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SUMMARY

Much previous research shows that safe disposal of human waste has a positive impact on human wellbeing,
while preventing the degradation of ecosystems. However, to date, the role that ecosystems themselves play
in treating humanwaste has been largely neglected.We conceptualize the role nature plays in treating human
waste—acting as a pipeline and/or treatment plant. We estimate that nature is treating ~41.7 million tons of
human waste per year worldwide, a service worth at least 4.4 ± 3.0 billion USD year�1. We demonstrate the
opportunities and challenges of quantifying these ‘‘sanitation ecosystem services,’’ using 48 cities across the
globe as a worked example. In highlighting this, we are not marginalizing the vital role of engineered infra-
structure, but instead are promoting better understanding of how engineered and natural infrastructure
interact within a circular economy. This is a promising route for further research and may allow adaptive
design and management, reducing costs, and improving effectiveness and sustainability.
INTRODUCTION

While researchers and practitioners have discussed themany and

varied benefits natural environments provide to humans (termed

ecosystem services),1 the formal ecosystem service concept

evolved between the 1970s and 1990s.2 Before this, nature was

often little more than an afterthought in many landscape and

development decisions, which were instead driven by human

need and/or economics resulting in most ecosystem services be-

ing degraded through unsustainable use.3 The ecosystem service

concept views nature from an anthropocentric viewpoint,

providing a framework to acknowledge, categorize, and, in

some cases, quantify and monetize them.2 Many other related

terms are also prevalent in this research field (including ecosystem

goods, environmental services, natural capital, nature’s contribu-

tions to people, public goods, and payment for services), but the

fundamental basis is similar. Some have argued against the

anthropocentric approach of the concept, resenting a utilitarian

view of nature—that nature only exists to ‘‘service’’ humans.4

Others argue against using the ecosystem service concept to

value nature, instead stating that we should preserve and protect

nature strictly ‘‘for its own sake,’’ for its ‘‘intrinsic value.’’4 Howev-

er, the consensus is that a better understanding of ecosystem ser-

vices will help sustainability decision making (e.g., through

improved governance and provision of these services).1

Goal 6 of the 2030 Agenda for Sustainable Development rec-

ognizes the importance of ensuring the availability and sustain-

able management of sanitation.5 Traditionally, engineered sys-

tems have been seen as the best way to manage human
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waste, using physical, chemical, and biological processes to

treat it and turn it into harmless products—6the process of sani-

tation. However, it has recently been recognized that nature-

based solutions are essential if Sustainable Development Goal

(SDG) 6 is to be achieved.6 Such ‘‘sanitation ecosystem ser-

vices’’ were identified in the Millennium Ecosystem Assessment

(as ‘‘waste treatment’’),3 but have received little attention since7

and so how nature contributes to sanitation is understudied.8

To the best of our knowledge, no paper has quantified how

much human waste is safely managed by nature nor the value

of these sanitation ecosystem services at continental/global

scales. We reviewed the numerous disciplines covering the

role of nature in sanitation literatures together to provide a foun-

dation for future research (see Box 1 for an example of the termi-

nology used). For example, a Web of Science search for either

‘‘waste treatment’’ or ‘‘sanitation’’ and ‘‘ecosystem service*’’

yielded 85 results on December 17, 2018. Of these papers:

48% were not relevant to sanitation, focusing on other

ecosystem services (e.g., recreation, crop production, etc.).

Thirty-six papers (42%) valued the sanitation/waste treatment

ecosystem services (henceforth referred to as sanitation

ecosystem services) mostly using benefit transfer methods9

(97%) within China (67%). Benefit transfer methods rely on

global values, typically obtained from a limited number of

studies, which are then applied to different land covers across

the world (e.g., extrapolating a few localized studies on the value

of mangrove forests for sanitation to all mangrove forests glob-

ally). As such, benefit transfer methods are known to be error

prone because, for example, not all forests are functionally equal
y Elsevier Inc.
commons.org/licenses/by/4.0/).
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Box 1. Key definitions from environmental, water, sanitation, and hygiene sectors

d Ecosystem: a biological community of interacting organisms and their physical environment

d Ecosystem service: the benefits humans derive from nature1

d Human waste: human waste is the waste products of the human digestive system12

d Treatment: treatment is the process which is used to convert wastewater into a useful effluent (with negligible health and envi-

ronmental issues), which is then returned back to the water cycle13

d Safely managed [sanitation]: informed by the excreta flow diagram (Figure 2)14

d Fecal sludge: fecal sludge comprises all liquid and semi-liquid contents of pits and vaults accumulating in on-site sanitation

installations, namely latrines or septic tanks15

d Excreta flow diagram: expert-based diagrams that capture how excreta physically flows through a city or town, and catego-

rizes it into ten possible service outcomes16,17

ll
OPEN ACCESSPerspective
and their value differs according to local economies.10,11 Finally,

4% reported the impacts of sewage on nature; and 6% docu-

mented the natural processes included in sanitation infrastruc-

ture, with almost all (five out of six papers) documenting the

role constructed wetlands can play in sanitation provision

(detailed below; Figure 1).

Comparable literature searches within related disciplines (e.g.,

using terminology from water, sanitation, and hygiene research

fields [Box 1]) show similar data paucity. For example, recently,

Trimmer et al.18 acknowledge that efficiently delivering sanitation

services likely uses ecosystem services, but concentrate on how

sanitation can increase ecosystem service delivery by devel-

oping a conceptual framework of pathways through which re-

sources recovered from humanwaste can enhance ecosystems.

There is an extensive body of literature on the natural attenuation

in aquifers, but this is mostly about industrial pollutants, although

there is some focus on nitrates that can derive from human

waste.19 How poor management of human waste can damage

ecosystems is also frequently researched,20 as is finding tech-

nical solutions to managing human waste. Expanding sewer net-

works is challenging, especially when cities are dense or un-

planned and there is little financial resource available.21 Thus

finding a way to safely empty pit latrines22,23 and treat this

concentrated waste stream24,25 (known as fecal sludge) has

been a focus. Others have focused on alternative on-site sanita-

tion, such as composting toilets26 and container-based toilets.27

However, the role nature plays in treating humanwaste in each of

these sanitation solutions has been understudied.

Due to gaps in engineered infrastructure, some human waste

ends up being processed by nature. For example, in 2017, 1

billion people (14% of the global population) used toilets where

latrines where disposed in situ and a further 2 billion people

(>25% of the global population) did not have access to basic

sanitation facilities—with 673 million of these defecating in the

open (i.e., behind bushes or into open bodies of water).28 While

some of this waste may present a danger to local populations, it

is likely that natural processes contribute to reducing this risk

either partially or entirely. However, nature’s role in sanitation

is poorly understood and difficult to quantify—predominantly

due to data deficiency—and, as such, nature’s role in sanitation

is likely underappreciated.

At present the contributions that ecosystem services make to

global sanitation provision are unquantified. We recognize the

role of nature in sanitation—introducing the concept that nature

is likely acting as a pipeline and/or treatment plant in some pla-

ces (Figure 1). In addition, we discuss the current challenges in
quantifying and valuing sanitation ecosystem services. Our over-

all aim is to develop a pathway for future research to ensure the

sanitation services provided by nature are neither taken for

granted nor overwhelmed—the latter likely resulting in both envi-

ronmental degradation and the release of unsafe human waste.

CONCEPTUALIZING THE ROLE OF NATURE IN
SANITATION

Here, we conceptualize two main mechanisms by which sanita-

tion ecosystem services may be delivered, with nature taking a

lead or supporting role (alongside engineered infrastructure) by

acting as a pipeline (diluting human waste and taking it away

from people), and a treatment plant (adsorbing and filtering hu-

man waste via competition, die-off, predation, and taking up ni-

trates; Figure 1).29 Where human waste is predominantly made

safe by natural processes with minimal input from infrastructure,

we propose that nature acts as a safe disposal facilitator. In other

locations not all human waste will be made safe, but a proportion

of it may still be treated by ecosystems (i.e., nature acting as a

risk reducer). However, inmany locations humanwaste is treated

predominantly via an engineered sanitation infrastructure. An en-

gineered infrastructure often harnesses natural processes (e.g.,

biological oxidation of wastewater and fecal sludge or anaerobic

digestion)30 and so in these cases nature plays the role of infra-

structure supporter (Figure 1).

Nature as a pipeline
Globally, approximately 711 million people (~9% of the global

population) have sewer connections that do not connect to

wastewater treatment plants; the vast majority of these people

(>90%; >640 million people) live in urban areas.14 Many more

are connected to wastewater treatment plants that do not pro-

vide effective treatment or comply with effluent requirements,

so at least somewastewater ends up in water courses.14 In these

instances, nature may fill a gap by transporting the high-risk

sewage away from human populations, acting as a conduit for

untreated sewage into wetlands or the sea, which then further di-

lutes and treats the waste (discussed below). Evidence of rivers

acting as a pipeline is readily available—between one-fifth and

one-third of all river stretches in Asia, Africa, and Latin America

contain severe fecal coliform pollution.31 Of course, the river

may not be transporting all the human waste safely away from

the source, or may be transporting water (and waste) to other

communities downstream and so the reduced level of risk may

remain unacceptably high for some populations32 (Figure 1). To
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Acting as…

A pipeline
e.g. a river transporting all
human waste safely away

e.g. a river transporting
some human waste safely

away

e.g. natural runoff that flows
into a sewage system

A treatment 
plant

e.g. a wetland making all
human waste safe

e.g. a pit latrine making all
human waste safe

e.g. a wetland making
some human waste safe

e.g. a pit latrine making
some human waste safe

(but some leaks to
groundwater)

e.g. a constructed wetland
making human waste safe

e.g. biological oxidation of
wastewater and faecal sludge

e.g. an unemptied septic tank
- designed to collect solids,
while liquid to drain away
through a soak pit

Role: Safe disposal
facilitator Risk reducer Infrastructure

supporter

Decreasing role of natural infrastructure /
Increasing role of engineered infrastructure

Figure 1. The roles nature can play in treating
human waste
Safe disposal facilitator—human waste made safe
by natural processes with minimal input from en-
gineered infrastructure; risk reducer—while it is
unlikely that all human waste has been treated, a
proportion of the human waste may be made safe
by ecosystems; and infrastructure supporter—hu-
man waste is treated via engineered sanitation
infrastructure, which harnesses natural processes.
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quantify the sanitation ecosystem service from rivers it is neces-

sary to quantify how much human waste is being removed and

relocated by rivers and also account for the health impacts suf-

fered by downstream river users—this could be possible for spe-

cific sites but is challenging to do on a global scale.

Nature as a treatment plant
Over 892 million people (~12% of the global population) use

safely managed on-site facilities where humanwaste is disposed

in situ.14 Although, it is likely that this value is an underestimate

as shared facilities and areas where data on excreta manage-

ment are not available are excluded. Assuming wet fecal mass

of 128 g per person per day,12 we estimate that nature is safely

treating ~41.7 million tons of human waste per year in situ (i.e.,

before liquid entering groundwater).

Accordingly, the soil can act as a filter, with microbiota clean-

ing human waste before it can enter groundwater supplies, and

this sanitation ecosystem service is globally important. Law-

rence et al.29 describe how pathogens are attenuated in unsatu-

rated soil. They can be adsorbed onto soil particles, particularly

viruses that carry an electrical charge. Larger pathogens, such

as protozoan cysts and helminths, can be physically filtered.

Pathogens take a tortuous route through the soil particles, which

enhances dilution and dispersion, increasing the time taken to

reach groundwater. In the meantime they might die through

lack nutrients or be predated by other soil organisms. Nitrate is

taken up biologically by plants29 and microorganisms.19 It is
194 One Earth 4, February 19, 2021
these mechanisms and processes that

we propose underpin sanitation

ecosystem services.3

Research has focused on developing

and testing simple guidelines for minimum

separation distances between latrines and

water sources29,33–37 and defining the

maximum safe hydraulic loading rate for a

pit latrine (i.e., the sustainable rate at which

soil can filter fecal sludge) can only be

done for a particular hydrogeological

setting. Thus, understanding the precise

temporal dynamics of this ecosystem ser-

vice can only be done at local scale. How-

ever, if a full pit is covered (for example,

with soil or concrete) then the pathogens

will eventually be inactivated. The current

World Health Organization (WHO) recom-

mendations are that this waste is made

safe within 1 year (assuming ambient tem-

peratures above 20�C)38 and this has been
confirmed to be suitably conservative by recent work on the

deactivation of various pathogens, including Ascaris eggs.39

Where wastewater ends up in aquatic environments, there is

potential for both dilution to safe levels and natural processes

leading to pathogen attenuation. For example, pathogens can

be both diluted and killed in the saline environment40 by mecha-

nisms, including inactivation by biofilms,41 predation by proto-

zoa,42 sunlight deactivation, reduced nutrients, temperature-

induced stress,43 filtration by filter feeders,44 and flocculation

onto particles (although the latter is reversible).45 The ability of

nature to act alone as a treatment plant in place of engineered

systems has been studied in natural wetlands in New Zealand46

and the US.47 A small body of evidence has linked natural wet-

lands to sanitation ecosystem services by reducing the nutrient

load flowing into downstream water bodies.48,49 In fact, it has

been suggested that natural wetlands and mangroves provide

effective and economical wastewater treatment services50 and

can fill the gap between the level of basic services that a govern-

ment is able to provide and that which rapidly increasing urban

populations require.51 For example, near Kampala, Uganda,

the Navikubo Wetland processes untreated wastewater from

~100,000 households (a process valued at 1.0–1.8 million USD

year�1) and in doing so protects Murchison Bay and Lake Victo-

ria.51 The Mississippi River is diverted through coastal wetlands

in the Gulf of Mexico in order to remove nitrogen.52 The Muthur-

ajawela integrated coastal wetland system in Sri Lanka receives

a high load of domestic wastewater, trapping nutrients while



Figure 2. An example excreta flow diagram
This is similar to the ones found in the Sustainable Sanitation Alliance (SuSanA) collection.16
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pathogenic organisms accumulate and decompose in the wet-

land’s bottom sediments. It is estimated that the marsh and

lagoon area receive raw or partially treated sewage from a pop-

ulation equivalent to 200,000 people.53 The high water table and

recurrent waterlogging in these residential areas, and their close

proximity to the wetland, would require the construction of

elevated pit latrines to prevent sewage from entering directly

into the wetland. The costs avoided in constructing improved la-

trines for households who currently discharge sewage into the

wetland work out at more than USD 57,000 per year.54 Similarly,

the processes used in treatment plants are also replicated in

some marine environments.55 For example, in coastal settings,

shellfish can remove nutrients and particulates from seawater

and sometimes are deliberately farmed for this process.44 Over-

all, the treatment potential of natural ecosystems was high-

lighted 20 years ago but this idea has not received attention

more recently.54

In areas with complete connection to treatment plants via

sewage networks, people still benefit from sanitation ecosystem

services as all wastewater treatment plants use biological pro-

cesses as a key part of the sanitation process (Figure 1).30

Thus, nature clearly plays a supporting role even where a con-

ventional, engineered sanitation infrastructure is present. Biolog-
ical treatment processes can range from anaerobic digestion to

constructed wetlands, which rely on plants to filter, detoxify, and

decompose human waste. As constructed wetlands mimic nat-

ural processes, they are increasingly being labeled as ‘‘nature-

based solutions.’’6

QUANTIFYING SANITATION ECOSYSTEM SERVICES

To quantify these sanitation ecosystem services, we need to un-

derstand the proportions of different types of sanitation infra-

structure that are in use. Doing this at large (e.g., global) scales

requires standardized monitoring and reporting. As such, data

deficiency can prevent such analyses. Here we discuss current

opportunities and challenges in quantification of sanitation

ecosystem services, using excreta flow diagrams (often

described as ‘‘shit flow diagrams’’; Figure 2) as collated by the

Sustainable Sanitation Alliance (SuSanA) as a worked example.

Excreta flow diagrams document how excreta physically flows

through a city or town, and categorize it into 10 possible service

outcomes16,17 (Figure 2; Table 1). They are based on in-person

interviews, informal and formal observations, and direct mea-

surements in the field. They are reviewed by staff from the five

research institutions who sit on the steering committee of the
One Earth 4, February 19, 2021 195



Table 1. Identifying the potential role of nature within safely and unsafely managed excreta flow diagram categories

Excreta flow diagram service outcome Risk Role of nature

Offsite

Wastewater not delivered to treatment Unsafe Risk reducer

Wastewater delivered to treatment

Wastewater treated Safe Infrastructure supporter

Wastewater not treated Unsafe Risk reducer

Onsite

Fecal sludge contained

Fecal sludge contained not emptied Safe Safe disposal facilitator

Fecal sludge emptied

Fecal sludge delivered to treatment Safe Infrastructure supporter

Fecal sludge not delivered to

treatment

Unsafe Risk reducer

Fecal sludge not contained

Fecal sludge emptied

Fecal sludge delivered to treatment Safe Infrastructure supporter

Fecal sludge not delivered to

treatment

Unsafe Risk reducer

Fecal sludge not contained not

emptied

Unsafe Risk reducer

Open defecation Unsafe Risk reducer

The category of focus for our work example is highlighted in bold. Safe disposal facilitator—humanwastemade safe by natural processes with minimal

input from engineered infrastructure; risk reducer—while it is unlikely that all human waste has been treated, a proportion of the human waste may be

made safe by ecosystems; and infrastructure supporter—human waste is treated via engineered sanitation infrastructure, which harnesses natural

processes (Figure 1).
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excreta flow diagrams initiative.16 While they are arguably rough

estimates, intended only to highlight issues to policymakers,

they are, to the best of our knowledge, the only standardized es-

timates of the whole sanitation value chain (i.e., proportions of

different types of sanitation infrastructure for all management

pathways) available for a subset of cities across the globe.

Thus, in the absence of empirical quantitative data, excreta

flow diagrams are the best available data.

Of the excreta flow diagrams service outcomes, we predomi-

nantly focus on ‘‘fecal sludge contained not emptied’’ (FSCNE)

where the fecal sludge is safely contained beneath the ground,

typically in a pit latrine or septic tank16,17 (Table 1). FSCNE ex-

cludes scenarios where the pit or tank fills quickly, such that

the human waste needs emptying and treatment or disposal

elsewhere. Thus, to be classified as FSCNE, a pit should be

covered and safely abandoned, or the volume of its contents

should be reduced in the pit or tank through leakage into the

soil,56 either through the walls of the pit or through a soakpit,

which is designed to receive the effluent from a septic tank.57

It is important that this leakage does not contaminate the

groundwater, and guidelines exist to ensure this.29 These guide-

lines are used in the excreta flow diagrams, such that human

waste can only be classified as FSCNE if it is safely managed ac-

cording to the criteria in Box 2. Thus, we are confident that the

FSCNE is a useful indicator of where nature plays a significant

role in treating human waste by driving many of mechanisms

that transform it into harmless products.6

However, the overall sanitation process associated with

FSCNE typically combines an engineered infrastructure to
196 One Earth 4, February 19, 2021
safely contain the human waste (e.g., in a pit latrine) with natu-

ral processes (i.e., adsorption, filtration, dilution, dispersion,

die-off, and predation),29 making fecal sludge safe over time.

The relative importance of nature versus infrastructure for

FSCNE will vary on a case-by-case basis (Figure 1). For

example, an unemptied pit or tank that loses volume via

leakage into the soil56 consists of little engineered structure

beyond the pit itself (and of course the slab on the top of it

and the superstructure), with the soil undertaking the processes

necessary to make the leaked fecal sludge safe. By contrast,

an unemptied septic tank is designed to collect solids, while

liquid drains away through a soakpit,57 incorporating an addi-

tional component of engineered infrastructure into the sanita-

tion process.

Here, we use excreta flow diagrams to provide a first-order es-

timate of sanitation ecosystem services volume and value at a

globally relevant scale. We use all the published, reviewed

excreta flow diagrams reports and their associated appendices

that were available on December 17, 2018, to quantify the sani-

tation ecosystem services in 48 cities (containing approximately

82.0million people) across the globe (Figure 3). Note, the authors

had no control over the city selection as these are chosen by

researcher collaborations within the SuSanA team (i.e., accord-

ing to where they are working and where they have good rela-

tionships with local organizations). Although there are geograph-

ical clusters, these cities include a range in terms of size

(minimum, 27,386; maximum, 16.787 million) and level of eco-

nomic development (including low GNI, such as Bolivia, and

high, such as the US) (Table 2).



Box 2. Requirements for safely managed in situ sanitation

Human waste is not categorized as safely managed where groundwater sources are used for drinking and:

d the depth to the water table is less than 5 m

d or the depth to water table is less than 10 m in areas of weathered basement or medium sand

d or the aquifer is fractured limestone or sandstone or coarse gravels

d or more than 25% of sanitation facilities are located more than 10 m from groundwater sources

d or more than 25% of sanitation facilities are located uphill from groundwater sources56

A small number of studies have detected that pathogens can travel further than 10m away from a pit latrine, for example, protozoa

traveled up to 500 m from a pour-flush latrine in India,33 and adenovirus and rotavirus traveled 50 m away from pit latrines in

Benin.34 Some studies that detect fecal coliforms in wells do not detect increased nitrate concentrations, while other studies report

nitrate concentrations more than double the WHO recommended guideline (50 mg L�1).58,59 However, nitrate pollution has

numerous possible sources, including fertilizer and livestock slurry and it is difficult to pinpoint the actual sources of nitrate in

groundwater.60 Models suggest that pit latrines 5 m above the water table could lead to nitrate pollution groundwater over

WHO levels only if a moderate to long nitrate half-life was assumed.37WaterAid advise a larger separation of 50m between latrines

and water sources,61 and the Sphere project advise 30 m in a humanitarian context.62 However, most studies that have set out to

test this guidance have concluded that increasing the distance between latrines and groundwater sources has aminimal impact on

microbial risk35 and that local pathways associated with poor borehole construction are much more important.36
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From the 48 excreta flow diagrams, we recorded the popula-

tion of the city and the percentage of fecal sludge within the

FSCNE category. Where available, we also collated data on

the volume of FSCNE and/or cost required if conventional infra-

structure were used to treat the FSCNE instead of nature (here-

after termed the sanitation ecosystem service value) from the

excreta flow diagram reports. If the volume/value was not docu-

mented, but these data were available for another service

outcome, we estimated it using the ratio between the outcomes

(Table 2). If volumes/values for multiple service outcomes were

available, then we used the data relating to the largest percent-

age category. For example, for an excreta flow diagram that

categorized 10% of human waste as FSCNE, 60% as contained

fecal sludge that was emptied and treated (valued at USD 6,000

year�1), and 30% as not contained fecal sludge that was

emptied and treated (valued at USD 3,300 year�1), we estimate

ecosystem service value using the data for the larger category

(i.e., contained fecal sludge that was emptied and treated) as

follows: Ecosystem service value = $6;000 yr�1 3

�
10%
60%

�
.

We find that 18.1% ± 4.9% (unweighted mean ± the 95% con-

fidence interval) of the sanitation within the 48 case studies (82.0

million people; Figure 3) is classified as FSCNE (Table 2). This is

substantial evidence for the importance of sanitation ecosystem

services, and indicates a reliance on these services for 7.0 million

peoplewithin these cities. For a subsample of our cities, volume (n

=15; 35.3millionpeople) and value (n=8; 29.1million people) data

are available and we conservatively estimate that sanitation

ecosystem services process 2.2 million m3 of fecal sludge per

year within these cities, worth approximately 0.57 ± 0.39 USD

year�1 per person.

Assuming a global population of 7.7 billion,63 we estimate sani-

tation ecosystem services to be worth at least 4.4 ± 3.0 billion

USD year�1, a previously unaccounted proportion of the total

value of global ecosystem services (estimated at 125–145 trillion

USD year�1).64 Thus, sanitation ecosystem services provide sub-

stantial value to people, comparable with that invested in an engi-

neered infrastructure; for example, 27–30 billion USD is spent

annually on the water and sanitation sector in developing coun-

tries.65 Our worked example is conservative and underestimates
the value of sanitation ecosystem services. This is for two main

reasons: (1) we only focus on 48 city sites and (2) within these

sites, we only quantify the role of nature for a single excreta flow

diagram service outcome (FSCNE), as this is the only service

outcome where we are confident attributing the role of nature in

a robust way (i.e., where an engineered infrastructure may help

to contain the humanwaste but natural processes are responsible

for most of the sanitation process;29 Figure 1). We recognize that

nature is a contributory factor across nearly every sanitation

pathway, particularly in rural areas (Figure 1; Table 1), and so

the role of nature in sanitation is unlikely to be limited to the excreta

flow diagram service outcome we focused on here (FSCNE).

CONCLUSION

We have presented evidence that nature is currently providing

sanitation ecosystem services, and provided a first-order quantifi-

cationof these servicesand their value for a sampleof cites across

the globe. There needs to be a holistic understanding of the fully

coupled links between sanitation and nature (and so between

SDG 6 and other SDGs).66,67 Nature can (and does) take the role

of sanitation infrastructure. Moving forward, investing in support-

ing and strengthening sanitation ecosystem services may be

more cost effective than some equivalent investments in engi-

neered sanitation infrastructures.68,69 While we are not marginal-

izing the vital role of engineered infrastructures,webelieve abetter

understanding of how engineered (i.e., gray) and natural (i.e.,

green/blue) infrastructures interact is a promising topic for further

research and may allow adaptive design and management,

reducing costs, and improving effectiveness and sustainability.8

Similarly, while our examples predominantly detail linear waste-

water treatment trains, we believe these should be viewed within

the context of a wider circular economy.18 As with engineered

infrastructure, taking a circular economy perspective is a concep-

tual advanceonsanitationservicesglobally.18Thus, for example, it

is important tounderstandboth the rolesnatureplays in sanitation,

but also the impacts of human waste on ecosystems.20

To support this transformational shift, provision of sanitation

ecosystem services needs further study to quantify the pollu-

tion-carrying capacity of various ecosystems and ensure they
One Earth 4, February 19, 2021 197



Figure 3. The geographic spread of our 48 city case studies based on the excreta flow diagrams
These are derived from the collection maintained by SuSanA.16
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are not overloaded.50 We urgently need to understand the rates

that human waste can be treated by ecosystems sustainably—

i.e., without having a detrimental impact on the ecosystem and

its future ability to provide these sanitation ecosystem services.

For example, defining the maximum safe hydraulic loading rate

for a pit latrine (i.e., the sustainable rate at which soil can filter

fecal sludge) can only be done for a particular hydrogeological

setting (see, e.g., Foppen [2002]70). Thus, understanding the

sustainable rate at which soil can act as a filter can only be

done accurately at local scale. That said, a first-order estimate

using human population density may be possible. Pit latrines

safely manage human waste in many rural areas but may be

less safe in urban areas where they cannot be moved and

need emptying—at what population density can nature no longer

be relied upon to safely treat all the human waste produced?

Similarly, questions remain for other ecosystems: e.g., What ra-

tio of human waste production, river volume, and transport dis-

tance is required to make this waste safe? How far downstream

of the human waste production must the next human population

be in order to remain safe? What quantities of human waste per

unit area can mangrove, natural wetland, and marine environ-

ments safely treat? And, at what levels does the human waste

risk damaging the natural environment?
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Our worked example also highlights data deficiency. While 48

cities is a reasonable sample for a first-order estimation, it is not

enough to accurately understand the global picture—particularly

as the excreta flow diagrams in rural and peri-urban areas might

differ substantially. Even for cities with a published excreta flow

diagram, many are still data deficient, with 15 having data

describing excreta volume and only 8 with data on the cost of

the sanitation process (which can be used to indicate the value

of sanitation ecosystem services).

In summary, nature is undoubtedly providing valuable sanita-

tion ecosystem services in many countries across the globe and,

in some areas, these servicesmaymake upmost of the available

sanitation infrastructure. However, this paper demonstrates that,

to sustainably manage this service, more research quantifying it

is needed and we hope that this manuscript serves as a ‘‘calls to

arms’’ for improved collaboration between ecologists and water,

sanitation, and hygiene researchers to achieve this.

EXPERIMENTAL PROCEDURES

Resource availability
Lead contact
Further information and requests for resources should be directed to and will
be fulfilled by the Lead contact, Alison Parker (a.parker@cranfield.ac.uk).
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Table 2. Quantified sanitation ecosystem services within the 48 city case studies

Continent Country City

Estimated

population

Human

waste

categorized

as FSCNE (%)

Volume of

FSCNE

(m3 year�1)

Ecosystem

service value

(USD year�1)

Ecosystem

service value

per capita

(USD person�1

year�1) Data quality

Africa Ethiopia Axum 46,887 22 medium

Bahir Dar 318,429 17 70,179 high

Bishoftu 128,272 14 6,465 high

Bure 27,386 33 3,299 11,816 0.43 high

Hawassa 351,469 71 medium

Holleta 57,828 26 5,504 72,618 1.26 medium

Ghana Kumasi 2,700,000 18 24,163 224,233 0.08 high

Kenya Kisumu 419,072 11 –a high

Senegal Bignona 44,783 34 medium

South Africa Durban 3,550,000 18 high

South Sudan Yei 230,000 46 medium

Tanzania Dar es Salaam 5,167,707 36 1,005,517 6,796,552 1.32 high

Moshi 185,000 17 214,370 medium

Uganda Kampala 2,250,000 24 350,400 2,890,800 1.28 high

Kenya Nakuru 268,411 10 medium

Asia Bangladesh Dhaka 16,000,000 0 low

Khulna 1,500,000 0 high

Saidpur 127,104 13 low

Cambodia Battambang 197,000 61 medium

Kampong

Chhnang

42,082 42 medium

India Agra 1,574,542 1 medium

Aizawl 293,416 50 medium

Bansberia 103,799 0 high

Bikaner 644,406 17 5,854 0.01 medium

Cuttack 606,007 0 medium

Delhi 16,787,941 3 143,539 672,286 0.04 high

Dewas 289,438 7 high

Gwalior 1,053,505 1 medium

Kochi 600,000 0 low

Nashik 1,500,000 20 263,577 0.18 low

Patna 1,680,000 2 medium

Solapur 951,118 2 medium

Srikakulam 133,911 0 medium

Tiruchirapalli 916,857 1 330 medium

Tumkur 305,821 10 medium

Nepal Lahan 93,000 23 medium

Tikapur 60,000 30 low

Thailand Nonthaburi 256,457 34 6,691 low

Vietnam Buon Ma Thuot 457,000 10 medium

Da Lat 226,978 18 2,713 low

Da Nang 1,007,400 23 35,768 medium

Hanoi 3,146,939 1 22,172 high

(Continued on next page)
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Table 2. Continued

Continent Country City

Estimated

population

Human

waste

categorized

as FSCNE (%)

Volume of

FSCNE

(m3 year�1)

Ecosystem

service value

(USD year�1)

Ecosystem

service value

per capita

(USD person�1

year�1) Data quality

North America USA Cape Codb 215,888 40 high

King County 2,100,000 10 350,917 high

Madison 252,551 0 medium

St Louis City 1,300,000 0 unknown

South America Bolivia Santa Cruz 1,900,000 34 medium

Peru Lima 9,904,727 1 medium

Based on estimates of ‘‘fecal sludge contained not emptied’’ (FSCNE) from the excreta flow diagrams from the Sustainable Sanitation Alliance (SuS-

anA).16 Authors of the excreta flow diagrams also provided indications of the quality of the data supporting their city-wide sanitation assessment.
aA volume for Kisumu was not included in our analysis although available in the SFD report, as the value is indicated to be anomalously high within the

report itself.
bThree scenarios for Cape Cod are available. We selected the moderate scenario (scenario 2).
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Materials availability
This study did not generate new unique materials.
Data and code availability
The data used in this study was downloaded from the following link on
December 17, 2018: https://sfd.susana.org/about/worldwide-projects All the
data used in this paper are included in Table 2.
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