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Abstract 

Energy and thermal management is a crucial element in Formula-E race strategy development. 

In this study, the race-level strategy development is formulated into a Markov decision process 

(MDP) problem featuring a hybrid-type action space. Deep Deterministic Policy Gradient 

(DDPG) reinforcement learning is implemented under distributed architecture Ape-X and 

integrated with the prioritized experience replay and reward shaping techniques to optimize 

a hybrid-type set of actions of both continuous and discrete components. Soft boundary 

violation penalties in reward shaping, significantly improves the performance of DDPG and 

makes it capable of generating faster race finishing solutions. The new proposed method has 

shown superior performance in comparison to the Monte Carlo Tree Search (MCTS) with 

policy gradient reinforcement learning, which solves this problem in a fully discrete action 

space as presented in the literature. The advantages are faster race finishing time and better 

handling of ambient temperature rise. 

Key words—Energy management; Formula-E race strategy; Deep deterministic policy 

gradient; Reinforcement leaning 

1. Introduction 

The popularity of hybrid and electric vehicles has grown rapidly over the recent years. Energy 

management has always been one of the hottest topics in those advanced electrified vehicles. 

In top-level motorsport series, the technical regulations introduce stricter restrictions on 

energy consumption year by year to encourage more high-efficiency powertrain technology 

development. In the full-electric series Formula-E (FE) championship, energy management 

has been the most crucial element in race strategy development proved by numbers of 

winnings and loses witnessed over the past seasons [1]. 

Published researches addressing energy management problems mainly fall into two 

categories: (1) real-time controller development, which is the majority [2][3][4][5]; and (2) 

trip-oriented energy management optimizations [6][7][8][9]. The first category includes 

various control strategies used to manage the power flow among multiple energy resources in 

hybrid powertrains, targeting to achieve the maximum overall powertrain efficiency at each 

timeframe or a certain optimization horizon given a specific power demand from the diver 

input. In the second category, the target is to minimize the total energy consumption for a pre-Jo
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specified route based on the information of the route, vehicle and powertrain and is solved 

under certain constraints such as minimal finishing time. Energy management problems in 

motorsport are similar to the second category but with time being the optimization objective 

and energy treated as an integral constraint to study the maximum achievable performance 

given an amount of useable energy. Such management problems are usually solved in lap time 

simulations (LTS) by formulating into an optimal control problem (OCP) [10]. Tremlett et al. 

[11] studied the optimal tyre usage of Formula-One (F1) cars by including a thermal-dynamic 

model in the OCP. Limebeer et al. [12] studied the energy management strategy for an F1 

hybrid system. Herrmann et al. [13] optimized the electric energy usage for an autonomous 

race car. And Liu et al. [14] studied the energy management strategy under both energy and 

battery thermal constraints. Optimal control technique proves to be very reliable for solving 

such minimal-time management problems for a single lap in motorsport applications. 

The energy management problem on a race (multi-lap) level is more difficult than the single 

lap problem to solve. Although optimal control technique is powerful, it is also a very 

computational costly method. The computational time could range from minutes to hours 

depending on the model fidelity inside problem formulation. This leads to hours or even days 

to solve the multi-lap problem, making it irrational to use optimal control technique for 

strategic application on a race level. Generally, a good ‘race strategic tool’ requires fast 

decision-making capabilities due to the highly dynamic nature of motorsport races.  

Race strategy development requires an upper-level view instead of studying the control 

problem within a single lap. Among the very few publications targeting such analysis, most 

focus on building race simulation environment discussing how to discretize a race. A popular 

way is to discretize a race into single laps [15][16] while in some other studies, it is divided 

into smaller sectors of approximately 150 m length[17] or sub-sectors near the start/finish 

line to capture potential overtaking opportunities during pitstops [18]. A race can thus be 

simulated by introducing various influencing factors such as fuel load, tyre aging, car abilities 

and adding respective time penalties to a baseline sector/lap time. A gap lies in the actual 

decision making in race strategy development where these studies did not address on. In 

general, Monte Carlo simulation is one of the most popular methods for strategic planning. It 

has been applied to the races of either horse racing [19] or motorsport [20]. By introducing 

probabilities of actions or the environment (i.e. accident probabilities, player abilities), the 

Monte Carlo methods can generate an approximated solution based on hundreds or thousands 

of Monte Carlo simulations. However, the quality of such solutions of this exhaustive method 

is heavily depended on the brute computational force or the accuracy of those probability 

estimation. To improve the efficiency and reliability of race strategic planning, Liu et al.[19] 

proposed a technique to solve the race strategy problem by using Monte Carlo Tree Search 

(MCTS). A Formula-E race is discretized into laps and MCTS is used to shrink the size of the 

problem by focusing on the relatively more promising actions hence improve the efficiency 

and quality. The implementation of MCTS proves to be a decent method for planning and 

improvising given various scenarios during a race.  

In Formula E, energy consumption is the major concern. A strategic action in a real-life race is 

always complex and comprises both continuous and discrete type of actions. The technical 

regulation of FE racing presented in [22] states that for a complete race, the total amount of 

energy that can be delivered from battery to the motor is limited to 52 kWh. This amount is Jo
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much lower than what is required to be fully aggressive throughout a complete race. Therefore, 

teams have to decide how much energy to use for each lap (i.e. energy per lap/EPL), which is 

chosen from a continuous action space (e.g. 1.0kWh-2.2kWh). Another continuous action 

comes from the thermal management of battery when races are held in hot climates such as 

those present in Marrakesh and Santiago. Heat is generated both during propulsion (vital for 

speed) and regeneration (vital for energy efficiency and endurance). Teams have to avoid 

battery overheating which leads to de-rated power and potentially a Did Not Finish (DNF). As 

previously pointed out in [14], adopting smooth pedal operation is proved to be an effective 

technique to manage the temperature rise. The extent to which pedal operation should be 

smoothed constitutes another continuous action which will be later referred to as Q mode 

(QM), which is detailed in section 2. Apart from these continuous elements, strategic decisions 

in FE comprise another important discrete action which is whether to activate Attack Mode or 

not. In normal race mode settings, the maximum power of motor is limited to 200kW by the 

regulation. Beyond that, teams are given an option of activating attack mode for a certain 

amount of time which gives an extra power of 50 kW during this power mode. The number of 

activations and duration are circuit-dependent and using all the activations is compulsory. 

Whether to activate the attack mode at a certain stage of a race is not a single independent 

decision related to that particular lap only. Actually, it also has potential influence on the EPL 

and QM decisions due to its unique contribution to energy consumption and battery thermal 

behavior [14]. Therefore, an appropriate strategic tool for FE needs to be capable of generating 

a hybrid action made of both these continuous and discrete actions. 

There are several main weaknesses in the current methods for strategic planning: (1) the use 

of ordinary Monte Carlo simulations would easily compromise the quality and accuracy of a 

solution. Among these stochastic simulations, some unlikely moves are included which would 

rarely happen in a real case. As a result, the solution could potentially be overrated; (2) 

although according to [19], MCTS takes around 10 seconds to make a decision, it is still 

relatively slow because of the highly dynamic nature of a motorsport race. Such 10-second 

duration may compromise the timeliness of the decision made; (3) to implement MCTS, all 

actions must be discretized. As previously discussed, for the continuous action elements, 

potential better solutions could be hidden due to the discretization; (4) the online computing 

methods rely on high computational resource to generate solution with decent accuracy. This 

bottleneck prevents strategists to investigate a strategy with higher dimensions, which would 

require significantly more resource otherwise, the solution accuracy and timeliness have to be 

compromised. To overcome these weaknesses, in this study, reinforcement learning is 

proposed as a new method for the race strategy problem.   

Deep Reinforcement Learning (DRL) is a branch of machine learning algorithms that are 

designed to optimize actions in an environment in the form of a Markov decision process (MDP) 

in order to maximize the collected reward. RL-based methods have been proved of great 

utilities in wide varieties of applications such as robotics [23], games [24], resource 

management [25], etc. There are several features of interest which makes RL-based approach 

favorable in motorsport strategic applications: (1) DRL methods are reward based. In 

motorsport, time as the major concern, can be easily quantified as reward and integrated with 

other constraint violation penalties; (2) Strategic decision making in a race event conforms to 

an MDP. A decision is made based on the observation or state of the environment (i.e. the race) Jo
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and the objective is to maximize the cumulative reward after a sequence of decisions leading 

to a terminal state (i.e. the finish of a race). (3) Training a DRL agent may be computational 

resource consuming but applying the trained outcome can be very simple. In motorsport, 

apart from the race event, all the rest of time can be used to prepare and train an agent for 

varieties of scenarios (i.e. offline training before the race). Then the matured agent can be used 

during the race for decision making at almost no time cost. This nature of DRL suits well the 

resource allocation and demand for timeliness in motorsport industry. Therefore, DRL has a 

great potential in motorsport race strategy development. 

The very early reinforcement learning focused on simple low-dimensional problems with both 

discrete states S and action spaces A. A multi-dimensional table or matrix can thus be created 

to store the qualities of the state-action pairs Q(s,a) which are learned through value iteration 

algorithm [26]. The policy of this Q-learning method is to simply choose the action with 

highest Q value in the look-up table. This method is then improved by Deep Q-Learning (DQL) 

[27] where the Q table is replaced with a deep neural network which broke the bottleneck of 

high-dimensional and continuous states. DQL has laid the foundation for all the modern value-

based deep reinforcement learning algorithms such as Double D-Learning [28] and Dueling Q-

learning [29], etc. Instead of value-based methods, another major family of reinforcement 

learning algorithms are the Policy Gradient (PG) methods. PG methods answer the policy 

question more directly than the value-based ones which try to choose the best action by 

approximating the values of state-action pairs. The basic PG method is called REINFORCE [30] 

whose idea is to train a policy network to make the probabilities distribution more biased to 

the promising actions. One of its modifications, the Actor-Critic (A2C) algorithm [31] forms 

another popular family in RL algorithms nowadays. By separating the tasks of value 

approximation (critic network) and choosing action (actor network), the A2C method 

overcomes the weakness of noisy gradients and high variance in REINFORCE, hence improves 

the capability and stability of reinforcement learning technique in wider applications. One of 

the biggest breakthroughs in recent years is the introduction of Deep Deterministic Policy 

Gradient (DDPG) [32] which is also an A2C-like algorithm. In DDPG, the actor (policy) network 

maps the states directly into action values instead of outputting the probability distribution 

across a discrete action space. This method significantly broadens the application of RL 

methods in control problems with continuous action spaces like autonomous driving [33]. 

Traditional single-agent RL algorithms usually suffer from slow training speed when an 

environment is complex and stochastic in some of its conditions. Formula E races also have 

such features among which the environmental or ambient temperature has crucial effect on 

race strategy. Therefore, strategy development in Formula E isn’t a single learning task for a 

single fixed environment. Instead, a range of ambient temperature need to be considered in 

the training process. This requires a method to scale up the learning process to handle 

varieties of environmental settings. Distributed stochastic gradient descent has been 

successfully widely applied in supervised learning [40], while distributing RL tasks only 

started in the very recent years [41]. The concept of distributed RLs is to deploy multiple 

workers in separate environments and send either gradients or experiences for a singe learner 

to update the policy [42][43]. While the early approaches targeted only on tasks featuring only 

discrete actions. Horgan et al. [44] proposed an architecture called Ape-X which extends 

prioritized experience replay (PER) [36] to a distributed setting and proves to be a highly-Jo
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scalable approach for both discrete and deterministic tasks. 

In this study, we investigate a novel approach to solve the race strategy problem of  

minimizing race finishing time by using distributed DDPG reinforcement learning but with a 

hybrid action space. With this method, both discrete and deterministic action elements can be 

optimized simultaneously. This realistic action form guarantees that no potential optimal 

solution could be hidden due to action space discretization. The proposed framework allows 

engineers to transfer the strategy optimizations from online to offline. With the significant 

amount of time between race events, this breaks the online computational resource bottleneck 

and allow strategists to further investigate higher dimensional and more complex scenarios. 

This study proposed to the industry with a new approach for decision making not only in race 

strategies but also potentially in other aspects such as car designs and setups. In this paper, 

the problem background and previous researches were briefly introduced in this section. 

Section 2 demonstrates how a race strategy problem is formulated into an MDP environment. 

In section 3, we modify the DDPG actor network to tackle the hybrid-type decisions in a race 

environment and the training process will be presented. The result and discussion will be 

shown in section 4. Finally, the conclusion is presented in section 5 

2. Problem formulation 

In this study, a race will be discretized in laps to build an MDP environment. An MDP 

environment comprises four major components, state 𝒔𝒔  of the environment, action 𝒂𝒂 

absorbed from agent input, transition model 𝑻𝑻(𝒔𝒔,𝒂𝒂, 𝒔𝒔′) which updates the environment state 𝒔𝒔 to a new state 𝒔𝒔′ based on the agent action, and the reward function 𝑸𝑸(𝒔𝒔) which return 

the reward of a state 𝒔𝒔 to the agent. In this section, states and actions will be firstly clarified. 

The transition model will be built using neural network prediction models. And the reward 

function will be formulated. 

2.1 States and actions 

A state 𝒔𝒔 contains the information accessible during a race including variables that have a 

significant influence on decision making. Such variables which are contained in a state are 

stated in table 1. 

Table 1 State description 

State variable Description Initial value Max value 𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙 Remaining number of laps 34 𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙_𝑡𝑡𝑡𝑡𝑡𝑡 = 34 𝐸𝐸𝑟𝑟 Remaining usable energy 52 𝐸𝐸𝑚𝑚𝑙𝑙𝑚𝑚=52 𝑇𝑇𝑏𝑏𝑙𝑙𝑡𝑡 Battery temperature 20 𝑇𝑇𝑏𝑏𝑙𝑙𝑡𝑡_𝑙𝑙𝑙𝑙𝑚𝑚𝑙𝑙𝑡𝑡 = 58 𝑇𝑇𝑙𝑙𝑚𝑚𝑏𝑏 Ambient temperature 30 - 𝑁𝑁𝑙𝑙𝑡𝑡𝑡𝑡 Available number of Attack 

Mode(AM) activation 

2 𝑁𝑁𝑙𝑙𝑡𝑡𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 = 2 

PM Current power mode  

(1-Race mode;2-Activation 

mode;3-Attack mode) 

1 - 

𝑁𝑁𝑅𝑅𝑙𝑙𝑡𝑡𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙 Current remaining number of 0 𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙_𝑙𝑙𝑝𝑝𝑟𝑟_𝑙𝑙𝑡𝑡𝑡𝑡 = 2 Jo
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AM laps 𝑡𝑡𝑟𝑟𝑙𝑙𝑟𝑟𝑝𝑝 Current race time 0 - 

 

In this study, the Marrakesh ePrix track is used. For a 45-minute race, the total number of laps  𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙_𝑡𝑡𝑡𝑡𝑡𝑡 is 34 thus the 𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙 is 34 at most. The FE technical regulation states that the total 

amount of usable energy is limited to 𝐸𝐸𝑚𝑚𝑙𝑙𝑚𝑚=52 kWh which makes 𝐸𝐸𝑟𝑟 52kWh at most. The 

ambient temperature is another important element that affects the cooling of the battery. 

Overheating the battery (𝑇𝑇𝑏𝑏𝑙𝑙𝑡𝑡 reaching above an upper limit 𝑇𝑇𝑏𝑏𝑙𝑙𝑡𝑡_𝑙𝑙𝑙𝑙𝑚𝑚𝑙𝑙𝑡𝑡) will lead to a DNF or 

other forms of unfavorable results; hence it must be avoided. Both 𝐸𝐸𝑟𝑟  and 𝑇𝑇𝑏𝑏𝑙𝑙𝑡𝑡  will be 

accounted in the reward function. 𝑁𝑁𝑙𝑙𝑡𝑡𝑡𝑡  gives number of times a team can activate attack 

mode for the remaining laps (𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙) of a race. For Marrakesh ePrix, 𝑁𝑁𝑙𝑙𝑡𝑡𝑡𝑡 is assigned with initial 

value of 2, meanwhile each activation lasts 2 laps and 𝑁𝑁𝑅𝑅𝑙𝑙𝑡𝑡𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙 gives how many attack mode 

laps remains during one activation. 𝑃𝑃𝑃𝑃 indicates what power mode the car is using. 𝑡𝑡𝑟𝑟𝑙𝑙𝑟𝑟𝑝𝑝  

denotes the race time starting from the initial state 𝑠𝑠0. The third column of table 1 gives an 

example of initial state values featuring the start of a full race at Marrakesh ePrix. It should be 

noted that normal race mode (PM=1) and attack mode (PM=3) state that the upper limits for 

driving power are 200 kW and 250 kW respectively. However, considering that the attack 

mode is activated at a certain point in the middle of a lap instead of at the start/finish line, and 

the extra 50 kW of power are only allowed afterwards; a new power mode (PM=2, attack mode 

activation lap) is introduced between those two modes to describe the performance in the 

activation lap. 

As previously introduced, the hybrid-type action in FE contains two continuous actions 

namely the EPL and QM. EPL denotes the target energy consumption for the following lap at a 

given state. Here in this environment, EPL is limited to the range of 1.2-2.2 kWh. This is a 

rational range on Marrakesh track given by [14]. QM, as stated in section 1, denotes the level 

of thermal management. Previous research [14] has found that the constraints of ELP and 

battery temperature have their unique impacts on lap time and thermal management. More 

specifically, with same amount of available energy, different settings of thermal boundaries 

may compromise the lap time but offers a more efficient way to manage the temperature rise 

compared to brutally decreasing the ELP. In this study, QM is defined as a continuous scaler of 

range 0-3. QM equal to 0 indicates that the battery temperature does not need to be taken care 

of, while QM>0 means restricting target temperature rise by the magnitude of 0.95𝑄𝑄𝑄𝑄. For 

example, if QM=0 has a 𝑇𝑇𝑏𝑏𝑙𝑙𝑡𝑡 rise of 4 ℃, then for QM=1, 𝑇𝑇𝑏𝑏𝑙𝑙𝑡𝑡 will be expected to rise by 3.8 ℃.  

The discrete component in an action is relatively simple which delivers the information of the 

agent’s choice on whether to activate attack mode or not. This will be later implemented as a 

‘one-hot’ vector [40]. The complete action space is shown in table 2. 

 

 Table 2 Action space 

Action type Continuous  Discrete 

Action component EPL QM Activation 

Range 1.2-2.2 0-3 [0,1] or [1,0] 
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2.2 Transition model 

As stated earlier, the race is discretized into laps. Therefore, the transition model here should 

provide information of the effect of an action on the performance of a single lap. While state 

variables of 𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙,𝑁𝑁𝑙𝑙𝑡𝑡𝑡𝑡 ,𝑃𝑃𝑃𝑃,𝑁𝑁𝑅𝑅𝑙𝑙𝑡𝑡𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙  can be easily calculated, the lap time, battery 

temperature and energy consumption during a single lap based on a given action have strong 

non-linear features which cannot be simply assumed. In a previous research [21], neural 

networks were proposed to be trained as transition model, which provides decent accuracy. 

While a commercial simulation software was used in [21] to generate the training data, in this 

study, the training datasets are collected by formulating each case into an OCP. The reason for 

doing so is to guarantee the optimality of lap performance of a given input, while commercial 

simulation software failed to do so with their empirical driver model. An OCP is formulated to 

minimize a Lagrange cost function of  𝐽𝐽 = ∫ 𝑙𝑙(𝑡𝑡, 𝑥𝑥(𝑡𝑡),𝑢𝑢(𝑡𝑡),𝑝𝑝)𝑑𝑑𝑡𝑡𝑡𝑡𝑓𝑓𝑡𝑡0                           (1) 

which is subject to the constraints of 

⎩⎪⎨
⎪⎧ 𝑑𝑑𝑚𝑚𝑑𝑑𝑡𝑡 − 𝑓𝑓�𝑡𝑡, 𝑥𝑥(𝑡𝑡),𝑢𝑢(𝑡𝑡)� = 0𝑔𝑔�𝑡𝑡, 𝑥𝑥(𝑡𝑡),𝑢𝑢(𝑡𝑡)� = 0ℎ(𝑡𝑡, 𝑥𝑥(𝑡𝑡),𝑢𝑢(𝑡𝑡)) ≤ 0𝑔𝑔𝑏𝑏(𝑥𝑥(𝑡𝑡0), 𝑥𝑥(𝑡𝑡𝑓𝑓),𝑢𝑢(𝑡𝑡0),𝑢𝑢(𝑡𝑡𝑓𝑓)) = 0

                       (2) 

In this problem, 𝑥𝑥(𝑡𝑡) ∈ 𝑅𝑅𝑛𝑛  is the state vector made of vehicle dynamics information and 

u(𝑡𝑡) ∈ 𝑅𝑅𝑚𝑚 is the control vector of steering and pedals. The system dynamics is described in 

the vector 𝑓𝑓�𝑡𝑡, 𝑥𝑥(𝑡𝑡),𝑢𝑢(𝑡𝑡)� ∈ 𝑅𝑅𝑛𝑛. Vector 𝑔𝑔 ∈ 𝑅𝑅𝑛𝑛𝑔𝑔  and 𝑔𝑔𝑏𝑏 ∈ 𝑅𝑅𝑛𝑛𝑔𝑔𝑔𝑔  are the quality constraints 

and boundary constraints. The inequality constraints are defined in ℎ ∈ 𝑅𝑅𝑛𝑛ℎ   where the 

aforementioned EPL and QM are included. This approach has been thoroughly explained in 

[14] therefore, it is not detailed here. The data collection process through the OCP is shown in 

figure 1.  

The initial usable energy represents the state of charge (SOC) of the battery which influences 

the thermal dynamics model inside the problem. It should be noted that the energy element 

appears on both input and output sides as the filled arrow showed in figure 1. The reason for 

doing so will be explained later. The input range for data collection are defined in table 3 from 

which the input variables are picked randomly. A total number of 129,000 of datasets are 

collected to train the neural network transition model. An example of the collected data is 

shown in figure 2 including the effects of QM and EPL on the lap time. The blocked area in the 

figure explains why ‘energy’ has to be on both input and output side. That is because in the 

situations of high EPL and QM combinations, the requested energy isn’t fully consumed due to 

the strict thermal boundaries. Therefore, there will be a nonlinear mapping between the two 

sides and the transition model have to be able to capture this feature. 

As a result, three individual networks are trained to model the energy consumption, battery 

temperature rise and lap time separately. This procedure is inherited from [21] thus is not 

demonstrated here. The structure of the networks and accuracies are shown in appendix A. 

With these three neural network prediction models, the transition of an environment state can 

be described in table 4.  Jo
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Figure 1 Data collection process through the OCP 

 

Table 3 Input variables’ range 

Input Range 

Energy per lap(kWh) 1.2 - 2.2 

Power mode  1,2,3 

Q mode 0-3 

Initial usable energy(kWh) 0-52 

Initial battery temperature(℃) 20-60 

Ambient temperature(℃) 15-40 

 

 

Figure 2 Lap time of different EPL and Q modes (Power mode=1) 

 

Table 4 State description 

State s Transition based on action a New state s’ 𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙 - 𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙 − 1 𝐸𝐸𝑟𝑟 Energy consumption network (𝑁𝑁𝑁𝑁𝐸𝐸𝑛𝑛𝑝𝑝𝑟𝑟𝐸𝐸𝐸𝐸) 𝐸𝐸𝑟𝑟 − 𝑁𝑁𝑁𝑁𝐸𝐸𝑛𝑛𝑝𝑝𝑟𝑟𝐸𝐸𝐸𝐸(𝑎𝑎) 𝑇𝑇𝑏𝑏𝑙𝑙𝑡𝑡 Battery temperature network (𝑁𝑁𝑁𝑁𝑇𝑇𝑏𝑏𝑙𝑙𝑡𝑡) 𝑇𝑇𝑏𝑏𝑙𝑙𝑡𝑡 + 𝑁𝑁𝑁𝑁𝑇𝑇𝑏𝑏𝑙𝑙𝑡𝑡(𝑎𝑎) 𝑇𝑇𝑙𝑙𝑚𝑚𝑏𝑏 - 𝑇𝑇𝑙𝑙𝑚𝑚𝑏𝑏 Jo
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𝑁𝑁𝑙𝑙𝑡𝑡𝑡𝑡 
Action dependent 𝑃𝑃𝑃𝑃 𝑁𝑁𝑅𝑅𝑙𝑙𝑡𝑡𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡𝑟𝑟𝑙𝑙𝑟𝑟𝑝𝑝 Lap time network(𝑁𝑁𝑁𝑁𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙) 𝑡𝑡𝑟𝑟𝑙𝑙𝑟𝑟𝑝𝑝 + 𝑁𝑁𝑁𝑁𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙(𝑎𝑎) 

 

2.3 Reward Function 

Generally, RL algorithms are designed to find a policy to maximize the total accumulated 

reward in an environment [34]. In this study, the aim is to find the policy leading to the fastest 

possible race finishing time. Therefore, two type of rewards are used in the environment: (1) 

step reward 𝑅𝑅𝑠𝑠, which encourages the agent to finish the race, and (2) terminal reward 𝑅𝑅𝑇𝑇 

to encourage a faster time. The step reward is returned to the agent after each action is made. 

It is defined as  𝑅𝑅𝑠𝑠𝑡𝑡𝑝𝑝𝑙𝑙 = � 5                                      𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑎𝑎𝑙𝑙 𝑠𝑠𝑡𝑡𝑠𝑠𝑝𝑝 𝑛𝑛𝑠𝑠𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑 −5                       𝑖𝑖𝑓𝑓 𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛𝑛𝑛𝑑𝑑𝑠𝑠 𝑖𝑖𝑠𝑠 𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛𝑔𝑔𝑙𝑙𝑤𝑤 𝑎𝑎𝑎𝑎𝑡𝑡𝑖𝑖𝑎𝑎𝑎𝑎𝑡𝑡𝑠𝑠𝑑𝑑          (3) 

This reward means that each time the agent successfully enters the next lap, it will be given a 

positive value. Meanwhile if attack mode is wrongly activated, a negative penalty will be 

returned. An activation action is considered as wrong under the circumstances listed in table 

5.  

Table 5 Activation penalty circumstances 

Circumstances State condition 

Activate when no available attack modes left 𝑁𝑁𝑙𝑙𝑡𝑡𝑡𝑡 = 0 

Activate when the car is already in attack mode 

but not on the final lap of attack mode 

𝑃𝑃𝑃𝑃 = 2 𝑛𝑛𝑛𝑛 3 

and 𝑁𝑁𝑅𝑅𝑙𝑙𝑡𝑡𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙 > 0 

Activate in the first two laps of the race 

(Regulation) 

𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙 > 32 

NOT activate when compulsory 

(Regulation) 

𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙 = 2𝑁𝑁𝑙𝑙𝑡𝑡𝑡𝑡  
(Number 2 denotes duration of 2 

laps per attack) 

 

In this race environment, a state is considered as terminal when any of these three conditions 

are met: (1) Battery overheated over the limit: 𝑇𝑇𝑏𝑏𝑙𝑙𝑡𝑡 > 𝑇𝑇𝑏𝑏𝑙𝑙𝑡𝑡_𝑙𝑙𝑙𝑙𝑚𝑚𝑙𝑙𝑡𝑡  ; (2) Energy is over-

consumed: 𝐸𝐸𝑟𝑟 < 0; (3) Race finished: 𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙 = 0. If the environment reaches a terminal state, 

a terminal reward will be added upon the final step reward. The terminal reward is defined as: 𝑅𝑅𝑇𝑇 = 𝑅𝑅𝑇𝑇𝑏𝑏𝑙𝑙𝑡𝑡 + 𝑅𝑅𝐸𝐸 + 𝑅𝑅𝑡𝑡𝑙𝑙𝑚𝑚𝑝𝑝                     (4) 

Where 𝑅𝑅𝑇𝑇𝑏𝑏𝑙𝑙𝑡𝑡 and 𝑅𝑅𝐸𝐸  are the battery temperature and energy penalties respectively and are 

given by: 𝑅𝑅𝑇𝑇𝑏𝑏𝑙𝑙𝑡𝑡 = 𝑎𝑎min(0,𝐸𝐸𝑟𝑟)                         (5) 𝑅𝑅𝐸𝐸 = 𝑎𝑎 min (0,𝑇𝑇𝑏𝑏𝑙𝑙𝑡𝑡_𝑙𝑙𝑙𝑙𝑚𝑚𝑙𝑙𝑡𝑡 − 𝑇𝑇𝑏𝑏𝑙𝑙𝑡𝑡)                    (6) 𝑎𝑎  is a large value to magnify the violation of battery temperature limit and energy 

consumption. The third term in eq.4 is the time reward given by: 𝑅𝑅𝑡𝑡𝑙𝑙𝑚𝑚𝑝𝑝 = max ��83.5𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙_𝑡𝑡𝑡𝑡𝑡𝑡 − �𝑡𝑡𝑟𝑟𝑙𝑙𝑟𝑟𝑝𝑝 + 130𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙�� ∗ 10, 𝑠𝑠𝑥𝑥𝑝𝑝 �0.025 �3010 −Jo
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�𝑡𝑡𝑟𝑟𝑙𝑙𝑟𝑟𝑝𝑝 + 130𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙����                                        (7) 

This reward as a function of race time is shown in figure 3. 

 

Figure 3 Race time reward 

 

Given by figure 2, a successful lap with extreme energy-saving action is no longer than 83.5 

seconds. Hence in equation 7, we give a positive reward for any race finishing performance 

with lap time quicker than this value. The term 130𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙 is to add an extra penalty upon 𝑡𝑡𝑟𝑟𝑙𝑙𝑟𝑟𝑝𝑝  

when a race is terminated unfinished due to flat or overheated battery in which 130 is a much 

longer time than a normally finished lap. For a 34-lap race, by simple calculation, the average 

energy consumption is 1.6kWh/lap. According to figure 2, this ends up with a race finishing 

time around 2733s. The time reward is given a non-linear feature so that when race time is 

shorter than 2733s, the reward grows exponentially. This high gradient in the reward 

encourages the agent to ascent faster to a shorter race finishing time. Additionally, this final 

race time reward has a higher magnitude than step reward. The reason is to guarantee that 

the final race time has the dominant effect to incent the agent to find faster race finishing 

solutions. Meanwhile the step reward remains capable of modifying the agent’s behavior to 

correct actions but also not to compromise the final race time. 

Other important features in the reward function are the battery temperature and energy 

penalties. Traditionally, in optimization problems, these violations are usually treated as hard 

boundaries or with a sharp cut-off in reward calculations. This is not favourable in this study 

where an A2C-like method is implemented to find the optimal solution, which theoretically 

lies on the state boundaries (i.e. energy fully used and battery temperature at the limit). In 

A2C methods, the role of the critic network is to estimate the expected reward which allows 

the actor to update its policy towards the optimal. Due to the fitting/regression nature of 

neural networks, it is extremely hard to make the critic network capable of precisely 

predicting a step feature (shown in figure 4(a)) made by the sharp drop of reward. If hard 

boundary is used for reward design, the critic is very likely to under-predict or over-predict 

the boundaries, either of which will not help the actor ascend to the real edge. In contrary, by Jo
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using soft boundary penalties, the gradient outside the boundary will favor the critic’s 

performance hence make it easier for the actor finding the optimal policy. The effect of reward 

design is further discussed in section 4.1. 

 

    

Figure 4 Reward type illustration: (a) Hard boundary cut off (b) Soft boundary penalty  

The reward is a function of 𝑇𝑇𝑏𝑏𝑙𝑙𝑡𝑡 , 𝐸𝐸𝑟𝑟 , 𝑡𝑡𝑟𝑟𝑙𝑙𝑟𝑟𝑝𝑝 . This figure only shows the reward on 𝑇𝑇𝑏𝑏𝑙𝑙𝑡𝑡 and 𝐸𝐸𝑟𝑟 dimensions assuming 𝑡𝑡𝑟𝑟𝑙𝑙𝑟𝑟𝑝𝑝=2740s 

 

3. FE race strategy development using Ape-X distributed 

DDPG reinforcement learning   

3.1 DDPG algorithm  

DDPG is an A2C-like RL algorithm. It has two primary networks, the critic 𝑄𝑄(𝑠𝑠,𝑎𝑎|𝜃𝜃𝑄𝑄) with 

weights 𝜃𝜃𝑄𝑄  and the actor 𝜇𝜇(𝑠𝑠|𝜃𝜃𝜇𝜇) with weights 𝜃𝜃𝜇𝜇  which maps a state 𝑠𝑠 directly to an 

action 𝜇𝜇. Both two primary networks have their subnets called target critic net 𝑄𝑄′(𝑠𝑠,𝑎𝑎|𝜃𝜃𝑄𝑄′) 

and target actor net 𝜇𝜇′(𝑠𝑠|𝜃𝜃𝜇𝜇′). The critic (i.e. action-value function) describes the expected 

return after taking an action. In many discrete action RL approaches, it is trained by using 

recursive relation known as the Bellman equation: 𝑄𝑄𝜋𝜋(𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡) = 𝐸𝐸𝑟𝑟𝑡𝑡,𝑠𝑠𝑡𝑡+1~𝛹𝛹 �𝑛𝑛(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡) + 𝛾𝛾𝐸𝐸𝑙𝑙𝑡𝑡+1~𝜋𝜋[𝑄𝑄𝜋𝜋(𝑠𝑠𝑡𝑡+1,𝑎𝑎𝑡𝑡+1)]�            (8) 

where 𝛾𝛾 ∈ [0,1]  is the discount factor in Bellman equation, 𝛹𝛹  is the corresponding 

expectation distribution for 𝑠𝑠𝑡𝑡+1 and 𝑛𝑛𝑡𝑡 in the environment. When the policy distribution 𝜋𝜋 

becomes deterministic 𝜇𝜇, the bellman equation can be transformed into: 𝑄𝑄𝜇𝜇(𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡) = 𝐸𝐸𝑟𝑟𝑡𝑡,𝑠𝑠𝑡𝑡+1~𝛹𝛹[𝑛𝑛(𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡) + 𝛾𝛾𝑄𝑄𝜇𝜇(𝑠𝑠𝑡𝑡+1, 𝜇𝜇(𝑠𝑠𝑡𝑡+1))]              (9) 

This means the expectation only depends on the environment and therefore critic can be 

trained off-policy from transitions (𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡 , 𝑛𝑛𝑡𝑡, 𝑠𝑠𝑡𝑡+1) collected from a different policy 𝛽𝛽. The 

critic parameter 𝜃𝜃𝑄𝑄  therefore can be optimized by minimizing the loss: 𝐿𝐿(𝜃𝜃𝑄𝑄) = 𝐸𝐸𝑠𝑠𝑡𝑡~𝜌𝜌𝛽𝛽,𝑙𝑙𝑡𝑡~𝛽𝛽,𝑟𝑟𝑡𝑡~𝛹𝛹[(𝑄𝑄(𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡|𝜃𝜃𝑄𝑄) − 𝑤𝑤𝑡𝑡)2]                   (10) 

Where 𝜌𝜌𝛽𝛽 represents the distribution of the state 𝑠𝑠𝑡𝑡 under the current policy 𝛽𝛽, and 𝑤𝑤𝑡𝑡 is Jo
u
rn

al
P

re
-p

ro
of

Journal Pre-proof



given by: 𝑤𝑤𝑡𝑡 = 𝑛𝑛(𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡) +  𝛾𝛾𝑄𝑄(𝑠𝑠𝑡𝑡+1, 𝜇𝜇(𝑠𝑠𝑡𝑡+1)|𝜃𝜃𝑄𝑄)                       (11) 

With the aid of critic, the objective of the actor is simply to maximize the expected return: 𝐽𝐽(𝜃𝜃𝜇𝜇) = 𝐸𝐸�𝑄𝑄(𝑠𝑠,𝑎𝑎)|𝑠𝑠=𝑠𝑠𝑡𝑡,𝑙𝑙=𝜇𝜇(𝑠𝑠𝑡𝑡) �                          (12) 

Therefore, the policy updating gradient can be written as: ∇𝜃𝜃𝜇𝜇𝐽𝐽 ≈ 𝐸𝐸𝑠𝑠𝑡𝑡~𝜌𝜌𝛽𝛽 �∇𝑙𝑙𝑄𝑄(𝑠𝑠,𝑎𝑎|𝜃𝜃𝑄𝑄)|𝑠𝑠=𝑠𝑠𝑡𝑡,𝑙𝑙=𝜇𝜇(𝑠𝑠𝑡𝑡)∇𝑄𝑄𝜇𝜇𝜇𝜇(𝑠𝑠|𝜃𝜃𝜇𝜇)|𝑠𝑠=𝑠𝑠𝑡𝑡 �           (13) 

DDPG uses additional two target networks to improve the stability of learning. The target 

critic 𝑄𝑄′ and target actor 𝜇𝜇′ are used to calculate the 𝑤𝑤𝑡𝑡 value in equation (11). This is to 

avoid critic net being trained and used to calculate target value simultaneously which would 

easily make the update diverge. The weights of the target networks are slowly updated by 

tracking the primary critic and actor: �𝜃𝜃𝑄𝑄′ = 𝜏𝜏𝜃𝜃𝑄𝑄 + (1 − 𝜏𝜏)𝜃𝜃𝑄𝑄′𝜃𝜃𝜇𝜇′ = 𝜏𝜏𝜃𝜃𝜇𝜇 + (1 − 𝜏𝜏)𝜃𝜃𝜇𝜇′                             (14) 

where 𝜏𝜏 ≪ 1 is a small number. In this way, 𝑤𝑤𝑡𝑡 is constrained to change slowly thus learning 

stability is improved. 

 

3.2 Prioritized experience replay 

DDPG is an off-policy method which requires a replay buffer to store the transitions collected 

from old policies and to sample a mini-batch of transitions for a network updating step. Since 

the actor updates its policy solely dependent on critic, the accuracy of the critic value 

approximation is crucial for DDPG performance. Based on eq.11 the criterion for critic 

performance in DDPG is usually the temporal-difference (TD) error given by:  𝛿𝛿𝑡𝑡 = 𝑛𝑛𝑡𝑡 + 𝛾𝛾𝑄𝑄′(𝑠𝑠𝑡𝑡+1,𝜇𝜇′(𝑠𝑠𝑡𝑡)) − 𝑄𝑄(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡)                   (15) 

Conventional off-policy methods use uniform random sampling to select which transition 

experience to replay. Hou et al. [35] pointed out that such uniform sampling without 

considering TD-error would very likely to select large amount of experiences of low errors. 

Training on such batches may fall into a local optimal solution. It is natural that experiences 

with higher TD-errors should be given higher priorities. However, greedily selecting 

experiences with largest TD-errors suffers from shortcomings such as time-costly sweeps of 

entire replay buffer, lack of experience diversity and over-fittings. Therefore, in this study, a 

stochastic prioritization technique called prioritized experience replay (PER) is used to make 

a trade-off between uniform random sampling and greedy TD-error prioritization. 

According to [36], the probability of transition 𝑖𝑖  in the replay buffer being selected, is 

calculated by: 𝑃𝑃𝑙𝑙 =
𝑙𝑙𝑖𝑖𝛼𝛼∑ 𝑙𝑙𝑘𝑘𝛼𝛼𝑘𝑘                                    (16) 

where 𝑝𝑝𝑙𝑙 is the priority of transition 𝑖𝑖. Exponent 𝛼𝛼 describes how much prioritization to be 

used. A case of 𝛼𝛼 = 0  means uniform random sampling. In this study, we use the direct, 

proportional prioritization where 𝑝𝑝𝑙𝑙 = |𝛿𝛿𝑙𝑙| + 𝜖𝜖 , with 𝜖𝜖  being a small positive constant to 

avoid the probability of a transition becoming zero and thus, it will not be revisited once its 

TD-error becomes zero after network updates. Jo
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Prioritized replay inevitably introduces a bias which changes the distribution the critic 

expected to converge to. To unbias such an effect, importance-sampling (IS) weights [37] are 

added: 𝜔𝜔𝑙𝑙 = (
1𝑁𝑁 ∙ 1𝑃𝑃𝑖𝑖)𝛽𝛽                                  (17) 

Where 𝑁𝑁 is the mini-batch size. 𝛽𝛽 is a correction exponent; with 𝛽𝛽 = 1 is to aggressively 

correct the probability 𝑃𝑃𝑙𝑙 . In typical RL cases, the unbiased feature of updates is crucial when 

the RL training process is approaching to the end. Practically in this paper, 𝛽𝛽 = 0.5  is 

assigned in the early stages of the training and then will be increased linearly to 𝛽𝛽 = 1 when 

approaching the end. The updates of the critic will be based on 𝜔𝜔𝑙𝑙𝛿𝛿𝑙𝑙  instead of 𝛿𝛿𝑙𝑙 with 𝜔𝜔𝑙𝑙 
being normalized by 

1𝑚𝑚𝑙𝑙𝑚𝑚𝑖𝑖𝜔𝜔𝑖𝑖 for stability reasons [36]. 

3.3 Network layout and exploration 

As previously discussed, the actions in FE comprises both discrete and deterministic 

components. This is very different from conventional RL problems where the actions are 

either fully discrete or deterministic. Moreover, it needs to be accounted that the discrete 

actions have their effect on the deterministic ones. Instead of conventional networks, which 

takes state input in the first layer and output actions in the final layer, we use a different layout 

to accommodate this hybrid-type actions and their mutual effect. The actor network layout, 

which is used in this study, is shown in figure 5. 

 

Figure 5 Actor network layout 

 

The actor network takes in the state information and directly pass through the first fully-

connected layer FC1. The output of FC1 is shared by two tensor paths. On the right-hand side, 

FC1 is passed through a second fully connected layer and activated using Sigmoid function. 

This tensor (size of 2) is used as the discrete action output of actor and passed to the 

environment to generate a one-hot vector as a signal for attack mode activation. Meanwhile, Jo
u
rn

al
P

re
-p

ro
of

Journal Pre-proof



this tensor is converted into a probability distribution tensor with sum of one using Softmax 

function and concatenated with the FC1 output on the left-hand side path. Then through 

another fully-connected layer, this tensor will be used as the deterministic action output.  

The critic network is relatively simple thus is not demonstrated here. Details of the networks 

are shown in appendix B.  

An RL agent learns its policy based on exploring the action space. Each different RL algorithm 

has its suitable exploration technique. For example, epsilon-greedy [26] algorithm is widely 

used in discrete action space applications. The agent does random selections occasionally with 

probability 𝜖𝜖 and follows its own policy for most of the time with probability (1 − 𝜖𝜖). The 

Upper Confidence Bounds (UCB) algorithm [38] is usually used in tree searches such as Monte 

Carlo Tree Search (MCTS) to balance the visits of nodes based on the visit history and 

collection of rewards. To encourage exploration in continuous action space, the actor 

deterministic outputs are usually added with noises such as Ornstein-Uhlenbeck (OU) process 

[39]. The FE strategy development problem has several unique features which make direct 

implementation of any of these classical methods inappropriate. The FE environment is 

usually a short-episode environment. In this study, a full episode has 34 steps at most. Finding 

the optimal policy is a delicate job due to the energy and temperature constraints. During the 

ending phase of RL, big noise effect would easily violate the constraints, which prevent the 

agent from reaching the optimum. Epsilon-greedy method cannot be applied to continuous 

actions and adding noises to discrete actions is not effective enough due to its magnitude. To 

overcome this, we use a hybrid-type exploration method by integrating epsilon-greedy 

method with continuous noise under a recursive decay policy. 

For most of the time with probability of (1 − 𝜖𝜖𝐸𝐸𝐸𝐸) , an episode will be performed as an 

exploration episode; while occasionally an episode is performed by directly following the 

actor policy with probability of 𝜖𝜖𝐸𝐸𝐸𝐸. Inside an exploration episode, there are also occasional 

non-exploration action steps determined by probability of 𝜖𝜖𝐸𝐸𝐸𝐸 . Therefore, the probability of 

an exploration action being taken is (1 − 𝜖𝜖𝐸𝐸𝐸𝐸)(1 − 𝜖𝜖𝐸𝐸𝐸𝐸). If an action is to explore, the discrete 

actions and deterministic actions are treated differently. We use 𝜂𝜂  to denote the level of 

randomness for exploring. For deterministic actions, we add basic zero-mean Gaussian noise 

to the actor output: 𝜂𝜂𝜇𝜇𝐷𝐷𝑝𝑝𝑡𝑡′ = 𝜇𝜇�𝑠𝑠𝑡𝑡�𝜃𝜃𝑡𝑡𝜇𝜇� + ℕ𝐺𝐺𝑙𝑙𝐺𝐺(𝜂𝜂)                        (18) 

Where 𝜂𝜂 demotes the standard deviation of the Gaussian distribution. For discrete actions, 

we still use greedy method. With probability of (1- 𝜂𝜂), a random action will be picked from the 

action space which in this case is either [0,1] or [1,0]. By this way, we guarantee enough 

exploration needed to learn the policy meanwhile, we ensure that large noise does not 

compromise the convergence near the end. We recursively decay the 𝜂𝜂 through episodes: 𝜂𝜂𝑙𝑙 =
𝜂𝜂01+𝜀𝜀∙(𝑙𝑙 𝑚𝑚𝑡𝑡𝑑𝑑 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑚𝑚𝑑𝑑)

                          (19) 

where 𝑖𝑖 is the number of current episode, 𝜂𝜂0 is the initial randomness level, 𝜀𝜀 is the decay 

factor, and 𝑁𝑁𝑑𝑑𝑝𝑝𝑟𝑟𝑙𝑙𝐸𝐸 is the recursive decay period. 

3.4 Ape-X distributed reinforcement learning 

An Ape-X architecture comprises three major components, namely a learner, an experience Jo
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replay memory and numbers of workers. This is shown in figure 6. 

 

Figure 6 Ape-X architecture 

 

In Ape-X, a centralized replay memory is used to store the transition experiences for the 

learner. These experiences were periodically received from the workers along with the initial 

priorities calculated also by the respective workers. The workers periodically obtain the latest 

network parameters from the learner and use those to interact with their own environments. 

The job of learning is solely completed by the learner who updates the networks parameters 

based on experiences from the replay memory. After each update, the new calculated 

priorities are sent back to the replay memory to update the priorities of the sampled 

transitions. In this study, each worker interacts with an environment what is initialized with 

random ambient temperature ranging from 20℃ to 35℃ in order to guarantees that the RL 

agent robustly learns from varieties of ambient temperatures. 

 

3.5 Implementation 

The combined implementation of Ape-X integrated with DDPG, PER and exploration decay is 

described in a pseudocode as follows. See appendix for additional details. 

Algorithm 1 Ape-X Worker 

procedure WORKER(Learner, PER) 

Initialize worker network parameters 𝑄𝑄𝑤𝑤(𝑠𝑠,𝑎𝑎|𝜃𝜃𝑄𝑄𝑤𝑤) , 𝑄𝑄𝑤𝑤′ �𝑠𝑠,𝑎𝑎�𝜃𝜃𝑄𝑄𝑤𝑤′ � , 𝜇𝜇𝑤𝑤(𝑠𝑠|𝜃𝜃𝜇𝜇𝑤𝑤) ,  𝜇𝜇𝑤𝑤′ �𝑠𝑠�𝜃𝜃𝜇𝜇𝑤𝑤′ � 

from Learner 𝑄𝑄𝐿𝐿(𝑠𝑠,𝑎𝑎|𝜃𝜃𝑄𝑄𝐿𝐿), 𝑄𝑄𝐿𝐿′ �𝑠𝑠,𝑎𝑎�𝜃𝜃𝑄𝑄𝐿𝐿′�, 𝜇𝜇𝐿𝐿(𝑠𝑠|𝜃𝜃𝜇𝜇𝐿𝐿), 𝜇𝜇𝐿𝐿′ �𝑠𝑠�𝜃𝜃𝜇𝜇𝐿𝐿′ � 

  while run do 

Initialize environment with random ambient temperature 𝑠𝑠0 ←  Environment. Initialize() 

Decide if explore based on probability (1 − 𝜖𝜖𝐸𝐸𝐸𝐸) 

Compute decay randomness level 𝜂𝜂 if explore, else 𝜂𝜂 = 0 

for t=1 to T do 

Select action 𝑎𝑎t = 𝜇𝜇𝑤𝑤(𝑠𝑠|𝜃𝜃𝜇𝜇𝑤𝑤) according to current policy and add random move ℕ(𝜂𝜂) 

if explore 

   Obtain reward 𝑛𝑛t and new state 𝑠𝑠t+1 

   Locally store transition, LocalBuffer. add(𝑠𝑠t,𝑎𝑎t, 𝑛𝑛t, 𝑠𝑠t+1) 

 end for Jo
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 Periodically do 

   Sample transitions batch (𝑠𝑠B,𝑎𝑎B, 𝑛𝑛B, 𝑠𝑠B+1) from local buffer 

   Compute batch TD-error 𝛿𝛿𝐵𝐵 = 𝑛𝑛𝐵𝐵 + 𝛾𝛾𝑄𝑄𝑟𝑟′ (𝑠𝑠𝐵𝐵+1, 𝜇𝜇𝑟𝑟′ (𝑠𝑠𝐵𝐵)) − 𝑄𝑄𝑟𝑟(𝑠𝑠𝐵𝐵, 𝑎𝑎𝐵𝐵) 

   Compute batch priorities 𝑝𝑝𝐵𝐵 = |𝛿𝛿𝐵𝐵| + 𝜖𝜖 

   Send batch transitions and priorities to PER replay memory 

   Obtain latest network parameters from learner and update worker networks 

 

Algorithm 2 Ape-X Learner  

Procedure LEARNER(PER) 

Initialize critic network 𝑄𝑄𝐿𝐿(𝑠𝑠,𝑎𝑎|𝜃𝜃𝑄𝑄𝐿𝐿) and actor network 𝜇𝜇𝐿𝐿(𝑠𝑠|𝜃𝜃𝜇𝜇𝐿𝐿) with weights parameter 𝜃𝜃𝑄𝑄𝐿𝐿 , 𝜃𝜃𝜇𝜇𝐿𝐿 

Set target network 𝑄𝑄𝐿𝐿′ �𝑠𝑠,𝑎𝑎�𝜃𝜃𝑄𝑄𝐿𝐿′� = 𝑄𝑄𝐿𝐿(𝑠𝑠,𝑎𝑎|𝜃𝜃𝑄𝑄𝐿𝐿), 𝜇𝜇𝐿𝐿′ �𝑠𝑠�𝜃𝜃𝜇𝜇𝐿𝐿′ � = 𝜇𝜇𝐿𝐿(𝑠𝑠|𝜃𝜃𝜇𝜇𝐿𝐿) 

Set exponent 𝑎𝑎 = 0.5, 𝛽𝛽 = 0.5, 𝜂𝜂0 = 0.4, minibatch size K 

for t=1, T do 

    Sample a prioritized transition batch K from PER replay memory with probability 𝑃𝑃𝑗𝑗 =
𝑝𝑝𝑗𝑗𝛼𝛼∑ 𝑝𝑝𝑖𝑖𝛼𝛼𝑖𝑖  

 Compute importance-sampling weight 𝜔𝜔𝑗𝑗 = (
1𝑁𝑁 ∙ 1𝑃𝑃𝑖𝑖)𝛽𝛽 ∙ 1𝑛𝑛𝑎𝑎𝑥𝑥𝑖𝑖𝜔𝜔𝑖𝑖 

Compute TD-error 𝛿𝛿𝑗𝑗 = 𝑛𝑛𝑗𝑗 + 𝛾𝛾𝑄𝑄𝐿𝐿′ (𝑠𝑠𝑗𝑗+1, 𝜇𝜇𝐿𝐿′ (𝑠𝑠𝑗𝑗)) − 𝑄𝑄𝐿𝐿(𝑠𝑠𝑗𝑗, 𝑎𝑎𝑗𝑗) 

 Update the critic network by minimizing the loss: 𝐿𝐿𝐾𝐾 =
1𝐾𝐾∑ 𝜔𝜔𝑙𝑙𝛿𝛿𝑖𝑖2𝑙𝑙  

 Update the actor network using policy gradient: ∇𝜃𝜃𝜇𝜇𝐽𝐽 ≈1𝐾𝐾∑ ∇𝑙𝑙𝑄𝑄𝐿𝐿(𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡|𝜃𝜃𝑄𝑄𝐿𝐿)|𝑠𝑠=𝑠𝑠𝑖𝑖,𝑙𝑙=𝜇𝜇𝐿𝐿(𝑠𝑠𝑖𝑖)∇𝑄𝑄𝜇𝜇𝐿𝐿𝜇𝜇𝐿𝐿(𝑠𝑠𝑡𝑡|𝜃𝜃𝜇𝜇𝐿𝐿)|𝑠𝑠𝑖𝑖 𝑙𝑙  

 Update the target networks: 𝜃𝜃𝑄𝑄𝐿𝐿′ = 𝜏𝜏𝜃𝜃𝑄𝑄𝐿𝐿 + (1 − 𝜏𝜏)𝜃𝜃𝑄𝑄𝐿𝐿′  𝜃𝜃𝜇𝜇𝐿𝐿′ = 𝜏𝜏𝜃𝜃𝜇𝜇𝐿𝐿 + (1 − 𝜏𝜏)𝜃𝜃𝜇𝜇𝐿𝐿′  
 Update the priorities of transitions in PER replay memory according to �𝛿𝛿𝑗𝑗� 

end for 

 

To demonstrate the advantage of continuous action space in FE strategy development, this 

method will be implemented and later compared against the Monte Carlo Tree Search with 

policy gradient reinforcement learning method, which was proved to be reliable and stable 

for strategy development in the literature [21]. The pseudocode of MCTS approach is detailed 

in appendix C.  

4 Results and discussion 

In this section, we first show the effect of reward shaping mentioned in section 2.3. Then the 

examples of race strategy solutions will be demonstrated and compared against MCTS Jo
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approach. 

4.1 Reward shaping effect and performance 

In section 2.3, we proposed two ways of reward formulation. Figure 7 shows the convergence 

performance of the two methods. In order to avoid poor readability caused by looking into a 

wide range of ambient temperatures studied using Ape-X, we create an additional background 

thread to constantly perform noise-free episodes using the latest network parameters of the 

learner. For demonstrating the reward shaping effect, the background performer uses 

temperature of 30℃, which is a common ambient temperature when a race is held in 
Merrakesh (i.e. the track used in this study). 

As shown in Figure 7, In the first 18k episodes, the performances are similar for the two 

methods. During this stage, the agents were unable to finish a race due to either energy or 

thermal violations. Then, gradually the agents became capable of conservatively finishing with 

a slow race time. Between 20k and 60k episodes, two methods performed differently. While 

the performance of sharp-reward method (referred to as SHARP) stopped further improving 

and maintaining a conservative finishing level, the smooth-shaping method (referred to as 

SMOOTH) began to find faster and faster race time solutions. Later in the ending phase 

between 60k and 80k episodes, SHARP still failed to improve and also started showing some 

instability. In contrary, SMOOTH started to stabilize at a high-solution-quality level. 

 

 

Figure 7 Convergence performance of different reward formulations 

 

As mentioned previously, the performance is largely dependent on the critic network 

predictions. Figure 8 below shows the prediction by critics from both methods. Because the 

final lap/step is where constraint violations mostly occur and cause change in reward 

magnitude, and in order to avoid the effect of discount factor in Bellman equation on early 

laps/steps, the critics are tested based on an identical second-to-last lap state.  �𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙,𝐸𝐸𝑟𝑟 ,𝑇𝑇𝑏𝑏𝑙𝑙𝑡𝑡 ,𝑇𝑇𝑙𝑙𝑚𝑚𝑏𝑏 ,𝑁𝑁𝑙𝑙𝑡𝑡𝑡𝑡 ,𝑃𝑃𝑃𝑃,𝑁𝑁𝑅𝑅𝑙𝑙𝑡𝑡𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙, 𝑡𝑡𝑟𝑟𝑙𝑙𝑟𝑟𝑝𝑝� = [56.6, 1.26, 1, 0, 0, 30, 2635.96]  
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Figure 8 Comparison of critic network predictions: (a) Smooth-reward critic; (b) Sharp-

reward critic 

 

We ran exhaustive searches to find what are the optimal values suggested by the critics and 

the actual optimal action based on the transition models. It was observed that from both 

methods, the critic optimal points are all very close to the actual optimum, even SHARP is 

closer. However, the contour in figure 8 shows that SHARP critic has much lower prediction 

values than the SMOOTH critic. Because this is the final step, this behavior can be further 

detailed by comparing the critic values and the actual rewards calculated by respective 

reward functions. The relative error is shown in figure 9. 

 

   

Figure 9 Relative error between critic value and actual reward: (a) Smooth-reward critic; (b) 

Sharp-reward critic 

 

It can be clearly observed that SMOOTH has much more accurate estimations of the actual 

rewards than SHARP. Moreover, huge gradient can be seen in the SHARP error. Note that 

despite SHARP has direct cut off reward for constraint violations, the time reward term in 

equation (7) remains identical for both methods. By joining figure 8 and figure 9, it can be 

seen that SHARP’s overall estimations based on the given state is much lower than that of 

SMOOTH and the high values locate on the high QM and low EPL actions which are very 

conservative actions. This is a reflection of SHARP’s poor evaluation on the tested state that 

SHARP evaluates it as a very bad state with large chance of constraint violation thus should 

be avoided earlier in an episode by taking more conservative actions. This is a major cause of Jo
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SHARP failing to find faster race solutions as shown in figure 7. This can also be proved by the 

actual complete episode solution SHARP generated, which will be discussed in the next section.  

4.2 Race strategy solutions 

In this section, we compare the solutions generated from three methods, the SHARP and 

SMOOTH which are DDPG based with different reward shaping, and MCTS based 

reinforcement learning with completely discretized action space (referred to as MDIS). Two 

different cases are presented. The first case is given relatively higher ambient temperatures 

which make thermal management a major concern while the second case, in contrary, has a 

lower ambient temperature. 

4.2.1 Case 1: ambient temperature of 30°C and 32°C  

Table 6 reveals the terminal state information from the strategies generated by the three 

methods. It can be seen that SMOOTH outperformed the other two methods in terms of both 

boundary management (i.e. smaller margin to the boundaries means better use of the 

resource)  and the final race time. The solution from continuous-action-based SMOOTH 

finished a race 3 seconds faster than the discrete-action-based MDIS and nearly 6 seconds 

faster than SHARP. This 0.1 % advantage might seems small in magnitude but 3 seconds of 

time in motorsport races is a significant improvement and would make huge difference in a 

race. Figure 10 show the strategic actions generated by these methods. 

 

Table 6 Terminal states using different methods with 𝑇𝑇𝑙𝑙𝑚𝑚𝑏𝑏=30°C 

Method Remaining energy 

(kWh) 

Battery temperature 

(℃) 

Race finishing time 

(s) 

SMOOTH 0.025 57.944 2714.28 

SHARP 0.176 57.578 2720.21 

MDIS 0.295  57.886 2717.26 
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Figure 10 Race strategic solutions for 𝑇𝑇𝑙𝑙𝑚𝑚𝑏𝑏=30℃: (a) Power mode (PM); (b) Energy per lap 

(EPL); (c) Q mode (QM) 

 

The first obvious difference is the use of attack mode. All three methods suggest that the first 

attack mode should be activated in the third lap, which is the earliest time the regulation 

allows. Then SHARP and MDIS activate the second attack mode at lap number 5 immediately 

after the first one finishes while SMOOTH waits until the eleventh lap to activate the second 

attack. Features can be observed in EPL actions, which are directly related to the attack mode. 

For MDIS and SMOOTH, it can be seen that when attack mode is used (lap 3-7 for MDIS; lap 

3,4,11,12 for SMOOTH), the EPL is significantly higher than the other regular laps. While 

SHARP actions is more chaotic, it is still clear that SHARP makes a much higher EPL action 

during its attack mode laps (i.e. lap 3,4). It should also be noted that MDIS prefers to have a 

relative constant EPL action while the fastest solution from SMOOTH suggests a general 

decrease trend as race progresses. Another feature can be found, shared by all three methods, 

that the EPL values all start to drop towards the end of the race (i.e. after lap 27). The cause of 

these early uses of attack mode and EPL drop in the end can be explained referring to the 

battery thermal dynamics model (appendix D) used in the OCP. According to the battery 

model, the heat generation is proportional to the magnitude of current, which will increase in Jo
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the later stages of a race due to lower open circuit voltage (OCV) caused by SOC drop. The heat 

generation rate will be higher during the ending phase of a race thus need to be properly 

managed. Additionally, the 50kW of higher power of attack mode would more likely lead to 

thermal crisis if activated in the later stages. Therefore, attack modes are suggested to be 

activated in the earlier laps of a race. This temperature managing phenomenon can be jointly 

proved by the QM actions. Higher QM actions can be observed in the later stage of the race 

suggesting stricter temperature management measures need to be taken. Another feature of 

interest is that instead of monotonically increasing the QM towards the end, both continuous-

action-based methods suggest a hump before the final increase. The fastest solution from 

SMOOTH suggests a hump in the middle of a race. The reason is assumed to be related to the 

battery entropy coefficient change (appendix D) in the middle range of SOC, which would 

cause additional heat generation.  

Then, we have further increased the ambient temperature to 32℃, which would be more 

challenging for temperature management. The terminal information corresponding to this 

case is shown in table 7. 

 

Table 7 Terminal states using different methods with 𝑇𝑇𝑙𝑙𝑚𝑚𝑏𝑏=32℃ 

Method Remaining energy 

(kWh) 

Battery temperature 

(℃) 

Race finishing time 

(s) 

SMOOTH 0.092 57.927 2717.67 

SHARP 0.302 57.481 2728.53 

MDIS 0.016 57.936 2722.57 

 

With higher ambient temperature, which requires more thermal management, it is natural 

that the race times are slower than those in case one. Among the three methods, SHARP 

remains the slowest one. It can also be observed that the advantage of SMOOTH becomes 

larger over the other two with nearly 5 seconds faster than MDIS and over 10 seconds faster 

than SHARP. In the action solutions shown in figure 11, some features can be observed 

different from the 30℃ case. 
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Figure 11 Race strategic solutions for 𝑇𝑇𝑙𝑙𝑚𝑚𝑏𝑏=32℃: (a) Power mode(PM); (b) Energy per lap 

(EPL); (c) Q mode (QM) 

 

On attack mode usage, both SMOOTH and MDIS activate it in the early laps while SHARP gives 

a big delay for the second activation. The general dropping trend of EPLs remains similar as 

case 1. However, high EPL for attack mode laps cannot be clearly seen in case 2. Only small 

increases can be observed in lap 4 and 6 where SMOOTH is on the attack mode laps. The 

biggest difference between the two cases lies in the QM actions that the hump in case 1 does 

not happen in case 2. While MDIS’s and SHARP’s QM actions have oscillated in the early and 

middle race stages before rising in the end, SMOOTH suggests no measurements for thermal 

management during these stages, and it generates higher QM actions only after lap 21 with 

magnitude monotonically increasing towards the end. 

4.2.2 Case 2: ambient temperature of 25°C 

In this case, we lower the ambient temperature to 25°C, which would make the 𝑇𝑇𝑏𝑏𝑙𝑙𝑡𝑡 
constraint of 58°C a less concern in the decision making process. Only SMOOTH and MDIS are 

compared in this case since SHARP failed to deliver strong performances in the previous Jo
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section. The terminal information corresponding to this case is shown in table 8. 

It can be seen that in this case, two methods performs quite similar. SMOOTH is faster than 

MDIS but with gap of only 0.27 seconds. Figure 12 shows the detailed actions solutions. 

 

Table 8 Terminal states using different methods with 𝑇𝑇𝑙𝑙𝑚𝑚𝑏𝑏=25°C 

Method Remaining energy 

(kWh) 

Battery temperature 

(℃) 

Race finishing time 

(s) 

SMOOTH 0.0022 57.995 2711.34 

MDIS 0.003 57.202 2711.61 
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Figure 12 Race strategic solutions for 𝑇𝑇𝑙𝑙𝑚𝑚𝑏𝑏=25℃: (a) Power mode(PM); (b) Q mode (QM); 

(c) Energy per lap (EPL) 

 

The effect of lower ambient temperature can be clearly observed in QM action. Higher QM 

actions are suggested in case 1 to manage the battery temperature. While given 𝑇𝑇𝑙𝑙𝑚𝑚𝑏𝑏=25℃, 

both SMOOTH and MDIS suggest that no QM actions need to be taken. This also explains why 

two methods have similar solutions. Regarding the fact that no QM action is needed, the total 

action space is reduced to an extent, which makes the problem simpler to the algorithms. 

Although two methods generate similar level of race times, the two strategies are clearly 

different. MDIS activates the attack modes at the very beginning (figure 12a), while SMOOTH 

activates separately and later than MDIS. Both high EPLs are observed when using attack 

modes (i.e. lap 3-7 for MDIS, and lap 7,8,15 for SMOOTH). Following the attack laps, MDIS 

suggests a constant EPL of 1.5kWh afterwards while SMOOTH shows a different pattern.  

Overall, SMOOTH performs best and has clear advantage over MDIS when thermal 

management is a major concern. When thermal risk lowers, the continuous method and 

discrete method have similar level of performance. The summary of performance of SMOOTH 

and MDIS is shown in table 9. 

 

Table 9 Comparison of performance in continuous and discrete action space 𝑇𝑇𝑙𝑙𝑚𝑚𝑏𝑏 MDIS SMOOTH Difference(compared to MDIS 𝑇𝑇𝑙𝑙𝑚𝑚𝑏𝑏=25 2711.61(s) 2711.34(s) -0.27(s)    -0.01% 𝑇𝑇𝑙𝑙𝑚𝑚𝑏𝑏=30 2717.26(s) 2714.18(s) -3.08(s)    -0.113% 𝑇𝑇𝑙𝑙𝑚𝑚𝑏𝑏=32 2722.57(s) 2717.67(s) -4.9(s)     -0.180% 

 

More validation tests on different ambient temperatures are presented in appendix E. 

5 Conclusion 

In this study, the Formula-E race strategy was formulated into an MDP decision making Jo
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problem. A new layout of actor model was used to accommodate both discrete and continuous 

action types in the strategic decisions. Deep deterministic policy gradient method was 

implemented under Ape-X distributed architecture and integrated with prioritized 

experience replay. The reward was shaped in favor of the reinforcement learning algorithm. 

It was shown that reward shaping with soft penalties of constraint violations clearly benefits 

the performance of RL algorithm. The smooth-shaped reward fundamentally makes it easier 

for the critic to estimate the reward thus helps actor better to find optimal solutions in this 

study. Continuous-action-based method successfully found superior strategies of 3-4 seconds 

faster than discrete-action-based method. This advantage is more significant when 

overheating risk is severe in higher ambient temperature environment. Overall, a race can be 

finished clearly faster when the strategy is developed in continuous action space.  
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Appendix 

Appendix A Neural network transition models 

The MCTS uses three neural networks as its transition models to separately predict the energy 

consumption, battery temperature rise and lap time. 

In this study, fully connected shallow networks are used with adequate of prediction accuracy. 

The number of neurons and accuracy are shown in table A1 and figure A1. 

 

Table A1 Neural network structure 

Prediction Inputs Hidden 

neurons 

Output 

neurons 

Activation 

function Jo
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Energy 

consumption EPL, PM, QM 6 

1 Sigmoid Lap time 

Battery 

temperature rise 

EPL,PM,QM,SOC,Tbat,Tamb 
10 

 

 

a) Energy consumption error 

 

b) Lap time error 

 

c) Battery temperature error 

Figure A1 Prediction accuracy 
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Appendix B Actor and critic network parameters  

 

Figure B Actor network layout 

The FC1 layer has 400 unites, followed by a Rectifier activation. The DisL1 has 300 unites, also 

with Rectifier activation and then is mapped into a size-2 discrete action activated using 

Sigmoid function. The discrete action is further activated using Softmax function and 

concatenated with the output of FC1. The tensor is then passed through a 300-unite layer 

followed by Rectifier and then though a 200-unite layer with sigmoid function becomes the 

size-2 deterministic actions. 

The critic network has a simply fully-connected layout with size of 7(state size)-500-400-1 

with Rectifier activation for all layers. 

Appendix C Pseudocode for MCTS with policy gradient 

reinforcement learning 

Algorithm 2 On-Policy reinforcement learning 

Initialize policy network parameter 𝜃𝜃 

For epoch=1, M do 

Initialize replay buffer R 

Repeat episode 

Initialize  𝑠𝑠0 = [𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙,𝐸𝐸𝑟𝑟 ,𝑇𝑇𝑏𝑏𝑙𝑙𝑡𝑡 ,𝑇𝑇𝑙𝑙𝑚𝑚𝑏𝑏,𝑁𝑁𝑙𝑙𝑡𝑡𝑡𝑡 ,𝑁𝑁𝑅𝑅𝑙𝑙𝑡𝑡𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙] 

Store result sequence 𝑄𝑄(𝐴𝐴, 𝑆𝑆),𝐴𝐴, 𝑆𝑆 ← 𝑃𝑃𝑀𝑀𝑇𝑇𝑆𝑆(𝑠𝑠0,𝜃𝜃) in R 

 Until episode number reached 

 for t = 1, T do  

Sample a random minibatch of N transitions (S, A, 𝑄𝑄(𝐴𝐴, 𝑆𝑆)) from R 

Update the policy using the sampled policy gradient Jo
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    𝜃𝜃 = 𝜃𝜃 + 𝛼𝛼𝛻𝛻𝜃𝜃�𝑄𝑄(𝐴𝐴, 𝑆𝑆) − 𝐵𝐵𝑄𝑄�𝑙𝑙𝑛𝑛𝑔𝑔𝜋𝜋𝜃𝜃(𝐴𝐴|𝑆𝑆) + 𝑎𝑎‖𝜃𝜃‖2 

end for 

end for 

Algorithm 3 Monte Carlo Tree Search 

Function MCTS(𝑠𝑠0 ,𝜃𝜃) 

  Create root node 𝑎𝑎0 with state 𝑠𝑠0 

        while within computational budget do 

    𝑎𝑎𝑙𝑙 ← TreePolicy (𝑎𝑎0 ,𝜃𝜃) 

    ∆← Simulation(𝑠𝑠(𝑎𝑎𝑙𝑙) ,𝜃𝜃) 

   Backup (𝑎𝑎𝑙𝑙, ∆) 
 return highest-reward sequence 𝑄𝑄(𝐴𝐴, 𝑆𝑆),𝐴𝐴, 𝑆𝑆 

Function TreePolicy(𝑎𝑎,𝜃𝜃) 

  while 𝑎𝑎 is not terminal do 

    if 𝑎𝑎 is not expanded then 

          𝑎𝑎 ← Expansion(𝑎𝑎,𝜃𝜃) 

    else  

      𝑎𝑎 ← Bestchild(𝑎𝑎) based on 𝑈𝑈𝑀𝑀𝑇𝑇_𝑃𝑃𝑎𝑎𝑥𝑥𝑅𝑅(𝑎𝑎) 

  return 𝑎𝑎 

Function Expansion(𝑎𝑎,𝜃𝜃) 

  For i=1,Max Expansion Number do 

  choose a∈untried actions from A(𝑠𝑠(𝑎𝑎)) based on policy 𝜋𝜋𝜃𝜃(𝑎𝑎|𝑠𝑠) 

  add a new child 𝑎𝑎′ to 𝑎𝑎 

    with s(𝑎𝑎′)=Transition(s(𝑎𝑎),a) 

        end for 

        𝑎𝑎 ← first child 𝑎𝑎′(1) 

return 𝑎𝑎 

Function Simulation (𝑠𝑠,𝜃𝜃) 

while 𝑠𝑠 is not terminal do 

    choose a∈A(𝑠𝑠(𝑎𝑎)) based on policy 𝜋𝜋𝜃𝜃(𝑎𝑎|𝑠𝑠)  

    𝑠𝑠 ←Transition(s,a) 

  return reward for terminal state 𝑠𝑠 

 

Appendix D Battery thermal dynamics model used in the 

OCP 

𝑛𝑛𝑏𝑏𝑀𝑀𝑏𝑏 𝑑𝑑𝑑𝑑𝑡𝑡 𝑇𝑇𝑏𝑏(𝑡𝑡) = 𝐼𝐼2𝑅𝑅(𝑆𝑆𝑆𝑆𝑀𝑀) − 𝐼𝐼𝑇𝑇𝑏𝑏 �𝑑𝑑𝑈𝑈𝑜𝑜𝑑𝑑𝑔𝑔𝑑𝑑𝑇𝑇𝑔𝑔 � (𝑆𝑆𝑆𝑆𝑀𝑀) − ℎ𝑟𝑟𝑡𝑡𝑚𝑚𝑏𝑏(𝑉𝑉) 𝐴𝐴𝑏𝑏(𝑇𝑇𝑏𝑏 − 𝑇𝑇𝑙𝑙𝑚𝑚𝑏𝑏)     (D1) 

Where which 𝑛𝑛𝑏𝑏 is the battery total cell mass, 𝑀𝑀𝑏𝑏 is the specific heat capacity of the cell, 𝑇𝑇𝑏𝑏 

is the battery temperature, 𝐼𝐼 is the battery current, 𝑅𝑅(𝑆𝑆𝑆𝑆𝑀𝑀) is the sum of polarization and Jo
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ohmic resistance of the battery as a function of SOC and (
𝑑𝑑𝑈𝑈𝑜𝑜𝑑𝑑𝑔𝑔𝑑𝑑𝑇𝑇𝑔𝑔 )(𝑆𝑆𝑆𝑆𝑀𝑀) denotes the entropy 

coefficient which is also a function of SOC. 

 

     

Figure D1                                Figure D2 

     

Figure D3                                 Figure D4 

 

Figure D1 is the ‘Combined heat transfer coefficient ℎ𝑟𝑟𝑡𝑡𝑚𝑚𝑏𝑏(𝑉𝑉) 𝐴𝐴𝑏𝑏’ appeared in equation D1 

Figure D2 is the ‘Entropy coefficient (
𝑑𝑑𝑈𝑈𝑜𝑜𝑑𝑑𝑔𝑔𝑑𝑑𝑇𝑇𝑔𝑔 )(𝑆𝑆𝑆𝑆𝑀𝑀)  

Figure D3 is the ‘Open circuit voltage 𝑈𝑈𝑡𝑡𝑟𝑟_𝑏𝑏’ profile of the battery package in equation D1 

Figure D4 is the ‘Combined resistance  𝑅𝑅(𝑆𝑆𝑆𝑆𝑀𝑀)’ appeared  

The table below shows other information in the model for result reproduction 

 

Table D1 

Parameters Value 

Battery cell number 209 

Battery mass 317 kg 

Battery specific heat capacity 1015 J/(kg· K) 

Coolant mass 20 kg 

Coolant specific heat capacity 1800 J/(kg· K) 
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Appendix E: Solutions on wider range of ambient 

temperatures 

 

    

Figure E1                                 Figure E2 

    

Figure E3                                 Figure E4 

Figure E1 Race time at different ambient temperatures 

Figure E2 Energy per lap solutions at different ambient temperatures 

Figure E3 Power mode solutions at different ambient temperatures 

Figure E4 QM actions at different ambient temperatures 

As shown in figure E1, the race pace is significantly slower at higher ambient temperatures. 

A race can take more than 10 seconds longer at 34°C than at 26°C. To manage the battery 

temperature, as suggested by figure E3 and E4, much radical QM actions are taken in the 

final stage of a race. Meanwhile, with higher ambient temperatures, high EPL actions are 

biased to the early stages and EPL is reduced in the later stages in order to co-act with high 

QM actions to control the battery temperature within the regulatory limit. 

 

Appendix F: Ape-X configuration and computing resource 

This study is completed on a workstation with two Intel E5-2620 and a Tesla-K80 GPU. We 

tested different number of workers, batch size and replay memory size. The learning 

progress are shown in the following figures. Jo
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Figure F1                           Figure F2 

   

Figure F3                           Figure F4 

 

Figure F1: Performance with different number of workers  

Figure F2: Performance with different replay memory size 

Figure F3: Performance with different batch size (memory size 100k) 

Figure F4: Performance with different batch size (memory size 2000k) 

 

The cases showed in this section are trained for approximately 12 hours. As can be observed 

from figure F1, higher worker numbers have better performance. This advantage is believed 

to be more significant when larger number of workers is applied (e.g. 128 workers) as 

demonstrated in [44]. However, due to the limit of the workstation, the maximum worker 

number tested was 32. For Ape-X, as an off-policy approach, the performance relies on the 

diversity of collected experience, we further investigated the effect of size of replay memory. 

It can be cleared observed that with larger memory size containing more diverse data, the 

performance is much better. On the contrary, with a very small memory size (e.g. 100k, 

200k), the performance improves very slowly, As can be observed from figure F3 and F4, 

bigger batch size can also improve the performance. By comparing figure F3 and F4, a 

combination of large memory size and batch size proves to be a stronger configuration in 

this study. 
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 Targeting the most popular race strategy problem in Formula-E races

 Propose a novel race strategy approach using distributed reinforcement

learning architecture

 Reward shaping improves the reinforcement learning performance

 Modification  of  actor  neural  network  layout  for  hybrid-type  action

generation 
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