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Abstract—Constrained trajectory optimization has been a
critical component in the development of advanced guidance
and control systems. An improperly planned reference trajectory
can be a main cause of poor online control performance.
Due to the existence of various mission-related constraints, the
feasible solution space of a trajectory optimization model may be
restricted to a relatively narrow corridor, thereby easily resulting
in local minimum or infeasible solution detection. In this work, we
are interested in making an attempt to handle the constrained
trajectory design problem using a biased particle swarm op-
timization approach. The proposed approach reformulates the
original problem to an unconstrained multi-criterion version by
introducing an additional normalized objective reflecting the total
amount of constraint violation. Besides, to enhance the progress
during the evolutionary process, the algorithm is equipped with
a local exploration operation, a novel 𝜀-bias selection method,
and an evolution restart strategy. Numerical simulation experi-
ments, obtained from a constrained atmospheric entry trajectory
optimization example, are provided to verify the effectiveness of
the proposed optimization strategy. Main advantages associated
with the proposed method are also highlighted by executing a
number of comparative case studies.

Index Terms—Trajectory optimization, particle swarm opti-
mization, local exploration, bias selection, restart strategy.

I. INTRODUCTION

C
ONSTRAINED trajectory planning problems widely ex-

ist in the aerospace industry and considerable attention

has been given to research advanced trajectory optimization

algorithms during the last decade. Although this step is often

performed offline in practical applications, an improperly

planned reference trajectory may significantly damage the

online control performance or even result in a failure of the

mission. Therefore, to gain enhanced guidance and control

performance, a proper design of the optimal maneuver trajec-

tory is highly demanded. It should be noted that approaches to

address this kind of problem mainly fall into two categories:

indirect methods and direct methods [1], [2]. An indirect

approach uses an “optimize then discretize” strategy, where

first-order optimality conditions for the differential algebraic

equations (DAE)-constrained systems are directly derived and

solved. Many important contributions have been made on

applying this type of method [3]–[5]. For example, Yang
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and Hexi [3] applied an indirect method in order to produce

the energy-optimal trajectory for an irregular asteroid landing

mission. Pontani and Conway developed an indirect heuristic

approach in [4] and successfully implemented this method to

address a low-thrust orbital transfer problem. Furthermore, in

their later work [5], this indirect approach was extended to

solve more complex trajectory design problems with enhanced

numerical accuracy.

While the results from an indirect method can be treated

as the theoretically optimal solutions, the application of indi-

rect methods is usually limited to relatively low-dimensional

problems and it tends to be ineffective with respect to problems

containing complex path constraints. On the other hand, a

direct approach applies a “discretize then optimize” strategy,

where state and/or control variables are firstly discretized such

that the original problem is reformulated to a nonlinear pro-

gramming problem (NLP) or more precisely, a static parameter

optimization problem containing a finite number of decision

variables [6], [7]. A primary advantage of applying this kind of

method is that it can be easily combined with well-developed

parameter optimization solvers in order to address the resulting

NLP. In addition, different types of system constraints are

represented by a relatively straightforward manner. As a result,

we pay more attention to the implementation of “discretize

then optimize” approaches.

In recent years, extensive applications of direct meth-

ods can be found in the context of flight vehicle trajec-

tory optimization and robotic motion planning problems in

difficult environments [8]–[10]. For instance, a direct col-

location method was adopted in [8] in order to calculate

the optimal flight trajectory for an entry vehicle during the

Mars entry phase. Path constrains were imposed such that

the vehicle can fly along a restricted corridor. The authors

in [9] implemented a direct shooting method to plan the

motion of a manipulator. In their work, both the higher order

dynamics and the contact/friction force constraints were taken

into account, thereby making the optimization model much

more complex. In addition, a direct trajectory optimization

framework for general manipulation platforms was established

in [10], wherein multiple mission-related constraints such as

the environmental constraints, collision avoidance constraints,

and some geometric constraints were involved in the problem

formulation and considered during the optimization.

Apart from direct methods, the design and test of heuristic

methods such as particle swarm optimization (PSO), genetic

algorithm (GA) and differential evolution (DE) have also

received significant attention for solving the constrained tra-
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jectory planning problems. The main reason of using these

particular optimization algorithms is due to the fact that the

numerical gradient-dependent optimization algorithms such

as the interior-point method (IPM) [11], sequential quadratic

programming (SQP) [12], [13], and other modified versions

[14], [15] only guarantee convergence toward local optima,

whereas heuristic methods are more likely to locate the glob-

ally optimal result. This advantage has been highlighted by a

number of relevant works and because of this, various heuristic

approaches have been proposed to address constrained space

vehicle trajectory optimization problems [16]–[19]. For exam-

ple, an improved PSO algorithm was reported in [17] to solve

a reusable launch vehicle reentry trajectory design problem. In

this approach, a modified mutation mechanism was designed

to facilitate the evolutionary process. A parallel optimization

framework incorporating PSO, GA, and DE was suggested by

the authors of [18], wherein an Earth-to-Mars interplanetary

problem, together with a multiple-impulse rendezvous mission,

was addressed. Although the two problems were successfully

addressed by this hybrid method, simulation results also re-

vealed that the performance of the proposed method tends

to be problem dependent. Furthermore, in [19], by defining

the number of switches as the optimization parameters, a

segmented PSO method was advocated to explore the optimal

control sequence with a bang-bang structure for a time-optimal

slew maneuver task. However, if a maneuver planning problem

contains singular arcs or the optimal control sequence does not

hold a bang-bang structure, this PSO-based trajectory planner

may not be able to generate promising results or even fail to

find feasible solutions.

Commonly, each particle among the swarm represents

a candidate solution to an optimization problem. Based on

the reported experimental results, most of the researchers or

engineers concluded that with a proper selection of algorithm

parameters, the PSO has the capability of getting rid of local

minima for different trajectory design problems [16], [20].

This can be attributed by the fact that in the swarm update

formula, both the experience of the group of particles (e.g.,

the so-called social component) and the experience of each

individual (e.g., the so-called cognitive component) are taken

into account. Moreover, compared with other evolutionary

optimization algorithms such as the GA and DE, the PSO can

benefit from a reduced number of function evaluations, thus

making it more efficient. This key finding was validated by

the investigations presented in [21] and [22]. Benefiting from

the key features discussed above, the implementation of PSO

and its enhanced versions to various engineering optimization

problems can be appreciated and encouraged.

When applying bio-inspired optimization methods to

handle trajectory planning problems, the constraint handling

strategy usually plays a key role and it can significantly

affect the performance of the optimization process. It is worth

noting that in most PSO-based trajectory optimization solvers,

a penalty function (PF) approach is commonly applied to deal

with various parameter constraints adhered to the optimization

model [17], [23]–[25]. That is, an additional term (e.g., the

so-called penalty term) reflecting the constraint violation is

augmented in the fitness function, and the particle with smaller

fitness value will be considered as a better individual compared

to the others among the current swarm. This method is

fairly straightforward to understand and easy to implement.

However, difficulties may occur in balancing the emphasis

between the mission objective and penalty terms.

In order to avoid the assignment of penalty functions and

additional penalty factors, we apply a locally enhanced multi-

objective PSO (MOPSO) method to tackle the constrained

trajectory planning problems. This method is performed by

firstly defining the total amount of constraint violation as an

additional objective, thereby reformulating the constrained op-

timization problem as an unconstrained multi-criterion version.

Then classical non-dominant sorting process is used to rank all

the candidate solutions. Note that the use of a PSO algorithm

in constrained problems using a multi-objective approach

have been reported in some important works [26], [27] and

applications of this strategy to constrained engineering opti-

mization problems have attracted significant attention (e.g., a

detailed review can be found in [28]). However, most reported

works addressed the problem by purely relying on the pareto

dominance. Based on our previous experiments [23], [24], it

was found that a direct implementation of MOPSO and pareto

dominance rules to the transformed multi-objective trajectory

optimization problem may lack search bias in terms of the

mission constraints. Therefore, a biased search toward the

feasible region should be introduced, otherwise the algorithm

performance might be degraded significantly.

The main contribution of this paper lies in the following

four aspects:

1) We present an attempt to address the insufficient bias

issue for standard MOPSO algorithm by introducing a

constraint violation (CV)-based bias selection strategy.

Then, this strategy is extended to a more general form,

named the 𝜀-bias selection strategy, such that it can

become more flexible to optimize the objective function

and reduce the solution infeasibility at the same time.

2) An evolution restart strategy is designed and embedded

in the biased MOPSO algorithm such that it can acquire

an enhanced capability to avoid getting stuck in local

infeasible regions.

3) The proposed approach is applied to solve a constrained

atmospheric entry trajectory design problem which is

similar to the one investigated in [23] except that more

constraints are modeled and included in the optimization

model. Case studies, along with detailed analysis, are

provided to emphasize the importance of the proposed

bias selection process as well as the evolution restart

strategy.

4) The proposed method is compared to other evolutionary

algorithms and an off-the-shelf numerical optimal control

solver (named CASADI). Comparative results not only

characterize the key feature but also highlight the main

advantage of applying the designed approach.

To the best of the authors’ knowledge, the extended bias

selection method and the evolution restart strategy are firstly

combined in the locally enhanced-MOPSO in this paper

for addressing the constrained reentry trajectory optimization
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problem.

The rest of this article is constructed as follows. In

Section II, the locally enhanced-MOPSO, along with the

designed 𝜀-bias selection method and the evolution restart

strategy, is introduced. Section III presents the optimal control

formulation of the constrained atmospheric entry trajectory

design problem in detail. Numerical simulation experiments

as well as a number of comparative studies are demonstrated

in Section IV. Finally, this article is concluded in Section V.

II. BIASED PARTICLE SWARM OPTIMIZATION APPROACH

A. Constrained Optimal Control Problem

In a constrained optimal control problem, a dynamical

system is commonly adhered, which has the form of

�̇�(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡)) (1)

where 𝑥(𝑡) ∈ R
nx and 𝑦(𝑡) ∈ R

nu represent, respectively, the

system state and control variables defined on the time interval

𝑡 ∈ [𝑡0, 𝑡f ]. 𝑛x and 𝑛u are the dimensions of the state and

control. Variable path constraints and boundary conditions are

frequently considered for a number of practical missions. They

can be expressed by:

𝑔(𝑥(𝑡), 𝑢(𝑡)) ≤ 0
𝑥(𝑡0) = 𝑥0
𝑥(𝑡f ) = 𝑥f

(2)

The objective function is used to evaluate the system

performance for a specific mission profile. A general form

of it can be written as:

min
u(t)

𝐽1 =

∫︁ tf

t0

𝐿(𝑥(𝑡), 𝑢(𝑡))𝑑𝑡+Φ(𝑥(𝑡f ), 𝑡f ) (3)

where 𝐿(𝑥(𝑡), 𝑢(𝑡)) and Φ(𝑥(𝑡f ), 𝑡f ) are, respectively, the

process and terminal performance indicators. As a result, the

overall constrained optimal control problem can be modeled

as:

min
u(t)

𝐽1 =

∫︁ tf

t0

𝐿(𝑥(𝑡), 𝑢(𝑡))𝑑𝑡+Φ(𝑥(𝑡f ), 𝑡f )

s.t. ∀𝑡 ∈ [𝑡0, 𝑡f ]
�̇�(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡))
𝑔(𝑥(𝑡), 𝑢(𝑡)) ≤ 0
𝑥(𝑡0) = 𝑥0
𝑥(𝑡f ) = 𝑥f

(4)

B. Unconstrained Multi-Objective Optimal Control Problem

A direct transcription method is adopted to solve the

constrained optimal control problem given by Eq.(4). That is,

the control variable is parameterized over a finite set of tem-

poral nodes {𝑡i}
Nk−1
i=0 , in which 𝑁k stands for the size of the

temporal set. The discretized control sequence is then denoted

as 𝑢 = (𝑢0, ..., 𝑢Nk−1). After the control discretization and

numerical integration for ordinary differential equations, the

static version of problem (5) can be written as:

min
u(ti)

𝐽1 =

Nk−1
∑︁

i=0

𝐿(𝑥(𝑡i), 𝑢(𝑡i))𝑑𝑡+Φ(𝑥(𝑡Nk
), 𝑢(𝑡Nk

))

s.t. ∀𝑡i, 𝑖 ∈ {0, 1, ..., 𝑁k}

𝑥(𝑡i+1) = 𝑥(𝑡i) + ∆ℎ

s
∑︁

j=1

𝑏j𝑓(𝑥j , 𝑢ij)

𝑥j = 𝑥(𝑡i) + ∆ℎ

s
∑︁

m=1

𝑎jm𝑓(𝑥m, 𝑢im)

𝑔(𝑥(𝑡i), 𝑢(𝑡i)) ≤ 0
𝑥(𝑡Nk

) = 𝑥f
(5)

where 𝑥m and 𝑢im stand for the intermediate state and

control values defined on [𝑡i, 𝑡i+1]. ∆ℎ is the step length,

while 𝑏j and 𝑎jm are discretization coefficients determined by

the applied numerical integration method. Take fourth order

Runge-Kutta method as an example, (𝑏1, 𝑏2, 𝑏3, 𝑏4) can be set

to ( 16 ,
1
3 ,

1
3 ,

1
6 ), whereas the non-zero elements of 𝑎jm can be

assigned as (𝑎21, 𝑎32, 𝑎43)=(
1
2 ,

1
2 , 1), respectively.

Instead of directly addressing the constrained optimiza-

tion problem (5), a slight modification of the problem for-

mulation may also be effective. For example, the standard

interior-point method (as well as its enhanced versions) applies

the barrier function and solves the scalarized version of

the problem. In this subsection, we introduce an additional

normalized objective function so as to transform problem (5)

to an unconstrained multi-objective version, which will then

be optimized by the MOPSO algorithm introduced in the

following subsections.

If the optimization problem contains 𝑚 inequality con-

straints and 𝑛 terminal constraints, the constraint violation

value of a candidate solution (𝑥, 𝑢) for the 𝑖th inequality

constraint and 𝑗th terminal constraint can be written as:

𝜇ig =

⎧

⎪

⎨

⎪

⎩

0, 𝑔i(𝑥, 𝑢) ≤ 0;
gi(x,u)
ḡi , 0 ≤ 𝑔i(𝑥, 𝑢) ≤ 𝑔i;

1, 𝑔i(𝑥, 𝑢) ≥ 𝑔i.

(6)

𝜇jxf
=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1, 𝑥j(𝑡Nk
) ≥ �̄�jf ;

xj(tNk
)−xj

f

x̄j

f
−xj(tNk

)
, 𝑥jf ≤ 𝑥j(𝑡Nk

) ≤ �̄�jf ;

0, 𝑥j(𝑡Nk
;𝑢) = 𝑥jf ;

xj

f
−xj(tNk

)

xj

f
−xj

f

, 𝑥jf ≤ 𝑥j(𝑡Nk
) ≤ 𝑥jf ;

1, 𝑥jf ≥ 𝑥j(𝑡Nk
).

(7)

In Eq.(6) and Eq.(7), 𝑔i=max(𝑔i(𝑥, 𝑢)) is the maximum

violation value of the 𝑖th inequality constraint in the cur-

rent searching space. The terms �̄�jf and 𝑥jf can be defined

analogically. 𝑥jf stands for the 𝑗th targeted terminal state

value. For simplicity, constraint functions defined in Eq.(6) and

Eq.(7) assume scalar values of the constraints. If the constraint

functions of a candidate solution become a vector, to execute

the division operation, each element in the vector should be

divided by 𝑔i, �̄�jf or 𝑥jf , correspondingly.

Note that 𝑔i, �̄�jf and 𝑥jf are mainly applied to normalize

each constraint violation. From the definition of Eq.(6) and
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Eq.(7), it is obvious that the values of 𝜇ig , 𝜇jxf
∈ [0, 1]

are able to reflect the magnitude of constraint violation for

the constraints given by (2). As a result, based on Eq.(6)

and Eq.(7), the normalized constraint violation function can

be added together, thereby resulting in a scalar constraint

violation 𝐽2 ∈ [0, 1] which has the form of:

𝐽2 =
1

𝑚

m
∑︁

i=1

𝜇ig +
1

𝑛

n
∑︁

j=1

𝜇jxf
(8)

The scalar constraint violation is considered as a separate

objective function to be minimized.

By minimizing the objective functions given by Eq.(3)

and Eq.(8), the original problem formulation has been trans-

formed to an unconstrained bi-objective version. A compact

form of this unconstrained bi-objection optimal control model

is written as:

min
u(t)

𝐽1 =

∫︁ tf

t0

𝐿(𝑥(𝑡), 𝑢(𝑡))𝑑𝑡+Φ(𝑥(𝑡f ), 𝑡f )

min
u(t)

𝐽2 = 1
m

m
∑︁

i=1

𝜇ig +
1

𝑛

n
∑︁

j=1

𝜇jxf

(9)

C. MOPSO Algorithm

To find a control sequence such that the two mission ob-

jectives considered in Eq.(9) are optimized, certain parameter

optimization algorithms should be adopted. In this paper, we

focus on the design and test of a modified MOPSO algorithm.

MOPSO is a typical bio-inspired multi-objective optimization

algorithm [29]. For the considered problem, each particle

among the swarm represents a potential control sequence

consisting of a position vector z and a velocity vector v:

z(𝑠) = [u1(𝑠), u2(𝑠), ..., uNj
(𝑠)]

v(𝑠) = [v1(𝑠), v2(𝑠), ..., vNj
(𝑠)]

(10)

In Eq.(10), 𝑁j and 𝑠 = 1, 2, ..., 𝑁s are, respectively, the

size of the swarm and the index of the current iteration. For

convenience reasons, we denote zj , 𝑗 = 1, 2, ..., 𝑁j as the

𝑗-th component of z(𝑠) in the rest of the paper. During the

optimization iteration, the particle explores the searching area

by introducing a recurrence relation:

z(𝑠+ 1) = z(𝑠) + v(𝑠+ 1) (11)

where v(𝑠+ 1) is given by:

v(𝑠+ 1) = 𝑤 · v(𝑠)
+𝑐1𝑟1 · (p(𝑠)− z(𝑠))
+𝑐2𝑟2 · (g(𝑠)− z(𝑠))

(12)

Variables appeared in Eq.(12) are defined below:

𝑤: The inertia weight factor;

p(𝑠): The personal best position in the 𝑠th iteration;

g(𝑠): The global best position in the 𝑠th iteration;

𝑐1, 𝑐2: Factors reflecting strength of attraction;

𝑟1, 𝑟2: Two random constants on (0, 1].

In terms of the personal best position of the 𝑗th particle

pj(𝑠), this vector should be updated via

pj(𝑠) =

⎧

⎨

⎩

rand{pj(𝑠− 1), zj(𝑠)} if zj(𝑠) ̸⊀≻ pj(𝑠− 1)
pj(𝑠− 1) if zj(𝑠) ≺ pj(𝑠− 1)
zj(𝑠) if zj(𝑠) ≻ pj(𝑠− 1)

(13)

where pj(𝑠−1) is the personal best position of the 𝑗-th particle

at the (𝑠−1)-th iteration. Here, the notation ≺ is the dominant

relation determined by the concept of Pareto optimal, and z1 ≺
z2 means z1 is dominated by z2. In Eq.(13), the character

̸⊀≻ means the mutually dominant relation. In this case, the

algorithm randomly selects one of these two vectors.

The nondominated solutions are then collected to form

an external archive A(𝑠) = [z1(𝑠), z2(𝑠), ..., zNa
(𝑠)], where

|A(𝑠)| = 𝑁a stands for the number of nondominated solutions

in the current archive and this number will be changed during

the evolutionary process. Note that 𝑁a ≤ 𝑁A, in which

𝑁A represents the maximum size of the archive specified by

the designer. To update A(𝑠), the following algorithm (e.g.,

Algorithm 1) is performed. Note that in Algorithm 1, |·| stands

for the size of a set. After performing A(𝑠) = A(𝑠)∪A(𝑠−1)

Algorithm 1 Archive update process

Input: A(𝑠− 1) and p(𝑠);
Output: A(𝑠);
/*Main update process*/
for 𝑗 := 1, 2, ..., |p(𝑠)| do

for 𝑚 := 1, 2, ..., |A(𝑠− 1)| do
if zm ≺ pj then

Remove zm from A(𝑠− 1)
Set an indicator 𝐼𝑛𝑑 = 1

else
Break

end if
end for
if 𝐼𝑛𝑑 ̸= 1 then ◁ //*No individual in A(𝑠− 1) dominates

pj*//

Add pj to A(𝑠)
end if

end for
Perform A(𝑠) = A(𝑠) ∪ A(𝑠− 1)
Output A(𝑠)
/*End archive update process*/

in Algorithm 1, if the size of A(𝑠) is greater than 𝑁A, then we

delete the most infeasible one or the less optimal one according

to the value of 𝐽1 or 𝐽2 until the size reaches 𝑁A.

D. 𝜀-Bias Selection

As investigated in the previous work [23], [24], the

performance of using a heuristic algorithm to trajectory op-

timization problems might be significantly degraded if certain

actions are not taken to put emphasis on the searching direction

toward the feasible region. Consequently, we design a bias

selection strategy, named 𝜀-bias selection, to further update

the external archive.

Prior to introduce the 𝜀-bias selection strategy in detail, a

reduced version of this strategy is firstly presented to illustrate

the concept of bias selection. Subsequently, this reduced

version will be extended to a more general one.
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Let us consider two candidate particles z1 and z2 among

the set A(𝑠). Apparently, compared to 𝐽1, the total degree of

constraint violation 𝐽2 has a higher priority and should be

biased. If we denote the value of 𝐽1 and 𝐽2 for z1 and z2 as

𝐽1(z1), 𝐽1(z2), 𝐽2(z1), and 𝐽2(z2), then a constraint violation

(CV)-based bias selection strategy can be designed. That is,

the particle z1 is considered superior with respect to z2 if and

only if the following CV-dominance conditions are triggered:

1) (𝐽1(z1) < 𝐽1(z2)) ∧ (𝐽2(z1) = 𝐽2(z2) = 0);
2) 0 < 𝐽2(z1) < 𝐽2(z2);
3) (𝐽2(z1) = 0) ∧ (𝐽2(z2) > 0).

The CV-based selection rules suggest that the comparison

between particles should be made strictly according to the

biased objective (e.g., 𝐽2). In this way, the nondominated

feasible candidate can always be preserved until a more

optimal candidate is obtained. In the following, we extend

the CV-based bias selection strategy to a more general 𝜀-bias

selection method. Specifically, in this strategy, the particle z1
is considered superior to another candidate z2 if the following

𝜀-dominance conditions are triggered:

1) (z2 ≺ z1) ∧ (𝐽2(z1) ≤ 𝜀) ∧ (𝐽2(z2) ≤ 𝜀);
2) 𝜀 < 𝐽2(z1) < 𝐽2(z2);
3) (𝐽2(z1) ≤ 𝜀) ∧ (𝐽2(z2) > 𝜀).

According to Eq.(9), it is obvious that 𝐽2 ∈ [0, 1]. If 𝜀 = 0,

then the 𝜀-dominance conditions reduce to the CV-dominance

conditions. On the contrary, if 𝜀 = 1, then the 𝜀-dominance

conditions are equivalent to the standard Pareto-dominance

rules ≺ (no bias case) which are widely applied in the multi-

objective approaches (see e.g., [26] and [27]). The value of

𝜀 ∈ [0, 1] can be viewed as a balancing parameter able to

adjust the degree between these two extreme cases. Here we

present a simple adaptive formula in order to set 𝜀:

𝜀 = 𝐽max2 − 𝐽min2 (14)

where 𝐽max2 and 𝐽min2 represent, respectively, the maximum

and minimum 𝐽2 values in the archive. At the beginning of

the evolution, when all the particles are relatively far from the

feasible border, 𝜀 tends to be small according to Eq.(14) and

more emphasis/attention can be paid to the constraint violation.

On the other hand, when some of the particles are close to

the feasible border or they are already in the feasible region, 𝜀
tends to be larger such that 𝐽1 and 𝐽2 can be considered at the

same time. Compared to the CV-based bias selection strategy,

the extended 𝜀-bias selection strategy offers more flexibility to

simultaneously optimize the objective function and reduce the

solution infeasibility. Note that the 𝜀-bias selection strategy

will be applied to update the external archive A(𝑠) at the end

of each iteration.

E. Local Exploration

Early works on developing MOPSO suggested that this

algorithm has a strong global exploration ability [26], [28]. To

also emphasize the local exploration of the searching process,

a gradient-assisted operation can be introduced. It is worth

noting that the combination of an evolutionary algorithm with

a gradient-based method to improve the local search can be

found in a number of previous works [30], [31]. Based on

the reported results, it was verified that such a local update

strategy has the capability of improving the quality of the final

solution. Therefore, we introduce this approach to update the

elements in the archive, thus making more progresses during

the iteration.

Let us denote the directional derivative of the two objec-

tives along em as

∇em𝐽1(zm) = lim
∆→0

{︂

𝐽1(zm +∆ · em)− 𝐽1(zm)

∆

}︂

∇em𝐽2(zm) = lim
∆→0

{︂

𝐽2(zm +∆ · em)− 𝐽2(zm)

∆

}︂ (15)

in which 𝑚 = 1, ..., 𝑁a, and zm ∈ A(𝑠). ∆ stands for the step

length. It was shown in [31] that the above two directional

derivatives can be further written as:

∇em𝐽1(zm) = (∇𝐽1(zm))T · em
∇em𝐽2(zm) = (∇𝐽2(zm))T · em

(16)

In Eq.(16), ∇𝐽(zm) stands for the gradient of 𝐽 with respect

to zm. A direction vector em which descends both 𝐽1 and 𝐽2
can be obtained via

em = −
(︁

𝜔1
∇J1(zm)

‖∇J1(zm)‖ + 𝜔2
∇J2(zm)

‖∇J2(zm)‖

)︁

(17)

where the two weight coefficients hold 𝜔1+𝜔2 = 1, and 𝜔1 <
𝜔2. Subsequently, the elements among the current archive are

updated via

ẑm = zm +∆ · em (18)

It is important to remark that by viewing the definition of

𝜇g and 𝜇xf
, it is obvious that the resulting objective function

𝐽2 may not be differentiable at some points. Hence, we

replace their equations by a piecewise smooth form in practical

applications. More precisely, the repair of 𝜇g is achieved by

Eq.(19), where 𝜆 and 𝜅 are positive constants. Note that the

repair of 𝜇xf
(e.g., 𝜚(𝜇xf

, 𝜆, 𝜅)) can be obtained analogically.

In this study, the gradient update process is performed in every

𝐸 generation.

F. Evolution Restart Strategy

For some practical constrained optimization problems,

complex constraints might be involved in the problem formu-

lation. Due to the strong nonconvexity or nonlinearity of these

constraints, the feasible searching space can be significantly

restricted and the PSO algorithm is likely to stagnate in one

of the local infeasible regions. In order to tackle this problem,

we propose an evolution restart strategy.

The key component of this restart strategy is to determine

whether the current archive has already got stuck in an

infeasible region. Actually, this can be reflected by analyzing

𝐽2 value for all the particles. If the difference of 𝐽2 value

between particles is small, then the current swarm is highly

likely to converge to an infeasible region. More precisely, the

following two conditions can be applied as an indicator of

getting stuck in infeasible regions:

1) ∀zm ∈ A(𝑠), 𝐽2(zm) ̸= 0,

2) The variance of 𝐽2(zm) is less than a restart threshold 𝜇.

If these conditions are triggered, the evolution restart strategy

will be executed. That is, all the particles among the swarm
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𝜚(𝜇g, 𝜆, 𝑛) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1, 𝜇g > 1 + 𝑛;

(−𝜇2
g + 2(1 + 𝜅)𝜇g − (𝜅− 1)2)/4𝜅, 1− 𝜅 ≤ 𝜇g ≤ 1 + 𝜅;

𝜇g, 𝜆 < 𝜇g < 1− 𝜅;

(𝜇g + 𝜆)2/4𝜆, −𝜆 ≤ 𝜇g ≤ 𝜆;

0, 𝜇g < −𝜆.

(19)

are randomly re-generated on their searching space. Although

evolution histories may contain valuable information and can

potentially provide feedback so as to guide the optimization,

determining whether these historical data are promising is

still a challenging issue. In addition, a large amount of space

should be pre-allocated to store these historical data. Hence,

we decide to simply discard these data and restart the evolution

by randomly re-initializing all the particles in the swarm.

G. Overall Algorithm Framework

For the proposed algorithm, the global best particle g(𝑠)
is selected from the updated archive A(𝑠). Note that in the

transformed problem formulation, 𝐽1 is the primary mission

objective to be optimized, while 𝐽2 reflects the constraint

violation of the solution. Therefore, g(𝑠) can be selected by

following the procedures specified in Algorithm 2.

Algorithm 2 g(𝑠) selection process

Input: A(𝑠);
Output: g(𝑠);
/*Main process*/
Initialize F(𝑠) = {} and IF(𝑠) = {}
for 𝑚 := 1, 2, ..., |A(𝑠)| do

if 𝐽2(zm) > 0 then
IF(𝑠) = IF(𝑠) ∪ zm

else
F(𝑠) = F(𝑠) ∪ zm

end if
end for
if F(𝑠) = ∅ then

g(𝑠) = argminzm∈IF(s) 𝐽2(zm)
else

g(𝑠) = argminzm∈F(s) 𝐽1(zm)
end if
Output g(𝑠)
/*End the process*/

In summary, the conceptual block diagram of the pro-

posed MOPSO-based trajectory optimization algorithm is vi-

sualized in Fig. 1. In order to clearly present how the opti-

mization process is executed, the general steps are summarised

in the pseudocode (see Algorithm 3). Note that in Step 9

of Algorithm 3, the evolutionary process is terminated when

either of the following two rules can be triggered:

1) 𝑠 ≥ 𝑁s;
2) ∀zm ∈ A(𝑠), 𝐽2(zm) = 0 and the difference of E(𝐽2)

between two consecutive iterations (e.g., the 𝑠-th and the

(𝑠− 1)-th iteration) is less than a tolerance value 𝜖.

In the second rule, E(·) outputs the expectation value and this

rule indicates no further improvement can be made among

feasible solutions.

Algorithm 3 General steps for the optimization process

Input: The algorithm parameters 𝑤, 𝑟1, 𝑟2, 𝑐1, 𝑐2, 𝜔1, 𝜔2,
∆, 𝑁j , 𝑠 = 1, and 𝑁s;

Output: The final archive A(𝑠);
/*Main optimization iteration*/
Step 1: Randomly initialize the position and velocity vectors

of the particles;
Step 2: Obtain the state trajectory using numerical

integration;
Step 3: Calculate the two objective values for all particles

among the current swarm;
Step 4: Apply the nondominant sorting and Algorithm 1

to construct and update the archive A(𝑠);
Step 5: Update A(𝑠) via the gradient-assisted local

exploration;
Step 6: Perform the 𝜀-bias selection process to

update A(𝑠);
Step 7: Search the global best particle g(𝑠) from A(𝑠)

via Algorithm 2;
Step 8: Update the velocity and position vectors of the

particles;
Step 9: Check whether the termination condition is

triggered?
if not, set 𝑠 = 𝑠+ 1 and return back to Step 2.

Step 10: Terminate the optimization and output the final
archive A(𝑠);

/*End optimization iteration*/

III. CONSTRAINED ATMOSPHERIC ENTRY PROBLEM

In this section, an optimal control formulation of the

constrained atmospheric entry trajectory design problem is

detailed. Specifically, the system dynamics used to describe the

motion of the spacecraft are formulated in Section III.A. Fol-

lowing that, a number of entry boundary and path constraints

are constructed in Section III.B. Finally, the mission objectives

selected to assess the performance of the entry maneuver are

introduced in Section III.C.

A. System Model

The following set of first order differential equations can

be used for describing the motion of the entry vehicle:

�̇� =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑉 sin 𝛾
V sinψ cos γ
r cosφ

V cosψ cos γ
r

−D
m − 𝑔 sin 𝛾

L cosσ
mV + (V

2−gr
rV ) cos 𝛾

L sinσ
mV cos γ + V

r sin𝜓 cos 𝛾 tan𝜑

𝐾σ

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝑥+

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0
0
0
0
0
0

−𝐾σ

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝑢

(20)

where the system state variables are defined as 𝑥 =
[𝑥p, 𝑥a, 𝜎]

T ∈ R
7. Here, 𝑥p = [ℎ, 𝜃, 𝜑]T ∈ R

3 determines the
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Fig. 1: Conceptual block diagram of the proposed algorithm

3-D position of the entry vehicle, consisting of the altitude ℎ,

longitude 𝜃 and latitude 𝜑, respectively. The radius distance

𝑟 can be obtained via 𝑟 = ℎ + 𝑅e, where 𝑅e denotes the

radius of the Earth. The components of 𝑥a = [𝑉, 𝛾, 𝜓]T ∈ R
3

stand for the velocity, flight path angle (FPA), and the heading

angle of the entry vehicle, respectively. [𝜎, 𝜎c] denotes the

actual and demanded bank angle profiles, and the control

variable is assigned as 𝑢 = 𝜎c. The physical meaning of other

variables/parameters appeared in Eq.(20), together with their

values or calculation equations, can be found in Table I.

TABLE I: Variable Definitions

Variables Calculation/values

g: gravity g = µ

r2

r: radius distance r = h+ Re

ρ: atmospheric density ρ = ρ0exp(−h/H)
D: drag force D = 1

2
ρCDV

2

L: lift force L = 1

2
ρCLV

2

CD : drag coefficient: CD = CD0
+ CD1

α+ CD2
α2

CL: lift coefficient: CL=CL0
+ CL1

α
S: reference area S=250m2

Re: radius of the Earth Re=6371.2km

ρ0: sea-level air density ρ0=1.2256kg/m3

H: density scale height H=7.25km

m: mass m=92073kg

µ: gravitational parameter µ=398603.2km3/s2

B. Entry Phase Constraints

During the planetary entry flight, the following four types

of constraints are required to be satisfied:

1) Safety corridor constraints;

2) Variable terminal boundary constraints;

3) State and control path constraints;

4) Angular rate constraints.

1) Safety corridor constraints: To protect the structure

of the entry vehicle, the aerodynamic heat transfer rate 𝑄, the

dynamic pressure 𝑃 , and the load factor 𝑁L must be restricted

to certain safety corridors during the entire flight. This can be

expressed by:

0 ≤ 𝑄(𝑟, 𝑉, 𝛼) ≤ �̄� (21)

0 ≤ 𝑃 (𝑟, 𝑉 ) ≤ 𝑃 (22)

0 ≤ 𝑁L(𝑟, 𝑉 ) ≤ �̄� (23)

In Eqs.(21)-(23), the permissable peak values of (�̄�, 𝑃 , �̄�) are

set to (125, 280, 2.5). The heat transfer rate 𝑄 is a function

of radial distance 𝑟, velocity 𝑉 and angle of attack (AOA)

𝛼, whereas the dynamic pressure 𝑃 and load factor 𝑁L are

mainly determined by the radial distance 𝑟 and the velocity 𝑉 .

The value of 𝛼 (in degree) can be computed via the following

equation [32]:

𝛼 =

{︂

40− 𝑤1(𝑉 − 𝑉 )2/3402, if 𝑉 < 𝑉 ;

40, if 𝑉 ≥ 𝑉 .
(24)

in which 𝑉 = 4570m/s, and the value of 𝑤1 is equal to

0.20705.

It is worth noting that in Eq.(21), the heat transfer rate

𝑄 consists of two major components:

𝑄(𝑟, 𝑉, 𝛼) = 𝑄r(𝛼) ·𝑄d(𝑟, 𝑉 ) (25)

in which 𝑄r(𝛼) stands for the aerodynamic heat flux and

is calculated via Eq.(26), whereas 𝑄d(𝑟, 𝑉 ) represents the

radiation heat transfer and is given by Eq.(27).

𝑄r(𝛼) = 𝑞0 + 𝑞1𝛼+ 𝑞2𝛼
2 + 𝑞3𝛼

3 (26)
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𝑄d(𝑟, 𝑉 ) = 𝑘Q𝜌
0.5𝑉 3.07 (27)

In Eq.(26), (𝑞0, 𝑞1, 𝑞2, 𝑞3)=(1.067,−1.101, 0.6988,−0.1903).
Furthermore, the dynamic pressure and load factor can be

calculated via Eq.(28) and Eq.(29), respectively.

𝑃 (𝑟, 𝑉 ) = 1
2𝜌𝑉

2 (28)

𝑁L(𝑟, 𝑉 ) =
√
L2+D2

mg
(29)

2) Boundary constraints: The terminal boundary con-

straints are imposed such that the flight states can reach

specific values at 𝑡f in order to start the terminal area energy

management phase [11], [16]. Specifically, the altitude and

flight path angle are required to satisfy

|ℎ(𝑡f )− ℎf | ≤ 𝜀hf

|𝛾(𝑡f )− 𝛾f | ≤ 𝜀γf
(30)

where ℎf = 30𝑘𝑚 and 𝛾f = −5∘ are the targeted terminal

altitude and flight path angle values, respectively. 𝜀hf
= 500m

and 𝜀γf = 0.1∘ stand for the permissable errors. Moreover, the

terminal velocity is required to satisfy

𝑉 minf ≤ 𝑉 (𝑡f ) ≤ 𝑉 maxf

where 𝑉 minf and 𝑉 maxf are set to 900m/s and 1100m/s,

resulting in 𝑉 (𝑡f ) ∈ [900, 1100]𝑚/𝑠.

3) State and control path constraints: The state and

control path constraints are imposed such that system state and

control variables can be constrained within tolerant regions

during the entire entry flight (e.g., ∀𝑡 ∈ [0, 𝑡f ]). These

constraints can be written as:

ℎ ≤ ℎ(𝑡) ≤ ℎ̄ 𝜃 ≤ 𝜃(𝑡) ≤ 𝜃
𝜑 ≤ 𝜑(𝑡) ≤ 𝜑 𝑉 ≤ 𝑉 (𝑡) ≤ 𝑉
𝛾 ≤ 𝛾(𝑡) ≤ 𝛾 𝜓 ≤ 𝜓(𝑡) ≤ 𝜓
𝜎 ≤ 𝜎(𝑡) ≤ �̄� 𝜎c ≤ 𝜎c(𝑡) ≤ �̄�c

(31)

where 𝑥 = [ℎ, 𝜃, 𝜑, 𝑉 , 𝛾, 𝜓, 𝜎] and 𝑢 = 𝜎c denote the

lower bounds of 𝑥 and 𝑢, while �̄� = [ℎ̄, 𝜃, 𝜑, 𝑉 , 𝛾, 𝜓, �̄�] and

�̄� = �̄�c represent the upper bounds with respect to 𝑥 and 𝑢,

respectively.

4) Angular rate constraints: Early studies suggested that

compared to the position and velocity profiles, more oscilla-

tions can be found in the angular variable trajectories, which

is usually not desirable [11], [16]. Therefore, different from

some existing research works [11], [16], [17], [25], the angular

rate constraints are also considered in this work such that the

evolution of the corresponding angular variables can become

smoother. Specifically, these constraints can be modeled as:

�̇� ≤ �̇�(𝑡) ≤ ¯̇𝛾

�̇� ≤ �̇�(𝑡) ≤
¯̇
𝜓

�̇� ≤ �̇�(𝑡) ≤ ¯̇𝜎

(32)

in which the values of [�̇�, �̇�, �̇�] and [¯̇𝛾,
¯̇
𝜓, ¯̇𝜎] are assigned as

[−0.5∘,−0.5∘,−0.5∘]/s and [0.5∘, 0.5∘, 0.5∘]/s, respectively.

Imposing these constraints might be helpful for some particu-

lar uses of the entry vehicle such as the reginal reconnaissance

[14] and payload delivery [33]. Since the angular trajectories

are less likely to have instantaneous variations, the informa-

tion gathering of inaccessible areas or high-precision payload

delivery tends to be much easier.

C. Objectives

The atmospheric entry mission is established as an opti-

mization problem. Different performance indices reflecting the

quality of the entry flight are formulated in objective functions.

For example:

∙ An efficiency-related measure can be designed by min-

imizing the flight time duration (e.g., the terminal time

instant 𝑡f . That is,

Obj1 = min 𝑡f (33)

∙ A safety-related measure can be selected by minimizing

the total amount of aerodynamic heat. That is,

Obj2 = min

∫︁ tf

t0

𝑄𝑑𝑡 (34)

∙ An entry capability-related measure can be designed by

maximizing the cross range (e.g. the terminal 𝜑(𝑡f )). That

is,

Obj3 = max𝜑(𝑡f ) (35)

∙ An energy-related measure can be designed by minimiz-

ing the terminal kinetic energy, which is written as

Obj4 = min𝑉 (𝑡f ) (36)

In the later simulation result section, all the above objec-

tives will be considered separately.

IV. TEST RESULTS AND ANALYSIS

A. Test Case Specification

To carried out the simulations, algorithm-related pa-

rameters are firstly assigned. Specifically, 𝑟1 and 𝑟2 are

randomly generated on the interval [0, 1]. [𝑐1, 𝑐2] is set to

[1.49445, 1.49445], while 𝑤 is calculated via 𝑤 = (1+ 𝑟1)/2.

𝜔1 and 𝜔2 are set to 0.3 and 0.7, respectively. [𝑁j , 𝑁s, 𝑁k]
is assigned as [40, 2000, 100]. 𝜖 = 10−6. The demanded bank

angle is randomly initialized within the region 𝜎c ∈ [−90, 1]∘.

The proposed algorithm is performed on a PC with Intel Quar-

Core i7-4790 CPU (8GB RAM).

For the considered atmospheric entry problem, four test

cases are investigated. Case 𝑖 stands for minimizing 𝐽1 = Obji,

𝑖 ∈ {1, 2, 3, 4} while simultaneously satisfying all types of

constraints. By carrying out the reformulation process shown

in Fig.1, the total amount of constraint violation value is

considered as an additional objective function 𝐽2 for each

mission case, thereby resulting in four unconstrained bi-

objective formulations.

To highlight the advantage of using the proposed de-

sign, comparative studies were performed between the bi-

ased MOPSO approach and other well-developed trajectory

optimization algorithms. For example, a PSO-based trajectory

optimization method suggested in [16], [17], together with

an artificial bee colony-based trajectory planning algorithm

reported in [25], is chosen for the comparative study. It is

worth noting that for these two evolutionary methods, the

penalty function strategy is applied to deal with constraints
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existing in the optimization model. In addition, the evolution

restart strategy introduced in Section II.F is also applied in

these methods. We abbreviate these two methods as PFPSO

and PFABC, respectively.

B. Performance of Different Methods

Optimal results calculated by applying different heuristic

trajectory optimization algorithms for a single trial are firstly

presented and analyzed in this subsection. The optimized

state/control evolutions, along with the corresponding path

constraint history, are visualized in Figs.2-5 for the four entry

mission cases.
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Fig. 2: State/control/constraint evolutions: Case 1

As can be observed from Figs.2-5, the pre-specified

entry terminal boundary conditions and safety-related path

constraints can be satisfied for all the mission cases, thereby

confirming the validity of the investigated heuristic meth-

ods. That is, both the penalty function-based and the multi-

objective transformation-based constraint handling strategies

are able to guide the searching direction toward the feasible

region. In terms of the flight trajectories, same trend can be

observed from the solutions generated by different heuristic

algorithms for all the considered mission cases. Moreover, for

the third mission case, the three evolutionary methods can

produce almost identical solutions. Moreover, by viewing the

system state and control profiles, it is clear that the obtained

trajectories are relatively smooth. This can be attributed to the

differential equation imposed on the actual bank angle variable

𝜎. This equation can also be understood as a first-order filter

and it indirectly restricts the rate of the actual bank angle.

A comparison is also made between the proposed method

and another numerical optimal control solver, named CASADI

[34], for solving the constrained atmospheric entry problem

(the interior point solver IPOPT [35] is applied in CASADI).
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Fig. 3: State/control/constraint evolutions: Case 2
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Fig. 4: State/control/constraint evolutions: Case 3

This solver has become increasingly popular and it has been

applied in the literature to address a number of motion

planning or trajectory optimization problems [36], [37]. The

four mission cases are solved using CASADI with 𝜖 = 10−6

as the optimization tolerance. The optimized trajectories are

visualized in Figs.2-5.

As can be viewed from Figs.2-5, the trajectories produced

by the proposed method and CASADI are comparable and

generally follow a same trend. However, CASADI has its

unique features. For example, compared to the developed

approach, CASADI is able to produce much smoother bank
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TABLE II: Optimal results obtained via different methods

Case
No.

PFPSO PFABC Proposed CASADI
𝐽1 𝐽2 𝐽1 𝐽2 𝐽1 𝐽2 𝐽1 𝐽2

Case.1 977.85 0 945.32 0 908.23 0 1061.15 0
Case.2 40212 0 40613 0 39591 0 40018 0
Case.3 16.066 0 16.060 0 16.068 0 15.839 0
Case.4 947.50 0 964.88 0 936.16 0 1086.81 0
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Fig. 5: State/control/constraint evolutions: Case 4

angle profiles for all the mission cases. This is apparent from

Figs.2-5, where more oscillations can be identified on the bank

angle trajectories generated using the proposed method and

other heuristic methods. This is mainly due to the randomness

of the evolutionary process.

To provide a clear demonstration of the performance

achieved via different optimization methods, quantitative re-

sults for cases 1-4 are tabulated in Table II. It should be

noted that to only compare 𝐽1 is not that relevant in cases

where solutions can be infeasible. It is trivial that the objective

function value can be improved if infeasible solutions can

occur. Hence, in the comparison shown in Table II, 𝐽1 and

𝐽2 are pairwise compared between different methods (e.g., a

𝐽1 value is associated with a 𝐽2 value, and it is relevant to

compare this pair with other pairs).

From the solution pairs displayed in Table II, although

the relative differences are in general not really significant, it

can be seen that using the proposed approach is able to achieve

better solutions with more optimal objective values for all the

considered mission cases. Note that for mission case 3, the

aim is to maximize the final latitude value. Hence, a larger

objective value is desired for this mission case. According to

the reported solution pairs and trajectory profiles, no constraint

defined in Section III.B is violated, thus guaranteing the

effectiveness of both the CASADI and the proposed methods.

More importantly, based on these results, one can rule out that

the better 𝐽1 values are not the result of infeasible solutions.

In addition, multiple trials were executed to compare

the convergence ability and robustness of the proposed ap-

proach and the CASADI. Specifically, 100 independent trials

were performed using the proposed method with randomly

initialized swarms. Similarly, 100 trials were performed using

CASADI by specifying different initial guess values. The

resulting solution pairs for these two methods are collected

to generate the histograms (as displayed in Fig. 6 and Fig. 7)

such that the relative difference between these two methods in

terms of 𝐽1 and 𝐽2 can be clearly shown.

Fig. 6: Histograms of 𝐽1 for the two methods

In Fig. 6, the lower and upper outlier boundaries for the

proposed approach and CASADI are indicated by the blue

and red vertical lines, respectively. From the results presented

in Fig. 7, it is obvious that the proposed approach is able to

drive the candidate solution to the feasible region for all the

trials. As for CASADI, on the other hand, outliers can be

found in the obtained 𝐽2 histograms, indicating that CASADI

converges to the local infeasible solution for multiple times.

In addition, by viewing the corresponding 𝐽1 histograms, a

number of outliers can also be detected. This can be attributed

to the result of infeasible solutions. Hence, for the considered

problem, CASADI tends to be sensitive with respect to the

initial guess values and has a greater possibility of converging

to local infeasible solutions. From this point of view, benefiting

from the evolution restart strategy developed in Section II.F,

the proposed approach is more robust than its counterpart.
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Fig. 7: Histograms of 𝐽2 for the two methods

C. Convergence Analysis for Evolutionary Methods

In this subsection, we focus on the analysis of conver-

gence performance of different evolutionary trajectory op-

timization methods investigated in this paper. Specifically,

attention is given to the evolution histories of 𝐽1 as well as

𝐽2 for the considered four mission cases. Firstly, the average

value of 𝐽2 for each optimization iteration is presented in Fig.

8.
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Fig. 8: 𝐽2 evolutions: Cases 1-4

As can be seen from Fig.8, the proposed multi-objective

approach tends to result in faster 𝐽2 convergence histories

for the four mission cases in comparison to the PFABC and

the PFPSO algorithms. Specifically, by applying the proposed

method, the number of optimization iterations required to steer

the average value of 𝐽2 to zero is less than or equal to 10

for all mission cases. While for other methods, this number

becomes almost double. The 𝐽2 evolution trajectories highlight

the fact that the proposed approach is able to quickly locate

the feasible solution and drive the current swarm/population

moving toward the feasible region.

Next, the average value of 𝐽1 for each optimization

iteration is presented in Fig. 9.
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Fig. 9: 𝐽1 evolutions: Cases 1-4

Similar to the results presented in Fig. 8, the proposed

multi-objective approach has the capability of producing faster

𝐽1 convergence histories for all the considered mission cases

in comparison to its counterparts. More precisely, the average

𝐽1 cost value achieved via the proposed algorithm converges

to a more optimal steady value in less optimization iterations.

Then this average 𝐽1 value remains almost the same and

does not decrease significantly in later optimization iterations.

To clearly illustrate this behaviour, convergence results for

mission case 4 are partly extracted and presented. For instance,

by limiting the maximum number of iterations to 60, the

history of the average 𝐽1 value is shown in the last subfigure

of Fig. 9. From this subfigure, it is apparent that enhanced

convergence performance can be obtained by applying the

proposed algorithm for solving the constrained atmospheric

entry trajectory optimization problem.

D. Computational Performance of Different Methods

Apart from the results compared in terms of algorithm

iterations, performance comparison between the new algorithm

and other methods should also be done in terms of the com-

putational cost. To achieve this, attention is firstly given to the

computational times required by CASADI and the proposed

method. Note that an important parameter which can have

an impact on the resulting computational times is the index

of optimization tolerance 𝜖. By specifying different 𝜖 levels,

mission case 1 to case 4 are re-performed and the average

computational results of 50 successful runs are tabulated in

Table III.

According to the data shown in Table III, it is obvious

that the computational times required by the proposed method

are generally less than that of CASADI except for mission

case 1 and mission case 3 when 𝜖 is set to 10−6. In addition,
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TABLE III: Computational performance of CASADI and the proposed method (in seconds)

Case
No.

Proposed CASADI

𝜖 = 10
−6

𝜖 = 10
−7

𝜖 = 10
−8

𝜖 = 10
−6

𝜖 = 10
−7

𝜖 = 10
−8

Case.1 102.24 108.37 113.15 87.86 144.34 208.87
Case.2 32.38 34.33 36.72 39.98 79.98 114.52
Case.3 50.14 54.56 58.25 41.62 82.63 125.56
Case.4 19.42 21.21 23.08 25.47 53.86 82.35

the computational performance of CASADI is more sensitive

with respect to 𝜖 in comparison with the proposed approach.

That is, the computation times required by CASADI tend to

largely increase as 𝜖 becomes tighter. By contrast, only a slight

increase of the computation time can be seen from the reported

results for the proposed global exploration-based approach.

As for different evolutionary algorithms studied in this

paper, we design the comparative experiments by introducing

three indicators. These indicators can reflect the computational

cost required by the evolutionary algorithms from different

aspects:

∙ 𝑇1: The average computation time required for different

evolutionary algorithms to find the first feasible solution.

∙ 𝑇2: The average computation time required for different

evolutionary algorithms to drive the entire population to

the feasible region.

∙ 𝑇3: The average computation time required for different

evolutionary algorithms to drive the average 𝐽1 value of

all feasible solutions to reach a certain level 𝐽1.

For mission cases 1-4, we assign the 𝐽1 values as

(1000, 41000, 16, 1000). 50 independent runs were executed

for all the four mission cases and the average results are

tabulated in Table IV.

In fact, due to the implementation of local exploration

process, 𝜀-bias selection method, and evolution restart strategy,

the proposed method performs additional steps and tends to be

more costly at each iteration. However, certain benefits can be

obtained by performing these additional steps. For example, as

can be observed in Table IV, the proposed approach tends to be

less time-consuming than its counterparts in terms of finding

the first feasible solution and driving the entire population

to the feasible region for all the mission cases. Moreover,

compared to other algorithms, the proposed approach can

rapidly drive the candidate solution set to achieve a desirable

level. As such, the effectiveness and advantages of performing

these additional steps can be appreciated.

E. Impact of the Bias Selection Strategy and Local Exploita-

tion Process

In previous subsections, it is illustrated that we can

achieve better final solutions by applying the proposed method

in comparison to other trajectory optimization planners. How-

ever, it is still not clear whether the implementation of the

proposed bias selection strategy as well as the gradient-based

local exploration method is able to make contributions to

the problem solving process. Therefore, new experiments are

designed to further test the impact of applying the bias selec-

tion strategy and the local exploration method. Two additional

experiments are performed:

∙ Experiment 1: We compare the results produced by

applying the proposed algorithm with and without the

bias selection strategy.

∙ Experiment 2: We compare the results produced by

applying the proposed algorithm with and without the

local exploration method.
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Fig. 10: Experiment 1: 𝐽2 results for mission case 1
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Fig. 11: Experiment 1: 𝐽2 results for mission case 2

The average constraint violation histories (e.g., 𝐽2 evo-

lutions) for mission case 1 and case 2 are presented in Fig.

10 and Fig. 11, respectively. According to the presented 𝐽2
trajectories, it is evident that without using the bias selection

strategy, the proposed algorithm does not work as well as the
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TABLE IV: Computational performance of different evolutionary methods

Case
No.

Proposed PFABC PFPSO
𝑇1(s) 𝑇2(s) 𝑇3(s) 𝑇1(s) 𝑇2(s) 𝑇3(s) 𝑇1(s) 𝑇2(s) 𝑇3(s)

Case.1 0.64 5.23 63.25 1.62 8.64 64.36 2.05 43.27 125.43
Case.2 0.78 7.44 26.68 2.78 15.53 37.50 1.82 15.15 51.15
Case.3 0.73 6.86 25.74 2.36 8.89 31.26 1.44 8.58 30.08
Case.4 0.77 6.89 17.91 2.29 13.21 18.72 1.58 13.26 18.36
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Fig. 12: Experiment 2: 𝐽1 results for mission case 1
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Fig. 13: Experiment 2: 𝐽1 results for mission case 2

one equipped with the bias selection strategy. More specifi-

cally, after executing a large number of iterations, there are

still infeasible solutions among the swarm. In addition, the 𝐽2
convergence history tends to be much slower if a search bias

is not introduced to the multi-objective trajectory optimization

process. Hence, we can conclude that the implementation of

the bias selection strategy is able to have positive influences

for guiding the multi-objective optimization process to find

more promising solutions.

As for the experiment 2, the corresponding 𝐽1 evolution

results for the entry mission case 1 and 2 are illustrated in Fig.

12 and Fig. 13, respectively. From the trajectories displayed

in Fig. 12 and Fig. 13, it is clear that MOPSO equipped

with the local exploration method can quickly steer 𝐽1 to

a more optimal steady value for the considered atmospheric

entry mission cases. Consequently, we can conclude that it

is beneficial to apply the gradient-based local exploration

method to update the candidate set during the optimization

iteration. Note that for experiment 1 and experiment 2, similar

conclusions can also be made for mission cases 3-4. So we

omit the the presentation of their results for space reasons.

F. Impact of the Restart Strategy

In this subsection, we are interested in studying and

testing the effectiveness of the restart strategy (RS) proposed

in Section II.F. Experiments were designed by comparing the

results produced via the proposed algorithm with and without

this strategy. Note that empirical studies were carried out and

the value of the restart threshold is set to 10−3 throughout the

simulation.
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Fig. 14: Failure case examples

100 independent runs were performed for the four mis-

sion cases and statistical results including the average value of

the primary objective (denoted as mean(𝐽1)), the average con-

straint violation value of failure cases (denoted as mean(𝐽2)),

times of infeasible solution converged (denoted as 𝑇d), and the

successful rate (computed via 𝑟s = 1− 𝑇d/100) are tabulated

in Table V.

In addition, Fig. 14 illustrates examples of convergence

failure (collected from Table V) for the four mission cases.

As can be seen from Fig. 14, the 𝐽2 evolution trajectories for

different mission cases converge to a value which is above

zero. This further confirms that the evolution process has the
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TABLE V: Results obtained with and without RS

Case

No.

Proposed method with RS

mean(J1) mean(J2) Td rs
Case.1 944.26 0 0 100%

Case.2 39801 0 0 100%

Case.3 15.952 0 0 100%

Case.4 963.35 0 0 100%

Case

No.

Proposed method without RS

mean(J1) mean(J2) Td rs
Case.1 967.86 0.031 9 91%

Case.2 40168 0.028 9 91%

Case.3 15.902 0.027 6 94%

Case.4 983.77 0.025 13 87%

possibility to get stuck in local infeasible regions for different

reentry mission cases.

By analyzing the results presented in Table V, one can

conclude that better solution pairs (e.g., 𝐽1 and 𝐽2 values) are

obtained if the proposed algorithm is equipped with the restart

strategy. On the contrary, the proposed algorithm without

applying the restart strategy is more likely to converge to local

infeasible regions. This is mainly reflected by the reported

successful rate and times of infeasible solution converged. In

summary, based on the reported results, more optimal solutions

and enhanced convergence performance can be achieved if the

restart strategy is applied in the proposed algorithm. In other

words, the contributions made by the restart strategy to the

proposed algorithm can be appreciated.

V. CONCLUSION

In this paper, a biased MOPSO method is suggested

to solve the constrained trajectory optimization problems.

The proposed method firstly reformulates the original prob-

lem to an unconstrained multi-objective optimization model.

Subsequently, a locally-enhanced evolutionary process, along

with a 𝜀-bias selection method and an evolution restart strat-

egy, is applied to search the optimal solution of the trans-

formed model. To verify the effectiveness of the suggested

approach, numerical experiments were carried out on solving

a constrained atmospheric entry maneuver planning problem.

Comparative studies against other widely-applied trajectory

optimization strategies were also performed and presented.

From the executed simulations, we have concluded that:

∙ By analyzing the comparative results, one can observe

that it is likely to achieve more optimal solutions and en-

hanced convergence performance if the evolution restart

strategy is applied in the proposed algorithm.

∙ Benefits can be acquired from applying the bias selection-

based non-dominant sorting process.

∙ Performing the local line search operation is able to

locally explore the solution space, thereby making further

progresses during the evolutionary process.

Therefore, we believe the constructed approach is of in-

terest to the community focusing on trajectory planner design,

and it can be an effective alternative to offer promising results

for the considered reentry trajectory optimization problem.
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