A line-search process

Input: 𝑧r = (𝑥r, 𝑢r), 𝑧r+1 and line-search parameters: 𝜈1, 𝜈2 ∈
(0, 0.5), and 0 < 𝑐1 < 𝑐2 < 1;
/*Main line-search process*/
Step 1: Calculate 𝑝r+1 = 𝑧r+1 − 𝑧r;
Step 2: Define the merit function 𝑀 in the form of:

𝑀(𝑧r+1; 𝜈1, 𝜈2) = 𝜈1

N
∑︁

k=1

‖ℎk(𝑧
r+1)‖1 + 𝜈2

N
∑︁

k=1

‖𝑔+k (𝑧r+1)‖1

where 𝑔+k (𝑧r+1) = max{𝑔k(𝑧
r+1), 0};

Step 3: Calculate the directional derivative of 𝑀 via:

∆(𝑀(𝑧r+1; 𝜈1, 𝜈2); 𝑝
r+1) =

lim
ε→0

{︂

𝑀(𝑧r+1 + 𝜀𝑝r+1; 𝜈1, 𝜈2)−𝑀(𝑧r+1; 𝜈1, 𝜈2)

𝜀

}︂

Step 4: Search 𝛼r+1 such that the following
condition holds true:

𝑀(𝑧r+1; 𝜈1, 𝜈2) + 𝑐1𝛼
r+1∆(𝑀(𝑧r+1; 𝜈1, 𝜈2); 𝑝

r+1)
≤ 𝑀(𝑧r+1 + 𝛼r+1𝑝r+1; 𝜈1, 𝜈2)
≤ 𝑀(𝑧r+1; 𝜈1, 𝜈2) + 𝑐2𝛼

r+1∆(𝑀(𝑧r+1; 𝜈1, 𝜈2); 𝑝
r+1)

Step 5: Execute 𝑧r+1 = 𝑧r + 𝛼r+1𝑝r+1;
Output: The updated pair (𝑥r+1, 𝑢r+1);

In Algorithm 2, ℎ represents the equality constraints

such as the linearization of the dynamics and 𝑔 represents

the inequality constraints such as the path constraints. Then,

ℎk(𝑧
r+1) and 𝑔+k (𝑧

r+1) measure the error due to the lineariza-

tion process and the path constraint violation magnitude at

node 𝑘, respectively. The value of ℎk(𝑧
r+1) and 𝑔k(𝑧

r+1) can

be calculated via:

ℎk(𝑧
r+1) =

N
∑︁

i=0

𝐷ik𝑥
r+1
i −

𝑠f − 𝑠0
2

(𝑓(𝑥r+1
k , 𝑢r+1

k ) (35)

𝑔k(𝑧
r+1) = 𝑅min −𝑅(𝑥r+1

k , 𝑢r+1
k ) (36)

Based on Eq.(35) and Eq.(36), the total violation of the

nonconvex constraints is penalized in the 𝑙1 merit function

𝑀(𝑧r+1; 𝜈1, 𝜈2) with the positive penalty factors denoted by

𝜈1 and 𝜈2.

Remark 3. Currently there are mainly two types of chance con-

straint approximation strategies: the convex approximations

[33], [34] and the nonconvex approximations [23]. Most of

the nonconvex methods aim to approximate the 𝐻 function

aggressively, thereby reducing the conservatism and improving

the optimality of solutions. However, using this kind of tech-

nique might degrade the convexity of the original problem,

thus resulting in more computational burdens. Due to this
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reason, in the present work, we have paid more attention to

convex approximations. It was analyzed in [14] that compared

with other convex approximation functions, the function Ψ
tends to result in least conservative bounds for solving standard

uncertain control problems. Hence, we apply this function

to deal with the chance constraints existing in the trajectory

planning task.

V. NUMERICAL RESULTS

A. Unmanned Vehicle Trajectory Generation

The proposed convex programming-based trajectory plan-

ning approach is firstly validated by performing a long

distance case study that chance constraints (e.g., Eq.(10a)

and Eq.(10b)) are not considered. The initial and ter-

minal boundary settings for this particular case are as-

signed as 𝑥0 = [500𝑚, 100𝑚, 300𝑚, 15∘, 240∘], and 𝑥f =
[−100𝑚, 400𝑚, 0𝑚, 15∘, 45∘], respectively. In terms of the

geometric constraints, the numerical results were obtained

under the condition of 𝑅min = 40𝑚 and 𝛾 ∈ [−15∘, 20∘].
𝜇1, 𝜇2 ∈ [−1∘/𝑠, 1∘/𝑠].

In Fig. 1, the state and control trajectories of the un-

manned system are displayed by performing the nonlinear

pseudospectral algorithm (NPS) [27] and the convexification-

based trajectory planning approach established in this paper.

Note that to execute the NPS, the second generation gen-

eral purpose optimal control software (GPOPS-II) is used

[35]. On the other hand, for the convexified optimization

model, a state-of-the-art solver developed in [36] using the

primal-dual interior point algorithm with index of accu-

racy 𝜖 = 10−8 is applied to explore the optimal solution.

The trust region constraints for 𝑥 and 𝑢 are specified as

𝛿x = [1000, 1000, 1000, 𝜋, 2𝜋]T and 𝛿u = [1, 1]T , respec-

tively. Besides, the stop conditions are assigned as 𝜖x =
[0.1, 0.1, 0.1, 0.5π

180 ,
1π
180 ]

T and 𝜖u = [0.01, 0.01]T , respectively.

To start the optimization process for the sequential convex

optimization process, an initial guess trajectory should be

provided. For the considered mission case, linear interpolation

between the state boundary conditions is performed and the

resulting state sequence is applied as the initial state guess

profile 𝑥0. As for the initial control profile 𝑢0, we simply

choose it as zero. By assigning 𝑥r = 𝑥0 and 𝑢r = 𝑢0,

the optimization process demonstrated in Algorithm 1 can be

triggered.

Fig. 1(a) presents the projection of the unmanned vehicle

trajectory on the y-z plane, whereas Fig. 1(b) shows the flight

path on the 3-D plane. The heading angle profile, together with

the pitch angle profile, is shown Fig. 1(c) and Fig. 1(d). Two

control signals (e.g., 𝜇1 and 𝜇2) are presented in Fig. 1(e) and

Fig. 1(f), respectively.

According to the obtained results, it can be seen that

both the two approaches can produce flight path without

violating constraints. Hence, their effectiveness can be verified

to some extent. There are some differences in the state profiles

produced by applying these two algorithms. These differences

might be attributed to multiple potential reasons such as the

linearization process with respect to the system dynamics

and the path constraint. Furthermore, compared to the NPS
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Fig. 1: Optimized trajectories for the unmanned vehicle

solutions, the state and control profiles computed using the

proposed trajectory planning algorithm tend to be smoother.

This is more apparent in the obtained control profiles (e.g.,

Fig. 1(e) and Fig. 1(f)) where high-frequency oscillations can

be observed from the evolution trajectories planned via the

NPS. By contrast, the control evolution profiles obtained via

the proposed approach tend to be more stable and easier to

achieve, thereby further enhancing its potential for real-world

applications.

As for the optimality of the solution and the compu-

tational performance of the algorithm, detailed results are

also collected. The optimal path length achieved via the two

approaches are, respectively, 𝑠NPS = 1203.32𝑚 and 𝑠prop =
1205.33𝑚. However, the processing time for generating the

solution of using the NPS is around 6.37𝑠, which is much

higher than the time required by the proposed method (e.g.,

0.77𝑠). Moreover, since the proposed algorithm is successfully

converged, the global optimality of its solution can be guar-

anteed. While the solution obtained using the NPS can only

be treated as a local optimal (or a near-optimal) solution.

B. Comparative Case Study: Without Chance Constrains

In this subsection, a number of comparative case studies

without considering chance constrains were executed. The

parameter specification for different test cases including the

initial and final pose information of the unmanned vehicle is

tabulated in Table I. Note that these test cases were designed in

[12]. To make a fair comparison, we re-perform these test cases

using the proposed algorithm. Also, it is worth mentioning that

the selected test cases contain both short-range and long-range

flying scenarios. Specifically, the first three test cases are likely

to result in flight paths with relatively-small distances, whereas

the last three test cases are likely to result in flight paths with

relatively-large distances.

The performance of using the proposed approach to
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TABLE I: Settings for different test cases

Case Initial pose Final pose
(px, py , pz) γ φ (px, py , pz) γ φ

1 (120,−30, 250) -10 100 (220, 150, 100) -10 300
2 (380, 230, 200) 0 30 (280, 150, 30) 0 200
3 (−80, 10, 250) 0 20 (50, 70, 0) 0 240
4 (400,−250, 600) 0 350 (600,−150, 300) 0 150
5 (−200,−200, 450) 0 340 (−300,−80, 100) 0 100
6 (−200, 200, 250) 15 240 (500, 800, 0) 15 45

address different test case is compared against other well-

developed techniques existing in the literature. For ex-

ample, the NPS algorithm reported in [27], an in-flight

waypoint-based algorithm investigated in [24], and the mul-

tiple shooting-based (MS) method developed in [26]. The

detailed planning results including the lengths of trajectories

𝑠 and execution times 𝑡p for different flying scenarios are

summarised in Table II.

From Table II, it can be observed that the optimal

trajectory length values obtained via the proposed method and

the NPS method are comparable. The proposed fast trajectory

planning method can generally produce more optimal flight

paths than the approach of Babaei et al. [24] and the MS-

based method [26]. However, the execution time required by

the strategy developed in this paper tends to be far less than

its counterparts.

It should be noted that in [12] and [13], the authors

proposed a geometric-based path generation approach to pro-

duce the flight path for the unmanned vehicle. It was shown

that this method is able to produce feasible trajectory and

the average execution time tends to be smaller than the one

developed in this study. However, one critical problem of the

previous design is that the produced trajectory might contain

several transient disturbance points in the system state profiles.

Moreover, based on our experiments, for some mission cases,

the optimality of the flight path obtained via the previously

developed method is not as comparable as the results obtained

via the method developed in this paper.

C. Chance-Constrained Unmanned Vehicle Trajectory Gener-

ation

The impact of control chance constraints on the optimal

unmanned vehicle flight trajectory is now analyzed. In Eq.(10),

𝜉µ1
and 𝜉µ2

are supposed to have an exponential distribu-

tion, and the PDF associated with them can be written as:

𝑓(𝑥;𝜆) = 𝜆𝑒−λx, 𝑥 ≥ 0; 𝑓(𝑥;𝜆) = −𝜆𝑒−λx, 𝑥 < 0 with

the rate parameter 𝜆 = 70. Furthermore, the risk parameter is

assigned as 1− 𝜖µ1
= 1− 𝜖µ2

= 0.05 (5%).

The proposed fast trajectory generation approach is then

applied to address the chance-constrained trajectory plan-

ning problem by incorporating the convex chance constraint

approximation method stated in Sec IV. To transform the

probabilistic constraints, a relatively large-sized sample (e.g.

𝑁 = 2× 105) is selected. The effectiveness of this integrated

framework is validated by performing a short distance mission

case (e.g., case 1 in Table II). The optimized state and control

profiles are portrayed in Fig. 2, where the blue line indicates
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Fig. 2: Optimal Chance-constrained trajectories for the un-

manned vehicle

the chance-constrained solution, while the red line indicates

the solution without considering Eq.(10).

From the results, it is calculated that the maximum

violation rates for Eq.(10) are all smaller than 5%, which

confirms the reliability of the convex chance constraint approx-

imation technique. Besides, it can be seen from Fig. 2 that the

consideration of control chance constraints results in a slight

increase in terms of the path length. This is because based on

the control profiles shown in Fig. 2(e) and Fig. 2(f), the control

variables cannot reach their maximum or minimum allowable

values at some time periods. Due to the lack of controllability,

the unmanned vehicle might need to have a relatively longer

flight in order to achieve the pre-specified final pose.

D. Comparative Case Studies: With Control Chance Con-

strains

Similar with the work presented in Sec V.B, in this

subsection, a set of comparative case studies with the con-

sideration of chance constraints were performed to assess

the performance of the proposed chance-constrained smooth

trajectory generation approach. The nominal trajectory design

formulation (21) is incorporated with one nonconvex chance

constraint approximation (NCCA) strategy and two additional
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TABLE II: Comparative results for different approaches

Case
No.

Proposed NPS [27] Babaei et al. [24] MS-based [26]
s (m) tp (s) s (m) tp (s) s (m) tp (s) s (m) tp (min)

1 580.75 0.38 582.73 5.43 750.82 6.29 583.48 1.11min
2 668.19 0.58 675.18 5.85 875.10 7.45 670.37 1.08min
3 977.18 0.42 978.52 5.64 1200.63 7.27 979.91 1.23min
4 1168.61 0.53 1168.61 5.72 1375.14 6.69 1169.74 1.00min
5 1360.80 0.61 1363.80 6.31 1667.44 6.83 1370.23 1.47min
6 1167.90 1.02 1169.95 6.07 1401.84 6.76 1168.83 2.05min

convex chance constraint approximation strategies. Specifi-

cally, the NCCA method developed in [23] (with index of op-

timization accuracy 𝜖 = 10−8), the exponential-function based

method (also known as Bernstein method (BM)) suggested in

[33], and a kinship function-based (KF) approach designed in

[34]. The general idea of these three strategies is based on

approximation of the probabilistic constraints. Different test

cases listed in Table I were re-performed by applying the four

chance-constrained trajectory planning schemes. The results

regarding the path length and execution time are tabulated in

Table III.

Firstly, a comparison is made between the method de-

veloped in this paper and the NCCA method proposed in

[23]. According to the quantitative comparisons demonstrated

in Table III, the proposed method is able to converge to a

comparable objective with much faster convergence speed than

the one developed in [23]. Actually, the method developed in

[23] aims to approximate the 𝐻 function aggressively, thus

reducing the conservatism and improving the optimality of

solutions. As a result, for some test cases (e.g., case 1, case 3

and case 4), the NCCA method can produce a slightly better

solution than the proposed algorithm. However, using this

approach will damage the convexity of the original problem,

thus resulting in a large amount of computational burdens for

the optimization process. A potential solution to this issue is

to loosen the optimization tolerance value. This means the

accuracy of the obtained solution might be decreased.

Next, the results obtained using different convex

approximation-based methods are analyzed. According to Ta-

ble III, compared to the BM and KF methods, the fast chance-

constrained trajectory generation strategy suggested in this

paper can produce a more optimal flight path in short time

for different flight scenarios. This can partly reveal that the

suggested convex chance constraint approximation method

is less conservative than the one reported in [33] and [34],

and it is more suitable to be applied for addressing the

considered unmanned vehicle trajectory design task. Actually,

if a convex approximation approach is too conservative, the

resulting feasible set tends to be small. This indicates that the

optimization process starts searching the solution in a highly

limited space. As a result, the difficulty of finding the optimal

solution will be increased, and the computational performance

of the algorithm will be degraded significantly.

E. Comparative Case Studies: With Control and Obstacle

Chance Constrains

In this subsection, we explore the impact of probabilis-

tic collision avoidance constraints on the optimal unmanned

vehicle flight trajectory. One short-range flight case and one

long-range flight case designed in Table I (e.g., case 2 and

case 4) were re-performed with the consideration of stochastic

obstacles existing in the environment. Specifically, uncertain

no-fly zone constraints are imposed on the x-y plane. That is,

𝑝y = 𝑎mn𝑝x + 𝑏mn + 𝜉mn. Detailed information regarding

the obstacles is specified as follows. For flight case 2, two

obstacles are considered:

𝑂1

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑎11 = 0.5 𝑏11 = 140
𝑎21 = 0.05 𝑏21 = 330
𝑎31 = −4.7 𝑏31 = 1650
𝑎41 = −3.2 𝑏41 = 1433

𝑂2

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑎12 = 0.1 𝑏12 = 280
𝑎22 = 10 𝑏22 = −3620
𝑎32 = −0.3 𝑏32 = 505
𝑎42 = 10 𝑏42 = −4187

For flight case 4, two obstacles are considered:

𝑂3

⎧

⎨

⎩

𝑎13 = −13 𝑏13 = 7590
𝑎23 = 1 𝑏23 = −1150
𝑎33 = −0.4 𝑏33 = −134

𝑂4

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑎14 = −1 𝑏14 = 620
𝑎24 = 1 𝑏24 = −970
𝑎34 = 1 𝑏34 = −1150
𝑎44 = −1 𝑏44 = 460

The uncertain parameter 𝜉mn is assumed to follow a Gaussian

distribution of N (0, 1.5). The maximum allowable violation

probability is set to 0.1.

Different from the strategy applied in previous sub-

sections, the optimized solutions reported in Table II (e.g.,

the solutions obtained without considering the probabilistic

control and obstacle avoidance constraints) are selected as the

initial guess trajectories to trigger the iterative optimization

process. Note that a detailed sensitivity study with respect to

different initial guess generation methods will be provided in

the next subsection. By addressing the formulation given by

Eq.(33), the chance-constrained solutions are calculated.

Fig. 3 and Fig. 4 demonstrate the evolutions of the

objective function value during the sequential optimization

process for the two flight cases. In addition, Fig. 5 and Fig.

6 further illustrate the corresponding convergence histories

with respect to the merit function value. It is worth noting

that objective value can be used to reflect the optimality of

the obtained solution, whereas merit function value measures

the constraint violation. From Fig. 3 and Fig. 4, it is ob-

vious that for the considered cases, the objective function
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TABLE III: Chance-constrained results for different approaches

Case
No.

Proposed NCCA [23] BM [33] KF [34]
s (m) tp (s) s (m) tp (s) s (m) tp (s) s (m) tp (s)

1 582.62 4.23 581.72 42.23 591.25 17.14 610.36 37.44
2 669.64 4.75 670.11 44.65 673.24 21.33 679.24 41.27
3 978.06 3.46 978.03 57.92 981.58 15.35 987.79 36.55
4 1169.83 2.62 1169.65 47.78 1172.11 12.27 1177.37 33.38
5 1362.75 4.13 1366.77 53.72 1368.85 22.34 1375.24 35.89
6 1174.74 6.15 1181.58 56.63 1202.29 31.61 1226.56 51.69
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Fig. 3: Convergence history of the objective function: Case 2

with obstacles
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Fig. 4: Convergence history of the objective function: Case 4

with obstacles

eventually decreases to a converged value and remain stable

until the specified tolerance level is reached (e.g., both of

these two cases terminate after 15 iterations). Interestingly,

by viewing the evolution histories of the objective value, it

can be observed that the converged solutions do not have the

minimum objective values. More precisely, the objective value

is not monotonically decreasing and there exist higher/lower

objective values of some intermediate iterations than that of

the converged solution. Actually, by performing the line search

process detailed in Algorithm 2, it is likely to obtain an

updated solution pair which can result in a decrease in terms

of the merit function value. This can be confirmed by the

merit function trajectories presented in Fig. 5 and Fig. 6, where

monotonically decreasing evolution histories are obtained for
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Fig. 5: Convergence history of the merit function: Case 2 with

obstacles
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Fig. 6: Convergence history of the merit function: Case 4 with

obstacles

the two considered cases. However, there is no guarantee that

the updated solution pair can result in a strict decrease or

increase with respect to the objective value. For example, in

some intermediate iterations, the solution optimality might be

sacrificed so as to achieve a progress in terms of the merit

function. This could be one potential reason for the oscillations

existing in the evolution histories of the objective value.

Fig. 7 and Fig. 8 present the convergence history of the

flight trajectory (projected on the x-y plane). To clearly present

the convergence history, the initial trajectories are indicated

by black dash lines, while the flight trajectories at different

optimization iterations are indicated by solid lines and their

colors are changed from dark blue to red. As can be seen from

these two figures, the flight trajectories for these two cases tend
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Fig. 7: Convergence history of the flight trajectory: Case 2

with obstacles
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Fig. 8: Convergence history of the flight trajectory: Case 4

with obstacles

to become more aggressive as the iteration number increases.

That is, there is a tendency for the vehicle to approach the

uncertain obstacles so as to achieve a better objective value.

Moreover, based on our observation, the trajectories become

very close after 5 iterations for case 2 and after 11 iterations

for case 4. This can also be reflected by viewing the objective

function and merit function evolution profiles.

F. Sensitivity Analysis

In this subsection, a sensitivity study is firstly executed in

order to analyze the impact of different initial guess generation

methods on the convergence performance of the proposed

approach. The methods selected for analysis are:

∙ Method A: The initial state trajectory 𝑥0 is obtained by

propagating the vehicle dynamics given by Eq.(1) from

the initial boundary value 𝑥0 via a specified initial control

trajectory 𝑢0. In the test, 𝑢0 is simply assigned as zero.

∙ Method B: The initial state trajectory 𝑥0 is obtained by

performing the operation of linear interpolation between

the state boundary conditions (e.g., 𝑥0 and 𝑥f ), whereas

the initial control trajectory 𝑢0 is simply selected as zero.

∙ Method C: The solutions to the convex optimization

problem without considering the probabilistic control and

collision avoidance constraints are selected as the initial

state/control guess trajectories.
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Fig. 9: Merit function histories for case 2 using different guess

trajectories
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Fig. 10: Merit function histories for case 4 using different

guess trajectories

Fig. 9 and Fig. 10 illustrate the resulting evolution trajec-

tories of the merit function for mission case 2 and mission case

4, respectively. From the displayed results, it is obvious that for

both mission cases, if the third initial guess generation method

is applied, the sequential optimization process takes fewer

iterations to converge. Actually, as shown in Fig. 10, the opti-

mization process using the first initial guess generation method

suffers from a convergence issue for mission case 4. That is,

after reaching the maximum allowable iteration number (e.g.,

the iteration number reaches 50), the current solution still fails

to satisfy the prescribed convergence condition. Based on these

comparative results, we can conclude that the convergence

performance of the proposed approach tends to be sensitive

with respect to the initial guess trajectories. Moreover, for the

optimization model given by Eq.(33), it is suggested to apply

Method C to produce initial guess trajectories and start the

sequential optimization process.

Another parameter which may have an impact on the op-

timized results is the maximum allowable violation probability

𝜖o for the probabilistic obstacle avoidance constraints. To fur-

ther test the performance of the proposed convex probabilistic
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collision avoidance constraint approximation strategy, 𝜖o is

assigned to different values. For example, 𝜖o is assigned to

three levels (Level 1 = 0.1, Level 2 = 0.05, Level 3 = 0.01)

for testing. Fig. 11 illustrates the planned flight trajectory

for mission case 2 in the x-y plane with different allowable

constraint violation probabilities. Similarly, Fig. 12 portrays

the simulated trajectory results for mission case 4.
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Fig. 11: Optimal Chance-constrained trajectories: Case 2 with

obstacles
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Fig. 12: Optimal Chance-constrained trajectories: Case 4 with

obstacles

As can be observed from Fig. 11 and Fig. 12, the optimal

chance-constrained flight trajectory tends to become more

conservative as the maximum allowable constraint violation

threshold decreases. This phenomenon becomes more obvious

in the result of flight case 4, where the unmanned vehicle

changes its maneuver from passing through the two obstacles

to executing a much safer yet longer flight outside the obsta-

cles. Detailed results such as the path length and execution

time are tabulated in Table IV.

TABLE IV: Results with uncertain obstacles

Allowable
probability

Case 2 results Case 4 results
s (m) tp (s) s (m) tp (s)

Level 1 674.23 5.81 1170.22 5.25
Level 2 675.35 6.98 1191.53 6.38
Level 3 675.82 8.33 1192.15 7.47

From Table IV, it is obvious that the execution time

required by the strategy developed in this paper might ex-

perience a slight increase as the probabilistic collision avoid-

ance constraint becomes tighter to satisfy. However, all the

trials can still converge in few seconds. These results further

confirm the effectiveness of using the proposed mixed-integer

convex chance-constrained optimization model given by (33)

to plan the flight trajectory of the unmanned vehicle with the

consideration of probabilistic control and collision avoidance

constraints.

VI. CONCLUSION

A fast chance-constrained trajectory planning algorithm

incorporating convex optimization and convex approximation

of probabilistic constraints is presented to solve the prob-

lem of unmanned vehicle path generation. One important

feature of the proposed trajectory generation algorithm is

that the constructed optimization model is a deterministic

convex program even though probabilistic control and obstacle

avoidance constraints are taken into account. By comparing

against other trajectory generation strategies reported in the

literature, the proposed convexification-based formulation has

two main advantages. Firstly, the calculated system state and

control profiles tend to be smooth. Another advantage is that

it can significantly improve the computational performance

while optimizing the flight path. These two advantages have

been validated by a number of comparative case studies

demonstrated in this paper. Hence, we believe the suggested

approach and obtained results are of particular interest to

the community that is involved within chance-constrained

optimization applications and unmanned vehicle trajectory

planning tasks.
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