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Abstract 

The exponential increase in technological complexity of modern engineering systems necessitates rigorous and accurate 
maintenance planning to determine optimum equipment availability and turnaround time whilst allowing for overruns and 
unforeseen costs. Quality and availability of quantitative data, as well as qualitative expert opinion and experience expose 
uncertainties that can result in under or over estimation of the above factors. Uncertainty quantification in complex engineering 
systems should consider inter-connected components and associated processes from a combination of quantitative and 
qualitative (compound) perspectives. This paper presents a framework to quantify and aggregate compound uncertainties and 
to be assessed against a predetermined acceptable level of uncertainty. This will provide maintenance planners with a 
confident, comprehensive view of parameters surrounding the above factors to improve decision making capabilities. 
The framework was validated by assessing individual and compound uncertainties in a bespoke heat exchanger test rig 
comprised of subsystem modules interact in a non-linear manner, as well as subjective opinions and actions of operators. The 
results demonstrate the framework’s ability to effectively quantify these factors with an indication of their impact on the 
system. Future work will include further validation with more complex case studies and development of methods to forecast 
the quantified uncertainty through the in-service phase of an asset’s life cycle. 
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1. Introduction 

The maintenance of complex systems in an 
industrial engineering setting sees multiple sub-
elements interacting simultaneously and nonlinearly 
with each other and the environment on multiple 
levels [1,2]. This includes equipment and workers 
operating with common material and information 
flow [3]. Complex engineering systems (CES) 
inherit a range of uncertainties from factors such as 
quality and availability of quantitative equipment 
data and the qualitative influence of workers, expert 
opinion, experience and environmental conditions. 
These uncertainties can lead to under or over 
estimation of maintenance costs, reliability 
measurement, equipment availability and delays in 
maintenance scheduling. Research into uncertainty 
quantification (UQ) around CES generally only 
considers quantitative, measured data [2,4,5]. 

Methods to quantify compound effects of 
different types of uncertainty (combining 
quantitative and qualitative) are necessary to capture 
their full system impact. This impact influences 
system reliability and, therefore, decisions made 
around system maintenance. The challenge grows in 
the context of CES with interrelationships between 
sub-elements. Here, different data recording 
methods used and assumptions made prompt the 

different types of uncertainty represented by 
different probability distribution functions (PDFs).  

This paper presents a 5-step framework to 
quantify and aggregate compound uncertainties to 
enhance system performance assessment. This will 
provide maintenance planners with a confident, 
comprehensive view of parameters surrounding the 
above factors to improve decision making 
capabilities. 

A literature review into uncertainty classification 
in the context of this paper and techniques to 
combine quantitative and qualitative uncertainties is 
depicted in Section 2. Details of framework 
development are described in Section 3 along with 
key mathematical formulae, functions and 
assumptions made. Section 4 applies the framework 
to a case study utilising a bespoke heat exchanger 
test rig developed at Cranfield University [6]. 
Individual uncertainties from quantitative and 
qualitative sources are assessed and aggregated to 
give a confident indication of system performance. 
Section 5 discusses case study results, strengths and 
limitations of the framework along with conclusions 
and future work in this area. 
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2. Literature review 

2.1. Uncertainty classification 

Uncertainty is the degree of information, or lack 
of information, known about a given entity; be it 
measured data, equipment state, environmental 
conditions or accuracy of expert opinion. Error is the 
difference between the recorded and true value of a 
measured entity. The resulting risk is the probability 
of loss or gain of the value of that entity [7,8]. It is 
important to look beyond the probabilistic world and 
embrace subjective and expert opinions [7]. 

A confident uncertainty estimate can be positively 
utilised to aid decision making. Two key types of 
uncertainty are described in the Guide to the 
Expression of Uncertainty in Measurement (GUM): 
Type A, sourced from quantitative measured data, 
expressed by the standard deviation of the dataset; 
and Type B, which considers qualitative technical 
and expert knowledge or experience as well as 
environmental conditions [1,9–11]. Implementations 
of the GUM are explored in Section 2.2. It is 
necessary to distinguish types of uncertainty to 
reduce risk and avoid under or over-estimation or of 
the probability of failure in a system [12–14]. This 
paper will hence refer to Type A as ‘quantitative’ and 
Type B as ‘qualitative’ uncertainty. 

2.2. Combining quantitative and qualitative 
uncertainty  

The GUM has been implemented in a range of 
UQ-related applications [1,2,9,10,15,16]. These 
typically follow 5 core stages [1,9,15]: (1) Identify 
the measurand; (2) Identify uncertainty sources and 
associated PDFs; (3) Quantify uncertainties 
(simulation); (4) Aggregate uncertainties; (5) Report 
analysis results. Coverage factors are applied to 
accommodate for qualitative estimates, which can 
lead to underestimation of total uncertainty and 
cannot be confidently applied in dynamic CES  
[17,18].  

The pedigree approach is a widely renowned and 
verified method to equate qualitative estimates in 
line with quantitative data. First proposed by 
Funtowicz and Ravetz [19], the approach comprises 
of a  matrix to score expert knowledge and opinion 
according to predefined criteria to permit 
quantitative performance and reliability assessment. 
The approach has been applied in environmental 
fields such as meteorology, oil & gas and genealogy 
[11,16,18,20–22]. It can be applied on its own as 
well as part of an approach to standardise combined 
uncertainty dimensions via 5 qualifiers: Numeral, 
Unit, Spread, Assessment and Pedigree (NUSAP) 
[11,16,20,23]. 

Ciroth et al. [16] presented a process to improve 
uncertainty estimation by gauging qualitative 
uncertainty factors through the pedigree approach 
for flow data in a multidimensional database. 
Estimates were attributed by their geometric 
standard deviation (GSD), where inputs fit to the 
multiplicative lognormal distribution. It is stated that 
the arithmetic standard deviation used to attribute 
uncertainty has the disadvantage of relying on the 
scale (unit) of data in a linear manner [16,24]. 
Therefore, for the analysis of data from varying 
sources and measured in different units, uncertainty 
factors need to be independent of scaling effects. 
Using GSD as the uncertainty measure overcomes 
this scale dependency. 

To enable uncertainties to be aggregated where 
data sources do not follow a lognormal distribution, 
a ratio between the standard deviation and the mean 
is obtained via the coefficient of variation (CV) 
[24,25]. These can be given as a percentage to 
represent uncertainty. Muller et al. [24] defined a set 
of equations to convert symmetric and asymmetric 
PDFs to their respective CVs, shown in Table 1.  

Given as a dimensionless measure of variability, 
the CV can be used as a measure of uncertainty for 
each input and aggregated to give a representative 
total. The application of the pedigree approach and 
CVs in the context of this paper is detailed in Section 
3. It is highlighted that while this method can provide 
confident approximations when data characteristics 
are unknown, it should not be used in place of raw 
data and statistics when sufficient data is available 
[24]. 

2.3. Research gaps 

The majority UQ approaches follow variations of 
the 5-stage process defined in the GUM [15,26]. 
Considerations of qualitative uncertainty are best 
made through the pedigree approach. Identification 
of the most appropriate PDF to represent each input 
is key to assess its uncertainty [21,27]. The approach 
described by Ciroth et al. [16] and Muller et al. [24] 
can be used to quantify and aggregate compound 
uncertainties through their respective CVs, applied 
to a range of symmetric and asymmetric PDFs. 
However, the consideration of qualitative factors 
through their GSD in the pedigree approach assumes 
that such factors can only be lognormally distributed 
[24]. While formulae to denote inputs of varying 
PDFs by their respective CVs are defined, a method 
to aggregate CVs from a mix of symmetric and 
asymmetric PDFs in a compound manner is unclear. 
This is necessary to establish compound uncertainty 
estimates represented by different PDFs with a high 
level of confidence. 
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Table 1. Probability distribution function (PDF) and relative coefficient of variation (CV) calculations [16,24] 

Distribution Parameters Deterministic 
value 

PDF CV calculation 

Lognormal 𝑥: Input dataset 
𝜇#: Geometric mean 

𝜎#: Geometric standard 
deviation (GSD) 

Median:	𝜇#  
𝑓'𝑥, 𝜇#, 𝜎#) =

+,-./
'01230145)

6

6016 75
8

√:;<=>5
  

𝐶𝑉 = A𝑒𝑥𝑝'𝑙𝑛: 𝜎#) − 1  

Normal 𝑥: Input dataset 
𝜇: Arithmetic mean 
𝜎: Arithmetic standard 
deviation 

Mean:	𝜇 
𝑓(𝑥, 𝜇, 𝜎) =

+,-J/(234)
6

676 K

>√:;
  

𝐶𝑉 = >
L
  

Uniform 𝑥: Input dataset 
𝑎: Minimum value 
𝑏: Maximum value 

Mean: OPQ
:

 R𝑓
(𝑥, 𝑎, 𝑏) = S

Q/O
	𝑓𝑜𝑟	𝑎 < 𝑥 < 𝑏

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 𝑓(𝑥, 𝑎, 𝑏) = 0
  

𝐶𝑉 = Q/O

√](QPO)
	  

Triangular 𝑥: Input dataset 
𝑎: Minimum value 
𝑏: Maximum value 
𝑐: Most likely value 

Most likely 
value: 𝑐 

⎩
⎪
⎨

⎪
⎧𝑓(𝑥, 𝑎, 𝑏, 𝑐) = :(,/O)

(Q/O)(c/O)
	𝑓𝑜𝑟	𝑎 < 𝑥 < 𝑐

𝑓(𝑥, 𝑎, 𝑏, 𝑐) = :(Q/,)
(Q/O)(Q/c)

	𝑓𝑜𝑟	𝑐 < 𝑥 < 𝑏

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 𝑓(𝑥, 𝑎, 𝑏, 𝑐) = 0

	  
𝐶𝑉 = √O6PQ6Pc6/OQ/Oc/cQ

√:(OPQPc)
  

3. Framework development: Compound 
uncertainty aggregation  

To provide an assessment of system performance 
considering individual and aggregated uncertainty 
within the system, addressing the research gaps 
above, the 5-step framework was developed in 
MATLAB, described below and illustrated in Fig. 1. 
This was applied in a case study considering key 
parameters identified within the system, detailed in 
Section 4. 

Step 1 identifies and groups the uncertainty 
sources as inputs according to their type – 
quantitative or qualitative. 

Step 2 calculates relevant statistical parameters 
for each input via Monte Carlo simulation and the 
pedigree matrix for respective types, elaborated as 
follows: 

Step 2a: The recorded quantitative data is 
imported as single column arrays, concatenated in a 
cell array to allow inputs with a varying number of 
data points to be considered under a single array. 
Any non-numeric (NaN) values are removed. The 
arithmetic and geometric mean and standard 
deviation are calculated, as well as maximum and 
minimum values of each input variable. Monte Carlo 
simulations are run for lognormal, normal and 
uniform PDFs for a defined number of points 
(default 10,000). The standard deviation is then 
calculated using the simulated data for each 
distribution type. For lognormal parameters, the 
mean and standard deviation is given as geometric. 
Normal and uniform distribution parameters are 
arithmetic. 

Step 2b: The qualitative factors are scored by 
predefined pedigree criteria. The ideal case has 
minimal uncertainty and a pedigree score of 1. 

Scores of 2-5 have progressively higher uncertainties 
owing to their representative criteria. The scores for 
each factor correspond to an uncertainty indicator. 
These were defined according to the subjective 
impact each factor has on the system. 

The GSD of each factor is calculated from the 
indicator values obtained from one or multiple 
sources. If the uncertainty indicators are obtained 
from a single source, the GSD is given as its square 
root. If they are obtained from multiple sources, the 
GSD is given by Eq. 1, modelled by the lognormal 
distribution [16,24,28]. Ideally, and especially in the 
case of CES, the definition of pedigree criteria and 
related uncertainty indicators should be made by a 
diverse selection of suitably qualified individuals. 

 

𝜎# = exp ghS
=
× ∑ 𝑙𝑛 J,k

,̅5
K
:

=
mnS o  (1) 

 
Where: 
σg = GSD, n = number of inputs, xi = dataset, x̄g = geometric mean 

of dataset 
 

The GSD of less ideal indicators is given as a ratio 
of the calculated GSD and that of the ideal score for 
each input, meaning that it is always equal to or 
greater than 1 [16]. 

Step 3 calculates the CV for each input. In order 
for uncertainties from different data types 
represented by different PDFs to be aggregated, they 
must be considered on an equal scale. This is 
achieved through the CV, explained in Section 2.2, 
the formulae for which are illustrated in Table 1 [24]. 
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Fig. 1. Framework overview

These are calculated within the framework by a 
sequential algorithm according to the specified input 
and distribution type. Summary tables are then 
generated for the quantitative and qualitative inputs 
detailing key parameters calculated in Steps 2-3.  

Step 4 combines the respective CVs. Normal and 
uniform distributions are symmetric; the arithmetic 
mean is equal to the mode and does not change when 
uncertainty increases [24]. They can therefore be 
aggregated additively by the root-sum-square (RSS) 
formula (Eq. 2). Lognormal distributions are 
asymmetric; the arithmetic mean will change with 
increasing or decreasing uncertainty. CVs 
represented by the lognormal distribution, CVLn, are 
aggregated multiplicatively by Eq. 3 [24]. To 
combine these with symmetric distributions, a new 
arithmetic mean needs to be calculated to account for 
the shifting uncertainty, given by Eq. 4 [24]. 
 
𝐶𝑉pqr = s∑ (𝐶𝑉m:)=

mnS   (2) 

𝐶𝑉t= = s∏ (𝐶𝑉m: + 1)=
mnS − 1  (3) 

𝜇w𝐶𝑉w = 𝜇A𝐶𝑉pqr: + 𝐶𝑉tx#=:   (4) 

 
To account for this, the framework splits the 

calculated CVs of quantitative inputs according to 
distribution type. The sum of symmetric attributed 

are added to the product of lognormal attributes by 
Eq. 5. 

 

𝐶𝑉w = A∑ (𝐶𝑉yqr:=
mnS ) + (∏ (𝐶𝑉t=: + 1)=

mnS − 1)  (5) 

 
The formulae allow the aggregated CV of both 

quantitative and qualitative data to be determined as 
a measure of total uncertainty. Since CV is defined 
as the ratio between the standard deviation and the 
mean, the output follows a normal distribution. The 
uncertainty can be expressed by the standard 
deviation via Eq. 6. 

 
𝜎w = 𝜇w𝐶𝑉w  (6) 

 
Step 5 visualises the calculated uncertainties in a 

scalable manor to assess their impact on the 
contextual application. The visualisation consists of 
the total estimated uncertainty along with individual 
contributions via local sensitivity analysis. This is a 
widely used method to determine the relative impact 
of input variables to the compound uncertainty, 
calculated using partial derivatives [1]. The resulting 
factors are plotted over the relative total to visualise 
their impact. 
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4. Framework implementation 

4.1. Case study: Heat exchanger test rig 

The framework was applied to a bespoke heat 
exchanger (HEx) test rig consisting of a hot closed 
loop system and a cold open loop system, as 
designed by Addepalli et al. [6], illustrated in Fig. 2. 
The design comprised of subsystem modules 
housing component and fluid interactions that 
interact in a non-linear manner. This, as well as 
subjective opinions and actions of operators, 
influence uncertainties in the assessment of system 
performance and the HEx itself. Oil temperature at 
the inlet and outlet of the plate-fin type HEx was 
measured using infrared (IR) passive thermography 
in real-time [29]. Thermodynamic analysis involving 
oil viscosity and temperature decrease through 
connecting pipes was not considered. 

 

 

Fig. 2. Oil-air heat exchanger rig design [6] 

Recordings were taken once the system had 
reached operating temperature, 80°C, at steady state. 
6 sets of 10 recordings were made for each parameter 
with 20 minute intervals between each set to allow 
the temperature to reset. 

To enable effective heat transfer, the air blower 
must be in operation. This created an air blanket 
around the HEx unit, disrupting the temperature 
measurements for the IR camera (Fig. 3). Aside from 
the temperature reading from the IR camera, all 
parameter measurements were recorded via in-line 
analogue dials. Many of these dials gave readings on 
different interval scales varying the measurement 
accuracy, and therefore resulted in an increased 
uncertainty. The recorded parameters are illustrated 
in Fig. 2 and detailed in the following section. 

Additional attributes such as parallax error and 
ambient temperature further increased the 
uncertainty in measurement. The flow rate of the oil 
constantly fluctuated from 0-15 L/min owing to the 
nature of the air-operated pump. This made an 
accurate reading of mean flowrate unobtainable, so 
was discounted from the input parameter list. 

 

 

Fig. 3. Representation of air blanket produced by air blower 

4.2. Stepped implementation and results 

Step 1: 6 quantitative parameters and 5 
qualitative factors were identified; described below 
and summarised in Table 2 and Table 3 respectively. 

Temperature readings of the HEx inlet (T1) and 
outlet (T2) given by the IR camera were modelled by 
the lognormal distribution as the fluid temperature 
gradually decreased once reaching operating 
temperature. This gave a skewed result with slightly 
different mean values for each set of readings. The 
temperature reading given by the in-line dial after the 
HEx (T3) was modelled by the normal distribution as 
the higher reading interval gave a more constant 
mean, through with a greater spread in deviation. Oil 
pressure before passing through the HEx (P1) was 
also modelled by the normal distribution. Blower air 
temperature (T4) and oil pressure post HEx (P2) were 
modelled by the uniform distribution as they were 
found to be constant throughout. 

The 5 qualitative factors derived were reliability 
of data (1), basis of estimate (2), reading accuracy 
(3), environmental conditions (4) and sample size 
(5). Each of these were modelled by the lognormal 
distribution. 

Step 2a: A summary of the quantitative 
parameters is given in Table 2. The reading intervals 
and errors contributing to qualitative factors are 
discussed in the following section. 

Step 2b: The 5 qualitative factors were scored by 
defined pedigree criteria detailed in Appendix A. 
These were based on adjusted examples from 
literature [11,22,23] to apply to the case study. 
Uncertainty indicators for all factors for each score 
are illustrated in Appendix B. For this case study, the 
uncertainty indicators were obtained from a single 
source and their GSD is therefore given as its square 
root. A summary of these parameters is given in 
Table 3.  

Step 3: The summary tables with calculated CV 
for each input are given in Table 2 and Table 3 for 
quantitative and qualitative factors respectively. 

Step 4: The combined CV of each PDF is shown 
in Table 4, aggregated for symmetric and 
asymmetric distributions and total CV.  
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Table 2. Recorded data and calculated parameters 

Parameter Reading 
interval 

Reading 
error 

Distribution  Mean Standard 
deviation         

Min  Max    CV   

T1, HEx In 
(°C) 

0.1°C  - Lognormal 64.9839 1.0158 62.6000 66.2000 0.0157 

T2, HEx Out 
(°C) 

0.1°C  - Lognormal 27.4887 1.0280 26.0000 28.7000 0.0276 

T3, Temp dial 
out (°C) 

5.0°C ±2.0°C Normal 35.8333 1.8645 32.5000     37.5000 0.0517 

T4, Temp 
blower (°C) 

2.0°C ±0.5°C Uniform 18.0000 0.0000 18.0000 18.0000 0.0000 

P1, Pressure 
pre-HEx (bar) 

0.5 bar ±1.0 bar Normal 1.7511 0.0765 1.6000 1.8000 0.0432 

P2, Pressure 
post-HEx (bar) 

0.5 bar ±0.3 bar Uniform 0.3000 0.0000 0.3000 0.3000 0.0000 

Table 3.  Pedigree factors with relating GSD and CV 

Factor Dist. Ped. 
score 

Un. 
Ind. 

GSD CV 

(1) Ln 3 1.50 1.2247 0.2048 
(2) Ln 3 1.60 1.2649 0.2383 
(3) Ln 2 1.05 1.0247 0.0244 
(4) Ln 2 1.10 1.0488 0.0477 
(5) Ln 3 1.40 1.1832 0.1694 

 
Step 5: The visualisation in Fig. 4 illustrates the 

relative CV of each quantitative (blue) qualitative 
(orange) input against the aggregated total (cream). 
The colour bar represents the acceptability of the 
relative factors according to predefined scales. 
Further development will allow customised scales to 
be visualised with the total CV from each PDF type 
and compared through global sensitivity analysis 
using Sobol indices.  

Table 4. CV aggregation results 

PDF CV comb. CV agg. CVT 

Ln recorded 0.0317 0.3701 0.3762 
Ln pedigree 0.3688 
Norm. recorded 0.0674 0.0676 
Uni. recorded 0.0000 

5. Discussion and conclusions 

The framework was designed to enhance system 
performance assessment through the quantification 
and aggregation of compound uncertainties. These 
arise as a result of different recording methods and 
assumptions made about the system and are 
modelled by different PDFs. 

The use of CV to represent uncertainty enabled 
effective quantification of compound uncertainties. 
Previous work in this area enabled the aggregation of 
individual quantitative uncertainty with qualitative 
uncertainty through the pedigree matrix [16,24]. The 

capability to aggregate uncertainties represented by 
a mix of symmetric and asymmetric PDFs is further 
developed by an indication of factors that lie outside 
acceptable levels, as well as a function to allow the 
user to view and select the best suited PDF for each 
input. Acceptable levels of uncertainty are user-
defined according to the application and visualised 
by the colour bar. Benefits of this framework include 
enhancements to performance assessment and 
corresponding maintenance planning for CES and 
respective subsystems. 

 

 

Fig. 4. Aggregated total against individual factors 

The presented framework is capable of assessing 
quantitative uncertainties for differing input 
dimensions in each dataset. Selection of quantitative 
inputs and their corresponding PDFs is achieved by 
calculating all permutations in Step 2a, which are 
stored in arrays and selected according to user input. 
Further development is required to determine the 
GSD of qualitative inputs given my multiple sources 
such as surveys or interviews. This can be done 
separately, but an integrated process would be more 
efficient.  
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Appendix A. Pedigree criteria  

Criteria for heat exchanger case study [11,22,23] 

              Score 
Factor     

1 2 3 4 5 

Measurement 
reliability (1) 

Data is < 2 months 
old and/or recorded 
by fully calibrated 
sensor or fully 
qualified person 

Data is < 6 months 
old and/or recorded 
by fully calibrated 
sensor or fully 
qualified person 

Data is < 12 months 
old and/or recorded 
by fully qualified 
person 

Data is > 12 months 
old and/or recorded 
by fully qualified 
person 

Age or source of 
data unknown or > 
12 months old 

Basis of 
estimate (2) 

Best possible data, 
use of historical 
field data, validated 
tools and 
independently 
verified data, given 
by fully qualified 
expert 

Smaller sample of 
historic data, 
parametric 
estimates, internally 
verified data, some 
experience in the 
area 

Limited available 
data, unverified, 
inexperienced 
opinions 

Incomplete data, 
small sample, 
educated guesses, 
indirect approximate 
rule of thumb 
estimate 

No experience in the 
data 

Reading 
accuracy (3) 

Measurements taken 
using fully 
calibrated and 
accurate equipment:  
±0.1°C, ±0.1 bar 

Measurements taken 
using recently 
calibrated but less 
accurate equipment: 
±0.5°C, ±0.5 bar 

Measurements taken 
using recently 
calibrated but less 
accurate equipment: 
>±1.0°C, >±1.0 bar 

Measurements taken 
using accurate 
equipment that may 
need recalibrating 

Measurements taken 
using un-calibrated 
and inaccurate 
equipment 

Environmental 
conditions (4) 

Data recorded under 
specific consistent 
conditions or a 
specified range of 
conditions from area 
under study 

Data recorded in 
generally consistent 
conditions with 
fluctuations 
specified 

Data recorded in 
generally consistent 
conditions, changes 
not specified 

Data recorded in a 
range of unspecified 
conditions 

Data from unknown 
or distinctly 
different areas 

Sample size (5) > 20 > 10 > 5 < 5 Unknown 

In addition, Step 5 of the framework requires 
further development to determine acceptable 
uncertainty parameters to be scaled according to the 
calculated CV. Validation of the most suitable 
techniques to determine sensitivity coefficients for 
each input will further enhance this final step. 

The framework was applied to a bespoke heat 
exchanger test rig which contributed various 
uncertainties that impact measurement quality and 
accuracy. To resolve the issues in flow rate and 
temperature reading through the air blanket 
produced by the blower, a new centrifugal pump and 
digital temperature and pressure sensors will be 
installed improve data quality. In addition, future 
work will advance the framework further to account 
for correlations between input parameters, improve 
derivation of sensitivity factors and develop methods 
to forecast the quantified uncertainty through the in-
service phase of an asset’s life cycle.  

Appendix B. Pedigree matrix uncertainty 
indicators for all factors 

Factor / score 1 2 3 4 5 

(1) 1.00 1.10 1.50 1.70 1.90 
(2) 1.00 1.20 1.60 1.80 1.90 
(3) 1.00 1.05 1.10 1.40 1.80 
(4) 1.00 1.10 1.40 1.70 1.90 
(5) 1.00 1.20 1.40 1.60 1.90 
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