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ABSTRACT

Autonomy has become a focal point for research and development in many industries. Whilst this was

                

traditionally achieved by modelling self-engineering behaviours at the component-level, efforts are

           

now being focused on the sub-system and system-level through advancements in artificial intelligence.

             

Exploiting its benefits requires some innovative thinking to integrate overarching concepts from big

data analysis, digitisation, sensing, optimisation, information technology, and systems engineering.

                       

With recent developments in Industry 4.0, machine learning and digital twin , there has been a growing

                 

interest in adapting these concepts to achieve autonomous maintenance; the automation of predictive

             

maintenance scheduling directly from operational data and for in-built repair at the systems-level.

             

However, there is still ambiguity whether state-of-the-art developments are truly autonomous or they

simply automate a process.

In light of this, it is important to present the current perspectives about where the technology stands

                                 

today and indicate possible routes for the future. As a result, this effort focuses on recent trends in

                  

autonomous maintenance before moving on to discuss digital twin as a vehicle for decision making

from the viewpoint of requirements, whilst the role of AI in assisting with this process is also explored.

A suggested framework for integrating digital twin strategies within maintenance models is also

discussed. Finally, the article looks towards future directions on the likely evolution and implications

for its development as a sustainable technology.
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1 Introduction

From the work on massively redundant design [1] to modern-day active fault management [2], the challenge of self-

maintenance and repair by autonomous means is considerable and traverses multiple system design levels. Much of this

activity has been centred on the microelectronics domain due to the compatible nature of configurable architectures.

However, resilience is achievable at multiple design levels, whether through software or hardware techniques [3]. A

range of hardware-based techniques have recently emerged that must be better understood by hardware designers, made

easier to evaluate against another and readily combined with other robust engineering techniques such as integrated

health monitoring, autonomous systems and assisted fault diagnosis. Although the idea of systems resilience and

autonomous maintenance has been an area of interest for many years, it has often been discussed in an abstract sense
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[4]. The manufacturing industry has highlighted the importance of having all-inclusive automated operational processes

             

[5], and similar trends have been seen in the automotive [6] and aerospace domains [7, 8]. This can be attributed to

                     

recent advances in technology that has enabled an array of innovations. However, much of these works often consider

                  

the term autonomous to be synonymous with automation; where an automated driving vehicle is labelled to be a feature

of autonomous driving without much consideration of the requirements of autonomous systems. Instead, progress

has focused on modernising components and streamlining processes by introducing novel sensors and computing

technologies.

Achieving true autonomy certainly represents a quantum technological leap in contrast to automation, and even though

there have been several instances of digitising the physical space (such as buying/selling stocks or auctions) as a

process of automation, most of these applications do not warrant autonomy. Similarly, for system health management,

a typical integrated design will have arisen from an automated design approach based on local system thresholds

without knowledge of the dynamic state of the system. This often encompasses static logic for detecting, isolating, and

recovering from faults verified (and validated) through exhaustive testing prior to operation. Further, these processes

remain anchored to the role of providing human-centric automation. The past few decades have shown a proliferation in

this area, with research and solutions targeted to combat various faults occurring through the component level all the way

up to the systems level [9]. However, even though these concepts have been studied extensively [10, 11], most methods

often require triggering mechanisms that are intelligent enough to collect data about the failing component, the nature

of the fault, and its severity on the overall system performance. Whilst these technologies are typically focused on fault

detection and isolation within individual subsystems, the growing maintenance costs facing today’s engineering industry

have prompted further research into novel architectures that reduce maintenance, repair and overhaul of complex high

value assets. As a consequence, future effort needs to look towards the integration of anomaly, diagnostic and prognostic

technologies across autonomous systems and related platforms that bring about the capability to dynamically predict and

isolate impending faults and failures. This will help to maintain system performance in a more cost-effective way whilst

identifying in-operation issues. A knock-on effect of this will be increased importance of frameworks for data exchange

within diagnostic technologies. By way of example, future generations of aerospace vehicles will depend upon reduced

mass while being subjected to higher functional loads and more extreme service conditions over longer time periods

than the present generation of vehicles [12]. The associated requirements placed on thermal protection will range from

propulsion and energy storage to avionics; which is greater than previously experienced while demands on long-term

reliability will increase. Thus, the extensive legacy of historical flight information will likely be insufficient to either

certify new vehicles or to guarantee mission success. To investigate this technological gap, the authors concentrate

on self-learning technologies that are emerging within maintenance systems that exhibit a degree of autonomy. The

transition to autonomous systems should bring with it the potential to approach zero-maintenance–a variety of strategies

that ultimately provide the elimination of maintenance-centric costs–and its relation to through-life engineering services

for a range of high-value products and assets [2, 13]. Within this paradigm, the overarching focus remains to carry out

maintenance but limiting (or even removing) human intervention.
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It should be noted that highly skilled knowledge is still valued across all industries because they can successfully

anticipate risks and make critical optimisation decisions far sooner than any automated system. However, with ever 

                                  

increasing system complexities and process uncertainties, it has become critical to produce data-based solutions that

map the overall evolution of all relevant systems and their processes. Also, problems associated with maintainability of

equipment and the degrading overall system performance indicate that systems need some form of ‘intelligence’ by

using reasoning testbeds, that should also have the capability to adapt in unknown situations. In this context, the concept

of a digital twin has gained a lot of traction by leveraging a digital platform to quickly build high-fidelity simulations

and models that can make informed decisions and create the ability to query/analyse results. The authors argue that

if a digital twin is treated as a ‘living’ entity, it can offer the potential of monitoring and improving the functionality

of interconnected complex engineering systems. This can be achieved by combining it with recent developments in

machine learning to develop a data-driven digital twin that is not only capable of managing its health but also carry out

maintenance and repair when required. This has a huge potential to disrupt traditional maintenance practices across all

industries. 

As a result, this article investigates the requirements of a digital-twin driven solution for autonomous maintenance, 

which warrants the development of a multi-modal digital/virtual model describing the system maintenance model

at various levels of components, physics, process data, behaviours and rules. The digital twin enables detection of 

behavioural anomalies, which are potentially attributable to faults within the equipment1. Fundamentally, this can help 

to influence/determine rules defined by the system requirements. While many existing publications have focused on

manufacturing applications, there is an increasing interest from the system health management domain. The authors

have noted that most existing digital twin implementations are application- or equipment-specific, and as such, there

seems to be no systematic way to select, design or implement them. As a result, the focused is placed on investigating

basic questions such as: what is the relevant taxonomy in the field? what is its potential for autonomous maintenance

applications? what are its enabling technologies? and what are the applications-specific open questions? This template

provided an easier and succinct understanding of the concept. Whilst taking note of its strengths and limitations in the

application domain, the authors aimed attention towards establishing: 

                                                                                                                                                                                                                                                                                                                                                                                 

• Recent trends on the application of autonomous maintenance; 

• Requirements for autonomous maintenance using digital twin; 

• Challenges with current technological capabilities; 

• A suggested framework for integrating digital twin strategies within maintenance models. 

                               

1.1 Research methodology 

  

One of the goals of this study is to understand the recent research progress in digital twin for autonomous maintenance.

This is reflected through the following research questions:

1These can also be used to identify any defects within the model, allowing it to be made more robust.
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Table 1: Breakdown of the targeted journals in the past 10 years for publishing works related to digital twin and
autonomous maintenance. 

                     

No of articles References 

  

Journals 

[44, 45] 

[37, 38, 39] 

[46] 
[2] 

[42, 43] 

[53] 

[25, 26, 27, 28, 29, 30, 31] 

[49] 

[40, 41] 

[52] 

[32, 33, 34, 35, 36] 

[48] 
[47] 

[51] 
[50] 

7 

 

5 

 

3 

 

2 

 

2 

 

2

1 

 

1 

  

1 

 

1 

 

1 

 

1 

 

1 

 

1 

 

1 

IEEE Access 

 

IEEE Transactions Journals 

  

ACM Transactions Journals 

  

International Journal of Production Research 

     

CIRP Annals 

 

Robotics and Computer-Integrated Manufacturing 

    

Microelectronics Reliability 

Systems 
IET Electric Power Applications 

 

AIAA Journal 

    

IET Collaborative Intelligent Manufacturing
IEEE Systems Journal 

      

Systems Engineering 

 

Mechanical Systems and Signal Processing 

     

International Jounral of Aerospace Engineering 

    

• Can a digital twin introduce autonomy for in-situ self-maintenance and autonomous repair capability? 

             

• What are the requirements for such a digital twin-driven framework? 

          

• How can this concept be used for (and supported by) autonomous maintenance? 

            

This is accomplished by investigating existing published material that yields insights into potential applications and

academic interests that define the current major trends, significant works, and future directions. As research within this

area is of practical importance, the scope of this investigation mostly covers publications over the past 10 years. To

accomplish the study aims, this research is based on reviewing a variety of journal articles, all of which are directly

related to the topic. Due to the scope and diversity of these methods, articles are found to be scattered across a range

of sources, and thus a literature search was conducted using the electronic databases including: IEEE Xplorer and

Scopus. The primary descriptor used is “digital twin", grouped with the following: “system health management", “fault

diagnosis", “autonomous" and “maintenance". The authors have written this article in a way that allows the readers

with a non-technical background to gain an understanding of the concept. In total, the authors shortlisted 30 published

journals for this study as detailed in Table 1, which lists the journals that have been targeted for their publication. The 

authors also included an additional 14 articles on system health management relevant to the topic discussion2. 

                                                                                                                                                                                                    

1.2 Terminology 

 

An early description of being autonomous, or having autonomous properties, was defined as a system’s ability to

self-control behaviour [54]. Since then, this description has misguided many developments that classify systems as

autonomous, but are rather automated - which is simply to use various predefined mechanisms to operate a system 

(or process). Another description of being autonomous is to have independence or self-governing capabilities [55]. 

                                                               

2These are [9, 10, 11, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]. 
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Absolute

 

adherence

 

to

 

this

 

interpretation

 

indicates

 

that

 

true

 

autonomy

 

is

 

something

 

that

 

(even

 

today)

 

does

 

not

 

exist

 

and

 

that

 

any

 

conventional

 

developments

 

have

 

not

 

gone

 

beyond

 

the

 

automation

 

concept.

Automation

 

is

 

as

 

the

 

ability

 

by

 

which

 

a

 

machine

 

(continuous

 

or

 

digital)

 

can

 

reduce

 

the

 

work

 

done

 

by

 

humans.

 

This

 

corresponds better to the original description and distinguishes itself from autonomy. The self-governing property of an

autonomous system implies a degree of self-awareness to real-world consequences of any action taken, in a practical,

data- or model-driven sense. The pursuit of true autonomy dictates that autonomous systems should be able to go

beyond the analysis of historical data sets and use of decision-making models developed from, e.g., supervised rules,

fuzzy logic, neural networks to include: 

                                                                        

• Competitive survival strategies (e.g., adversarial networks) [56]); 

       

• Planning/scheduling for centralised optimisation, (e.g., using AI for data analytics, assuming that all the data 

is available and processed in a timely manner); 

                      

• Decentralised/self-organising (e.g., building a multi-agent system, assuming the data is distributed in different 

nodes) [57]. 

              

Clear

 

and

 

consistent

 

definitions

 

for

 

the

 

degree

 

of

 

autonomy

 

is

 

an

 

ongoing

 

topic

 

of

 

debate

 

within

 

most

 

technological

 

areas3.

 

However,

 

the

 

contemporary

 

view

 

of

 

autonomy–and

 

of

 

greater

 

relevance

 

to

 

this

 

article–is

 

that

 

it

 

is

 

the

 

capability

 

that

 

enables

 

a

 

system

 

to

 

function

 

in

 

the

 

presence

 

of

 

uncertainty.

 

This

 

requires

 

a

 

degree

 

of

 

adaptation

 

within

 

a

 

working

 

environment,

 

short

 

and

 

long

 

term

 

reasoning

 

/

 

planning

 

in

 

the

 

presence

 

of

 

set

 

goals,

 

a

 

generalisation

 

of

 

knowledge

 

and

 

skills,

 

and

 

importantly

 

robustness

 

to

 

perturbations

 

that

 

arise

 

from

 

this

 

uncertainty.

Maintenance

 

is

 

defined

 

as

 

a

 

process

 

of

 

preserving

 

a

 

condition

 

(or

 

situation)

 

and

 

thus

 

functional

 

capability

 

[2].

 

It

 

is

 

the

 

combination

 

of

 

all

 

technical

 

and

 

administrative

 

actions,

 

including

 

supervision

 

actions,

 

intended

 

to

 

retain

 

an

 

entity

 

in,

 

or

 

restore

 

it

 

to,

 

a

 

state

 

in

 

which

 

it

 

can

 

carry

 

out

 

a

 

required

 

function.

 

A

 

maintenance

 

echelon,

 

or

 

maintenance

 

line,

 

is

 

a

 

physical

 

location

 

within

 

an

 

organisation

 

where

 

specified

 

levels

 

of

 

maintenance

 

are

 

carried

 

out,

 

e.g.

 

a

 

repair

 

shop.

 

They

 

are

 

characterised

 

by

 

the

 

skill

 

of

 

the

 

personnel,

 

the

 

facilities

 

available,

 

the

 

location,

 

etc.

Maintenance,

 

and

 

its

 

associated

 

repair

 

activities,

 

are

 

expected

 

to

 

achieve

 

a

 

high

 

success

 

rate

 

in

 

all

 

modifications

 

that

 

take

 

place

 

during

 

the

 

system

 

life

 

cycle.

 

This

 

includes

 

identification

 

of

 

a

 

root

 

cause,

 

if

 

there

 

is

 

one,

 

or

 

positive

 

identification

 

that

 

there

 

is

 

no

 

root

 

cause.

 

Only

 

in

 

this

 

way

 

can

 

the

 

correct

 

and

 

most

 

appropriate

 

maintenance

 

activity

 

be

 

carried

 

out,

 

allowing

 

the

 

integrity

 

of

 

a

 

removed

 

unit

 

to

 

be

 

established

 

and

 

hence

 

for

 

it

 

to

 

be

 

safely

 

returned

 

to

 

service.

 

Therefore,

 

its

 

strategy

 

looks

 

to

 

improve

 

the

 

overall

 

process

 

either

 

by

 

redesigning

 

the

 

asset

 

itself

 

(continuous

 

design

 

integration),

 

or

 

by

 

paying

 

attention

 

to

 

external

 

factors

 

that

 

may

 

contribute

 

to

 

the

 

process

 

in

 

some

 

way.

 

These

 

incorporate

 

not

 

only

 

key

 

characteristics

 

that

 

assist

 

maintenance

 

tasks,

 

particularly

 

with

 

regard

 

to

 

automation,

 

but

 

also

 

exhibit

 

some

 

independence

 

and

 

self-governing

 

attributes.

3A good example of this are standards in the automotive industry that defines automation levels from 0-5. According to the SAE
classification, Level 5 defines a complete automation system. Also, self-driving is used synonymously with autonomous which
typically leads to confusion [58, 59].
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Digital twin: There is still some ambiguity about the definition of a digital twin: is this just collected sensor data or

does it encompass engineering data from, e.g., is it just CAD models that provide virtual sensor information from

physics-based models? What about feedback to engineering, e.g., via CAD models and physics simulations, as part

of the product life-cycle? Some authors simply put that a digital twin is essentially a model (or simulation) of the

system, process or service, inside a computer that has the support for other technologies like cloud computing, IoT

or machine learning [41]. This view highlights the individual effort required to develop a comprehensive, integrated

multi-physics model across technological disciplines. Provided the most accurate, physically realistic and robust models

can be integrated, they will form a valid basis for certification of vehicles by simulation and real-time, continuous,

health management. Ambiguity arising in this area is not only due to the wide breadth of application areas, but also

because many studies have consisted of either highly conceptual/abstract aspects or extremely application-specific case

studies [60]. Nonetheless, they have discussed the various challenges associated with understanding the underlying

physics models whilst accounting for system state behaviour.

Within the context of this article, the digital twin is regarded by the authors as a simulation-of-simulations that may

be described by several representations, e.g., process graphs, space-time environments or statistical models. The

more realistic the simulated environment, the better the expected gains from digital twin-based techniques. However,

complexity will increase, often with diminishing returns from the output for each added dimension, indicating that there

will still be model uncertainties associated with simulations, optimisation, control and hardware/software limitations.

2 Literature Background

The need for autonomy in manually operated engineering applications can arise due to several reasons. E.g., the human

involvement in monitoring and controlling an asset is either expensive or might not be possible due to communication

delays [36], or the maintenance personnel might not be able to operate directly within the external environments [61],

detecting and predicting system behaviour to maintain system health and management of distributed components at a

system-level [62]. This section, therefore, underpins the constituent components and requirements for an autonomous

maintenance system.

2.1 The role of autonomous maintenance

Autonomous maintenance is defined as a preventative maintenance strategy focusing on the system being ‘self-

governing’, and effectively performing maintenance activities through the cooperation between maintenance personnel

and operators to eliminate sources that affect system availability. The predominant aim is to reduce system breakdown

and maintenance costs, which is achieved by fulfilling the following objectives:

• Understand the functions (and the components) of the system and detect the causes of abnormalities [14];

• Recognise possible quality issues and identify their root-causes [17];

8
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• Timely detection of abnormalities to self-heal4[63].

This is not entirely a new concept: basic autonomy would enable a system to operate within a dynamic environment

independent of external control. There is, however, a spectrum of autonomy that ranges from local autonomy

within a subsystem, where actions may be executed in response to stimuli or local information, to a system-level

autonomy, which manages actions and handles constraints across subsystems. A by-product of autonomous systems

is improved performance with a reduced burden on operating personnel and achieving efficient control in dynamic

environments. However, for maintenance purposes, autonomy should also aim to reduce both the mean time between

human interventions and the number of functions performed per intervention. Several authors have advocated that this

may be achieved by understanding co-dependencies of sub-systems, cross-domains and coupled properties5 [64], all

of which constitute key capabilities required to enable support equipment to achieve cost-effective maintenance and

proactive health management. Of course, the level of autonomy will depend on the number of humans needed to operate

a system, but these capabilities help support system operational reliability, safety and maintainability. Despite this

apparent complementary relationship between human and autonomous maintenance, consider the following practical

limitations facing the successful realisation of such capability:

• Inherent uncertainty associated with the environment warrants added redundancy to address issues that might

hinder certain actions. This should not prevent the system from achieving its main goal [2];

• Operating environment is an afterthought [13]. As a result, system capabilities (e.g., physical connections or

data transfer) to interact with the environment can become limited;

• Existing health monitoring methods use a limited number of modelling parameters, only focus on the opera-

tional status information, have insufficient attention to production data and maintenance records. This results

in low reliability in health assessment and prediction [14];

• Health supervision systems are designed for specific models, and the framework is not flexible enough to be

put into operation. It is difficult to add new monitoring objects after installation [27, 31];

• Physical implementation limitations, e.g., a lack of on-board computation and storage or scaling up the state of

the technology to more complex scenarios [38];

• There is no particular level of target autonomy6. This can present engineering with options on how a

maintenance system should be developed.

• Most existing mature health supervision technologies use broken-then-repair or planned maintenance strategies,

which results in high cost, long cycle and poor reliability in equipment maintenance [65];

• It is non-obvious how autonomous maintenance actions should liaise with human operators when this is

expected or necessary.

4Depending on the level of maintenance autonomy.
5This can be achieved through, e.g., AI, expert systems.
6Since autonomy is progressive, there can be five levels of autonomy as used by the automotive industry, i.e., basic, managed,

predictive, adaptive, and autonomic [4]. The higher the level, the more autonomous the system becomes.

9
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This list is by no means complete, but it serves to highlight the key barriers that have hindered progress in the field.

The level of autonomy depends on the complexity of decision-making in the chain and the operations required to bring

back or maintain function7. Yet, autonomous maintenance can be a critical cross-cutting technology that will improve

performance and reduce the risk factors faced by human-based exploration (crew vehicles, habitats), robotic (spacecraft,

rovers, in-situ systems), and aeronautics (airspace, airport, and aircraft) applications. The obvious technological benefit

comes from the resulting automated hardware and software systems able to identify off-nominal behaviours, analyse

resulting data to identify probable causes and effects, take action to keep the system operating and alert ground control

(diagnostics). The provision of on-board decision making capability enables greater access to real-time telemetry and

system-state data8. As prognostic and diagnostic systems become an integral part of the system architecture, solutions

will be sought based on model-based and data-centric techniques. These approaches amount to a paradigm shift when

developing autonomous systems, which makes the barrier for their adoption seem greater9. However, the technology

has broad applicability to most future robotic and crewed missions. For example, the complexity of operating a crewed

interplanetary vehicle is perhaps comparable to that of a nuclear submarine. The latter typically has over one hundred

crew members. The former, the interplanetary vehicle, has to be managed by a crew of less than half a dozen, which

would require a significant level of autonomy for system-health management given limited communication.

2.1.1 Challenges with current technology

Analysis models targeting heterogeneous data sets are limited by large uncertainties and conflicting information. This

arises from the fact that, when only partial models are available to synthesise supporting analytics, human input is

still needed to identify subtle correlations and final decisions. Meeting future performance expectations for quality of

service, estimation of computation time for decision-making, and time to make a decision within on-board systems

that involve large real-time sensory data streams requires next-generation on-board resources10. Therefore, the aim of

autonomous systems is to offer intelligent platforms capable of: identify off-nominal behaviour, efficient analysis of

data to identify probable causes/effect, initiation or recommendation of action(s) to maintain system operating envelope

and bringing important metrics/actions to the attention of relevant personnel. These operational goals infer the following

technological requirements:

• Record low false positives (< 3σ) and false negatives (< 3σ)11;

7This is not a trivial task as it requires replacing the medium for decision making, that was previously performed by a human
operator, by a machine.

8But with limited computation and storage. Conversely, ground software would have limited and non-real-time data due to
communication delays and bandwidth limitations, but has excessive computation, given access to super-computing resources and
data storage.

9This is because models need to ensure correctness, sufficient data should be available to identify nominal behaviour and given
the probabilistic nature of these approaches, verification and validation of such capabilities can be notoriously challenging.

10Since even aircraft off-load such things to base monitoring, there is a concern for the computational/energy resource needed for
this.

11Some might argue that <3 σ is a rather stringent criterion but it is close to optimal. Up to 99.9% of the samples in a Gaussian
distribution will lie within ±3 σ.
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•

 

Respond

 

in

 

a

 

timely

 

fashion,

 

which

 

is

 

context-specific

 

but

 

generally

 

within

 

the

 

time

 

window

 

for

 

corrective

action

 

(time

 

to

 

criticality);

•

 

Adapt

 

to

 

novel

 

situations

 

(generalisation),

 

such

 

as

 

failures

 

or

 

degradation

 

in

 

performance

 

of

 

subsystems;

•

 

Learn

 

from,

 

and

 

effectively

 

integrate,

 

past

 

experience;

•

 

Exhibit

 

flexible

 

and

 

adaptable

 

behaviour

 

that

 

is

 

appropriate

 

and

 

scalable

 

to

 

mission

 

complexity;

•

 

Timeliness

 

and

 

accessibility

 

to

 

system

 

data,

 

with

 

sufficient

 

on-board

 

computational

 

resources

 

to

 

analyse

 

and

cache/archive

 

current/historical

 

data

 

trends

 

respectively;

•

 

Anticipate

 

future

 

events

 

and

 

states,

 

e.g.,

 

predictive

 

modelling

 

of

 

impending

 

faults

 

and

 

remaining

 

useful

 

life

based

 

on

 

current/past

 

data

 

trends

 

and

 

inferred

 

system

 

health

 

state.

 

Prognostic

 

data

 

must

 

be

 

generated

 

from

 

available

 

monitor/sensing

 

capability.

These key attributes will dictate how well an autonomous maintenance system can be adapted to particular missions

of increasing complexity. Many of them warrant timeliness and accessibility to system data, with sufficient on-

board computational/storage resources for analysing and storing current and historical data trends. Having on-board

components can help seamlessly access real-time telemetry data. In contrast, off-board components can be assumed

to have limited access to data (due to communication delays and bandwidth limitations), but can still benefit from

excessive computation capabilities. As a result, current technology should consider a fusion of model-based and

data-centric techniques that ensure model correctness, whilst having sufficient data to identify/learn behaviours and

perform validation. This amounts to a paradigm shift in developing such systems, making the barrier for their adoption

greater. 

From this, the expected gains to system maintenance and dependability are: improved safety: autonomous maintenance 

will not only reduce the burden on the maintenance staff but also improve safety during difficult environments (such

as space) and poor visibility by preventing human errors. However, this also makes it prone to cyber-attacks and 

hacking; increased reliability: a byproduct of the technology is the builtin reliability for maintenance operations 

using systematic technical problem-solving skills (centralised maintenance), rapid detection and warning, preventive

maintenance and scheduling. This breaks away from human expert judgments which might still be important during 

mission critical situations; lower infrastructure cost: it is expected to bring down long-term operating costs due to the 

use of system-wide energy efficiency and optimised maintenance schedules, however, this also warrants continuous 

connectivity of data and the communication environment between systems components. 

                                                                                                                                                                                                                                                                     

2.2

 

Requirements

 

for

 

system

 

health

 

management

Health

 

management

 

is

 

the

 

process

 

of

 

diagnosing

 

and

 

preventing

 

system

 

failures,

 

whilst

 

predicting

 

the

 

reliability

 

and

 

remaining

 

useful

 

lifetime

 

(RUL)

 

of

 

its

 

components

 

[15].

 

Its

 

realisation

 

requires

 

three

 

main

 

constituents:

 

fault

 

detection,

 

fault

 

classification

 

and

 

fault

 

prediction.

 

In

 

the

 

past,

 

process

 

monitoring,

 

equipment

 

monitoring,

 

and

 

performance

 

monitoring

 

were

 

performed

 

independently,

 

which

 

would

 

lead

 

to

 

inconsistent

 

monitoring

 

of

 

equipment

 

and

 

the

 

loss
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of process control performance due to a lack of effective maintenance practices. By contrast, today’s technologies 

[66] and model-based [67] techniques, often including the use of data-centric and adaptive model-based approaches.

Ignoring the possibility of coupled effects between different subsystems, state of the art systems can reconfigure

themselves after diagnosing faults using reasoners that adapt through learning processes. Such systems have been

developed and proven within testbeds at various centres, e.g., the Jet Propulsion Laboratory’s (JPL) Beacon-based

Exception Analysis for Multi-mission (BEAM) that uses an integrated, on-board or off-board data analysis for fault

detection, anomaly detection, and prognostics [68]. Another JPL testbed is the Spacecraft Health Inference Engine

(SHINE), a high-speed expert system (stateless rule-based system) and inference engine for the diagnosis of spacecraft 

predict future failures. For example, the Ames Research Centre inductive monitoring system that uses data mining

clustering techniques to isolate off-nominal interaction between parameters [70]. Another prominent example is the

G2’s real-time expert system, an artificial intelligence expert based system that has been demonstrated for on-board

payload monitoring and is also in use within some commercial satellite facilities for control of formation systems [71].

Such developments emphasise the importance of both physics-based and data-driven approaches for the development of

robust health management platforms that enable informed decisions to be made and analysis of the outcome. 

There is also a drive towards improving system performance by delivering more reliable assets, that possess a higher 

intrinsic availability12. In the midst of relentless operational pressures and reduced time available for diagnostic 

investigations, there is great value in arranging several data collection sources that may be used to provide context-rich

information (e.g., operating variables, environmental conditions, etc.) upon the occurrence of a disruptive event [16].

Despite these capabilities, these evolvable systems are still comparatively disparate and, with the ever-increasing

size of operational data sets, remain coupled with the complexities of contextual components [72]. This creates

barriers that were not anticipated during the design phase of the system life cycle can thus result in subsequent

speculative replacements and higher overall levels of uncertainty during the diagnosis process [14]. The higher levels 

yet, the underlying engineering environment is expected to support the technological platforms as well as system

availability requirements. Within this context, novel approaches are required that recognise and address anomalies

during operation; as well as better decision-making mechanisms at the system-level. This requires new capabilities

for monitoring in-service operation, recording and distributing expert knowledge, and securing the robust operation of 

for system-health management benefit from a variety of tools that depend upon statistics-based [14], reliability-based 

health [69]. Model-based approaches are used for maintenance information while physics-based models are used to 

of interdependence between assets have made it difficult (if not impossible) to assess why certain failures appear and 

or incomplete rules. Adaptive resonant theory was then used to train the data due to its ability to learn faster than other 

critical on-board software. 

In the past, researchers [18] have used neural networks on F16 flight line data for diagnostics purposes to acknowledge 

the capability to carry out multiple fault diagnoses, prediction/reconfiguration, and the ability to work with inaccurate 

12Here we define availability as the percentage (typically measured in days per year) when the system is ready for operation. Time 

                       

spent in the shop, either for scheduled maintenance or for an unscheduled (unexpected) event that requires special attention, detracts
from the system’s availability. 
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methods. Since different fault scenarios can be used to verify the efficacy of a given approach, researchers found that

integrating different diagnostic methods and developing a hybrid approach for this purpose to be effective. Volponi

et al (2003) used Kalman filters and neural networks methodologies to find the malfunction and deviations from the

normal engine behaviour [19]. Another possible combination is the integration of neural networks (NN) with the genetic

algorithm (GA) optimisation method. In [20] a neural network part of the scheme is applied to engine components

fault diagnostics while the GA is applied to sensor bias detection and estimation. Integrating the two methods exploits

their respective benefits; neural networks enable nonlinear estimation and GA methods bring increased robustness. The

results indicated improved fault detection and reduced false alarms13. More recently, deep learning methods have been

introduced to look at fault diagnosis and learn the deep architectures of fault data [21]. The research makes use of

stacked autoencoders to improve network learning capability with respect to classification accuracy and demonstrates

the potential of deep learning. Importantly the authors noted that, unlike image data, fault characteristics can vary over

time making them difficult to classify and hence they pursued deep learning architectures.

2.2.1 Neural networks as detectors vs. decision makers

The proliferation of NNs within AI applications has allowed practitioners to make system health management decisions

beyond the classical “if–then and do" commands for complex actions. This brings major advantages for signal retrieval

and analysis: the knowledge-base contains all possible architectures corresponding to the considered fault modes and

can be used to account for various attributes required for learning. Hence the decision maker computes and stores

tables or curves of diagnostic indexes for different faults whilst working across different operating conditions and

modalities. This approach can also archive heuristic rules and expert knowledge gathered from in-field experience to

help to overcome the common problem of incomplete system models. These techniques have been applied extensively

for condition monitoring and fault diagnosis [22]. For health management activities, in particular, NNs are often

employed as statistical modelling and prediction algorithms, which can be regarded as either density estimation and

prediction or classification and regression [23]. Lee et al investigated the use of convolutional neural networks (CNN)

for analyzing acoustic signals in the midst of noise [24]. The authors were motivated by the fact that most existing

signal analysis methods are largely dependent on the physical behaviour/characteristics of the system being analyzed,

which warrants regular re-tuning of algorithms for new acoustic profiles. Although, training for a deep learning system

can be slow; run-times of these systems are usually quite fast, particularly when running on GPUs. By comparison,

traditional methods are significantly slower than deep learning methods during test time. It should be noted that only

recently organisations have been focusing on optimising neural based computations, and in the near future are expected

to see silicon chips that are designed especially for these systems. Another strategy for reducing training time is to

precondition the input data to extract (remove) features that are not considered to be important.

13This due to better direct recognition of events or rejection of noisy/non-correlated events.
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2.2.2 Challenges for autonomy 

   

Regardless of the technique used, real-time requirements and theoretical formulations must be implemented by an

efficient algorithm. There are predominately three issues in this respect and they occur in various forms: data sampling

considerations, the size of data and the implementation architecture. In practice, these issues are not solely associated

with AI implementation but for real-time systems in general. Nonetheless they are interdependent and therefore, it is

important to first understand the nature of the problem. Firstly, many health management design engineers still lack the

knowledge to develop machine learning architectures. A second challenge is the cost of design and implementation. The

development of an autonomous health management system that is to be integrated into the entire system architecture is

currently far more expensive than traditional distributed systems, especially since greater volumes of data is required

train a network for varying fault characteristics. The use of synthetic fault data for training is not ideal and can result 

in incorrect performance attributes of real world applications14. However, this is a research field in its own right as 

it can be difficult to find explicit mathematical models due to system complexity and uncertainties. As a result, the

accuracy of the results will decrease. Furthermore, it is important to ensure appropriate data quality and latency, i.e., the

uncertain time stamps between when data is generated and when that data is available to use. This is a time-domain

requirement for AI maintenance systems that is distinct from other domains. 

                                                                                                                                                                                                                                                   

2.3 Requirements for data processing 

    

Assuming integration issues can be overcome, efforts should then focus on making delivering multi-source and multi-

format data whilst preserving its relationship to multiple sources. This is crucial for AI detection and classification

of subtle correlation patterns between data events that to an external observer exhibit no apparent obvious link. A

traditional approach is to manually establish relationships through some logic. Unfortunately, this can only be achieved

over a limited number of direct correlations and therefore does not adequately reflect complexities encountered in

the real world. An alternative is to train machine learning models to automate this process. However, this typically

addresses limited dimensions of the whole system complexity, i.e., correlating causal events in a predictive maintenance

focus, and will not lead to sufficient control for the system to interpret its operation situation (independence), nor the

ability to shape outcomes by adjusting control parameters (self-governance). From this, the following critical enablers

for the development of autonomous maintenance are identified: 

                                                                                                                                                             

• It should be assumed that required data will not (always) be available, not (always) accessible or not (always) 

of good quality. Furthermore, there will be incompatible data models that may not exist in digital formats. 

This can lead to a lengthy development phase whilst strategies will have to be developed that bring data into a 

                                                      

14But is used in a lot of cases in the absence of a better alternative. It is worth making a distinction here between the more
mainstream AI application areas such as image processing, where it is fairly common to synthesis data sets. This is important for
high value data-driven application like medical AI since data acquisition is a really expensive step and is the reason why so many
medical AI startups have multi-million investment value. In contrast, data is comparatively cheaper in maintenance applications but
the problem lies in the cost of integrating adding acquisition hardware into the testbed, and/or end product, in a way that meets the 

                                                                                                              

requirements for AI training and on-line improvement. 
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usable and standardised format. Perhaps the required time to address this issue becomes prohibitive to consider

developing an autonomous system. This becomes compounded by the preference for new vs. existing data; 

                             

• A requirement of maintenance support operations is the need for (almost) real-time response capability. This 

               

may be alleviated by relegating certain background tasks, e.g., relating to recent fault history, reorganis- 

               

ing/maintaining redundant fabric to low priority for minimum energy draw. Optimal balancing of real-time

operations may be accomplished using machine learning, but this depends heavily upon data associated with 

low-level redundant resources (i.e., more so than higher-level abstract data layers15); 

                                      

• The need to improve data quality has been emphasised in many publications and is evidenced by the availability

of several benchmarking datasets. However, the ability to train complex networks often depends on the 

availability of big data16, which has motivated the emergence of techniques capable of generating artificial 

                                                

data to reduce classifier variance and hence reduce the number of errors in the final result17. 

               

2.3.1 Generative learning 

Machine learning approaches learn from data. If data is limited, it has to be generated, e.g., for reinforcement learning18. 

Generative learning can be used to generate new (and often complex) data sets by using a generative model against an

adversary. These models are particularly interesting in the context of autonomous maintenance since they examine

which states of a physical system have been visited and trained upon and hence extending the model’s ability to

generalise in various conditions. Generative learning is being championed to improve AI reasoning capabilities by

generating knowledge from a purely virtual or even semi-real environment. Applications in the field include driverless

cars, autonomous factories, smart cities, gaming, robotics, natural language processing, finance, healthcare, intelligent

transportation systems [81]. In these cases, reinforcement learning has been used to initiate actions that maximise

the notion of cumulative reward within the given environment. Here, two components are often considered: attention

and memory. Attention is the mechanism that focuses on the salient parts; whilst memory focuses on long-term data

storage. This gives algorithms the capability to learn behaviours before an action is taken, which could be crucial to end

performance. As an example, an autonomous helicopter model could learn fundamental mechanisms for a flight using

generative data (in simulations) to achieve a high-level of attention using the memory required [82]. Once the attention 

has reached a desired level, the model can be used in the physical world19. 
15Or perhaps some kind of data stack specific to fault management that provides high-level ‘hooks’ into the low-level resources 

and their health status. 
16E.g., image processing and natural language processing fields have greatly benefited from deep learning methods [65] 
17For image processing, these include scaling of objects [73], moving objects spatially [74], adding noise [75], etc. For language 

                                                                                                                                                                                                                                            

processing, these include contortions in the temporal dimension, dynamic range compression, adding Gaussian noise, etc. [76, 77].
18As advocated by many authors [78, 79, 80], it requires a shift from learning to generalisation of spatial data. This can help react 

to continuous-time dynamical systems without a priori discretisation of time, state, and action. 
19Simply put, reinforcement learning is made up of optimisation, exploration, generalisation and delayed consequences. Rather

than if-then statements, there is a need for something more generalisable that learns from data directly with a high-level representation
of the task. It involves an agent and an environment where the learning system perceives the state (of the environment) via a set of
observations to take action. It then receives a new set of observations and a reward. Based on these, predictions for future rewards
can be made, whilst also changing the learning system’s policy (on how it selects actions). The key point here is that a single, scalar
reward signal drives the learning process. Radical generality is achieved without any signal interpretation, no reference signals or 
labels, no human interpretation and no calibration. 
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A model-free algorithm can also be used to represent knowledge. This is achieved via generic value functions wherein

several accurate predictions are made and learned in real-time For example, a single state representation can be used to

accurately predict many different sensors (at many different time scales) using policies, termination functions, reward

functions, and terminal reward functions, that maximise results though goal-oriented questions. Another notable

development in the field is the Generative Adversarial Network (GAN). These estimate generative models via an

adversarial process by training two models simultaneously [83]; a generative model to capture the data distribution

and a discriminative model to estimate the probability that a sample comes from the training data. This approach has

been extended to train a generative model using virtual data [84]. A discriminative model is then used to estimate the

probability function that determines whether or not a sample comes from the real world. This technique has helped

address some issues associated with reinforcement learning within virtual environments and extension to the real world.

By combining virtual data generative models and transferring the learning model to a discriminative model the system

is able to accurately express what has been learned from the virtual learning environment to the real system.

The idea is, therefore, to begin with simple rules from which an AI can learn strategies using rewarding actions. This

becomes a core characteristic to achieve intelligence whilst utilising prior knowledge. However, generalising from a

purely training-based exercise to reach real-life scenarios is not a trivial task20. At first, models will be trained using

rules or limited scenarios (depending on the data set) where it will learns to improve upon its competition (i.e., against

other models). Interestingly, video games have emerged as one of the main sources of benchmarking for the training

and testing of such problems, mostly due to their realistic, yet controlled environments, and the availability of large

amounts of data21. The motivation to achieve better results has led to significant advances in NN architectures that

are suitable for the reinforcement learning paradigm including Deep Q learning [86], Deep Successor Reinforcement

learning [87] and Dueling networks [88]. These areas of research are broadly known as Deep Reinforcement Learning.

However, the subsequent problem of training these models to develop more complex policies inside realistic and highly

specific environments remains an open challenge.

Most research effort seems to focus on specific attributes of the learning process together with observations on the way

that they interact with their environment. To highlight this, the authors have examined factors that influence model

exploration capability22. This has led to the conclusion that the definition of a realistic scenario is most important. This

is because once a model has learnt to perform effectively within a specific environment it has also learnt the behaviour of

the received experiences23. A universal problem occurs when a model learns from an overly limited set of scenarios, in

which case it will not be prepared for adversarial situations when the environment changes. A general solution is to use

a source of synthetic data generated from a diversity of sources to better simulate the properties of the real environment

during training. In other words, such a model can learn independently but the environment should be controlled to adapt

20This often called the reality gap [85].
21For example, a model can be trained against its copy without any supervision. In such cases, a basic set of rules of the game are

initialised for the model, which improves much faster using a vector of reward instead of the classical scalar quantity.
22I.e., factors that bring about independence and self-governing attributes.
23It should be mentioned that even though a model can only learn (or optimise) its parameters from a given data set, novel

behaviours can emerge even without previous knowledge.
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the model to operate within unexpected events. This process needs some generalisation24 and emergent behaviour25 but

once a model interacts with its environment, it should be generalised to a set of given actions whilst behaviours will

emerge independently (or due to the generalisation). This emergent behaviour will then interact with the environment to

create a continuous exploration capability. Capturing this real-time machine learning capability can help remove some

barriers to actual prediction whilst anticipating the technological evolution of autonomous maintenance systems. AI can

be used to learn and improve through ongoing collaboration with users and the environment. Following this, the next

challenge is to determine how autonomy can be realised by utilising rational decision-making and strategies to deal

with the consequences of dynamic environmental conditions.

2.4 Current trends towards autonomous maintenance

For safety-critical applications there is a need to implement an effective health monitoring capability that: i) collects

relevant data from various sensory sources; ii) carries out necessary signal processing–including the extraction of key

features; iii) performs fault diagnosis; and iv) performs fault prediction. The drive towards Industry 4.0 concepts and

large-scale information systems such as IoT and cloud computing have become instrumental technologies towards

next-generation system up-time, performance optimistaion and resilience [49]. Yet, no matter how well a maintenance

system is designed, there always exists the possibility of deficiencies in implementation (due to design decisions

and trade-offs) and component/sub-system performance that leads to difficulties in ensuring quality of service and

in-operation maintenance. The ultimate responsibility for recognising, interpreting, and compensating for deficiencies

in diagnosis capability rests with human maintainers, who are likely to be operating independently and without sharing

important information. Considering the size and complexity of assets operating in modern industrial domains–and

the task of comprehending their physical behaviour–it seems unrealistic to believe that ubiquitous and integrated

system-level decisions can be made entirely by humans. This is especially so when operating conditions, and even the

maintenance environment, are subjected to unpredictable fluctuations that cause unforeseen consequences. A paramount

property of the autonomous system is therefore that it should be capable of recommending (and taking) progressive

actions according to its environment. This plays an important role in adding resilience to the system as a whole and for

regulating its in-service availability. During the process of diagnosis, a number of recommended actions might be issued

including fault alarms, alternatives to maintain availability, in-service feedback. Depending on the recommendation,

the system may either choose to delay any action–if the failure can be tolerated until the next scheduled (human)

maintenance–or to take immediate action in the case of recognised conditions that represent imminent failures or states

that will compromise operating safety margins.

The autonomous maintenance system is therefore expected to collect/generate all health-related data that comprises

the various sensors networks used to record system performance and health along with operating environmental

information. A central repository (possibly on-board) is expected to store critical information and carry out necessary

status processing before communication with other service platforms. Most importantly, the architecture must focus
24E.g., using one-shot imitation learning [89].
25E.g., using multi-agent competition [90].
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on maintaining seamless communication and collaboration services such that all human, environmental and other

associated subsystems are linked and up-to-date. There are issues to consider here, such as anticipating bottlenecks and

dynamic management of health management resources, e.g., to adapt to network congestion or sub-component failures.

The increased data volume and quality of service requirements associated with autonomous systems management

warrants dedicated next-generation network infrastructures.

A current trend in autonomous maintenance research is the relatively siloed nature of studies. Despite the existence of

past findings relating to in self-healing and autonomy concepts progress to application demonstration has been hindered.

We summarise hindering factors reflected by researchers and practitioners alike that have influenced today’s disparity in

an effort towards realising autonomous maintenance:

• A universal issue is that of only having access to publicly available data sets that are not directly suitable for

the application in question. Deep learning is generally regarded as being dependent upon access to large data

sets but its integration with a digital twin is even more uncertain since this requires even more specialised data

sets or methods for artificial data synthesis;

• Engineering design and test resources are typically limited, especially for supporting the development of

complex and large-scale systems. Development teams also require expertise in next-generation data networks,

computational resources and their limitations;

• Machine learning techniques and frameworks depend upon many specialise tuning parameters and expertise

is required to determine the most likely architectures that suit a given set of application requirements and

constraints;

• Industry attitudes and perceptions towards trustworthiness are different. This can hinder research ideas from

being tested at higher technology readiness levels;

• The problem of quality assurance is non trivial and is likely to involve extensive testing and continuous

improvement;

• Even though autonomous maintenance has a broad apparent applicability future complex systems, a clear

assessment of the technology readiness level for autonomous maintenance is difficult to assess. An important

indicator in this context can be a system readiness level proposed for evaluating the complexity of integrating

these techniques into existing applications [91].

With this in mind, concepts such as on-board and real-time fault detection become appealing since they continuously

monitor and detect faults/failures. Outside the vehicle, ground-based analysis can then process telemetry data (which

is bandwidth limited and time-delayed) using ground-based computational resources to investigate faults, their root

causes, and recommend actions for recovery. As hardware technology continues to evolve, it is likely that some of

this ground-based analysis will converge towards on-board strategies. In aeronautics, the increasing use of autonomy

is driven by requirements to improve the affordability, efficiency, reliability, and safety of civil airspace, airport, and

aircraft (manned and unmanned) operations. Desired capabilities relating to civil aviation include: dynamic route
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planning in response to traffic and weather, precision airport approach and departure management, payload directed

flight, and in-flight compensation for degraded or failed aircraft systems26.

3 The digital twin-driven option

The concept of a digital twin has been applied for prognostics and health management by Tuegel et al, who used it

to predict the structural life of an aircraft [53]. Later, other researchers used it for damage detection, classification

and isolation [92]. Gockel et al. used this to develop a twin model to isolate damage in real-time [93]. Effective

damage detection is a key element here. However, despite developments in computation resources and mathematical

optimisation, many actions are still undertaken by humans-in-the-loop. Autonomous maintenance systems require the

ability to explore various training scenarios using their digital twin.

The authors propose the three aspects for data-driven digital twin:

• The construction aspect: this includes all the information of the structure of the asset. Not just the outer

information, but the semantic information of how everything fits and works together. This can be used for

planning, for system engineering, for simulation, for commissioning;

• The product (or service) aspect: this is delivered by manufacturers, which is a representation of components.

Unfortunately, this does not usually come with semantic information such as controller firmware details, how

many inputs/outputs, compatibility requirements, etc. These can be used (by the product manufactures) for

simulations of behaviours.

• The performance aspect: This is the object that gathers all the real-time data that is generated by the system.

They collate sensor data, process it through simulations to model all interactions (and reactions) of the

real-world system. It offers an insight into a systems current environmental conditions, its service life and

internal/external loads. Past data is stored and used to optimise future designs, predict various aspects of

operations, increase availability by reducing downtime/costs and improve throughput. Machine learning

algorithms are used to make better predictions which are then sent to an expert system to control the system

operation.

These three aspects highlight why technology data is required during all phases of the system life cycle. It was

mentioned earlier that the ability to generate and store information (from physical assets) is an important requirement

for autonomous maintenance. This is represented by extending the performance aspect in Figure 1 using the autonomy

block (more discussion to follow). All this knowledge has to be stored in a standard format and must be fed back to

other relevant interfaces. The digital twin will integrate sensor data from the vehicle’s on-board health management

system, maintenance history and all available historical data obtained using data/text mining. It continuously forecasts

the health of a system, its remaining-useful-life or the probability of mission success. Such a platform will mitigate

26Although this article primarily focuses on large assets, there are benefits towards consumer products and general socioeconomic
factors.
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damage (or degradation) by recommending changes during the mission. But this goal can only be achieved by handling

nonlinear system behaviour. Reinforcement learning can be used for this, as well as other deep learning methods [65].

The aerospace domain has started to investigate the application of digital twin to accomplish the goal of reducing

maintenance downtime for engines and other systems to receive an advance warning and generate a plan of actions

based on simulated scenarios whilst accounting for weather conditions, the performance of the asset, and several

other variables [12]. These developments would enable operators to keep aircraft in-service for a longer duration,

increase platform operational availability and efficiency, extend its useful life cycle, reduce its life cycle cost, mitigating

damage/degradation and recommend changes in the mission profile.

The potential for digital twin-driven applications has been discussed by some publications for:

• Mirroring the actual flight of its flying twin [12]. Once the vehicle is in flight, the continuous updates of actual

load, temperature and other environmental factors will be input to the model enabling continuous predictions

for the flying twin. Additionally, updates of the flying twin’s health parameters, such as the presence and

extent of damage or the temperature of the engine, can be incorporated to reflect flight conditions. Since

the algorithms comprising the digital twin are modular, the best-physics models of individual systems or

subsystems can be upgraded throughout the life of the vehicle;

• Performing in-situ forensics in the event of a potentially catastrophic fault or damage [12]. Because the digital

twin closely mirrors the state of health of the flying twin, it is well suited to analysing potentially catastrophic

events. Once the sensor suite on-board the flying twin has communicated the degraded state of health to the

digital twin, the digital twin can begin to diagnose the causes of the anomaly;

• Serve as a platform for learning [30]. If, for example, mission control wants to determine how the health

management system will deal with novel fault modes in a failed actuator and the best mitigation, the digital

twin can be used to learn and determine new load distributions throughout the structure, the fatigue life of the

structure under the new loads and the corresponding remaining life.

• Flying the actual vehicle’s future mission(s) before its launch [94]. Even without the benefit of continuous

sensor updates, the digital twin will enable the effects of various mission parameters to be studied; effect of

various anomalies to be determined; and fault, degradation and damage mitigation strategies to be validated.

Additionally, parametric studies can be conducted to determine the flight plan and mission parameters that

yield the greatest probability of mission success. This application becomes the foundation for certification of

the flying twin;

Again, this list demonstrates a big reliance upon data and model quality. The question to ask here is: even if we had

great AI-based monitoring/decision making capability, is the multi-physics model side of digital twin good enough?

If the digital twin can predict when one of its systems is about to fail and be replaced, this could significantly reduce

downtime. Maintenance is carried out only when required. At the centre of all this is collected sensor data that is used

for training/testing an algorithm for fault detection, isolation and prediction. However, it is not always possible to
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acquire

 

data

 

from

 

physical

 

systems

 

in

 

the

 

field

 

under

 

all

 

fault

 

conditions27,

 

whilst

 

generating

 

faults,

 

for

 

example,

 

from

 

a

 

probability

 

distribution,

 

may

 

not

 

provide

 

the

 

adequate

 

test

 

regime.

 

A

 

possible

 

solution

 

is

 

for

 

the

 

digital

 

twin

 

is

 

to

 

create

 

the

 

various

 

fault

 

conditions

 

through

 

simulation(s).

 

This

 

would

 

help

 

test

 

all

 

facets

 

(and

 

severity)

 

of

 

a

 

problem

 

during

 

the

 

predictive

 

maintenance

 

workflow.

 

Tao

 

et

 

al

 

(2018)

 

have

 

published

 

a

 

tentative

 

framework

 

to

 

achieve

 

this

 

for

 

classifying

 

gradual

 

faults

 

(due

 

to

 

component

 

degradation)

 

and

 

abrupt

 

faults

 

(due

 

to

 

disturbances)

 

[42].

 

It

 

divided

 

the

 

problem

 

into

 

three

 

stages

 

which

 

included

 

modelling

 

the

 

digital

 

twin28

 

and

 

its

 

interactions

 

for

 

detection,

 

isolating

 

and

 

prediction

 

of

 

faults

 

and,

 

finally,

 

deciding

 

the

 

maintenance

 

action.

 

The

 

process

 

needs

 

both

 

the

 

physical

 

and

 

digital

 

counterparts

 

to

 

measure

 

any

 

deviations

 

from

 

the

 

expected

 

states/behaviour

 

to

 

indicate

 

potential

 

fault

 

occurrence.

 

However,

 

the

 

authors

 

did

 

not

 

discuss

 

any

 

limitations

 

of

 

this

 

setup

 

for

 

system

 

optimisation

 

and

 

predictive

 

maintenance.

If

 

a

 

digital

 

twin

 

is

 

considered

 

as

 

the

 

“world/environment”

 

within

 

the

 

generative

 

learning

 

environment,

 

it

 

would

 

be

 

able

 

to

 

describe

 

how

 

different

 

components

 

are

 

coupled

 

together.

 

From

 

this,

 

it

 

can

 

be

 

hypothesised:

 

“if

 

the

 

simulation

 

and

 

physical

 

environments

 

are

 

shaped

 

in

 

the

 

same

 

way

 

(i.e.,

 

as

 

a

 

digital

 

twin),

 

can

 

this

 

enable

 

a

 

self-learning

 

algorithm

 

to

 

steer

 

itself

 

without

 

manual

 

intervention?".

 

This

 

can

 

allow

 

leveraging

 

in-house

 

knowledge

 

from

 

experts

 

without

 

having

 

to

 

rely

 

on

 

new

 

roles

 

(e.g.,

 

data

 

scientists)

 

and

 

also

 

fulfils

 

some

 

of

 

the

 

requirements

 

discussed

 

earlier.

 

It

 

is

 

a

 

promising

 

solution

 

as

 

no

 

prior

 

knowledge

 

of

 

the

 

environment

 

physics

 

will

 

be

 

required

 

to

 

tune

 

the

 

system

 

parameters.

 

This

 

is

 

something

 

that

 

can

 

even

 

be

 

done

 

without

 

having

 

any

 

technical

 

background,

 

as

 

the

 

algorithm

 

will

 

be

 

able

 

to

 

find

 

out

 

what

 

action

 

to

 

take,

 

whilst

 

accounting

 

for

 

increasing

 

complexities;

 

by

 

adding

 

their

 

state

 

information

 

from

 

previously

unknown

 

instances.

3.1 Towards a “reward engineering" environment 

     

The authors propose a generic architecture in Figure 1, with seven essential blocks. Five are in real-time: the physical,

data communication, performance aspect, autonomy, output, and two offline blocks: the construction and product (or

services) aspects: 

                                  

• The physical asset: To map the physical representation, several considerations are needed. Starting with

operational processes, sensors serve as the input29. It is represented as a the physical block and also accounts 

                                

for human intervention and feedback; 

• The data communication block is the means of communication between the physical and virtual layers. It 

comprises of various elements and models such as data, fusion, acquisition, feature extraction/selection, 

pre/post processing, filtering or big data processing; 

                                      

• The performance aspect of the digital twin is separated from the physical object; perhaps it is virtually located

(e.g., in a cloud-computing environment). Using such infrastructures, the block accounts for various models

such as geometric, physical/behaviour, rules/fuzzy, processes or technical CADs. This block also processes 

                                            

27Some faults can even lead to catastrophic failures and result in massive business losses.
28If there were any variations in the model, then parameters are tuned using least squares method.
29Of course, not all necessary data can be retrieved from already installed sensors, e.g., to record environmental conditions,

additional sensors and data loggers are needed.
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Figure 1: Interrelations in the digital twin-driven autonomous maintenance framework. The digital twin comprises of 

               

three aspects: construction, product and performance. The autonomy block extends the application of the performance 

               

aspect. 

the information to diagnose/prevent system failures and predicting the reliability of the components in the

physical block. Its functions include fault warning, querying, diagnosis, equipment health information, life

prediction, flight condition monitoring and recovery status monitoring; 

                                   

• The autonomy block is an extension of the performance aspect and is used to learn system uncertainty and

allow to take action/feedback in real-time. This includes the management of unknown instances, provisioning 

                               

of resources and optimisation of the various elements in the other layers; 

           

• The output block serves as an interface to the framework. It can either be humanly readable as a web-based

interface or an Application Programming Interface (API). One general purpose of this block is the generic 

                                   

access to the digital twin data. Hereby, an integrated interface to any possible service application is allowed;

• The remaining two offline aspects of the digital twin, the product (or service) and construction, form the rest 

of the architecture. 
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This framework illustrates the benefits of combining the concepts of digital twins and reinforcement learning to solve 

                 

core issues in the ecosystem. The key requirement satisfied here is the ability to compensate for model uncertainties in 

                   

the digital twin (during control and optimisation). In addition to providing health information, the digital twin triangle 

                 

can observe a physical system state/behaviour/fault, and make a decision for relevant control action. This action will be 

                  

based on a default policy as per the health management system requirement. The autonomy block observes both the 

                  

system state/behaviour/fault and the default policy. It then makes a decision if the feedback should be applied as is (or 

                    

be modified) to the physical asset. This setup would generate feedback (or reward) for the autonomy block, as the next 

                    

states will be observed by the digital twin. Therefore, the reward is simply used to improve the autonomy block’s policy. 

                    

A similar idea was discussed by Conrath et al [60] who used reinforcement learning as a means to adapt the control 

                     

policy (of the twin) to impose a constraint on the learner performance. However, the question remains that in the use of 

                     

these black-box techniques, how to account for uncertainty and guarantee safety requirements, and the implications of 

                

its realisation. 

 

Of course, the problem of complexity associated with real-time implementation is still an issue. There is a need to 

                   

place some limits on it and perhaps aim to achieve a reasonable system performance. Here, the long-term goal should 

                   

be to appreciate these limitations that a digital representation would bring and then attempt to simplify the problem. 

                  

Understanding these trade-offs is an ongoing motivation for many authors in the field [44, 95]. Complexity requirements 

                 

are therefore categorised in terms of limitations in the structure of the computation, selecting a criterion for acceptable 

                  

solutions, the cost of reasoning and task predictability: 

       

• Structure of the computation: To limit complexity, a limit needs to be imposed on how many subsystem 

                 

interactions are required for the architecture. This will dictate the number of computations involved; 

             

• Selecting criterion for acceptable solutions: The assumption here is to satisfy a requirement rather than to 

                

find an optimal solution. These ‘satisfying’ solutions often take the form of using heuristic problem solving

technique and are only useful if non-optimal solutions exist for a problem; 

                          

• The cost of reasoning: A good way to describe this to consider the cost of control against the cost of safety. 

Within safety-critical applications, this assumption will be difficult to justify unless the cost of control is 

                                     

predictable, e.g., does having a digital twin in the loop result in feedback delays which can affect system 

                  

stability? 

• Task predictability: The digital twin architectures need to make accurate system health management predictions 

to help avoid excessive runtime costs. 

                   

In addition, it is important to establish synchronisation between the physical asset and the virtual model of a mechatronic

component. This can be done by identifying the various component model states as well as relations/inter-dependencies

between the specific domains. This is because, over time, the states of the simulation and the physical asset will drift

apart, perhaps due to degradation. It can be achieved using an online-optimisation [56] or an anchor point method [96]

to compare measurable states of the physical system and interdisciplinary models (and their relations in the digital 
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twin). However, this needs to be extrapolated across the entire system life-cycle. This warrants a standardised semantic 

                 

description of these models (or data and services) to establish a uniform understanding across the architecture. To enable 

                  

this data exchange, standards for industrial communication for machine-to-machine or PC-to-machine communication 

            

can be used30. Ontologies have been widely used in context modelling, as they are independent of programming 

                 

languages and enable context reasoning. Even though digital twins are used in different contexts, limited research

efforts have evaluated how a digital twin and its architecture can accommodate changes occurred to the asset during

its life-cycle. Lack of adaptive approaches is one of the main reasons for preventing industrial adoption. Generally,

software integration in a digital twin should be achieved using some standard format for data exchange. However,

this might not be feasible for data-driven digital twins, which require real-time updates due to uncertainties across its

life-cycle. Erkoyuncu et al had proposed an ontology-based approach for designing a data architecture for a digital twin,

that would semantically link data and models to represent the asset [43]. Compared to other shared languages (e.g.,

structured query language - SQL), this offered advantages as the ontologies: 

                                                                                                                                   

• Organise data semantically according to knowledge domains, helping to share information with the same 

meaning for both software systems and users; 

                    

• Are based on the ‘open- world’ assumption. Since data not declared is not implied to not exist, data changes 

can spread easier as interfaces are prepared to receive new data schemas; 

                              

• Can provide inferencing capabilities to the data stored, offering additional capabilities to reason over existing

data. Therefore, the architecture would enable to generate or update ontologies so that diverse sources of 

                               

information can communicate with each other using a common language. 

         

Finally, readily mapping sensor data to model parameters can become an issue. This is due to the large number of

sensors that are used to map real-time information; it is necessary to properly interpret and reuse sensor data from

different domains, which places an emphasis on the construction of semantic maps (that illustrate the relations between

heterogeneous domain ontologies), which becomes important for knowledge reuse. A possible solution is to establish a

connection between sensor data and domain ontologies by classifying sensor data using a Semantic Sensor Network

(SSN) ontology, and then mapping the corresponding instances to the concepts in the domain ontology [97]. A machine

learning model can also be used to reduce the workload of manually labelling the enormous heterogeneous sensor data. 

                                                                                                                         

4 Trends for the future 

    

The previous sections have delineated the main requirements and given an interpretation of where autonomy for

maintenance is today. But what about the future? How are these requirements likely to evolve? What are the

implications for the domain? What sort of processing will be available? This final section is an attempt to answer these

questions, at least in part. 

                                                          

30This includes technologies such as the Open Platform Communications United Architecture (OPC UA) or OWL ontologies. 
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Figure 2: Important technology milestones for enabling digital twin-driven autonomous maintenance 

          

It is important to identify technology/capability milestones when looking into the future, and Figure 2 provides a

roadmap for what is needed if autonomous maintenance (according to the vision set out in this article) is to be realised.

Predicting exact dates is of course difficult. Instead, the authors have opted to classify future developments as near,

medium and long term goals: 

                                                            

• ‘Isolated or niche’ technologies focus on the development of strategic technology niches which satisfy certain

commercialisation challenges. Various tools and processes are being developed to address current technological 

                           

gaps, whilst aiming at elevating the core competencies of these solutions up to a competitive level; 

• ‘Centralised’ technology is built around a single system that handles all the major processing and addresses 

client requests. A key benefit of their application includes consistency, efficiency, and affordability. However, 

with the rise of technologies like Blockchain and the cloud, a decentralised network will eventually become 

the norm; 

                                                             

• ‘Verifiable’ highlights the overwhelming progress of the large-scale impact from AI systems. It recognises

that existing regulations and industry standards are insufficient to ensure responsible AI development. To

engineer trust for their users, clients, society, governments, and other stakeholders, the technology needs to

make verifiable claims to which it can be held accountable. This places an emphasis to provide evidence about 

                                                            

the safety, security, fairness, and privacy protection of these solutions; 

• ‘Distributed’ technology enables distributed workloads to offer high performance whilst making scalability a 

lot simpler; 

                       

• ‘Trusted and resilient’ milestone examines the impending challenges in situations of disrupted technology

infrastructures and yet continuing to provide our society numerous benefits, including high-quality and energy 

                           

efficient

 

solutions;
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• ‘Self-’ is the final milestone which focuses on achieving some form of singularity by demonstrating intelligent 

characteristics like self-resilience, self-adaptation, self-organising and self-healing. It will help to solve physics 

problems where quantum mechanics and the interrelation of materials or properties are important. 

                                         

With these technological milestones in mind, it is clear that there is a need for significant investment and technology 

                   

breakthroughs. Despite many large technology companies currently heralding many of these developments as the next

breakthrough in engineering applications, their current investments suggest there is some disagreement as to how they

will be achieved, especially when the amount of investment (public and private) keeps shifting [98]. To successfully

realise an autonomous solution, various developments from these milestones are required. Each effort is going to be

unique, even if it (seamlessly) reuses the same data. For a digital twin-driven solution, most of the challenges will be

attributed to addressing the increasing complexity because: 

                                                                                           

• There is a need to break the system requirements down and scrutinise their existence. This will help analyse 

(and describe) the complexities of the physical process in terms of its constituents at a more fundamental level, 

whilst paying attention to the integration of these parts at system-level [12]; 

• Using the traditional approach to integrate components would reduce the agility of the twin [99]. This is 

because it rather focuses on loosely coupling components together in a way (generally) that lets them share 

or reuse data. This often leads to centralised architectures and deployments. There are no flexible ways for 

services to communicate with each other in ways that enable scalability, nor the ability to add (or remove) any 

service functionality; 

• Dealing with data heterogeneity, redundancy, interoperability and datasets evaluation, along with an ontology 

that supports this [45]; 

• Programming all interrelationships between many data sets [42]. 

                                                                                                                                               

Other challenges will be based on the assumptions that [100, 101, 102]: 

           

• Data is not owned but shared across all stakeholders; 

• There is an active shift from transactional systems (and organisations) to more cooperative processes;

• The incremental development of intelligence is directly proportional to value creation; 

• Asset life-cycle management is not only process-centric but also data-centric; 

                                            

For the case of autonomous capabilities, any delay in retrieving and treating some data can lead to delays in action,

affecting the expected benefits of using the digital twin in the first place. This encourages efforts to focus solutions on: 

                                       

• Seamless connectivity: It is important to understand data origins to create a source of truth for a digital twin

and defining the outlets for collecting knowledge which is missing. This includes techniques used to analyse 

                                  

data from IoT devices and simulating real-world scenarios in a virtual environment; 

• Data intelligence: Analytics are important to transform data into meaningful (and manageable) form; 
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• Multi-model simulation: The platform should enable the simulation of large-scale business scenarios so that it 

               

can be debugged without affecting the physical device; 

       

• Human machine interfacing: Visualisation and interactions with the processed information with increased 

            

efficiency; 

• Knowledge graphs: For dynamic and semantic integration of data from complex systems. 

            

While these opportunities are emerging, the key to creating system autonomy (based on digital twins) will be through

the integration of technology infrastructure and focusing on the resilient milestone of Figure 2. This is a challenging

task and its implementation will require the right mix of technologies, domain expertise, and partnership ecosystems.

Investing efforts here will help overcome the various complexities during system interactions, humans, the lack of

agility, organisational cultures, comprehensive data sets and the relationship between data. Most technical challenges

are related to data availability and access, while others are related to ensuring that it is an adequate representation of 

reality. In fact, extended reality31 has already demonstrated its utility for training and equipment maintenance [103], its 

role in autonomous maintenance will ensure that processes can be better analysed, serviced and updated in real-time by

humans. Here, the digital twin visualisation will be a combination of virtual, augmented and mixed reality to simulate

the real process (or service, machine, etc) using real sensor data and models that enable autonomy and interaction in a

virtual manner. 

Another major technology area will focus on networking capability to manage the vast number of unattended sensor 

sources. All mobile systems, both manned and unmanned, will be networked while on the move. Most of these

sensors will be in small devices that are dispersed throughout the asset (or fleet, business, etc.). This raises issues

such as size, weight, power consumption, orientation when making decisions during operation, signal propagation in

various environments, and security for these unattended devices as they pass information into a classified network.

Such technology needs to permit communication on the move and need to account for a temporary loss in network

connections. It should be able to recover the link and resume the communications stream immediately. Therefore,

requirements such as bandwidth restrictions, reporting times and overhead will have to be satisfied. Moreover, the

technology that will be at the core of all these developments will maintain all network operations. This involves

combining network management, security management and information dissemination management into a single

function. It would allow a system to help filter out and profile information to a specific commander based on parameters

arising from missions/needs. The emergence of blockchain technology is one possible future trend which could also

find itself integrated into the digital twin pipeline where security and trust are an issue. The ability to maintain an

immutable data ledger, which could house sensor data, decisions and actions undertaken by the autonomous system

could provide many benefits, though the computational cost to maintain such a ledger could be a challenge to overcome

for a real-time system such as this. 

                                                                                                                                                                                                                                                                                                                                                                                                                                                       

31It is an umbrella term for all real-and-virtual combined environments and human-machine interactions. It encompasses virtual,
augmented, and mixed reality. 
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None-the-less, autonomous maintenance will require the an industry to test it during its early stages, i.e., the operator 

                  

is willing to take the risks and accept the costs. This cultural impact can be minimised by introducing standards and 

                    

bringing together various organisations, early in its development with a clear understanding of its operational benefits 

                

and use of unified terminology. The development of a specific ontology built around the core idea of autonomy and

maintenance could also aid in this endeavour, but once again requires cross-organisation support. 

Finally, the capability to test various simulations in each digital twin can become overwhelmingly large for traditional 

computing. Quantum computing is being championed to satisfy these requirements that make real-time machine

learning (nearly) unlimited in capacity. In this case, a quantum digital twin would be the complex and accurate

simulation of the real world. Perhaps it can utilise data from other digital twins models and postulate thousands (and

millions) of variables interacting with each other. In this way, future digital twins platforms can use the processing

power of quantum computers to simulate various scenarios in the least time and guide the autonomous decisions on the

most optimal strategy. 

                                                                                                                                         

5 Conclusions 

 

Autonomous maintenance is still at its nascent stage and requires a synergy of algorithmic and computing techniques

from intelligent systems and machine learning to establish its decision making capability. It is a promising solution

that aims to minimise maintenance effort and reduce cost. At present some systems already feature basic autonomy.

However, achieving full autonomy is still far from being accomplished. Most publications have approached the problem

from a conceptual perspective and limited efforts have been made to create a universal view of the key components

involving full autonomy. This article acknowledges an avid curiosity to understand the development process of

autonomous maintenance systems. The route toward autonomy is complex as it requires the realisation of ambitious

goals that must consider dynamic environments. This indicates that true autonomy might ultimately be an unattainable

goal. However, this article has expressed this pursuit in the context of operating envelopes (such as performance margin,

redundant resource allocation achieved for some defined period), that incur additional investment cost at the outset. 

In particular, this article investigated autonomous maintenance using recent developments in machine learning and 

the concept of the digital twin. The resulting knowledge highlighted key requirements and how they can be met. A

potentially important enabling concept is generative learning, which is gaining traction in engineering applications.

Practitioners have also made use of several (digital) models to monitor and troubleshoot system-level problems.

However, the quality of data used in this process impacts accuracy (and the meaning) of models and it seems that many

potential adopters do not know how to find or exploit the right data. This highlights the two types of data, one which 

is visible that comes directly from maintenance problems, or is based on experiences32. As for the data that is not 

immediately visible, system maintainers often rely on trial-and-error approaches to diagnose a problem. This approach 

                                                                                                                                                                                                                                                                                                                 

32General questions for the visible data are: First, how to find the useful data? Second, how to evaluate which data is usable?
Third, which data is most critical? 
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does work in some cases, but it cannot necessarily be reproduced by others, indicating the need for a more systematic

approach to address data quality issues in autonomous maintenance applications. 

                             

Autonomous maintenance has the potential to boost automation to a completely new level and have numerous applica- 

                 

tions across all industries. However, many current attempts to create autonomy do not systematically address the two 

                 

main challenges of complexity and uncertainty. The authors would agree that, while machine learning can (and will) 

                

play an important role, service robots executing maintenance tasks will not master the real-world complexity without 

                

significant prior knowledge for structuring their (almost) infinitely complex work and action spaces. Solutions will have

to be specific, indicating that no single architecture will dominate, but rather achieving autonomy in unknown environ-

ments will require the safe, robust and verifiable composition of machine learning, perception, mapping, planning and

control with training feedback. From this perspective, it is useful to draw out some key findings: 

                                                               

• Autonomy is the ability of a system to achieve predefined goals while operating independently of external

control. The underlying spectrum ranges from local autonomy within subsystems where actions may be

executed in response to stimuli (or local information), to system-level autonomy, which manages actions and 

                                             

handles constraints across subsystems. 

• A fully autonomous maintenance system has the following aims: 

– Be able to undertake maintenance tasks independently and intelligently in dynamic and uncertain 

environments; 

– Seek to improve performance with a reduced burden on maintenance personnel; 

– Achieve safe and efficient control of the system; 

– Enabling decisions in complex and dynamic environments; 

                                                   

These aims can be realised by the creation of the three aspects of a data-driven digital twin which satisfying the

following requirements: 

                     

• Determining in-situ implementation complexity requirements in terms of limitations of the structure of the 

computation, selecting criterion for acceptable solutions and the cost of reasoning and task predictability; 

• Data processing requires continuous improvement of data quality and the ability to deal with big data. This 

can help reduce classification errors; 

                                                

• To generalise a maintenance action (with continuous exploration capability) that requires more synthetic data

to generalise the problem. This can assist in applying deep reinforcement learning algorithms to compensate 

                            

for model uncertainties in the digital twin (during control and optimisation); 

• Determining the required level of autonomy from a system will depend on: 

– The number of humans needed to operate a system; 

– The mean time between human interventions and the number of functions performed per intervention; 
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• Addressing primary technological barriers: 

– Lack of on-board computation and storage; 

– Network performance issues; 

– Knowledge representation; 

– Addressing the challenges associated with scaling up the state of technology to more complex scenarios 

where they can handle unanticipated anomalies and learn from past experiences. 

• Appropriate interfacing methods. 

                                           

Addressing these requirements will influence the development of the next-generation system health management

capabilities. From this perspective, the data-driven digital twin should be considered to enable robust autonomy for

maintenance services. This will also provide specific run-time optimisation for processor intensive requirements

demanded by AI-based solutions. However, considering the high initial costs associated with the technology, it will

only be successful when these solutions can be spread over several systems and implementations. This indicates that 

early adoption is going to be based on risk33 and building trust. Yet, autonomous maintenance offers great potential 

for the maintenance industry and practices and the associated research communities. These concepts require joined

efforts between manufacturers, maintenance organisations and regulators in order to mutually design, develop and

control effective and trustworthy systems. Clarity in taxonomy will emerge at the same time. In conclusion, this article

has discussed an important emerging topic in systems design and maintenance that requires extensive research and

industrial collaboration to fully realise systems capable of autonomous maintenance. From a practical viewpoint, the

most notable requirement is effective laboratory demonstrations that demonstrate the viability of high-fidelity models

that capture enough information to support autonomous maintenance. As a result, research effort is needed in the areas

of model development and computing architectures. Overall the authors advocate an incremental adoption of proven

autonomous maintenance technologies that stimulate widespread industry adoption, for which the digital twin-driven

approach is a key enabler. 
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