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ABSTRACT

A challenge faced by businesses that provide logistical support to systems is 

when the provision of those support services is no longer required. A typical 

example of such a situation is when military operations come to an end. In such 

cases, those companies that have a contract with the Armed Forces to provide 

maintenance support for the deployed systems, need to maintain those systems 

at minimum cost during that final phase, that is from the time the decision to stop 

the operations is announced until their very end.  

During the final phase, a challenging problem is forecasting the demand for spare 

parts, corresponding to equipment failures within the system. This is because the 

support context, the number of supported systems, the support equipment or 

even the operational demand can change during that period, and also because 

there can be very limited opportunities to place orders to cover demand. 

This thesis suggests that these types of problems can take advantage of the data 

that have been collected during the support operations prior to the initiation of the 

closing down process. Moreover, the thesis investigates the exploitation of these 

data by the use of Bayesian Networks to forecast the demand for spares that will 

be required for the provision of maintenance during the final phase. 

The research uses stochastically simulated Support Chain scenarios to generate 

data and also to evaluate different methods of constructing Bayesian Networks. 

The simulated scenarios differ in the demand context as well as in the complexity 

of the Equipment Breakdown Structure of the supported systems. The Bayesian 

Networks’ structure development methods that are tested include unsupervised 

machine learning, eliciting the structure from Subject Matter Experts, and two 

hybrid approaches that combine expert elicitation and machine learning. These 

models are compared to respective logistic regression models, as well as subject 

matter experts-adjusted single exponential smoothing forecasts.  

The comparison of the models is made using both accuracy metrics and accuracy 

implication metrics. These forecast models’ comparison methods are analysed in 

order to evaluate their appropriateness. The analyses have provided a number 
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of novel outputs. The algebraic analysis of the accuracy metrics theoretically 

proves empirical problems that have been discussed in the literature but also 

reveals others. Regarding the accuracy implication metrics, the analysis shows 

that for the particular type of problems examined in this thesis –final phase 

problems – the accuracy implication metrics commonly applied are not enough 

to inform decision making, and a number of additional ones are required. 

The research shows that for the scenarios examined, the Bayesian Networks that 

had their structure learned using an unsupervised algorithm performed better in 

the accuracy metric than any of the other models. However, even though these 

Bayesian Networks also did well with the accuracy implication metrics, neither 

they, nor any of the others was consistently dominant. The reason for the 

discrepancy in the results between the accuracy and the accuracy implication 

metrics is that the latter are not only driven by how accurate the forecast model’s 

prediction is, but also by the model of the residual error and the bias. 

Keywords:  

Bayesian Networks, operational availability, spare parts forecasting, accuracy 

implication metrics, support chain simulation 
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1 INTRODUCTION

1.1 Problem Statement 

A very challenging period for the support of systems that are used in military or 

business operations, is the one that follows the announcement of the decision to 

bring operations to an end. Several uncertainties are triggered from such a 

decision. What will the operational demand be during the planned final period? 

How many systems will be left to operate and how is this operating context going 

to affect the requirements for support? Withdrawing means modifying or even 

taking away equipment and support facilities and probably moving or withdrawing 

personnel including operators and mechanics with different levels of experience. 

So, will those involved in the final phase be able to cope with the support 

requirements? Depots and inventories are eventually going to be gradually 

reduced and replenishment lead-times could change. What will the effect of such 

possible changes be on the availability of the systems left behind to continue the 

operations until the very last one has left?  

In order to be able to deliver the anticipated operational output during this final 

period, at the very least managers need to be able to decide on the levels of 

inventory to keep for the remaining supported systems given the planned 

changes. Therefore, at the final replenishment of the inventory, if the inventory 

managers place an order for their depots and obtain more than they would 

eventually need, then they will have incurred overage costs for the provisioning, 

holding and for the transport back of the excessive inventory that they will not 

have used. Furthermore, the parts, which are not economic to be returned or are 

characterised as security-sensitive, will probably need to be destroyed. 

Conversely, holding inventory levels that are below requirements will create an 

array of problems for those personnel left to run the system. For the purposes of 

this research, the finite time-horizon support problem with the above 

characteristics is called the Final Phase Problem (FPP), and as shown further 

below but in more details in Sections 2.2 and 2.3, the FPP has distinctively 

different characteristics than the similar problems studied in the literature of the 

Newsvendor (NVP) and the Last Time Buy / End of Life (LTB/EOL). 
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In order to estimate the optimum level of inventory, a forecast of the demand for 

spares is required. This forecast is the focus of the present thesis. During infinite 

time-horizon logistic operations, very common demand forecasting methods are 

variations of time series (Petropoulos, Makridakis, Assimakopoulos, and 

Nikolopoulos, 2014). Time series have also been suggested in cases similar to 

the ones examined in this research (Alwan, Xu, Yao, and Yue, 2016). However, 

as Dekker, Pinçe, Zuidwijk, and Jalil (2013) suggest, it would sometimes be 

useful in the forecast to be able to consider different attributes of the installed 

base, like the number of systems that are supported and their usage rate. Indeed, 

as shown in the examples of Section 1.2, during the final phase of operations, 

the usage rate might not be the same as in the phases before that (Phases II and 

IV in the Committee on Force Multiplying Technologies for Logistics Support to 

Military Operations and Board on Army Science and Technology, (2014, figs 2–

1)), and also the number of systems that are supported might change. This 

suggests that the forecasts provided by time series alone without any 

consideration of the demand context during the final phase can be poor, since 

the forecast provided will be the same regardless of any information about the 

expected changes (Boutselis and McNaught, 2018). In practice, decision makers 

tend to adjust the forecasts provided by their models and especially when there 

are anticipated changes (Christopher, 2016, Chapter 5; Rekik, Glock, and 

Syntetos, 2017), using their experience and intuition and thus, in the final phase 

of operations they would be expected to do so too.  

Nevertheless, there are approaches such as regression that provide forecasts of 

a response variable using scenario factors as predictors. In the forecast models 

for the FPP cases dealt with in this thesis, factors related to the number of 

systems operating and supported, as well as to their operational usage and the 

support resources have been used as predictors with the demand for spares 

being the response variable. As the literature shows (Chapter 2), such models 

have been applied in steady-state problems (see e.g. Sherbrooke, 2000) and it 

would be logical to use them for the FPPs of support operations as well. However, 

as demonstrated in the literature review (Chapter 2), regression models and 

indeed the kind of models that use predictors have rarely been applied to the 
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types of problems that are examined here, that is in the final phase of support 

operations. Furthermore, when they have been used, there is a lack of 

understanding of which are the most influential factors that should be included as 

predictors. 

The latter observation is discussed in the literature review in Chapter 2. As it is 

further shown there, the examined published research in areas similar to the FPP 

have not dealt with their respective problems by seeing the Support Chain (SC) 

of the operations as a whole entity, that is as a system. Consequently, in taking 

that view, some exploration of the factors which influence the demand during the 

final phase was necessary. This involved the elicitation of relevant domain 

knowledge from Subject Matter Experts (SMEs) in order to complement what had 

already been identified in the literature (Chapter 3). 

The FPP examined in this thesis has a number of similarities to single-period 

forecasting problems like those dealt with in the well-known Newsvendor problem 

(NVP) (Khouja, 1999) and in the “Last time buy” / “End of life” (LTB/EOL) problem 

which are discussed in Sections 2.2 and 2.3 respectively. The similarities of these 

three problem types (NVP, LTB/EOL and FPP) stem from the fact that the 

decision maker needs to use a demand forecast in order to optimise the supply 

order that he/she can place at the beginning of a limited time period ahead, with 

much uncertainty about the demand distribution due to the effects of the demand 

context that will follow. The dilemma is to decide on the inventory level of goods 

that should neither be more than needed since the excess inventory creates 

overage costs, nor less than needed since the demand that will not be met will 

create underage costs. Overage costs are defined within the literature of the NVP 

as the cost for any items that cannot be sold, while underage costs are defined 

as the cost for not meeting the demand (see e.g. Alwan et al., (2016)) 

The NVP, the LTB/EOL problems and the FPP occasionally share another 

common challenge, for the final reprovisioning of the inventory described above 

to come from only a single order. The reason for this additional challenge is that 

the time to make the decision can be very tight with little opportunity for 

subsequent corrective orders. The cause is that in extensive networks like those 
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that support overseas operations, the lead times can be quite long and 

consequently, only few resupply orders can usually be made before any 

additional data can be collected so as to gain more information and 

understanding on the new, final demand context. 

In summary, the challenges that are shared by the three similar categories of 

problems – the NVP, the LTB/EOL and the FPP – are that the decision on the 

resupply order levels needs to be such that there is a balance between the 

likelihood that at the end of the single period ahead there are no leftovers and 

that there is no shortage. This decision cannot be easily adjusted. Consequently, 

these challenges call for an extensive analysis of the available data, information 

and knowledge existing up to the moment of the decision. However, as shown in 

more detail in Chapter 2 and in Chapter 3 (Sections 3.2, 3.4), there are a number 

of differences in the availability of data, information and knowledge between the 

FPPs which are of interest to this research, and the NVP or the LTB/EOL 

problems. In the latter two, the indirect assumption is that the decision maker has 

visibility only of her own node in the Support Chain, usually the supply part, and 

thus, as it is also demonstrated in Chapter 2 (Sections 2.2 and 2.3), this limits the 

accessibility and availability of the data and information that can be used, and this 

limitation also has an effect on the type of demand forecasting models that can 

be developed.  

On the other hand, in the FPP cases which are of interest to this research, due 

to the assumed performance-based and availability-based contracts (Section 

1.2), there is a strong collaboration between the service providers and the 

customer, and consequently, there is access to data from different levels and 

nodes of the Support Chain. Such datasets that can be found e.g. as recorded 

incidents in logbooks, have captured situations and conditions that no single 

operator / decision maker / expert can holistically acquire and contain. Therefore, 

the information that is contained in these datasets, if captured and analysed can 

potentially complement and advise the decision makers when facing challenges 

such as the ones discussed earlier, that is having to define the level of spares to 

keep in inventory given that there can be many changes to the operations and 

their support, and that the decisions will affect a single, final period. 
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The literature review in Chapter 2 demonstrates that similar challenges have 

been addressed in the past. However, the review also suggests a weakness in 

that neither the context nor the type and the availability of the data have been 

considered, and that consequently, the types of models that can use these data 

have not been explored either. 

The work presented here is an attempt to address the decision maker’s need for 

a better-informed model of the demand in order to improve decision making when 

confronted with the challenges of the FPP. Of specific interest is the exploitation 

of the data records of incidents and activities kept in the logbooks of the different 

functional and operational nodes of the Support Chain of operations during the 

phases prior to the final phase. Under the close relationships assumed to exist in 

the FPP settings due to availability and performance based contracts, these data 

records are able to be used in the demand forecast models. 

1.2 Background and Motivation 

In this section, some motivating examples are provided of real-life final phase 

problems. 

The US-led military operation “Iraqi Freedom” against Saddam Hussein’s regime 

started in March 2003 and succeeded its initial operational objectives by May 

2003. However, it is rarely the case that such operations last for only a few 

months. Further stabilisation objectives required that the forces had to operate 

for longer and then to gradually withdraw, and this is what happened until April 

2009 (BBC, 2016). From the perspective of the systems’ support function of the 

operations, namely the repair activities and provision of spares for the systems 

deployed, there were three general phases: the initial build-up, the infinite-time 

horizon during the stabilisation and the final closing down (Committee on Force 

Multiplying Technologies for Logistics Support to Military Operations and Board 

on Army Science and Technology, 2014, figs2–1). 

A similar situation took place for the NATO operations in Afghanistan. In October 

2014 the US and the UK announced the end of their combat operations, while in 

December 2014 NATO formally ended its combat missions. Again, the three 

general phases of initial build-up, infinite-time horizon and final closing down were 
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present. However, reports highlighted that this final closing down phase was also 

the “bloodiest” period of its duration (BBC, 2018; NATO, 2017). This finding 

contradicts the assumption of operational planning that during the closing down 

phase – the phase that follows the perceived attainment of the planned end-state 

- the operational demand reduces (see e.g. US DoD (2017b, p. IV-20), (2017a, 

p. I-8)). On the contrary, in the specific operations in Afghanistan the operational 

demand did not reduce (BBC, 2018; NATO, 2017). The effects of such a 

discrepancy on the logistic and repair support of the operations can be 

considerable. During the final phase, along with other planned changes, a 

number of the resources including supported systems are withdrawn. 

Consequently, given the uncertainty about the intensity of operational demand, 

the support providers need to estimate/forecast the effects of all the anticipated 

changes on the failure rates. Such a forecast would facilitate decisions on the 

amount of logistic and repair resources to maintain until the end. Consequently, 

models used to provide such forecasts need to be able to effectively use any 

relevant information that is available about the anticipated changes. 

A core similarity in the above cases concerned with access to the information 

needed in the forecast models examined here (Sections 1.4, 1.4, 4.2, 4.5, and 

4.6), is the set of relationships among the agents that support the operations 

throughout their life-cycle. These relationships are usually closer in contrast to 

those at “arms-length” in which whenever the customer needs to replenish the 

inventory he/she calls the supplier and places an order (Christopher and Lee, 

2004; Christopher and Peck, 2004). Such closer relationships allow the agents to 

have access to wider relevant data and information (Christopher, 2016, p.156) 

needed in the forecasting models.  

Furthermore, it is not only military support operations, but also today’s businesses 

that tend to develop closer relationships. The closer cooperation is a general 

tendency in the evolution of businesses that want to benefit from (global) Support 

Chains. As Christopher (2016, p. 156) points out “Today’s business is 

increasingly ‘boundaryless’, … the separation between vendors, distributors, 

customers and the firm is gradually lessening. This is the idea of extended 
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enterprise, which is transforming our thinking on how organisations compete and 

how value chains might be reformulated”. 

Christopher’s observation provides a key assumption underpinning this research. 

For this thesis’ purposes, it is assumed that in the cases examined, Support 

Chain relationships are in place similar to the ones built under availability and 

performance-based contracts. Such contracts provide the support function as an 

integrated, performance package set to optimise and meet performance goals, 

such as the operational availability of a fleet of systems (Mirzahosseinian and 

Piplani, 2011; D. Nowicki, Kumar, Steudel, and Verma, 2008; D. R. Nowicki, 

Randall, and Ramirez-Marquez, 2012). Under such contracts, maintenance and 

servicing of a system is not paid according to the spares used, or the number of 

workhours, but on the agreed measures’ outputs (Mirzahosseinian and Piplani, 

2011, p.260). Inevitably, the service provider has access to the customer’s data 

as well as her own and of others that directly participate in the provision of the 

contract. 

Therefore, the move towards closer relationships among the agents that support 

the operations can give mutual access to the acquisition of the required data and 

information. As Christopher (2016, p. 156) sates “Even more importantly it is 

information shared between partners in the Supply Chain that makes possible the 

responsive flow of product from one end of the pipeline to another”.  

For the uses of this research, “data” is defined as “facts and figures which relay 

something specific, but which are not organized in any way and which provide no 

further information regarding patterns, context, etc.” (Frost, 2018). On the other 

hand, “information” is defined as the data which have been “contextualized, 

categorized, calculated and condensed” (Davenport and Prusak, 2000). In 

essence, information follows data collection and results from their interpretation 

so that it can be used to support modelling and decision making. Finally, here 

“knowledge” is defined as a mix of experience, contextual information, and expert 

insight. It eventually provides a framework for explaining and evaluating new 

experiences and information (Davenport and Prusak, 2000). 
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The assumption of closer relationships between the members of a Support Chain 

is important for the types of models that are dealt with in the present research. 

Models like regression and Bayesian Networks can benefit both in their 

development and in their verification and validation from the use of the knowledge 

of such relationships that can be incorporated from Subject Matter Experts 

(SMEs) (Field, Miles and Field, 2012; Gelman and Hill, 2007; Heckerman, Geiger 

and Chickering, 1995). However, such experiential knowledge is not easily 

acquired from an “arms-length” type of business. On the other hand, if the term 

learning is used as “the acquisition of knowledge or skills through study, 

experience, or being taught” (Oxford University online dictionary, 2018a), then, 

by definition, more opportunities exist to acquire the relative knowledge when the 

relationships among the participants in the Support Chain are closer such as in 

the situations referred to earlier.  

The present thesis is concerned with the support of systems which are composed 

of repairable and discardable components and that are deployed to perform 

operations. At this point, it is useful to also define how the term “Support Chain” 

(SC) is used here. The term “Support Chain” (SC) is defined as the networked 

system that has as its Main Useful Function (MUF) (Cameron, 2010) to make 

systems available for operations, and so, it is composed of the Supply Chain and 

also of the repair and maintenance activities. 

Nevertheless, FPPs within close supplier-customer relationships in an SC are 

met not only during large military operational deployments such as the ones in 

Iraq and Afghanistan that were described earlier. In 2009 BAE Systems 

announced the closure of its Nimrod aircraft production and support plant in 

Woodford Manchester by 2012. This was due to the UK MoD’s decision to 

withdraw this old but very capable Maritime Patrol Aircraft (MPA) from its 

operational status. The final shut-down of the plant actually took place in 2010, 

two years earlier than initially planned (BBC, 2010; FlightGlobal, 2006), when 

BAE received a formal “contract termination” notice from the MoD (Kirkup, 2010). 

However, the anti-submarine and Intelligence, Surveillance, Target Acquisition, 

and Reconnaissance (ISTAR) missions usually undertaken by the Nimrods were 

to be only partly covered by other assets (Defence Committee, 2012). For BAE 
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as the support function provider, the dilemma in this case was similar to the one 

discussed earlier in the final phase of the large military operations. During the 

period before the official announcement of the contract termination, as though 

indications of this outcome were present, decisions on the level of support were 

required to be based among other information and decision criteria, on forecasts 

of the failures of the systems and the resulting demand for spares too.  

However, the repair and supply requirements during the final period is often more 

uncertain as compared to the period before that. Using the Nimrods’ case as an 

example, there was a point in time when there were indications on the closure of 

the operations. From that point, the number of supported systems / planes and 

their repair facilities that would be kept until the very end were uncertain too. 

Moreover, given the uniqueness of these Maritime Patrol Aircrafts’ (MPA) 

capabilities in anti-submarine and ISTAR missions (BBC, 2011), the operational 

requirements were not expected to be changed. That situation included many 

challenging uncertainties and it was similar to the final phase of the military 

operations in Afghanistan where the reduction of the support facilities was not 

followed by a similar reduction in the operational requirements. 

Political and economic changes can be the cause of such uncertainties and 

dilemmas. In 2010 Lockheed Martin announced the closure of its plants in 

Goodyear Arizona, Akron Ohio, Newtown Pennsylvania and Horizon City in 

Texas by 2015 due to US government budget reductions. Those plants were 

producing and supporting the Patriot missile defence systems and the F-35 and 

F-16 fighter planes (The Seattle Times, 2013). 

Even in the commercial world where maintenance support contracts exist, 

decisions to withdraw the systems supported are not rare (Meridiana, 2018). In 

2017 Allegiant decided to replace its fleet of MD-80 commercial aircraft fleet with 

an A319 and A320 fleet due to the age of the former and the higher reliability and 

efficiency of the latter (FlightGlobal, 2017). On the same type of problem, Boeing 

has published studies about commercial aircraft’ economic life in which they 

demonstrate the need for fleet renewals (Jiang, 2013). The resulting problem in 

the final phase is expected to be similar to the one described earlier. The 
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companies that have been contracted to participate in the Support Chain of the 

fleet that is to withdraw, will need to forecast the demand for support until the very 

last supported aircraft has been removed from operations. Furthermore, due to 

the increased uncertainties they will need to base such forecasts on models that 

are able to effectively use data and information from both the operations and their 

support. 

The cases above are examples of the FPP. The FPP describes the context of the 

current thesis’ Research Problem. The FPP creates a decision uncertainty on the 

support requirements in spares of systems with the following two assumptions. 

First assumption is that these systems are composed of repairable and 

discardable components. Secondly, this uncertainty results from the 

announcement of a finite period during which the systems will be withdrawn from 

operations. In the FPP context, the decision maker has a single period ahead for 

which to place an optimum order to fill the inventory. In essence, the ratio of any 

resupply Lead Time (LT) over the duration of the Final Period (FP) is considered 

greater than 1. Furthermore, the FPP is differentiated from other similar type of 

problems (see Sections 2.2 and 2.3) by the expected and assumed increased 

cooperation and subsequent data and information exchange existing in Support 

Chains under modern availability and performance based contracts.  

The related Research Question dealt with here is to explore what the benefits 

and difficulties are of developing a number of forecasting models – different 

versions of Bayesian Networks in particular - that can exploit the SC-wide 

information and data. These specific models were chosen to be explored due to 

a number of useful attributes (Sections 1.3, Error! Reference source not 

found., 2.5), but mainly due to the insights that their graphical structure (Section 

4.3) can provide. Their structure represents the joint probability distribution of the 

modelled factors, and in this way it provides a visual representation of their 

association. Such a visual output among other benefits, can also facilitate 

understanding of the interactions existing in a large, complicated system like the 

Support Chain.  
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The Bayesian Networks are also compared to two other commonly applied 

forecasting approaches, the SME adjusted Single Exponential Smoothing 

(Section 4.6) and Logistic Regression (Section 4.4). The reasons for choosing 

these two modelling approaches are discussed in the following Section 1.3. 

The exploitation of the data using Bayesian Networks aims to facilitate decision 

making on the level of spares to order and maintain during that final phase period 

by providing forecasts of the expected demands for spares. As will be 

subsequently demonstrated, the FPP can have severe adverse consequences in 

military and commercial operations. Yet despite the magnitude and frequency of 

the problem, to the best of the author’s knowledge it remains a largely under-

researched topic. 

1.3 Research Design and Methods 

This thesis focuses on a special class of models, Bayesian Networks (BNs).  

The first reason for choosing to explore the applicability of BNs in modelling the 

demand in the FPPs, is that, there have been a number of studies investigating 

their use in related fields including reliability (Langseth and Portinale, 2007), 

maintenance (Jouffe, Weber and Munteanu, 2004; Weber and Jouffe, 2006), 

system testing in manufacturing (McNaught and Chan, 2011) and supplier 

selection (Hosseini and Barker, 2016). However, no studies were found of any 

application to the kind of logistical support problems outlined here (FPPs). In 

other words, the current research has not found any study in which the Support 

Chain that had been formed in order to provide the availability of certain systems 

deployed during operations is scheduled to be closed, and the decision maker 

requires an informed forecast of the expected demand for spares during the 

closing down / final phase period. Furthermore, in the present research, the BNs 

were developed using the kind of data captured in the logbooks associated with 

the Support Chain nodes. 

From a modelling perspective, the BNs are graphical models which means that a 

graph or network maps the associative relationships among the variables of the 

study. The graphical description and its exploratory power is considered a very 

useful contributor to the present study. In traditional forecast models, 
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understanding is usually provided through an evaluative explanation of how 

inputs lead to outputs. So, for example a regression model provides explanatory 

information to the decision maker via the coefficients of the explanatory variables 

and their standard errors. On the other hand, when a BN is learned from data, 

the resulting graph can also reveal influential associations among the variables 

that formulate the demand context, and which cannot easily be identified by either 

the experts or the traditional demand forecast models. This benefit is 

demonstrated in Chapter 7 (Sections 7.2.3 and 7.3.3) and further examined in 

Appendix B. 

Furthermore, a BNs’ structure as a joint probability distribution provides the ability 

to use it not only as a modelling instrument of the relationships among its 

explanatory variable and the related response, but questions (queries) can be 

expanded to the relationships among any other subsets of the participating 

variables (see e.g. Boutselis and McNaught (2018), Nagarajan, Scutari and Lebre 

(2013), Neapolitan (2004), Pearl (1988)). 

Additionally, given their graphical representation, a modeller can conveniently 

include and verify information that can be acquired from subject matter expertise 

as well. 

In order to be able to provide with a forecast during the final phase period, the 

decision maker can rely on what is known in the past regarding the way that the 

demand for spares is related to other variables, like the systems’ usage rate, or 

the environment, and also on what can be known or planned for the following up 

duration of the final phase. Consequently, in order to compare the forecasts 

provided by the BNs, a choice was made to additionally develop a logistic 

regression (Section 4.5) and an experts-adjusted Single Exponential Smoothing 

(SES) model (Section 4.6). The logistic regression forecast is developed by the 

use of the variables included in the changing demand context that one would 

expect to be relevant during the final phase period.  

The experts-adjusted model reflects the common industry practice to adjust the 

forecasts provided by a model – a SES in this case - in order to reflect the decision 

makers’ consideration of the contextual factors’ effect on the demand (Fildes, 
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Goodwin, Lawrence, and Nikolopoulos, 2009; Franses and Legerstee, 2010; 

Klassen and Flores, 2001). 

Figure 1-1 presents an overview of the research design. As discussed further in 

Chapter 6, a simulation was applied to generate data. These data were used for 

the development of the forecast models and also for the evaluation of the models’ 

outputs.  

The Bayesian Networks (BNs) (for the definition of the BNs’ Directed Acyclic 

Graph (DAG) and Node Probability Tables (NPTs), see Section 4.3) along with 

the Logistic Regression and the SME adjusted forecasts were developed using 

the first set of data, the models’ development data. This dataset was generated 

by a single replication of the simulation since it represented the single instance 

of available data from the support chain that could potentially be collected in real 

life.  

The second dataset - the evaluation data - was produced in order to evaluate the 

individual models’ forecasts. This evaluation dataset represented the FPP period, 

and in order to evaluate the forecasts across a range of different possible FPP 

situations, a number of different datasets were produced (Sections 7.2, 7.3). 

Furthermore, for each different final phase scenario considered, the simulation 

was run for 100 replications. This was to provide a fairer basis for the evaluation 

and comparison. Chance variation alone could easily distort comparisons based 

on a single replication. 

A study was also performed to identify appropriate accuracy and accuracy 

implication metrics to be used for the evaluation of the models’ FPP period 

forecasts. Finally, the evaluation results were compared using these accuracy 

implication metrics.  
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Figure 1-1: Overview of the research design 

1.4 Aims and Objectives 

In summary, the aim of the present research is to study the demand context which 

exists during the final phase of a support operation (FPP) and, by the use of 

Bayesian Networks (BNs), to exploit the data that is available from the different 

connected nodes of a Support Chain in order to improve spares’ demand 

forecasting for the FPP. 

In order to explore the usefulness of BNs in the FPP’s context, four different 

methods of BN structure development were employed and their forecasts 

compared: 

 Bayesian Networks were developed through: 

 Unsupervised machine learning using data collected from the 

logbooks of the functional and operational nodes of the Support 

Chain 

 Causal elicitation of the BN structure from experts’ knowledge  

 Hybrid development of the BN structure using the expert knowledge 

as a prior structure and adding a machine learning algorithm that 

builds upon the elicited structure 
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 Hybrid development of the BN structure using the expert knowledge 

and adding a machine learning algorithm that uses that structure as 

a starting directed acyclic graph (DAG) on which connections are 

then added, removed and adjusted by the algorithm to increase the 

likelihood of its structure 

For the benchmarking of the BN results, the following forecasting models were 

also developed: 

 A logistic regression for the modelling of the probability of component’s 

failure 

 A Single Exponential Smoothing  (SES) algorithm that provides predictions 

to decision makers based on past demand in order for them to adjust given 

their knowledge of changing demand context factors 

In order to make meaningful comparisons, typical performance measures relating 

to forecast accuracy were reviewed and suitability assessed for this type of 

problems (FPPs). These included both accuracy and accuracy implication 

measures (Section 5.2). As it is also shown regarding the implications of the 

forecasts’ accuracy to the effectiveness and efficiency of the spares’ inventory, 

the idiosyncrasy of the FPPs calls for the introduction in the evaluation of some 

additional measures to the ones commonly applied in the literature (Sections 

5.2.5, 5.2.6). 

1.5 Thesis Layout 

Driven by the research design steps as presented in Figure 1-1, the thesis has 

been formulated as follows: 

In Chapter 2 the literature review provides an analysis of problems similar to the 

FPP. This review identifies the models that have been applied and the factors 

that have been taken into consideration in problems similar to the FPPs. 

Furthermore, the literature is also reviewed in order to gain a greater 

understanding of the factors that formulate the demand context and that can be 

used later as explanatory variables in the demand forecast models. To help verify 

the factors identified in Chapter 2 and potentially identify some additional ones, 
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primary data were collected via interviews with two relevant experts who were 

chosen based on their operational background in managing the Support 

Functions of large military operations of the UK Army and the RAF. More details 

of these interviews are provided in Chapter 3. This chapter also presents some 

conceptual models to help an analyst decide which factors might be most relevant 

in a particular support setting. Chapter 4 presents the Methods applied in the 

research. The chapter firstly presents the BN models that were evaluated and the 

respective development methods are presented. The chapter continues by 

discussing the discretisation of the continuous data that was required in order to 

be able to use the BNs’ structure learning algorithms. Further on, the chapter 

presents two other modelling approaches that were used as benchmarks: the 

logistic regression and the Subject Matter Expert (SME) judgmental adjustment 

of forecasts. Chapter 5 proceeds with the discussion on the performance 

measures that were applied in order to evaluate the models forecast outputs. In 

this chapter, suggestions are also made on the accuracy measures’ quality and 

also on additional accuracy implication measures that are needed for the FPP 

cases. Chapter 6 discusses the stochastic simulation model that was developed 

to generate the data for the development and the evaluation of the forecast 

models. One of the conceptual models presented in Chapter 3 is used to help 

identify relevant factors to include in the simulation model. Chapter 7 describes 

the two simulated scenarios that were used in order to develop and evaluate the 

forecasting models. Furthermore, the accuracy and accuracy implication 

measures of the forecast models for each of the scenarios are presented and 

discussed. Chapter 8 presents the conclusions from the research, lists the 

limitations of the study and suggests areas for future research.  

Finally, Appendix A includes details of the forecasting models developed, 

Appendix B discusses a number of observations that were made from the 

simulated scenarios, while Appendix C includes the preprint of a research paper 

published as a result of the thesis (Boutselis, P. and McNaught, K. (2018) ‘Using 

Bayesian Networks to Forecast Spares Demand from Equipment Failures in a 

Changing Service Logistics Context’, International Journal of Production 

Economics). 
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1.6 Conclusions 

 This chapter has introduced the Final Phase Problem (FPP) as a particular 

problem in logistics management that has not been adequately addressed in the 

literature, and which will be the focus of this thesis. In particular, the forecast of 

the demand for spares during the final phase period will be studied by the use of 

a number of different Bayesian Networks (BNs).   The commonly employed 

logistic regression model and the SME-adjusted Single Exponential Smoothing. 

(SES) model will be used to provide baseline comparisons. 

The chapter also presented the research design, in which a simulation of the 

support chain is used to produce data for the forecast models’ development, as 

well as separate datasets for their evaluation. Regarding the evaluation, the 

research design also includes a study of the forecast models’ accuracy and 

accuracy implication metrics. 





19 

2 LITERATURE REVIEW

2.1 Introduction 

Forecasting the demand associated with support for the final phase of operations 

in order to facilitate decision making for this phase is an important problem. 

However, only some specific variants seem to have been studied in the academic 

literature. These involve single-period forecasting and include Newsvendor 

problems and also “Last time buy” / “End of life” problems. The main characteristic 

that is common to this research and the Newsvendor and the “Last time buy” / 

“End of life” types of problems is to be found in the specific challenge that the 

decision maker faces. In all three problems, there is a single period ahead for 

which the decision maker has to place an optimum inventory order. If the 

inventory level is lower than the experienced demand then there are 

underage/shortage costs, while if the level is higher then there are 

overage/holding costs. Consequently, and as discussed in the definitions of these 

problems at Sections 2.2 and 2.3, respectively, in all three of them the accuracy 

of the demand forecast is an important factor that contributes to the optimisation 

of the decision on how many spares to order at the beginning of finite-time horizon 

period. 

The literature review involved a two-step process. The first step identified and 

reviewed the modelling approaches that have been used in similar kinds of 

problems, namely the Newsvendor and the “Last time buy” / ”End of life” 

problems. The second step then updated the findings of the first step in order to 

produce a list of factors that have been taken into consideration for the modelling 

of the demand for spares in the literature. This set of factors is referred to as the 

demand formulating context factors. Its production is a key part of this chapter 

since such factors will drive development of the demand models later in the 

thesis. 

 Improved understanding of these factors and how they might interact was 

acquired by interviewing related Subject Matter Experts, as described in Chapter 

3.  
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Figure 2-1 provides a graphic summary of the literature review process along with 

the associated objectives. 

2.2 Comparing the Final Phase Problem to the Newsvendor 

Problem 

The newsvendor problem (NVP) (also commonly known as the Newsboy 

problem) is one of the classical problems in operations management and has 

been extensively studied since the pioneering effort of Edgeworth (1888). A 

recent review of the area is provided by Qin, Wang, Vakharia, Chen, and Seref 

(2011), while as Alwan, Xu, Yao, and Yue (2016) state, the research on demand 

forecasting in the NVPs is a topic not well covered in the literature. 

The NVP types of problems can be divided into the following two categories: 

single period and multi-period. In the first category, the NVP is a one-off problem. 

The decision maker is facing a single situation for which there is no recent 

background and it will not repeat itself in a following period. Characteristic 

Figure 2-1: The literature review process and objectives 
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examples are support with supplies for a disaster relief operation, a military “fly-

away kit” (see e.g. Lancaster (2005)), or deciding how much inventory to hold  for 

the selling period of a new, tailor-made product (Eppen and Iyer, 1997; Lariviere 

and Porteus, 1999; Zheng, Wu, and Shu, 2016). In such cases, the problem of 

underage and overage costs is still present, there is not much background 

knowledge or recent data and the situation is not expected to be repeated, at 

least not in the sense that the multi-period NVPs are. Consequently, the demand 

forecast is a challenging task, but the main thing to point out is the fact that in 

such cases there is no learning that can be extrapolated from the recent past. 

The decision makers have to rely on their understanding of the single-period’s 

similarities/analogies to other situations.  

On the other hand, in the multi-period category there is a repetition of the same 

NVP dilemma in a “myopic” way. At each one of the many periods, and despite 

the fact that there is a continuum among them, each problem is dealt with as a 

single NVP at a time. Examples of the multi-period category are the newsagents’ 

decisions concerning the amount of perishable newspapers and magazines to 

order at the beginning of each period, the grocers’ decisions on the amount of 

fresh fruit, vegetables and milk to order, or the fashion buyers’ decisions on 

quantities. In that sense there are directly relevant past data that can be used to 

help the decision maker make a more contextually informed demand forecast. 

Furthermore, the decision maker will probably have been accumulating 

experiences from the previous periods. Consequently, these experiences can 

result into knowledge on factors like the demand patterns and probably demand’s 

relation/association to certain factors (Rekik, Glock and Syntetos, 2017). The 

existence of useful knowledge coming from the demand-patterns’ repetitions can 

also be inferred from the discussions of Alwan, Xu, Yao, and Yue (2016) and 

Özer, Uncu, and Wei (2007) who observe that NVP demand is rarely Independent 

and Identically distributed (IID) and that there is autocorrelation between the 

periods.  

The Final Phase Problem (FPP) cases cannot be placed clearly under either of 

the previously mentioned categories. The closing down of an operation is a one-

off challenge and it will not repeat itself in the multi-period sense, so it has some 
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of the demand-prediction challenges of the single-period case. On the other hand, 

there are recent background data from the build-up and the infinite-time horizon 

phases. Consequently, a level of learning has accumulated as in the multi-period 

cases, but given  the possible changes that will follow during the final phase it is 

not certain that the demand will keep the same pattern nor that the previously 

induced associations will still be the same..  

The earlier mentioned observation that the FPP cases cannot be clearly 

categorised as either single period or multi-period NVPs, has an effect on the 

data that can be used to produce a demand forecast and thus on the spectrum 

of demand models that can be applied. In the single period, a way followed to 

collect data is if some kind of postponement for the time of the decision making 

can be accommodated until some new demand data are available in order to 

inform a Bayesian update (Eppen and Iyer, 1997; Hill, 1997; Lariviere and 

Porteus, 1999). Zheng, Wu, and Shu (2016) studied the potential postponement 

of an order in different supply scenarios and concluded that a postponement has 

the negative effects of increased costs of purchasing and of shorter ordering 

times. Their conclusions can be related to the cases examined in the present 

research. During the final phase of an operation, there could probably be an 

opportunity to place an order after the beginning of the period of interest at a 

premium and thus wait to collect valuable data. However, this can be a choice 

not taken mainly due to the very long lead times, an assumption that has often 

been made in a number of multi-period NVPs as well for each individual period 

(Rekik, Glock and Syntetos, 2017). For the single period NVPs where no update 

is chosen then the prior estimate for the demand distribution is provided by 

experts’ judgement using engineering thinking and/or their experience from other 

similar cases is commonly suggested alternative to provide a demand forecast 

(Berk, Gürler, and Levine, 2007; Ding and Gao, 2014).  

On the other hand, in the multi-period NVPs there is recent evidence of similar 

situations due to the repetition of the similar periods. In such cases, there is no 

need to wait for some data to be collected during the period under consideration 

as it was the case in the single period NVPs. The past periods of the multi-period 

NVP help in that both data and learning exist, and thus demand forecasting can 
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be informed from these periods. Nevertheless, Bayesian updates are not 

uncommon in the multi-period NVP cases either. Berk et al. (2007) studied the 

use of conjugate priors in developing expressions for the exact posteriors for a 

number of demand distributions. Choi, Li, and Yan (2004) present for the multi-

period NVPs the same observations as Zheng et al. (2016) do for the single 

period NVPs, i.e., that the Bayesian demand updates can result in a better 

forecast and a lower demand uncertainty but at the expense of higher costs (and 

less lead time).  

Another demand forecasting approach that has been used in the multi-period 

NVPs is the time series statistical models (Alwan et al., 2016; Carrizosa, Olivares-

Nadal, and Ramirez-Cobo, 2016). However, these cannot cope well on their own 

if there are substantial changes expected to take place in the forecasting horizon 

(Dekker et al., 2013; T. Y. Kim, Dekker, and Heij, 2017), and this is how the 

situation can be in a number of cases during the final phase of support operations. 

In order to be able to accommodate the anticipated changes within the demand 

forecasting, decision makers of NVP problems have occasionally applied 

regression/econometric models (for an example see Polatog̈lu (1991), and for an 

overview of the respecitve literature see Qin et al. (2011)). An approach that is 

often used in order to accommodate changes is to include SME judgemental 

adjustments to either the statistical demand forecasts or the order level 

suggested by the NVP optimisation models (Rekik, Glock and Syntetos, 2017). 

Timing categorisation of the NVPs (as a multi-period or as a single period) as 

compared to the FPP cases that are examined in the present research is not the 

only difference that can affect the data and information which can be used in 

order to develop a demand forecast model. Another important difference is in the 

types of items considered. The inventory of interest in the NVPs is usually about 

commodities whose demand does not depend on one another apart from the 

multi-item/multi-product NVP cases where different commodities either share the 

same shelf in the inventory (Martín-Herrán, Taboubi, and Zaccour, 2006; Urban, 

2002), share the same budget or capacity in general (Abdel-Malek and 

Montanari, 2005; L. H. Chen and Chen, 2010; Khouja and Mehrez, 1996; Luo, 

Wang, and Chen, 2015; Vairaktarakis, 2000), are cross-selling/substitutes 
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(Casimir, 2002; Huang, Zhou, and Zhao, 2011; Kraiselburd, Narayanan, and 

Raman, 2009; Zhang, Zhang, Zhou, Saigal, and Wang, 2014) or they are a single 

type of items that compete for a market share (F. Y. Chen, Yan, and Yao, 2004; 

Huang et al., 2011; Zhao and Zhao, 2016).  

The FPP cases examine repairable and discardable parts that do not only 

compete on the shelf or for a budget, but they also interact inside the systems in 

which they are installed as components and also through the number of systems 

that operate and are supported (Kennedy, Wayne Patterson, and Fredendall, 

2002). The dependencies created due to the interactions of the components 

inside each system and among the systems, present a fundamental idiosyncrasy 

of the present research. These interactions affect the factors that need to be 

considered for the forecasting algorithms. For example, an unavailable part from 

the inventory affects the usage rate of the whole system and thus of other 

components as well (Behfard, Van Der Heijden, Al Hanbali, and Zijm, 2015). The 

identification of the dependencies among the parts is also one of the core findings 

of the present research and it demonstrates the benefits of studying the 

forecasting problem through a BN even if one eventually decides to build another 

model and/or rely on experts’ adjustments (Appendix B).  

A special NVP case in which spares for systems are taken into consideration is 

the “Fly-away Kit” (Sherbrooke, 2004 pp 214-215) or similarly the “Endurance” 

scenario (Systecon, 2015). However, in each of these applications a Poisson-

family distribution is assumed with no discussion on how its mean has been 

acquired. Additionally, both of these cases are single periods without any other 

periods considered prior to them.  

An additional difference of the NVPs as compared to the FPPs and which is 

directly related to the types of items and the related data examined, is about the 

industry sectors and types of business that each problem considers. Retail 

industries are the main business sectors for which NVP’s studies have shown 

interest, while the present research is more relevant to the systems 

manufacturing and service support industry. What distinguishes the latter from 

the former is that systems support business are interested in the systems 
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themselves as well as in the provision of supplies in spares ranging from simply 

producing and supplying the spares whenever a customer places such an order, 

to delivering availability or performance based contracts (Behfard et al., 2015; 

Mirzahosseinian and Piplani, 2011; D. Nowicki et al., 2008; D. R. Nowicki et al., 

2012; Ruud H. Teunter and Fortuin, 1999). On the other hand, retail businesses 

are interested only in delivering the customers’ ordered commodities, which is a 

challenge different to the spares’ demand forecasting since in retail business the 

modeller needs to forecast the buying behaviour of the customer. 

The previous two examined NVP idiosyncrasies, i.e. the type of items being 

commodities and the type of industries being the retail business, has had a driving 

effect to the direction that has been followed in the literature regarding the 

identification and use of demand factors / predictors in regression and 

econometric models. Particularly, in retail, the examined influential factors have 

been the selling price, the supplier’s price discount, the advertisement size etc. 

(Boutselis and Mcnaught, 2014; Khouja, 1999; Qin et al., 2011). 

On the other hand, in the FPP cases the production and service support of 

systems and their demand for spare parts does not depend only on their price 

and attractiveness to the customer. Apart from the interdependence among the 

components that are engineered on the system, there is a dependence on the 

attributes of the installed base – that is the number of systems that have been 

installed and need to be supported (Dekker, Pinçe, Zuidwijk, and Jalil, 2013; Jalil, 

Zuidwijk, Fleischmann, and van Nunen, 2011; Jin and Liao, 2009) - as well as on 

qualitative factors like the environment in which the systems are operated and in 

which the support is provided, the levels and the quality of maintenance 

etc.(Boutselis and McNaught, 2018; Sherbrooke, 2000, 2004, pp.291–299). This 

plurality of possible interactions makes the number of candidate influential factors 

that formulate the demand context quite large and the problem of producing a 

demand forecast by either an expert’s judgment, or a type of model that uses 

these factors as predictors (e.g. regression, Neural Network, Random Forests 

etc.), or a combination of the two, quite challenging. 
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FPPs require access to data and information on multiple influential factors related 

to the demand. Such a requirement is not a problem that is identified in the 

literature for the NVPs, and especially the multi-period NVPs. In the NVPs, the 

demand forecast utilises the demand data patterns from the past periods. This 

fact makes the efficiency of use of time series statistical models an advantage of 

the NVPs as compared to the FPPs. On the other hand, for operational systems 

and their component parts and the industry that is related to their production and 

service, there is a need to have access to data such as those related to the 

installed base (Dekker et al., 2013; Pince and Dekker, 2011; Van Wingerden, 

Basten, Dekker, and Rustenburg, 2014) and the usage rate of the systems. 

Inevitably, this requirement calls for access to data owned by multiple agents, 

those cooperating at different levels in the Support Chain of the deployed 

systems. This is not always achievable especially for “arms-length” contracts that 

have low level of cooperation. On the other hand, in availability or performance 

based contracts (Mirzahosseinian and Piplani, 2011; D. Nowicki, Kumar, Steudel, 

and Verma, 2008; D. R. Nowicki, Randall, and Ramirez-Marquez, 2012) the 

required access to data is easier since the resulting relations tend to evolve 

towards extended information sharing (Christopher, 2016, p.156; Christopher and 

Lee, 2004; Christopher and Peck, 2004). 

In an availability contract, in order to be able to provide the required level of 

spares, the contract owner needs to consider the support and supply capacity 

since they both affect the availability of the operational systems and thus their 

usage rate and consequently the demand for spares (Lau and Song, 2008; 

Sherbrooke, 1967, 2004). Moreover, support through repair is important since 

repairable items tend to comprise the largest part of complex systems’ inventory 

value (Van Kooten and Tan, 2009; Sherbrooke, 2004, p.6; Syntetos et al., 2009) 

while related industries tend to allocate an increasing value on service part 

inventory investment (M. A. Cohen, Kleindorfer, Lee, and Pyke, 1992; M. a. 

Cohen, Zheng, and Agrawal, 1997; Johnston, Boylan, and Shale, 2003). Under 

the assumption that the decision maker will have access to different areas to 

collect data, the present research has focused on the exploitation of the records 

kept in logbooks of the different nodes of the Support Chain and used that type 
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of data to develop different demand forecast models. This assumption also 

provides the convenience of having direct access to demand data and thus 

reduces the need to approximate them with sales data as is usually the case in 

demand forecasting studies (Syntetos et al., 2009; Syntetos, Nikolopoulos and 

Boylan, 2010). 

A notable study of the NVP (multi-period) demand forecasts is that of Rekik et al. 

(2017). They present a study of judgementally adjusting either the demand 

forecast or the order to be placed after a “signal” has been received by the 

decision makers, while the first two moments of the demand’s distribution are 

estimated from historical data. In their work the decision maker does not have to 

wait for new demand data. However, there is a “signal” factor which the decision 

maker believes is associated with the demand during the single period under 

consideration and also that this “signal’s” probability of being correct can be 

different from 1, i.e. the signal is imperfect. An example that they give is of the 

observed high sales of a mobile phone being associated to possible sales of a 

tablet of the same brand. However, as they state, if the customers are not 

eventually satisfied by that specific product, then its high sales signal might be 

false and misleading. Furthermore, using the opportunities offered from the rolling 

periods of the multi-period problem they suggest that learning can increase if 

records are kept on the price and cost of the product, which are factors that affect 

the demand. Additionally, Rekik et al. (2017) suggest that the usual challenge of 

acquiring access to data could be overcome if data owners would cooperate by 

raising the awareness on the advantages of improved forecasting.  

2.3 Comparing the Final Phase to the “Last time buy” Problem 

Another area of research that is related to the FPPs is the one in which the 

problems examined have names such as “Past-model” or “All-time requirement” 

of replacement parts (Fortuin, 1980, 1981; Moore, 1971; Ritchie and Wilcox, 

1977), “End-of-life” (EOL) service (Kleber, Schulz and Voigt, 2012; Leifker, Jones 

and Lowe, 2012, 2014; Pourakbar, van Der Laan and Dekker, 2014; Teunter and 

Fortuin, 1998, 1999), “Final order” (Van Kooten and Tan, 2009; Teunter and 

Haneveld, 1998, 2002), “Discontinued product” (Hong, Koo, Lee, and Ahn, 2008), 
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“Last time buy” (LTB) of spare parts (Behfard et al., 2015; Krikke and Van Der 

Laan, 2011), “Post product life cycle” (Inderfurth and Mukherjee, 2008) and 

“Spare part procurement after End-of-production” (Inderfurth and Kleber, 2013). 

These problems are all “single period” decisions about spares’ inventory for 

repairable systems and repairable parts, and they involve decisions concerning 

the final phase of the operations that follows the building up and the steady-state 

phases. B. Kim and Park (2008) highlight the importance of forecasting the 

demand to the decisions during this final period of interest. Due to their 

resemblance to the problems of the interest of this research, the literature was 

investigated in order to see details on the demand forecasting models used and 

the factors considered. 

However, in the literature on these types of problems (LTB/EOL) that the author 

examined, the “final” decision under consideration was either mostly seen from 

the perspective of the “seller” (spares’ provider), or in fewer cases from that of 

the “buyer” (Teunter and Haneveld, 1998). The importance of this distinction is 

highlighted in Leifker et al. (2012) where they claim that the manufacturer, unless 

he/she has a close working relationship with the customer, he/she is likely to have 

access only to the part and product failure rates and maybe also to a probability 

distribution of the number of products still in operation. This observation stresses 

the potential importance of having access to additional information that could be 

acquired from a stronger relationship between the seller and her buyers. A similar 

point is deduced by (Kennedy, Patterson and Fredendall, 2002) in their spare 

parts inventory management review. The authors mention that the need for spare 

parts is dictated mostly by the maintenance policy rather the customer usage. 

This statement suggests two things. Firstly, that both maintenance policy and 

customer usage have an influence to the demand for spares, and secondly that 

since such a knowledge needs access to service and usage related data, in order 

to increase such a knowledge there is a requirement to have access to both the 

“customer” and the “service provider”. 

Furthermore, the related problems that the author found in the literature review 

were more in the sense that the decision maker (either the buyer or the seller) 
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wants to proceed to a spares purchase as an “insurance1” provisioning action 

during the LTB/EOL of the purchased systems (Geurts and Moonen, 1992; 

Teunter and Haneveld, 2002) which implies an assumption of a consequent 

reduction in the usage rate of the systems as well (Hong et al., 2008; Moore, 

1971; Ritchie and Wilcox, 1977). This assumption stems from the fact that in the 

examined literature the general context is that a product/system that is introduced 

to the market has a limited lifetime and then at some point a decision is made to 

stop the production of the system and of its spares (probably due to an 

introduction of newer technology) while the sold systems are still operational. The 

consequence of such a scenario is that the resulting LTB/EOL modelling 

approaches try to accommodate an unquestioned expectation of a gradual 

reduction in the demands for service and thus for spares. 

Moore (1971) appears to be the first to have tried to model the demand forecast 

in such a context. Moore claims that the application of either uninformed time 

series like exponential smoothing or regression models that are based on 

variables with data accessible to the “seller”, i.e. the number of original equipment 

sold, the earlier warranty claims or service calls and the ratio of part to market 

value, cannot cope well with the problem of forecasting demand. Moore studied 

sales data from different types of spare parts from the automotive industry during 

the final phase of the support provision due to the replacement of the vehicles 

with a new model. He observed that when these spare parts sales data are 

plotted on a base-10 logarithmic scale they tend to follow either a parabolic, or 

an elliptic curve, or be linear. He therefore suggested that if the decision makers 

collect spare parts sales data as a proxy for spares demand and identify the peak 

(which indicates the start of the final phase) of the sales then, after a few data 

points one of the three curves can be fitted and thus (deterministic) sales’ 

forecasts can be projected into the future. However, his statement about the 

regression on equipment sold refers to their “original” number and not to the 

number that is operational and needs support during the final phase. 

1 This differs from the concept of “safety stock” in that it is not maintained to absorb fluctuations in the 
demand, but rather it is kept “as an insurance” to cover for a likely disruption of the supply chain 
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Furthermore, Moore’s observations are applicable if there is time for enough data 

points to be collected and thus an equally extended final phase. 

Moore’s observation has been adopted by Fortuin (1980, 1981) who built a range 

of deterministic curves that can be used to calculate the level of the final order 

needed to attain a set customer service level. Moreover, Dombi, Jónás and Tóth, 

(2018) assumed a concave unimodal demand time-series and developed a 

deterministic Demand Model Function with short-term fluctuations around it. 

Nevertheless, these cases still address the long-term LTB/EOL problem from the 

sellers’ perspective that needs to take an aggregated view of the total sales and 

their life-cycle in order to carry out capacity planning.  

On the other hand, Ritchie and Wilcox (1977) take into consideration that there 

might not be much time to collect data before the decision is made and suggest 

a deterministic calculation of the expected “all-time future demands” for spares 

during the final period by incorporating as parameters the number of systems that 

are subject to failure (the systems that are currently operating), the failure rate of 

each system’s component and the probability that the component that fails will 

not be replaced. Ritchie and Wilcox (1977) suggest that the parameters’ values 

can be estimated from past data through minimising the sum of squared errors 

approach. An interesting feature of this work is the recognition of the effects of 

the repair policies on the experienced demand. On the other hand, they assume 

independence among the components/parts, an assumption that might be true 

on an aggregated level of multiple customers (Inderfurth and Kleber, 2013). 

However, at a more detailed level like the one of an availability contract, and as 

Inderfurth and Mukherjee (2008), Kennedy et al. (2002) also suggest, different 

parts failures depend on each other mainly due to the limited repair and support 

resources but also due to the same operational requirements (see also Krikke 

and Van Der Laan (2011)).  

Hong et al. (2008) present an extension of Richie and Wilcox’s stochastic model 

in which they also include the potential decrease in the systems’ population by 

discarding them. They include three factors in their demand forecasting models 

which they combine to formulate what they call “effective demand”. These factors 
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are the failure rate of the component which they combine with the probability of 

having this component replaced on the system (modelled as a decreasing 

function of the time) and with the discarding time of the component. This effective 

demand is then combined with the number of product sales to give the mean and 

the variance of the total demand during a considered period of time (typically a 

year). Nevertheless, given that their model is from the seller’s perspective and 

considers the whole installed base, just like Ritchie and Wilcox (1977), the 

method of Hong et al. (2008) needs to assume that the systems and parts have 

IID failure time distributions and therefore that the part failures are independent. 

Teunter and Fortuin (1998) provide a case study about demand during the “End 

of Life” (EOL) of a set of components. The authors provide methods and 

algorithms for the estimations of the final order of Philips electronics spares for 

appliances sold to private individuals. They produced demand forecasts that they 

extracted from historical data kept by the company, using a heuristic that 

estimated the probability that in the following 𝑛 years the demand in spares for a 

specific part will exceed the demand in the past 12 months by a factor 𝑘 (𝑘 =

1, … ,20). The 12 months were chosen due to the way that the data were recorded 

and also due to the authors’ assumption that most final orders are made about 

12 months after the date of the sale. A point worth mentioning from this research 

is that the authors suggest that they would expect differences between the 

demand behaviour of a professional customer (e.g. an organisation) and 

individuals, thus highlighting the importance of having information about the 

repair policies followed by the customer and about the way the systems are used. 

Furthermore, in their demand data study, they identify a number of component 

characteristics that influence the demand, even though they do not use this 

information in their demand forecast models. They find that the coefficient of 

variation of the demand decreases when the expected demand increases, that 

the demand rate decreases faster for the more expensive products which 

suggests the potential influence of the customers’ repair policies and that the 

demand rate change depends on the type of the component (if it is “standard” i.e. 

common in different products, or “specific” to only one product) and if that 

component is in its building up phase or at the end of its life (EOL). Furthermore, 
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they state that they were not able to show a significant relationship between the 

demand rate with how long ago the component has been introduced in the 

market, the type of the component (mechanical or not) and its specific description 

(e.g. transformer, tube etc.). 

Krikke and Van Der Laan (2011) study the relation of the demand during the final 

period with a number of factors for which the modeller can have access to data. 

More specifically, they suggest that the demand for spares changes (i.e. is non-

stationary) as the size of the systems supported (the installed base) reduces as 

well. They assume that the demand follows a Poisson process with a rate of 

𝜇 × 𝐼𝐵(𝑡) suggesting that there is a linear relationship of demand with the size of 

the installed base (𝐼𝐵). However, as shown (Section 7.3 and Appendix B) the 

dependence is neither linear nor it is always positively correlated to the 𝐼𝐵. Apart 

from the size of the installed base, the demand is also governed by a number of 

factors including the usage rates, the repair resources and the repair policy and 

this fact can cause significant non-linearity. 

2.4 Factors for the Definition of the Demand Context 

A list of the factors that were identified in the literature examined above and that 

have been considered as contributing to the formulation of the demand context 

is as follows: 

1. The costs of acquiring a spare (and other related costs e.g. holding costs) 

2. The customer’s usage of the system and its components 

3. The repair policies and the ad-hoc repair decisions 

4. The duration of the single-period under consideration 

5. The number of systems (size of the installed base) 

6. The failure rates of the systems’ components 

Apart from the factors identified in the literature on NVPs and LTB/EOL related 

research, the literature on spare parts logistics was also explored in order to 

expand the understanding of which factors can contribute to the formulation of 

the demand context. 
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 Sherbrooke (2000) presented an explanatory study on the effect of flying-hours 

duration on the demand level for spares on aircraft. His objective was to explore 

and then explain why during the Operation “Desert Shield / Desert Storm” in 1991 

the predicted levels of demand for spares was about the same as those in 

peacetime despite the fact that the duration of flights was longer during the 

Operation. He analysed more than 700,000 sorties and found that the following 

features showed statistical significance according to his data: 

 Sortie number during the day, in case each aircraft flew multiple missions 

during a single day. This probably is a repair decision related factor in the 

sense that the repair operations could have been deferred until the end of 

the day and thus any demand for spares would be recorded against the 

last sortie of the day 

 Mission type 

 Location 

 Sortie duration 

Furthermore, Sherbrooke also intended2 to perform a controlled experiment that 

would additionally include the following features: 

 Aircraft material condition 

 Aircrew proficiency 

 Deferred maintenance (subset of which is the Sortie number during the 

day, since the maintenance is deferred if systems are to be used for other 

missions within a day) 

What can be observed is that Sherbrooke’s extensive support experience 

considered systems engineering factors like the material condition, operational 

factors like mission type and sortie duration, support factors like deferred 

maintenance and soft factors like aircrew proficiency. This consideration, 

suggests that these three categories of factors can also be used to identify them 

when in search for what to include in a demand forecast model. 

2 It was eventually decided not to proceed, mainly due to the costs associated with such a detailed effort 



34 

Furthermore, there are  a number of implied relationships in the literature that 

seem to reveal or verify factors that can contribute to the formulation of the 

demand context but are not expressed as such. Such interesting relationships 

can be inferred from the work embedded in Multi Item Multi Echelon (MIME) 

spares optimisation algorithms (Feeney and Sherbrooke, 1965; Sherbrooke, 

1967, 2004). Algorithms like VARI-METRIC (Sherbrooke, 2004, Appendix A) are 

based upon Palm-Khintchine’s theorem. In these algorithms’ use, if demand for 

an item is a Poisson process with annual mean 𝑚 and the repair time for each 

failed unit is independently and identically distributed according to any distribution 

with mean 𝑇 years, then the steady-state probability distribution for the number 

of units in repair has a Poisson distribution with mean 𝑚𝑇. However, this theorem 

assumes an infinite number of independent renewals which implies a large 

amount of support resources and perfect repairs as well. Therefore, the number 

of support resources and the quality of the repair activities (a qualitative factor) 

should be considered for inclusion in the demand context. Consequently, the 

following factors should be considered for addition to the set: 

 Number of support resources (mechanics, spare parts, repair equipment), 

which can be categorised under the support factors

 Quality of repair, which can also be categorised under the support factors

Moreover, not only Palm-Khintchine’s theorem but VARI-METRIC models 

themselves imply the existence of additional demand context factors. These 

models balance the inventory held in the Support Chain’s (SC) depots and 

pipeline to the repair and resupply times in order to minimise the expected 

number of backorders in spares demands. Consequently, the: 

 Time to repair 

 Time to resupply 

 Inventory levels  

 Inventory ordering policies  

should also be considered for inclusion in the set of demand context factors and  

can again be placed under the support category.  
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An additional area of literature that was considered relevant was that concerning 

the application of Bayesian networks to reliability and maintenance modelling. 

First of all, as was just shown, reliability and maintenance are associated with 

the demand for spares and thus, the author expected in this way to expand his 

understanding of the spectrum of factors that have been considered. Secondly, 

an objective of the present research is to explore the applicability of BNs to the 

FPPs, and thus it is required to know how they have been applied in similar 

problem-areas. 

2.5 The Use of Bayesian Networks in Spares Demand Modelling 

It appears from the literature review that BNs have not been used in the modelling 

of NVPs or LTB/EOL types of problems. However, as Kennedy et al. (2002) 

intuitively suggest, the demand for spares depends on the number of failures 

experienced and on the maintenance policy applied. Furthermore, bibliometric 

studies (Medina-Oliva et al., 2009; Weber et al., 2012) have shown a high interest 

in  the use of BNs in fields related to reliability and maintenance. Consequently, 

the author was keen to search the literature and evaluate their applicability to the 

problems of the present research, and through that to also identify the factors that 

have been included in research for the modelling of reliability and maintenance. 

As Langseth and Portinale (2007) point out, BNs have a number of interesting 

attributes that make them attractive for their application in reliability and in 

maintenance. They can model complex systems and include complex 

dependencies among the modelled variables, while the variables themselves can 

be multimodal. Furthermore, BNs provide a visual representation of the 

dependencies among the variables and thus help in gaining insight to the 

modelled system (Boutselis and McNaught, 2018). Moreover, they can 

conveniently combine diverse data including historical records and experts’ 

knowledge (Weber et al., 2012). Additionally, BNs have the ability to update 

calculations according to existing evidence, while this evidence can be 

certain/hard, or not fully known i.e. “virtual” or “probabilistic” (Mrad et al., 2015; 

Neil, Fenton, and Forey, 2001). This latter modelling benefit is quite important 

given the type of information that can be available on the future value of demand-
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influential variables (Rekik, Glock and Syntetos, 2017) like the environmental 

conditions, or the usage rate. On the same topic of not fully known evidence, 

there can be cases in which the modeller has access to datasets that include 

variables which are indeed influential (e.g. the number of systems that are 

supported) and that are included in the training set during the development of 

demand forecast models, but the values of these variables might or might not be 

available at the time that the decision maker needs to make the prediction. In 

such cases, models like Neural Networks cannot provide a forecast if the values 

of all the variables are not known with certainty, while BNs can do so by 

marginalising out the variables for which the values are not known. A final 

attribute that makes BNs attractive is that they can also be used for diagnostics 

(McNaught and Chan, 2011) and thus can help investigate the demand context,  

and also for prognostics and thus, through the use of (even imperfect) 

measurements provide evidence for the systems’ condition (McNaught and 

Zagorecki, 2009). 

As was mentioned earlier (Section 2.3), demand for spares is caused by fault 

incidents and by the related maintenance policies. These two initiating points 

have been at the centre of the analysis by those researchers that advocate the 

use of BNs in fields related to reliability and maintenance. However, those 

researchers have mainly focused on a single system and its exogenous 

(operating environment, maintenance policies/decisions etc.) and endogenous 

(engineering structure of the system) factors that are associated with the failures. 

Consequently, as is discussed in more detail later, the demand context has not 

explicitly included the interactions of the system with the rest of the installed base, 

nor the related SC functions that can affect the availability of the systems and 

through that the realised usage rate. In this research, it is shown using experts’ 

knowledge (Section 3.2), simulation experiments and the demand forecast 

models (Sections 7.2 and 7.3) that such factors are also highly influential and 

need to be considered in the demand forecast models. 

Langseth (1998) was one of the first to compare standard statistical methods to 

BNs in the analysis and prediction of mechanical equipment’s survival times. He 

used a dataset from the “Offshore and Onshore REliability DAta” database 
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(OREDA) (Norwegian Petroleum Safety Authority, 1997). Unlike most of the other 

researchers after him, Langseth used an unsupervised learning algorithm 

(Bayesian Knowledge Discovery (BKD) (Ramoni and Sebastiáni, 1997)) to 

generate the most probable BN structure that can be learnt from the data 

(Heckerman, Geiger, and Chickering, 1995), while in order to calculate the Node 

Probability Tables (NPT) without having to discretise the continuous variables, he 

applied BUGS (Gilks, Thomas, and Spiegelhalter, 1993; Lunn, Jackson, Best, 

Thomas, and Spiegelhalter, 2013) on the chosen BN structure. His BN model 

was used to investigate the associations among the variables while he also 

compared it to a standard modelling approach for the system’s survival time 

forecasts, a Cox-regression. In order to formulate the failure context and model it 

with the BN, he used twelve different recorded attributes from the OREDA 

dataset, namely: the specific unit’s time to fail (as the response variable of 

interest), the installation’s ID, the geographic location, the system’s code, the 

exposure to the environment, the subunits, the design class, the manufacturer, 

the operating mode, the planned and the actual preventive maintenance and the 

severity of the failure (see also Langseth, Haugen, and Sandtorv (1998) for more 

details on some of the used attributes). Furthermore, as Langseth concluded, 

variables like the aggregated operational time that describe the historical 

performance were not considered since each unit/case had been recorded for 

only a period of time and thus exponential survival times were assumed. His 

comparison did not show a predictive dominance of the BN over the baseline 

Cox-regression. However, it highlighted the increased understanding offered by 

the BNs through the ability to visually observe the formed associations among 

the variables in the BN structure, something that was also identified and 

presented in Appendix B of the present research.  

Additionally, Langseth highlighted an additional benefit of developing the BN 

using an unsupervised algorithm and which was also independently observed in 

the present research work (Appendix B). He saw that two of the variables (“Actual 

Preventive Maintenance”, and “Planned Preventive Maintenance”) that were 

shown by the BN to have a direct connection with his variable of interest (“Time 

to Fail”) were not significant at the10% level in the Cox-regression. This fact, 
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combined with the SME’s knowledge that these variables should have been 

included in the model, highlighted the benefit of developing a BN using the 

available data so that a better understanding is gained. Consequently, using the 

knowledge gained by the BN’s structure along with any existing scientific 

knowledge the final model (whether it is a BN or regression) can be built. 

Kang and Golay (1999) used a BN as a diagnosis tool that provided advice for 

the Operational Availability of complex engineering systems, a nuclear power 

system in their cases, and compared it to the conventional, rule-based expert 

systems. Given that the main aim was to have a diagnosis tool, the authors 

adopted an experts’ knowledge elicitation approach in order to develop a BN 

combined with decision and utility functions - a Bayesian influence diagram. The 

factors that they included were those provided through sensor readings that they 

used in order to formulate the probability distributions of the failure modes of a 

monitored system/component. Given the aim of the model to be a diagnostic tool 

that uses information inferred from sensors’ readings, the application was 

focused on a single, isolated system, without considering the context in which it 

operates, like the energy fluctuations or the service policies and the related 

support resources. In that sense, in an extended problem scope like the ones 

originating at the contexts of Support Chains, such factors would need to be 

incorporated in the model development process. 

Sigurdsson, Walls, and Quigley (2001) attempted to formalise the development 

and use of BNs for reliability modelling during the design of the system, i.e. before 

it is put into production and operation. Inevitably, since the intention was to deal 

with a not yet operating system the directly available data would be limited, so, in 

order to build the model, the authors suggested to resort to experts’ knowledge 

of other similar systems. Furthermore, they relied mainly on four high-level, 

qualitative factors, namely the suitability of the design process, whether the 

standards of the manufacturing are satisfactory, if the screening and test 

coverage are suitable and if the working environment is favourable. However, 

even if these factors are of high importance, when hard data on more detailed 

influential variables will be available after the production and operation of the 

system, the BN model will eventually need to be redesigned to incorporate them.  
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Jouffe, Weber and Munteanu (2004)  suggested the consideration of factors like 

the component’s age, the maintenance operations and the changing 

environmental conditions are required as influential factors that can be included 

in the model of dynamically changing reliability parameters. The authors 

advocated the use of dynamic BNs as a means to include the degradation of the 

system through time as well as the changing environmental contexts.  

A detailed study of the factors responsible for the failure rate of a system is 

provided by  Jones, Jenkinson, Yang, and Wang (2010). These authors included 

the age of the component, its life expectancy, the inspection interval and its 

success rate, the temperature in which it operates and other environmental 

factors (e.g. electrical power variation etc.), but also the competence of the 

inspection, of the maintenance regime and of the operating personnel. The 

consideration for inclusion of influential factors like the competence of the 

personnel show the tendency to include in the model such qualitative estimates 

of human skills, something that was also found in the studies of Sherbrooke 

(2000), (2004). The importance of such qualitative factors in the formulation of 

the demand context was also verified from the SME interviews presented in 

Section 3.2 of the current research. Furthermore, Jones et al. (2010) made 

another important observation that the present research has also (independently) 

identified. (Appendix B). They suggested that within the influential factors, the 

modeller may need to include the failures of seemingly insignificant equipment or 

components, but which have a knock-on effect on the overall failure rate. What 

this suggestion implies is that it is important to consider those components with 

the higher failure rates in the modelling of the failures of the other components, 

mainly because the availability and service activities of the former have a great 

effect on the repair delay times of all the rest of the parts. 

Doguc and Ramirez-Marquez (2009) offer a different BN reliability modelling 

approach, making use of the K2 unsupervised structure learning algorithm 

(Cooper and Herskovits, 1992) with historical data. The authors question 

assumptions such as the experts’ unbiasedness and knowledge completeness of 

really complex systems, and counter-suggest the use of historical data (given of 

course that the datasets are sufficiently large) in order to eliminate the need for 
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the use of experts in the development of a BN. Like Langseth (1998), Doguc and 

Ramirez-Marquez suggested using the BN to find associations among system 

components. However, in their considerations they included only the 

components’ failures and not any of the other quantitative or qualitative variables 

suggested in the previously mentioned studies. 

A meta-analysis of the use of BNs for the modelling of systems’ reliability and 

maintenance was provided in Medina-Oliva et al. (2009) . They suggested a set 

of qualitative and quantitative factors to include in the BN models, such as 

exogenous maintenance action events, production levels, environmental 

conditions, technical, organisational, informational, decisional and human factors 

related to the system and its use, and degradation factors such as service time, 

age, number of repair requests and the planning and execution of maintenance 

actions. 

In another meta- analysis, Weber et al. (2012)  suggested that the integration of 

factors like the technical, organizational, informational, decisional and human and 

also their impacts on the system’s good functioning is an underdeveloped area 

of research. They also stress the necessity to utilise several sources of 

information for developing a BN model.  

From the earlier discussion on the uses of BNs, two general observations can be 

made. Firstly, a number of qualitative and quantitative factors have been 

considered within the three already identified categories of engineering, 

operational and support factors, and secondly that one more category has been 

identified, that of the environment.  

In more detail, the list of factors that could be considered for inclusion in the 

demand formulating context set and that have been identified until now, is in the 

following Table 2-1: 

Table 2-1: Factors that contribute to the demand, as identified in the literature 

SN Factor identified Category References 

1. The geographic location 
where the systems are 
operated 

an environmental 
factor

Langseth (1998), 
Sherbrooke (2000)
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SN Factor identified Category References 

2. The exposure to the 
environment 

an environmental 
factor

Sherbrooke (2000), 
Medina Oliva et al. 
(2009), Jones, 
Jenkinson, Yang, 
and Wang (2010), 
Jouffe, Weber and 
Munteanu (2004)

3. The environmental 
factors in general (e.g. 
electrical power variation 
etc.) 

an environmental 
factor

Teunter and Fortuin 
(1998), Jones, 
Jenkinson, Yang, 
and Wang (2010), 
Jouffe, Weber and 
Munteanu (2004)

4. The operating mode, and 
generally the customer’s 
usage of the system and 
its components3

an operational 
factor

Teunter and Fortuin 
(1998), Langseth, 
Haugen, and 
Sandtorv (1998), 
Langseth (1998)

5. The competence of the 
operating personnel 

an operational 
factor

Jones, Jenkinson, 
Yang, and Wang 
(2010), Sherbrooke 
(2000)

6. The system’s code / 
particular configuration of 
the system 

a system’s 
engineering factor

Kennedy, Patterson 
and Fredendall, 
(2002), Krikke and 
Van Der Laan 
(2011), Langseth 
(1998), Sherbrooke 
(2000), Weber et al. 
(2012)

7. The subunits and 
components (including 
details like reliability and 
maintainability) 

a system’s 
engineering factor

Teunter and Fortuin 
(1998), Langseth 
and Portinale (2007), 
Weber et al. (2012), 
Jones, Jenkinson, 
Yang, and Wang 
(2010)

8. The design class a system’s 
engineering factor

Krikke and Van Der 
Laan (2011), P. 
Weber et al. (2012)

3 Also included as 2nd in the list of Section 2.4 
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SN Factor identified Category References 

9. The life expectancy4 a system’s 
engineering factor 

Ritchie and Wilcox 
(1977), Hong et al. 
(2008), Medina Oliva 
et al. (2009)

10. The age of the 
component 

mainly a support 
factor (related to 
repair and replace 
decisions)

Ritchie and Wilcox 
(1977), Medina Oliva 
et al. (2009), (Jouffe, 
Weber and 
Munteanu, 2004) 
Jouffe, Weber and 
Munteanu (2004) 

11. The planned and the 
actual preventive 
maintenance5

a support factor Ritchie and Wilcox 
(1977), Medina Oliva 
et al. (2009), Jones, 
Jenkinson, Yang, 
and Wang (2010), 
Jouffe, Weber and 
Munteanu (2004)

12. The inspection interval a support factor Medina Oliva et al. 
(2009), Jones, 
Jenkinson, Yang, 
and Wang (2010), 
Jouffe, Weber and 
Munteanu (2004)

13. The success rate of the 
inspections 

a support factor Medina Oliva et al. 
(2009), Jones, 
Jenkinson, Yang, 
and Wang (2010)

14. The competence of the 
inspection 

a support factor
(qualitative)

Ritchie and Wilcox 
(1977), Weber et al. 
(2012), Jones, 
Jenkinson, Yang, 
and Wang (2010), 
Philippe Weber et al. 
(2004)

15. The competence of the 
maintenance 

a support factor
(qualitative)

Ritchie and Wilcox 
(1977), Weber et al. 
(2012), Jones, 
Jenkinson, Yang, 
and Wang (2010), 

4 Also included as 6th in the list of Section 2.4 
5 Also included as 3rd in the list of Section 2.4 
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SN Factor identified Category References 

Jouffe, Weber and 
Munteanu (2004)

16. The severity of the failure a support factor
(qualitative)

Hong et al. (2008), 
Medina Oliva et al. 
(2009)

17. The costs (spares 
procurement, holding, 
etc.)6

a support factor Eppen and Iyer, 
(1997); Hill, (1997); 
Lariviere and 
Porteus, (1999). 
Zheng, Wu, and Shu 
(2016) 

18. The duration of the 
period under 
consideration7

both an 
operational and a 
support factor 

Eppen and Iyer, 
(1997); Hill, (1997); 
Lariviere and 
Porteus, (1999). 
Zheng, Wu, and Shu 
(2016) 

19. The number of systems 
(size of the installed 
base)8

both an 
operational and a 
support factor 

Dekker, Pinçe, 
Zuidwijk, and Jalil, 
(2013); Jalil, 
Zuidwijk, 
Fleischmann, and 
van Nunen, (2011); 
Jin and Liao, (2009), 
Hong et al. (2008), 
Krikke and Van Der 
Laan (2011) 

The list of factors above that can be used to define the demand context were 

identified from the literature that was reviewed. However, given that the list has 

been compiled from many different papers, it was not clear to the author how the 

factors could potentially interact. Therefore, in order to appreciate the interaction 

mechanisms and potentially expand the list even more, two Subject Matter 

Experts (SMEs) were interviewed. Details are provided in Chapter 3. 

6 Also included as 1st in the list of Section 2.4 
7 Also included as 4th in the list of Section 2.4 
8 Also included as 5th in the list of Section 2.4 
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2.6 Conclusions 

 This chapter examined the literature on two problems that are similar to the FPP, 

namely the Newsvendor Problem (NVP) and Last Time Buy (LTB) problem. In 

the chapter, the similarities and differences of the NVP and the LTB to the FPP 

were presented. As was discussed, these differences are mainly due to the 

amount of data that can be available in the FPP as compared to the other two 

types of logistic problems, and this is also the main reason why there can be other 

types of forecast models that can be applied to the FPP. 

The chapter also identified the factors that have been considered in NVPs and 

LTB problems to model demand, and that can potentially be used to inform the 

FPP. Finally, it was suggested that in order to expand on the list of factors and 

consider how these factors can potentially interact, an additional set of data 

should be collected, and this is what is presented in Chapter 3. 
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3 ADDITIONAL FACTORS FOR THE DEFINITION OF THE 

DEMAND CONTEXT

3.1 Introduction 

This chapter aims to identify additional factors that could have an influence on 

the demand for spares so that they could be included in the models developed 

later. These factors were elicited during interviews conducted with two SMEs. 

Therefore, Section 3.2 presents the interviews conducted to further explore the 

factors that can contribute to the formulation of the demand context and also to 

help verify the factors identified in Chapter 2. Section 3.3 presents three 

conceptual models that can be used to categorise the factors that were identified 

in the literature and from the interviews. Finally, in Section 3.4 it is argued that 

even though the demand factors can be identified, the way that they work in order 

to affect the demand is not easily identifiable by human expertise. However, one’s 

understanding can be enhanced by the exploration of data records of incidents 

kept in the nodes of the SC. 

3.2 Interviews to Further Explore the Demand Context 

The contribution of this step to the problem analysis can be summarised in the 

following graph which highlights the participation in the previously presented 

Figure 2-1: 
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The review of factors influencing demand, which was conducted as part of the 

literature review in Chapter 2, is complemented in this Chapter with primary data 

elicited from two subject matter experts (SMEs) who shared their knowledge and 

personal experiences. As stated at the end of Section 2.5, the author was 

concerned about the level of detail of the factors identified in the reviewed 

literature, mainly due to differences in the real world applications context of that 

literature and the present research. 

The two SMEs were chosen due to their extensive experience of operational 

deployments with the British Army and with the RAF. While the number of SMEs 

was low, few people had the academic and practical knowledge of the specific 

research topic under investigation. Therefore the lack of experts was to some 

degree offset by their rare expertise. However, it is acknowledged that the small 

number was undesirable and constitutes a limitation in this study. 

The interview methodology made use of the Critical Decision Method (CDM) 

(Crandal, Klein, and Hoffman, Robert, 2006), and each interviews took 

Figure 3-1: The literature review process and objectives updated 
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approximately 60 minutes. One of the core ideas behind CDM is that it uses the 

critical incident technique during which non-routine, challenging events are 

probed. The advantages of such an approach are multiple. Since the events are 

challenging, they call for the specific expertise that the SME can bring to the 

study. Furthermore, they evoke focused attention and thus important details and 

causal mechanisms are less likely to be missed.  

The second important element of CDM is the gradual deepening on critical points 

by performing multiple sweeps. The requirement for more than one iteration 

(“multiple sweeps”) is based on the assumption that even though the method 

helps the interviewee to recall the timeline of an incident, some of the influential 

details might be missed on the first iteration. It is then up to the subsequent 

iterations to extend the depth of the exploration for more details at specific points 

of interest. 

The data collection requirement was to understand and record the factors that 

affect the level of demand for spares in an operation and, of course, the 

mechanisms between them. In both of the interviews, the first objective was to 

identify appropriate incidents that were both challenging and relevant to the data 

collection requirement. In order to achieve that, an imaginative “warm-up” 

scenario of the logistics support of a number of systems was described. In order 

to make thinking more realistic, the interviewer defined specific geographical 

places around the area that the interview was taking place, where each part of 

the Support Chain (SC) and the operations would take place. The interview then 

proceeded by describing a challenging incident related to the objective of 

collecting and mapping spares’ demand influential factors. This incident was 

chosen such that the interviewee observed a gradual ramping-up of the rate of 

demand in spares related to increased number of breakdowns and the objective 

of this suggested observation was to focus the interviewee’s thinking on the 

factors related to the demand rate. It was at that point, that the interviewer probed 

for specific cases from the SMEs’ background knowledge by asking the 

interviewees if they had ever had faced a similar challenging experience. 
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The interview proceeded by conducting an open-ended discussion on incidents 

considered relevant to the research. This involved gradually identifying what had 

actually happened and then mapped the elicited factors and their relations. This 

process of continued discussion in order to gain ever greater clarification, carried 

on until potential causal relational factors that could account for the increased 

breakdown rate of the system, were identified. The resulting set of features are 

summarised in the following Table 3-1 along with their equivalent as presented in 

Table 2-1. A descriptive conceptual diagram is presented in Figure 3-2 which was 

verified by the interviewees. 

Table 3-1: Factors that contribute to the demand identified from the interviews 

SN Factors Category Source 
(Literature/Interviews/
Both) 

1.  The skills of the 
maintainer in identifying 
the correct failure and 
also performing the 
repair effectively, and 
her individual work 
ethics (“Maintainers’ 
abilities” of Figure 3-2) 

a support 
factor

Both (similar to SN 15 
of Table 2-1) 

2.  The applied 
maintenance policy 
(“Repair rate (systems)” 
and “Repair rate 
(spares)” of Figure 3-2) 

a support 
factor

Both (similar to the SN 
11, 12 of Table 2-1) 

3.  The effect of the 
environmental 
conditions on both the 
systems and on people. 
Regarding the people, 
environmental 
conditions can affect the 
willingness of the 
maintainers to perform 
the fault identification 
and repairs to their full 
needed spectrum, and 
can also affect the 
usage choices of the 
operators

an 
environmental 
factor

Both (similar to the SN 
2 and 3 of Table 2-1) 
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SN Factors Category Source 
(Literature/Interviews/
Both) 

(“Environmental 
conditions” of Figure 
3-2) 

4.  The natural Wear and 
Tear of the systems 
(“Failure rate” of Figure 
3-2) 

a system’s 
engineering 
factor

Both (similar to SN 9, 
10 of Table 2-1) 

5.  The availability of 
spares (“Spares” of 
Figure 3-2) 

a support 
factor

6.  The placement of wrong 
orders for spares either 
in amount or/and types 
(“Information distortion” 
of Figure 3-2) 

a support 
factor

Both (similar to the SN 
13 and 14 of Table 2-1) 

7.  The effect of 
cannibalisation practices 
(“Cannibalisation” of 
Figure 3-2) 

a support 
factor

Interviews 

8.  The change in operation 
patterns (“Type of 
missions” of Figure 3-2) 

an operational 
factor

Both (similar to SN 4 of 
Table 2-1) 

9.  The skills of the 
operators and their 
choices given changes 
in the operational 
demands (“Operators’ 
abilities” of Figure 3-2) 

an operational 
factor 

Both (similar to SN 5 of 
Table 2-1) 

10.  The lack of end to end 
visibility of the SC which 
translates the 
occasionally realised 
delays into lack of trust 
to the support system 
(“Information distortion” 
of Figure 3-2) 

a support 
factor 

Interviews 

11.  The geographic location 
where the systems are 
operated 

an 
environmental 
factor 

Literature (SN 1 of 
Table 2-1) 
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SN Factors Category Source 
(Literature/Interviews/
Both) 

12.  The system’s code / 
particular configuration 
of the system 

a system’s 
engineering 
factor 

Literature (SN 6 of 
Table 2-1) 

13.  The subunits and 
components (including 
details like reliability and 
maintainability) 

a system’s 
engineering 
factor 

Literature (SN 7 of 
Table 2-1) 

14.  The design class a system’s 
engineering 
factor 

Literature (SN 8 of 
Table 2-1) 

15.  The severity of the 
failure 

a support 
factor
(qualitative)

Literature (SN 16 of 
Table 2-1) 

16.  The costs (spares 
procurement, holding, 
etc.)9

a support 
factor 

Literature (SN 17 of 
Table 2-1) 

17.  The duration of the 
period under 
consideration10

both an 
operational 
and a support 
factor 

Literature (SN 18 of 
Table 2-1) 

18.  The number of systems 
(size of the installed 
base)11

both an 
operational 
and a support 
factor 

Literature (SN 19 of 
Table 2-1) 

9 Also included as 1st in the list of Section 2.4 
10 Also included as 4th in the list of Section 2.4 
11 Also included as 5th in the list of Section 2.4 
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The interviews verified most of the factors identified from the literature and also 

the fact that the demand is affected by activities propagating in the SC. 

Furthermore, the interviews also highlighted additional factors that cannot be 

easily measured or estimated. One such factor is when the decision makers have 

a fixed but incorrect view about the root cause of the problem For example a 

decision maker firmly believes that the cause of the experienced low fleet 

availability is the lack of spares, while the true root cause is the lack of adequate 

experience in fault identification which causes the demand and consumption of 

the wrong spares. Other factors that were identified from the interviews were that 

the environmental conditions do not only have an effect on the systems but also 

on the operators and on provision of support, and also that the lack of trust in the 

supply chain affects the resupply rate. 

The identified lack of trust in the supply chain as a factor that can have an 

influential effect on the demand for spares is a common phenomenon 

Figure 3-2: Causal factors and their relations as elicited from the interviewed SMEs
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(Christopher and Peck, 2004; Chu, Chang and Huang, 2011). As elicited by the 

interviewed SMEs and also suggested by Christopher and Peck, the lack of trust 

can be caused by the lack of visibility in the supply chain which is a cause of 

uncertainty and occasionally of risk. Consequently, this also suggests that there 

is no single expert who can have a complete understanding of the Supply Chain, 

not to say the whole Support Chain (SC) and its interactions with the Operations 

and the Environment. This observation along with the fact that access to expertise 

is not easy either, suggests that the knowledge needed in order to build a model 

of the demand’s context would probably not be complete if it relies only on the 

expertise of those in the SC. What the present research suggests is that the 

knowledge gap can potentially be reduced by related SC data accompanied by 

the resulting model(s) of the demand context, and this is something that has also 

been demonstrated in the findings of Chapter 7 and in Appendix B. 

Even though the literature review accompanied by the analysis from the SMEs’ 

interviews revealed additional factors to be included in the demand context along 

with a suggested way in which they can interact to formulate a context, at the 

same time an additional question has also been raised. 

This question concerns how the factors can be identified in any similar specific 

case. There can be problems in which the modeller might need either to verify or 

even formulate her own view of which factors to look at. Consequently, the 

requirement is to be able to use the factors’ identified categories in order to build 

conceptual models that can help in the identification of the spares’ demand 

formulating factors. The next section discusses three such conceptual tools. 

3.3 Conceptual Tools for the Identification of the Demand 

Context Factors 

In what follows three conceptual models are presented that were  used in either 

categorising existing factors or identifying others that could potentially be 

considered for inclusion in the demand context that is to be modelled.  

The first conceptual model is related to the function of the Operational Availability 

metric. A careful look at the whole set of factors  as presented at the end of 

Sections 2.5 and 3.2 and that resulted from the review of the literature and from 
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the interviews of the SMEs, revealed that they are directly related to a function 

that is commonly used to express the long-run Operational Availability 𝐴𝑜 metric 

(Pryor, 2008): 

𝐴𝑜 =
𝑀𝑇𝐵𝑀

𝑀𝑇𝐵𝑀 +𝑀𝑇𝑇𝑅 +𝑀𝐿𝐴𝐷𝑇

𝑀𝑇𝐵𝑀: Mean Time Between Maintenance activities (either corrective or 

preventive) 

𝑀𝑇𝑇𝑅: Mean Time To Repair 

𝑀𝐿𝐴𝐷𝑇: Mean Logistics and Administrative Delay Time 

So, what is apparent from the above, is that the operational and the 

environmental factors have a direct effect on the repair frequency and thus on 

the 𝑀𝑇𝐵𝑀, and so do the systems engineering factors which also affect 

the  𝑀𝑇𝑇𝑅, while the support factors affect the  𝑀𝐿𝐴𝐷𝑇.  

Therefore, in order to identify potential factors that can constitute the demand 

context using this model, the analyst can use the following questions: 

1. What defines the value of the time between maintenance 

(corrective/preventive)? What can cause the time between maintenance 

to increase? What can cause the time between maintenance to decrease? 

2. What defines the value of the time to repair? What can cause the time to 

repair to increase? What can cause the time to repair to decrease? 

3. What defines the logistic delay / administrative delay times? What can 

cause the increase of the logistic delay / administrative delay times? What 

can cause the decrease of the logistic delay / administrative delay times? 

However, as can be seen from the above list of questions, this conceptual model 

prompts more emphasis on the support activities as presented in the lists at the 

end of Sections 2.5 and 3.2, than on the others. 

A second conceptual model that is related to the previous one, comes from the 

observation that the Operational Availability (𝐴𝑜) can be considered as a 

measurement of the outputs from the interactions among the support and 

operational activities of a specific system. Therefore, the factors listed at the end 
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of Sections 2.5 and 3.2 can also be visualised as resulting from the (dynamic) 

interactions among the nodes of a Support Chain (SC) up to and including the 

operations that are supported, and thus a process diagram of the SC activities 

can work as a conceptual model for the elicitation of these factors (Figure 3-3). 

Figure 3-3: Example of a process diagram that can be used as a conceptual model 

for the identification of the demand context factors 

In the example of Figure 3-3, the demand for spares is experienced at Level 1 of 

the SC. Given the local and network activities, the analyst can identify candidate 

factors like those related with the ‘Diagnose’ activity (quality, rate, capacity, etc.) 

at the Level 1 node, or those related with the ‘Changes in operational 

requirements’ activity that originates from the Operations node. 

The third conceptual model comes from some earlier observations. As the 

categorisation of the factors presented at the end of Sections 2.5 and 3.2, 

strongly suggests that the condition of the systems that are operated and 

supported, is affected by four interacting contexts. The first context is the 

engineering system to which they belong. This concerns their reliability, their 

engineering structure and their maintainability. The second context is the 

operational one. This is the context within which the systems are used and have 

their components “worn-out”. Consequently, it is the factors that define the 

operational context that cause the reduction in the pool of the deployed systems. 

On the other hand, the third context is the one that is responsible for 

replenishment of the pool of the deployed systems. This is the support context in 

which the maintenance and logistics/supply activities take place. The final 

context is the environmental one, into which both the operational and support 

contexts are embedded, and which affects the deployed systems, either during 
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their operating or their stand-by time. In summary, the four contexts of this third 

conceptual model are as follows: 

1. Engineering system 

2. Operational context 

3. Support context 

4. Environment 

Using any of the three conceptual models, or their combination, the modeller can 

categorise the factors that have been identified in the present research (Table 

2-1 and Table 3-1), or even identify them in a different relevant study. 

This thesis mostly used the third conceptual model for the development of the 

simulation (Sections 6.3.1, 6.3.2, 6.3.3, 6.3.4). The reason is that this conceptual 

model seems to be closer to the way that the factors were provided by the 

interviewees during the interviews. 

3.4 Data as an Important Supplement to Experts’ Knowledge 

Studying how the factors interact not only facilitates an understanding of how 

demand is affected by them, but also drives the development of the demand 

forecast models. Consequently, the ability to identify how the factors affect each 

other and the demand is important. 

In the literature review on NVPs and the LTB/EOL problems, it was noted that 

according to the type of business that was assumed, the models focused on only 

one of the participants in the SC, namely either the “buyer” or the “manufacturer” 

/ “service provider”. In such cases the partiality of the view of the influence of the 

SC activities on the experienced demand is more or less inevitable, and this 

influence is probably the reason that the models that have been applied have to 

rely on assumptions of the anticipated repair choices, aggregate data, and 

consider long time periods, etc. On the other hand, the FPP cases examined with 

the SMEs, even though they were referring to a wider view of the SC due to the 

closer relationships among the SC participants, revealed that it is not easy for 

any single SME to have a holistic view of the SC (SN 10 in Table 3-1). 
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Nevertheless, such an ability would facilitate a fuller understanding of how the 

factors interact to formulate the demand context.  

However, where relationships in an SC are close, there is also an attribute that 

can potentially be used to increase the understanding of how the factors interact 

to affect the demand, and in this way help in the formulation of the demand model. 

The idea is that the effects of the interactions result in incidents which are 

recorded in the logbooks of the different nodes of the SC, and given that the 

relationships among the SC participants are assumed to be close, the access to 

such data is permeable. So, if, for example, the lack of trust in the SC causes an 

increase in the inventory supply orders due to more frequent and/or larger orders, 

the on-hand inventory will be affected as well. The latter will be recorded in the 

logbooks of one of the SC’s depots. Furthermore, this can also have an effect on 

the repair activities which will be recorded in the repair shops. 

The data records kept in the logbooks of the SC nodes can include a number of 

factors of interest. However, the most interesting observation is that these records 

can be from different nodes and this fact suggests that the interactions among 

the factors at work in the different nodes of the SC can potentially be captured in 

the datasets.  

Regarding the qualitative factors, some of them can potentially be inferred by the 

records of relative indicators. So, for example the skills of the maintainers that 

take over a repair job can be potentially inferred by their years of experience or 

their rank. On the other hand, some other qualitative factors, like the quality of 

higher management decisions, are not likely to have been captured, but their 

effects probably will have. 

3.5 Conclusions 

Chapter 3 further explored the possible factors that can contribute to the 

formulation of the demand context. Using interviews, a number of the factors 

already identified in Chapter 2 were cross-validated and a few more were elicited. 

Furthermore, three conceptual models were suggested that can be used to 

prompt thinking when in a specific case a modeller wishes to facilitate the 
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identification of factors that can affect the demand for spares. One of these will 

be used in Chapter 6 to help develop the simulation model of the support system. 

The Chapter also argues (Section 3.4) that a demand forecast model cannot be 

developed using only the understanding of the SMEs on how the factors interact, 

since that understanding can only be partial. Using this argument it goes on to 

suggest that a large number of the interactions required to build the model can 

be elicited from the records kept in the logbooks at the nodes of an SC. Thus the 

data included there can complement the SMEs’ understanding of the factors’ 

interactions and in this way facilitate the development of a demand forecast 

model. 
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4 METHODS

4.1 Introduction 

This chapter presents the methods used in the thesis to model the forecasts of 

demand. Firstly, the methods of developing the BNs are presented followed by 

methods for the discretisation of continuous variables which is required as a data 

preparation step. Furthermore, two other modelling approaches used to provide 

comparative forecasts are presented, namely logistic regression and the SME’s 

judgmental adjustment of a simple exponential smoothing model’s forecasts. 

These two approaches are chosen because of their wide popularity in this 

domain. 

4.2 Bayesian Networks (BNs) 

4.2.1 Characteristics of the BN Models 

 BNs belong to the family of probabilistic graphical models which is a class of 

models that use graphs for the representation of probabilistic relationships among 

the variables of interest (Jensen and Nielsen, 2007a; Madigan, York, and Allard, 

1995; Pearl, 1988b). Graphical models in general and BNs in particular have a 

wide spectrum of applications due to their flexibility and interpretability 

(Hartemink, 2001). 

A BN is a Directed Acyclic Graph (DAG) in which there are nodes/variables that 

represent the variables of interest. The nodes can be connected to each other 

with an arc and the node that is at the head of the arc is called the child node, 

while the node at the other end is called the parent node. A child node can be 

connected with more than one parent node and the reverse (several parent nodes 

to a single child node). An arc that connects nodes 𝑋 and 𝑌 encodes the 

assumption that there is a direct association between the two which can 

qualitatively denote a causal or influential link between the two, while the DAG is 

called “Acyclic” because the arcs should never create a cyclical path. Each node 

has a set of conditional probability values associated with it, formed in Node 

Probability Tables (NPT) or else Conditional Probability tables (CPT) which model 

the uncertainty in the relationship between the node and its parents. Of course, if 
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a node has no parents, its NPT is the probability distribution of its values, and. 

such nodes are called root nodes. The efficiency of the BN’s structure is mainly 

owed to its graphical properties. 

4.3 Bayesian Network Structure and Node Probability Tables 

4.3.1 Building the Bayesian Network (BN) 

The building or learning of a Bayesian Network includes two processes: 

1. Structure learning, in which the model graph is built 

2. Parameter learning in which the local probability distributions are learnt 

based on the chosen structure 

These two processes are performed by either feeding data into a learning 

algorithm (data-based approach), or by eliciting the associative relationships 

among variables from SMEs (knowledge-based approach), or a combination of 

the two. In the first method, the variables used are only the ones that the modeller 

has data on, while in the second, variables that might not be included in a data 

set – latent variables - can be elicited from SMEs and used to describe the context 

of interest better. However, data-based approaches can reveal relationships 

among variables that are not easy to get from SME’s. This is what the interviews 

presented in Section 3.2 also indicated. Especially when the within-scope system 

is extended and the variables involved are extended in space, eliciting an 

adequately valid BN from experts can be very challenging (Scutari and Denis, 

2015b). On the other hand, it is a common procedure to use a combination of 

methods (Hartemink, 2001; Heckerman, Geiger and Chickering, 1995). 

In the cases that the present research examines, the data are from the past 

periods of the building up of operations and of their infinite-time horizon phase. 

However, since the decisions are for the final phase of the operations (FPP) and 

these decisions can be very challenging due to the number of changes that are 

planned to take place and the uncertainty involved with the effect of those 

changes on the systems’ failures and the resulting demand for spares, the 

contribution of SMEs’ expertise is also important. Therefore, in the specific nature 

of the problem, for the development of the BN, the modeller would probably need 
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not to rely just on past data but to also seek for verification and at least face-

validation from SMEs. 

4.3.2 Structure Learning 

In the structure learning the modeller tries to identify the graphical structure (the 

DAG) of the BN. The objective is to find for each node the minimum set of 

connections around it that correspond to its associations with the rest of the 

nodes. 

Structure learning algorithms from data are mainly classified in three categories: 

constraint based, score based and hybrid. The assumptions under which the 

algorithms operate are the following (Nagarajan, Scutari and Lebre, 2013): 

1. Every node in a DAG represents a single variable and every variable is 

represented by a single node. This means that resulting nodes must not 

be functions of another. This assumption is needed for the unsupervised 

learning of the DAG. Furthermore, the assumption does not exclude after 

the BN has been built by the learning algorithm, amending or expanding it 

by including nodes and arrows that model deterministic relations (see e.g. 

the "definitional" idiom in Fenton and Neil, 2013, or Neil, Fenton, and 

Nielson, 2000) 

2. The building blocks of a BN are the conditional independencies and 

therefore all relationships calculated between the BN’s variables are seen 

as such 

3. All observations are independent realisations. If there is some known kind 

of dependency (e.g. spatial or temporal through a latent variable), then it 

must be accounted for (Cooper and Herskovits, 1992; Heckerman et al., 

1995) 

4. The existing combination of the values of all the variables under 

consideration must have a non-zero probability. If not, then the Markov 

Blankets cannot be uniquely identified and neither the BN model 
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4.3.2.1 Constraint Based Algorithms 

This class of algorithms are called constraint-based since, in order to reconstruct 

the BN structure the algorithms are driven/constrained by the existing conditional 

independence relationships that exist in the data and expressed among each one 

variable and the rest within the domain. Other types of constraints might be used 

as well which are not related to conditional independence, e.g. in cases where 

there might be latent variables. The present research does not refer to these 

types of constraints. Furthermore, there are algorithms that instead of conditional 

independence, use mutual information tests and are tested over the asymptotic 

or semiparametric χ2 distribution, sequential Monte Carlo permutations etc. 

(Scutari and Denis, 2015a)  

Several conditional independence tests between pairs of variables conditioned 

on a set of others are performed to guide the gradual positioning of the nodes 

and their connections in the network. The null hypothesis 𝐻0 of the performed 

tests is that the examined variable and a set of others are independent. This set 

can also be the empty set ∅.  

The quality of the constraint-based algorithms depends on the efficiency in the 

formulation of the sets that are tested for each variable and the reliability of the 

tests. Both of these issues depend on the relative size of the variables’ domain 

as compared to the size of the available data set (Dash and Druzdzel, 2002). In 

the cases examined, there can be a plethora of data coming from the logbooks. 

Nevertheless, the size of the variable domain can be large as well. As shown in 

the literature review and reinforced by the findings from the interviews with the 

SMEs, the demand context is formulated by the Environmental, Engineering, 

Operational and Support contexts while it extends to the different nodes of the 

SC and operations. Choosing which variables to include in a model is very 

important in the development of a model and of its ability either to predict or to 

explain. Furthermore, the choice of the variables is also directly related to the 

method to be used in order to build the model (Field, Miles, and Field, 2012). 

For the reasons discussed in Section 4.3.2.3, the datasets used in the present 

research did not favour the application of constraint based algorithms. On the 
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other hand, there was no particular problem in applying the score based 

algorithms that are presented next (Section 4.3.2.2) 

4.3.2.2 Score Based Algorithms 

The score based algorithms do not rely on independence tests among 

combinations of variables, but on evaluating a candidate hypothesised BN DAG 

as a whole. Score based algorithms seek to find the most probable network 

structure given the available data (Cooper and Herskovits, 1992) and it is the 

resulting structure as a whole which provides insight to the dependency 

relationships among the variables. In their general approach, by thinking of the 

search for the most appropriate BN structure as an optimization problem, the 

possible relations among the variables/nodes as a state space can be 

conceptualised. Therefore, score based algorithms need: 

 A state space,  

 An initial BN structure,  

 A termination condition evaluated over a metric that expresses the fit of 

the BN on the provided data sample 𝐷 and  

 A search engine that efficiently iterates among different candidate 

structures within the state space 

The assumptions adopted for the development and use of the Bayesian Dirichlet 

equivalent (BDe) score are the following (Cooper and Herskovits, 1992; Gilks, 

Thomas and Spiegelhalter, 1993; Heckerman, Geiger and Chickering, 1995): 

Assumption 1: The values of the variables have come from a multinomial

distribution. This is a reasonable assumption for many of the variables for 

datasets coming from FPPs, since the data are sourced from the logbooks which 

record incidents, like a component’s breakdown, a diagnosis completion incident 

etc. However, this assumption excludes other variables which are numeric and 

infinite. In the cases examined in the present research, such a variable can be 

the “Number of hours that the component X has been operating”. For these 

variables, a discretisation pre-processing step is required. 
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Assumption 2: The variables’ multinomial distributions parameters are 

independent in the network structure (global parameter independence 

assumption) and also the parameters of a variable associated with the different 

states of its parents are independent (local parameter independence).  

Assumption 2 follows from assumption 1 and combined with assumption 3 and 4 

aim to simplify the computations for the score metric. In Section 4.4.1, a 

discussion is presented on the benefits and challenges for the FPP of 

transforming the variables to multinomial. However, for the present assumption 

the anticipated benefit is to get computational efficiency that leads to a single, 

additive metric. 

Assumption 3: In two different possible network structures, if a node has the same 

parents in both, then the NPTs will be the same. This is called parameter 

modularity assumption.  

Assumption 4: In a possible network structure the values of the probabilities of 

any variable, yet unknown, follow a Dirichlet distribution. 

As mentioned above, the assumptions 2, 3 and 4 have been introduced to help 

with the computational efficiency of the metric. 

Assumption 5: The dataset 𝐷 is assumed to be complete. If 𝐷 is not complete, 

the algorithm that counts the elementary events in the variables to estimate the 

probabilities, will not be able to work. 

It should be expected that this would be a challenging assumption when real life 

data are acquired. Occasionally, there are missing or wrong data points, which 

though can be handled with statistical analysis. However, for the present thesis 

where the data were acquired from a simulation, this problem did not exist.  

Assumption 6: Given two network structures 𝐵𝑆1 and 𝐵𝑆2 which are both valid 

DAGs (i.e. no loops, etc.), if they are equivalent (Chickering 1995), then the 

likelihood that the dataset 𝐷 has come from 𝐵𝑆1  is equal to the likelihood that it 

has come from 𝐵𝑆2 . Therefore, given this assumption, the distribution of their 

parameters is the same as well. This assumption is called likelihood equivalence

and it gives the “e” for equivalence to the BDe metric. 
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Assumption 6 facilitates the search algorithm by reducing the search space. Such 

a reduction is computationally very important, especially in the FPPs where the 

number of variables can be high. 

Furthermore, in order to facilitate the calculations for the prior distributions of the 

hypothesised BN structures, Heckerman et al. (1995) adopt Buntine’s (1991) 

suggestion to assign an equal probability to every state in the domain and to 

every possible structure. This is a special case of BDe and is called BDeu (“u” for 

“uniform”). Actually, BDeu is the only member of the BDe scores that is in 

common use (Scutari and Denis, 2015a).  

Regarding the prior distributions of the hypothesised BN structures, they can be 

any structure that can be elicited by a SME, or even the output of a constraint-

based learning algorithm as is the case in the hybrid algorithms (Scutari and 

Denis, 2015b). These hybrid algorithms are not to be confused with the “Hybrid” 

BNs which refer to the continuous and discrete types of variables that they can 

incorporate. Moreover, for the purposes of the present research, the approach of 

building the DAG structure through the combination of an expert-elicited BN 

structure and then applying machine learning is also called hybrid (Sections 

7.2.3.3 and 7.2.3.4). 

Another usual prior structure that can be used as a starting network for the 

optimization algorithms is to use a random prior structure. Using multiple such 

random starting structures helps in covering the search space more thoroughly 

and not including any systematic bias. A relative algorithm of random starting 

structures is the one proposed in Ide and Cozman (2002) and applied in the 

bnlearn R-package (Nagarajan, Scutari and Lebre, 2013). This specific algorithm 

is the one that has been used in the present research (Section 7.2.3.1). 

Optimisation algorithms converge to local optimum solutions. These resulting 

solutions depend not only on the algorithm itself, but also on the starting point. 

Consequently, it is common practice to store the many local optima which have 

been generated by running the algorithms a number of times (arbitrary chosen to 

300) and each time starting from a different initial structure (an initial 𝐵𝑠
ℎ) that has 

been randomly created. These many local optima have a number of their arrows 
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in common. The practice then is to keep that “averaged” structure that has those 

arrows that are in common to the majority of the many created optimal structures, 

with the majority cut-off value defined by the user. 

4.3.2.3 Evaluation of the Applicability of the Constraint-Based and Score 

Based Algorithms in the Final Phase Cases 

When any constraint-based / local learning algorithms was applied to the dataset 

that was used for the present research, it was observed that the many of the 

expected dependence relations did not occur (see also Sections 7.2.1 and 7.3.1). 

The resulting graphs had very few nodes connected, while many of the nodes 

were presented as not being associated to any of the rest. The conclusion drawn 

about the reason for this result has to do with the peculiarities of certain key 

variables in the datasets.  

The datasets that have been used in the present research, include those 

variables that define the context of the demand for spares. Within this set of 

variable a key role is played by those that capture the failure incidents of the 

components (e.g. FRT_LRU, FRT_PRU or FRT_DU in Table 6-1). Moreover, real-life 

supported systems are built in such a way that their components are very reliable 

and consequently their probability of failure is engineered to be very low 

(Sherbrooke, 2004, p.6). This means that in the recorded values of the failure 

incidents only very few cases were failures while the rest were non-failure 

incidents (for a two-state variable). Consequently, the information which is of key 

value – the failure incident – is rare within the dataset, a fact that can be 

problematic for the independence tests applied in the constraint-based learning: 

rare events can result in (falsely) not rejecting the null hypothesis 𝐻0 that the 

variables are independent (a Type II error) and thus not introducing (or, 

depending on the algorithm, not retaining) the edge between the tested nodes.  

Spirtes et al. (2000, p. 96) made a very relevant observation: local learning 

algorithms might suffer from the fact that after falsely excluding a connection 

between two nodes then this can result in further multiple false disconnections. 

As a mediation, Spirtes et al  suggested to use a Bayesian procedure like the one 
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presented by Cooper and Herskovits (1992) as a repair step to the constraint-

based output structure. 

The above described limitation of the constraint based algorithms is not a problem 

for the score based. Moreover, the latter were chosen for this research because 

they offer an additional modelling benefit. Score based algorithms have a very 

useful virtue inherent to their scoring metric (Hartemink, 2001, secs4.3, 4.4). The 

metric takes an average over a family of probability distributions which works as 

a penalty for unnecessary parameter complexity. This fact, as compared to 

alternative scores that use a single maximum a posteriori parameter, is an 

inherent guard against parameter overfitting especially when the available data 

are comparatively few and it is also beneficial when faced with noisy data. 

Furthermore, the scoring metric has also got a provision to permit the inclusion 

of prior experts’ knowledge.  

However, there is still the issue that the structure development method needs to 

use optimisation algorithms that identify multiple different local optima of the 

score and thus need to be run many times. This practice can create model 

structure overfitting. In order to overcome this issue, it is not the single optimum 

structure that is retained but rather it is the “average” over all the structures so 

that only those arrows are retained which appear in above a predefined 

percentage number of structures (Nagarajan, Scutari and Lebre, 2013). 

4.3.2.4 Causal and Acausal BNs  

Hartemink (2001) and Heckerman et al. (1995) make an important observation 

about the structure learning algorithms and their interpretability. In the authors’ 

explicit assumptions for the development of the BDe score metric, they make a 

clear dinstiction between the “causal” and the “acausal” structures.  

In more detail, in order to simplify the calculations of the BD metric by constraining 

it into the BDe the authors adopt the equivalance hypothesis. The hypothesis 

states that the srtucture 𝐵𝑠
ℎ is true iff (if and only if) the database is a sample of 

multinomial variables that have resulted from 𝐵𝑆. This hypothesis is satisfied iff

the resulting parameters Θ𝑈 satisfy the conditional independencies of the true 

structure 𝐵𝑆. The direct consequence is that if two not the same structures are 
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equivalent, then their hypothesised structures can be equal. This means that if, 

for example, the changing of the direction of an arrow produces the same score, 

then the two different hypothesised structures are equal. However, such an 

assertion could violate any understanding of causality that might be infered by 

the arrow’s direction. 

Using a similar observation, Hartemink (2001) suggests that the BN user should 

be careful about the structures’ interpretation. The author correctly highlights the 

difference between statistical interpretations and causality. In the cases of the 

present research, many different demand context mechanisms might map to the 

same set of statistical dependencies. Additionally, in the core of the present 

research objectives is to be able to build BNs by the use of the data recorded in 

the logbooks of the nodes of the SC and of the operations. In such cases it is 

logical that the system has not been observed by the same humans in a number 

of different configurations and thus certain causal dependencies might not have 

been apparent. This is something that the present research’s use of simulation to 

produce replications of multiple possible futures has been able to reveal 

(Appendix B). A further direct consequence of the low breadth of the SC and 

operations’ observations in different settings is the possible existence of a 

number of latent variables that can have a confounding effect on the modelled 

mechanisms, while either the existence or the values of these variables might not 

be recorded or known.  

To cope with the interpretability of the BNs’ structures, advocates of the 

preservation of their causal character/merits (Fenton and Neil, 2013, sec. 7.2; 

Neil, Fenton, and Nielson, 2000) call the arrows “causal or influential”, thus 

recognising that the complete causal relations among the variables might not be 

fully known. Nevertheless, it is this same notion of causality and influence that 

helps in identifying the structure of the BN from the knowledge of SMEs. 

4.3.2.5 Eliciting the Structure from SMEs

As mentioned earlier, a prime objective of this research has been to be able to 

use the records kept in the logbooks of different nodes of an SC and the 

supported operations. Driven by this objective and the related extended breadth 
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of variables involved, the development of the corresponding BN models can 

mainly be through machine-learning algorithms as discussed earlier (Section 

3.4). However, prior network structures, and even more importantly variables like 

the “Environment” or the “Type of Operations” that might not be included in the 

logbooks, but can have an influential effect on variables like the “Rate of Use” 

and “Failure Rate”, should be considered even if data are not readily available.  

The same methods that have been used in the constraint-based algorithms, i.e. 

d-connection/d-separation, can be used for the elicitation of the BN structure. 

Therefore, serial, diverging and converging connections can be used to build 

topologies of small numbers of nodes by thinking what the effects of entering 

evidence in one node is to the propagation of evidence between the other two 

and then connect them in a bottom up manner. Briefly in a set of three nodes 𝐴, 

𝐵 and 𝐶: 

 If information about node 𝐵 renders any new information about 𝐴 not 

affecting the belief about 𝐶 then either a serial or a diverging connection. 

However, if a new information about 𝐴 can still affect the belief about 𝐶

even if information about 𝐵 𝑖𝑠 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒, then the simple serial or diverging 

connections are not appropriate. Under these circumstances 

consideration should be given to whether is a need to connect 𝐴 to 𝐶 or to 

use a different type of connection 

 If the evidence between 𝐴 and 𝐶 can only be propagated when there is 

evidence on 𝐵, then a converging connection exists. However, if there is 

the understanding that information on 𝐴 can influence 𝐶 even if there is no 

evidence about 𝐵 then the simple converging connection might not be 

enough. In such circumstances  consideration should be given to the 

possible need to have a direct link between 𝐴 and 𝐶 or a different type of 

connection 

However, the above approach is difficult to implement by experts who are not 

familiar with thinking in terms of conditional dependences. Laskey and Mahoney 

(1998) recognised the need to create “fragments” of networks. According to the 

authors, each fragment is a grouping of nodes that are related to each other and 
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that can be thought about in isolation from the rest. The grouping is suggested 

by the SMEs and they need to provide some underlying reason for the nodes to 

be considered together. However, for the purpose of building a complete BN 

structure Laskey and Mahoney's (1998) suggestion is still not detailed enough 

and a more detailed process/method is required. Typical practical problems that 

need to be addressed are (Neil, Fenton and Nielson, 2000): 

 What is the direction of the edge - if any - between two nodes that best 

describes their relation? 

 How much detail is needed in the identification of the nodes? 

 How can the structure be managed so that the number of parents in a node 

are kept small? 

 How can experience be codified and reused in other problem cases? 

These questions led to an advancement in the methods that can be used in order 

to elicit expert knowledge for the structure building of the BNs. The method of 

elicitation discussed below was introduced in Neil, Fenton, and Nielson (2000) 

(see also Fenton and Neil (2013)). It includes a set of abstract patterns that Neil, 

Fenton, and Nielson call “idioms” which can be used as building blocks of the 

BNs’ structures as described by the SMEs. The idioms have been developed 

through the identification of common patterns in the development of BN models 

from SMEs. One of the fundamental attributes of these idioms, which is also core 

to the value-adding use of BN modes, is that they are built in such a way so that 

the resulting structural components can be explained to and verified by domain 

experts. Furthermore, as expected these idioms use and preserve the d-

separation/connection properties that are needed for a BN. The modeller along 

with the SMEs define fragments of the variables and related idioms, and the 

modeller can turn the idioms in BN objects that are gradually integrated in a 

bottom-up manner to create the model. 

The sections that follow present those idioms that were used in the present 

research to elicit the relationships among the variables.   

4.3.2.5.1 The Cause-Consequence Idiom 
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The cause-consequence idiom is used to model a causal process. The minimum 

set that can be included in this idiom is two nodes with an arrow. As expected the 

node at the tail represents the event or facts that the process needs as an input 

(the cause), while the event or factor that is the output of the process 

(consequence) is at the head of the arrow. Care should be given that it is the 

arrow that models the process itself and not the nodes. The process can be 

thought of and is modelled via the NPTs of the consequence node. Furthermore, 

the cause/input of the process can be a transformation of the same input or a 

new output (Fenton and Neil, 2013, p.176). 

There are also process categories that can facilitate the identification of cause-

consequence relations: 

 Productive/mechanical category. Production plants can naturally be 

included in this category. Furthermore, more abstract but related problems 

can be included, like the quality of a design which is causally connected to 

the number of failures, the complexity of a problem to the number of 

failures, the skill of a mechanic to the time to repair a fault, etc. 

 Physical/natural category. Examples in this category can be the 

environment’s effect on the wear-out of a component, or its effect on the 

duration of a transportation 

 Intentional category. Examples in this category are those in which there is 

an intention to incur an output, like the event of hacking an ICT system 

and its outcome 

Another distinguishing attribute of this idiom is that the cause and the 

consequence events/facts have a sequence; a chronological order. This creates 

a challenge to the modelling of datasets like the ones dealt with in this research. 

The datasets that the present research assumes access to are records from 

different logbooks. Consequently, each recorded value of the variables - each 

individual case - refers to the same time-instance. This is an important point 

because it drives how the modeller and the SME who might be helping in the 

development of the BN structure should be understanding the relationships 

among the variables and therefore, the specific idioms that can be used. The fact 
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that each case in the dataset refers to the same time-instance, means that if for 

example a failure event took place and at the same time that the weather was 

bad, it cannot have a cause-consequence relationship as intuitionally might be 

considered to be the case. The two incidents do not have a chronological order. 

Nevertheless, the cause of the failure instance is not the bad weather instance of 

that particular time but the accumulated bad weather instances before that 

specific time-instance (and of the similar effects of other causal factors).  

On the other hand, there are variables’ relations which can still use this idiom 

even by the application of the logbooks as the only source of data. An example 

is the skill level of a mechanic and the repair output. In a repair shop’s logbook, 

a repair job is recorded and at the same record/time-line, it is allocated as a task 

to a specific mechanic who has a certain repair skill-level (and taking into 

consideration the interviews with the SMEs, mechanics can also have different 

work-ethic levels as well (SN 1 in Table 3-1)). It is reasonable for a highly skilled 

mechanic to be more productive and thus have the job for a shorter period of 

time. Consequently, the skill level has a causal effect to the repair output which 

is also captured in the logbooks. 

Nevertheless, the earlier example of the relationship between the environment 

and the failure incidents can be dealt with the following idiom of 

measurements/indicators. 

4.3.2.5.2 The Measurement/Indicators Idiom 

In the cause-consequence idiom, the two nodes represented two different 

attributes. On the other hand, there are a large number of cases which have 

estimates/judgements/indicators of a single variable. Therefore, it is necessary to 

eventually have to consider the estimates and the true value of the variable. 

However, in such cases a third variable is involved which expresses the 

uncertainty in the accuracy of the estimate, which can also expand to include 

biases or intervening circumstances. A generic representation of the 

measurements/indicators idiom is presented in Figure 4-1. 
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Through the introduction of the accuracy node, the variables’ relationship that is 

modelled by the idiom develops a very valuable characteristic i.e. to be able to 

reason by explaining away false positive results. 

Another way to see the above triplet of nodes is that the output (what is actually 

measured) is a combination of the intensity/mass of the true value and of the 

quality/accuracy of the measuring process. These two nodes of 

intensity/mass/true value and of quality/accuracy exist before the measurement, 

so in this sense there is still a causal relationship indicated by the arrows.  

However, it must be pointed out that there is not always a need to have a separate 

node for the “accuracy” of the measurements. For example, the number of hours

that a component has worked without maintenance can be considered as an 

indicator of its tendency to fail. In such a case there might be a tendency to model 

their relationship using the cause/consequence idiom by placing the number of 

hours node at the tail of the arrow and the failure node (with values “Yes” and 

“No”) at its head. However, the relationship of the number of hours and the failure

is not that of a process or some kind of a transformation that takes the number of 

hours as an input and turns them to a failure as an output/product. The 

relationship between these two variables might not be thought of as a process, 

but rather be modelled using the high number of hours to work as an 

“alert”/indicator for the tendency of the component to fail. Furthermore, the 

True value 
of 

attribute

Estimated 
value of 
attribute

Estimation 
accuracy

Figure 4-1: Generic measurement/indicator idiom 
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strength of this relationship can be captured by the NPT of the child node (the 

hours worked) without the need for an additional node that captures the accuracy 

of the measurement/indicator. 

The earlier discussed situation between the recorded values of the environmental 

conditions variable and the simultaneously recorded value of the state of a 

component (“Working” or “Broken down”) (Section 4.3.2.5.1) can be considered 

in a similar way and thus use the indicator idiom. In a narrative form, the presence 

of a harsh environment is an indicator of the tendency to experience malfunctions 

in certain components, while the NPTs capture the strength of such a relationship 

without the need of an accuracy node to be present. 

The following idioms do not have to do with the consideration of cause and effect 

but rather formalise modelling practices that expand the areas of application of 

the BNs. 

4.3.2.5.3 The Induction Idiom 

The induction idiom’s arrows directions do not indicate causality, even though of 

course causal links can be set afterwards with other idioms of 

cause/consequence or measurement/indicators. The induction idiom is a very 

useful expansion of the BNs’ applications in calculating and representing 

statistical inferences. Through the BNs, a population’s parameter is estimated 

using the available data and this parameter can then be used in a statistical 

model, including of course another BN’s node that uses a cause/consequence 

and/or measurement/indicators idiom 

The way that the induction idiom can be applied is demonstrated in Figure 4-2. 

Population 
parameter

Observation 
1

Observation 
2

Observation 
n

Forecast  
(for Observation 

n+1)

Contextual 
differences

Figure 4-2: Generic induction idiom using data 
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Assuming that a dataset of 𝑛 exchangeable observations, then it is possible to 

use a BN structure like the one in Figure 4-2 to make a forecast about their 𝑛 +

1 value. The BN section with the population parameter node is given an initial 

prior distribution and then is updated by the use of the 𝑛 observations. The 

updated population parameter distribution is then used to provide an estimate for 

the 𝑛 + 1 (not yet acquired) observation. Furthermore, it is possible to adjust the 

forecast on the 𝑛 + 1 prediction, which might not be exchangeable to the earlier, 

by the inclusion of any potential knowledge available from using the contextual 

differences node. 

An additional benefit that the BNs can provide as compared to classical statistical 

inference models is in case of the absence of data. In such cases, the distribution 

parameter can be elicited from SMEs and used as shown in Figure 4-3. The lack 

of data is compensated by the elicited knowledge while again any difference 

between the context of the past knowledge and the future context can be 

modelled through the contextual differences node. 

In practice, there can be more than one population parameters to be learnt and 

updated as in the basic model for Bayesian inference. 

4.3.3 BN Node Probability Tables (NPT) 

The step that follows the development of the BN structure is the estimation of the 

NPTs that describe the conditional independence relationships among the nodes 

as these relationships are expressed in the structure. In the cases that the 

present research refers to, it is expected that most of the conditional probabilities 

are able to be calculated from the logbook datasets. Nevertheless, there might 

Elicited from 
SME

Forecast

Contextual 
differences

Figure 4-3: Generic induction idiom without data 
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still be cases where the variables are not included and thus there is still a need 

to define these variables’ states and then the conditional probabilities.  

Discussion now moves on two issues. First is to do with approaches to estimate 

the parameters of the local distributions from the data. This is then followed with   

how to define the NPTs manually when there are no data and thus it is necessary 

to elicit the NPTs from SMEs. 

4.3.3.1 NPTs Learnt from Data 

 There are two approaches of estimating the local parameters from data: the 

maximum likelihood estimates and the Bayesian estimates (Scutari and Denis, 

2015a) 

4.3.3.1.1 Maximum Likelihood Estimation 

Through this approach it is possible to calculate the local, multinomial parameters 

from the empirical frequencies in the dataset using the BN structure (Nagarajan, 

Scutari and Lebre, 2013, chap.1).  

However, the problem with this approach is when the dataset is sparse and there 

are state-cells in the tables that have zero counts. This is something that should 

be expected in the datasets dealt in the current research, since there are 

variables like those that describe certain components’ failures to have very few 

counts of the failure level merely due to the components having been 

manufactured to be highly reliable. 

4.3.3.1.2 Bayesian Estimation 

A similar approach is to acquire the posterior distributions of the local parameters 

using a Bayesian approach. Applying uniform priors by assigning equal 

frequencies to the cells of the tables give: 

𝑝𝑟𝑖𝑜𝑟(𝑥𝑖 = 𝑘, 𝑝𝑎(𝑥𝑖) = 𝑗) =  
1

𝑟𝑖×𝑞𝑖
 , and 𝑝𝑟𝑖𝑜𝑟(𝑝𝑎(𝑥𝑖) = 𝑗) =

𝑟𝑖

𝑟𝑖×𝑞𝑖

The corresponding observed counts in the dataset are: 

𝑝(𝑥𝑖 = 𝑘, 𝑝𝑎(𝑥𝑖) = 𝑗) =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑤ℎ𝑖𝑐ℎ 𝑏𝑜𝑡ℎ 𝑥𝑖=𝑘 𝑎𝑛𝑑 𝑝𝑎(𝑥𝑖)=𝑗

𝑛
 , and 
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𝑝(𝑝𝑎(𝑥𝑖) = 𝑗) =
𝑎𝑙𝑙 𝑡ℎ𝑒 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 𝑡ℎ𝑎𝑡 𝑝𝑎(𝑥𝑖)=𝑗

𝑛

In order to proceed, it is necessary to include an estimate about the 

importance/weight to include in the prior distribution and then get a Bayesian 

average. This is done by assigning a value to the imaginary sample size (iss)

(also known as equivalent sample size) which expresses the weight wanted to 

assign to the prior as compared to the dataset when computing the posterior. The 

value of the imaginary sample size is divided by the number of cells in the NPT 

and then the posterior estimate is computed as the weighted mean of the (flat) 

prior and the empirical frequencies: 

𝐵𝑎𝑦𝑒𝑠 𝑎𝑣𝑔(𝑥𝑖 = 𝑘, 𝑝𝑎(𝑥𝑖) = 𝑗) =
𝑖𝑠𝑠

𝑛+𝑖𝑠𝑠
𝑝𝑟𝑖𝑜𝑟(𝑥𝑖 = 𝑘, 𝑝𝑎(𝑥𝑖) = 𝑗) +

𝑛

𝑛+𝑖𝑠𝑠
𝑝(𝑥𝑖 =

𝑘, 𝑝𝑎(𝑥𝑖) = 𝑗)

𝐵𝑎𝑦𝑒𝑠 𝑎𝑣𝑔(𝑝𝑎(𝑥𝑖) = 𝑗) =
𝑖𝑠𝑠

𝑛+𝑖𝑠𝑠
𝑝𝑟𝑖𝑜𝑟(𝑝𝑎(𝑥𝑖) = 𝑗) +

𝑛

𝑛+𝑖𝑠𝑠
𝑝(𝑝𝑎(𝑥𝑖) = 𝑗)

Finally, 𝑝(𝑥𝑖 = 𝑘|𝑝𝑎(𝑥𝑖) = 𝑗) =
𝑝(𝑥𝑖=𝑘,𝑝𝑎(𝑥𝑖)=𝑗)

𝑝(𝑝𝑎(𝑥𝑖)=𝑗)

The imaginary sample size is usually chosen small so that the prior distribution’ 

weight can be easily dominated as the amount 𝑛 of data increases (Scutari and 

Denis, 2015b). 

4.3.3.2 Obtaining the NPTs from SMEs 

When required to introduce values for the variables from SMEs, the principle of 

parsimony is very important to follow and especially for parent variables. Cain 

(2001) suggests aiming for two (preferably) or three values to describe the states 

of a variable and introduce more than three only in exceptional circumstances. 

The reason for introducing as few states as possible and especially for parent 

variables, is to keep to the minimum the number of conditional dependence 

probabilities needed to elicit from SMEs. If a child variable has two states and 

each of its 𝑁 parents has 𝑘 states then the number of parameters needed to elicit 

would be to the order of 𝑂(𝑘𝑁).  

However, it is not only the number of NPTs that is a challenge that needs to be 

faced. The process of the elicitation of probability values can be quite challenging 
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too. The following observations, which have appeared in relevant case studies, 

summarise different problematic situations: 

(a) Unless there is diversity among the nature of expertise, then the model 

might be biased towards the available knowledge (Garthwaite, Kadane, 

and O’Hagan, 2005).  

(b) There can be cases in which SMEs want to support individual or group 

agendas (Garthwaite, Kadane and O’Hagan, 2005) 

(c) Even though there is a good representation of experts, there might be still 

be a genuine disagreement on the estimated values (DeGroot, 1974; 

Douven, 2010; Garthwaite et al., 2005; Golub and Jackson, 2012; 

Hegselmann and Krause, 2002; O’Hagan, 1998) 

(d) The time availability of the SMEs is limited (Linda C van der Gaag, Renooij, 

Witteman, Aleman, and Taal, 1999). In this very common problem, the 

time devoted to providing the needed numerical estimates depends on 

whether there is an interest / incentive by the experts to provide 

consultation. Furthermore, even if the interest exists, there is still the 

challenge of limited human attention span 

(e) People estimate probabilities using certain heuristic principles. Even 

though these heuristics are very useful in reducing the complex task of 

assessing or predicting values and even though they are well related to 

the task, they can lead to systematic errors / biases (Garthwaite et al., 

2005; Kahneman, Slovic, and Tversky, 1974). (see also Section 4.6.2 for 

a discussion on human biases and ways to deal with them) 

(f) The level of the domain experts’ familiarization to the concepts of 

probability, frequency as well as to specific measures like the mean, mode 

and variance is limited (Garthwaite et al., 2005; Gigerenzer, Hoffrage, 

Mellers, and McGraw, 1995; Wiegmann, 2005) 

(g) If the number of variables is large, certain probability elicitation methods 

can be impractical (van der Gaag et al., 1999)  

(h) There are variables on which there is very little experience/knowledge and 

therefore experts are reluctant on assessing frequencies (L C van der 

Gaag, Renooij, Witteveen, Aleman, and Taal, 2002) 
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In order to be able to deal with the challenges of obtaining parameter estimates 

from human experts, one needs to carefully choose the experts to be engaged 

and also the methods that are used for the elicitations. Furthermore, it is useful 

to be able to evaluate which of the nodes are more important for the model’s use 

so that the focus is higher for their verification. This can be done by a sensitivity 

analysis study (Fenton and Neil, 2013, Chapter 8). 

4.3.3.2.1 Choosing Experts 

Regarding (a) above, Garthwaite, Kadane, and O’Hagan (2005) suggest that 

since the term “expert” emphasises the person who “society and/or his or her 

peers attribute special knowledge about matters being elicited”, the combination 

of the expertise of several people might be able to relax the problem of individual 

agendas. Kaplan, Skogstad, and Girshick (1950) provide a very interesting and 

important observation: individuals who gave substantive reasons for their 

numerical forecasts had significantly better outputs than those whose reasons 

were either tautological or non-existent.  

Apart from the obvious attributes of experience and studies, Cain (2001, p.32) 

and Clemen and Winkler (1999) provide some further guidelines to choosing 

experts: 

 They must be accepted by the group they are representing 

 They should possess good local knowledge 

 The facilitator should be aware if there are possible financial or personal 

interests in the inferences or decisions (Garthwaite, Kadane and O’Hagan, 

2005) 

 They should differ from each other in terms of viewpoint and knowledge 

(Wiegmann, 2005) 

 An optimum number is from three to five 

4.3.3.2.2 Combining Expertise 

When facing problem (b) in Section 4.3.3.2 of combining expertise, there is the 

dilemma of either letting the group interact openly and reach a consensus 

(behavioural aggregation) or consult each expert individually. 
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4.3.3.2.2.1 Working with Groups 

A seminal work on the area in which the elicitation process is centred on using 

extensive SME interaction as its main mechanism, has been that of Budnitz et al. 

(1998). Core to their analysis is their categorisation in four types of consensus: 

 Type 1 is when all experts get to have the same value for a variable or 

model parameter 

 Type 2 is when all experts finally get to have the same probability 

distribution for a variable or model parameter 

 Type 3 is when they agree that a certain composite probability distribution 

represents the specific group’s expertise 

 Type 4 is when the experts agree that a certain probability distribution 

represents the general scientific community 

The authors’ suggestion is to realistically seek either Type 3 or 4 and thus reach 

an agreement among the experts on how to represent the spread and diversity

of their state of knowledge on a situation rather than try to reach a consensus of 

Type 1 or 2. Furthermore, they highlight that even though the effort is to represent 

the spread of the whole range of expertise, the engaged panels is just a sample. 

Consequently, care should be given to: 

 A reasonable representation in the panel,  

 Clear description of the technical basis for the assessments,  

 A quantification of the uncertainties expressed,  

 An effective peer review / validation of the outputs, and  

 Documentation of all the above 

Technically, the method aims to create conditions in which the different experts’ 

outputs are equally weighted. In order to achieve the equality in weights, the 

process attempts to maximise the overlap through intensive and structured 

interaction among the experts. In order to achieve that, the authors suggest the 

following principles: 

 The experts are viewed as informed evaluators of the expressed models 

rather than as supporters a certain (their own) position 
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 The interaction is not on named views but on hypotheses and underlying 

models 

 There can be progress if the specific objects of disagreement are isolated 

 The facilitator practices and encourages active listening by summarising 

and explaining back the points of agreement and disagreement.  

 The facilitator clarifies that the purpose is not to find the correct answer or 

get to a consensus of the Type 1 or 2 

 The facilitator states that the responsibility for the process of obtaining the 

aggregated probability distribution is the facilitators’ and not the experts’, 

but the intellectual responsibility lies to both. Therefore, the experts do not 

act only as evaluators but also facilitate the process to act as integrators 

as well 

Furthermore, the authors provide a very interesting justification of why the 

occasional outlier expert whose interpretation is different from the rest but cannot 

support it with solid data or reasoning from the point of view of the rest of the 

experts, should be weighted low. Budnitz et al. (1998) suggest that the experts 

are a sample of the population of expertise and there can be a case that the 

sample is not representative.  

4.3.3.2.2.2 Working with Individuals 

The following discussion deals with the elicitation of probabilities and parameters 

without having the experts directly interacting with each other. Nevertheless, 

these methods can be used in combination with the group work (Budnitz et al., 

1998). 

Delphi method (Clemen and Winkler, 1999b; Pill, 1971) is a the widely known 

method that combines expert elicited values . The objective is to get values about 

something within the area of expertise of each and then combine these values to 

a final single that results from consensus. Anonymity, controlled feedback and 

statistical group response are its core features. Controlled feedback aims to help 

reach a consensus, while the statistical group response aims to let the 

participants understand that their opinions are represented in the final report. 

Furthermore, the ritual of a structured procedure is both a useful device for 
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facilitating the thinking and increases the level of acceptability of the results. The 

usual approach to combining the elicited values and to looking for a consensus 

has been to use either the groups’ median or average and provide them back as 

a feedback hoping for reconsiderations and gradual revisions towards a 

consensus; since a single value per question is required, consensus is critical.  

DeGroot (1974) suggested a variant of the method to help with the issue of 

verifying consensus. His approach involves asking each expert to provide both 

the requested value and a weight that reflects the importance of each of the 

participants including her/himself in the elicitation of the specific value. If there 

are 𝑘 individuals asked, then create a 𝑘 𝑏𝑦 𝑋 𝑏𝑦 𝑘 matrix 𝑃 where its rows are 

each individual and each column is the respective assigned weight. Providing 

𝐹𝑇 = (𝐹1, 𝐹2, … , 𝐹𝑘) values (𝐹𝑇is the transposed vector of 𝐹) for the asked 

parameter, a combined output 𝐹(1) = 𝑃𝐹. Given mainly that the system of value 

revisions is assumed to form a Markov chain with 𝑃 being its transition matrix, 

DeGroot (1974) showed that there is eventually a convergence/consensus as the 

number of revisions increase, 𝑛 → ∞. The resulting value of 𝐹(𝑛) = 𝑃𝑛𝐹

is 𝑙𝑖𝑚𝑛→∞𝐹𝑖 𝑛 = 𝐹∗, 𝑖 = 1,2, … . , 𝑘, i.e. each individual eventually ends-up with the 

same value 𝐹∗. The value is 𝐹∗ = 𝜋𝐹,  with 𝜋 = (𝜋1, … , 𝜋𝑘) the stationary 

probability vector whose components are calculated by solving the system of 

equations 𝜋𝑃 = 𝜋 and ∑ 𝜋𝑖 = 1𝑘
𝑖=1 . The assumptions suggested by DeGroot 

(1974) for a consensus to be reached were: 

 There is at least one column with positive integers in at least one of the 𝑃𝑛

iterations. This assumption says that there is at least one individual whom 

all participants recognize that her opinion has a non-zero weight

 During the iterations, the individuals are informed of the values assigned 

by others and as a result change their initial values 𝐹𝑖 for the parameter 

asked in such a way that the revised value is a linear combination of 

everybody’s values and her assigned weights. So, after the first iteration, 

individual’s 𝑖 revised value would be: 𝐹𝑖1 =  ∑ 𝑝𝑖𝑗𝐹𝑗
𝑘
𝑗=1 , with 𝑝𝑖𝑗 the weight 

that he/she has assigned to individual 𝑗
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 In the iterations that follow, each individual finds no reason to be 

inconsistent with her original weights assignment distribution

Other studies relaxed the assumptions above, and resulted in non-linear 

problems which, owing to their complexity, they investigate the process using 

simulations (Douven, 2010; Hegselmann and Krause, 2002). However, due to the 

time constraints of the SMEs and the convenience provided by the linear 

assumption, the results of Clemen and Winkler (1999b) are more practical to 

apply. Furthermore, DeMarzo, Vayanos, and Zwiebel (2003) and Chandrasekhar, 

Larreguy, and Xandri (2015) show that updating behaviour is better captured by 

the repeated averaging models than by more complicated rules. The 

assumptions needed in order to increase the probability of convergence are that 

the number of individuals is large and there is no agent that is too popular or 

influential. 

When coming to the problem of how to elicit the numerical values from each SME, 

there are many issues regarding the way that people think and feel. Individuals 

estimate the likelihood of an event by the use of certain heuristics. The problem 

though is that these same heuristics which help individuals provide the 

information are prone to biases like the overconfidence bias, insensitivity to 

sample size and to prior probabilities, misconceptions of chance etc. (Fenton and 

Neil, 2013). There are a number of methods designed to supress the effect of 

biases (Wiegmann, 2005): 

 Gamble methods: The individual is presented with a lottery on which the 

outcome depends on the probability set by the facilitator and a lottery on 

which the outcome depends on the probability of what is asked. The 

individual is then asked to choose. The facilitator changes the probability 

of the first lottery’s outcome until the individual asked is indifferent between 

either of the two choices. The resulting probability is the finally elicited 

value. The problems that this approach presents are that it can be time-

consuming, depends on the risk attitude of the individual, and can be 

sometimes difficult to conceive especially when the asked questions are 

about very rare events. The risk attitude effects can be reduced if instead 
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of two lotteries, the individual is presented to a spinning wheel - a pie chart 

- with the percentage of the areas of each event equal to the tested 

probability. However, this method is still prone to certain heuristic biases 

and it is again time consuming. 

 Hierarchical methods: Using the Analytical Hierarchy Process (AHP) 

(Monti and Carenini, 2000; Saaty, 1980) the probabilities are elicited by 

comparing the chances of each possible pair of events. AHP method in 

general provides a measurement of the consistency of the results and also 

the individual is given that measurement to refine her outputs. However, 

there are many pairs that need to be compared and some of them are too 

different and thus hard to analogise. In the same class of methods, 

Druzdzel and Gaag (2000) developed an approach which recognizes that 

the information might exist in either a qualitative or a quantitative form and 

with different magnitudes of precision. The basic idea is that the true 

distribution of probability values of a variable lies within a distribution 

hyperspace of all possible probability distributions. The individual can 

provide either a qualitative or a quantitative estimate depending on which 

of the two would make her/him more comfortable. Information provided 

expresses a constraint and under the assumption that all probability 

distributions that are compatible with the provided information are equally 

likely, they define a system of (in)equalities and derive second-order 

probability distributions to determine the most likely one. 

 Frequency estimation methods: Various studies have indicated that 

individuals find it easier to provide values estimated in a frequency format 

rather than in a probability format (Gigerenzer et al., 1995). The individuals 

are asked to provide the number of times that they would expect an event 

to occur out of some multiple of ten, usually on a graphic scale that is fast 

and easy to understand. Linda C van der Gaag et al. (1999) realised the 

need for either a quantitative or qualitative alternative to express the 

values, and developed a scale that uses both numerical and verbal 

anchors on each side. That scale was used to elicit the probabilistic 

information sought by the experts and provided the additional benefits of 
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being easy to use, closer to their usual cognitive processes and being able 

to handle multiple variables in a relative small time. However, this scaling 

approach occasionally tends to be inaccurate and prone to scaling biases. 

In the problems of interest to the present research, the experts’ availability and 

the easiness of use of the method are very important factors in choosing an 

eliciting approach. An important pre-step to increasing the reliability of the outputs 

is to train the experts before the actual application of the method (van der Gaag 

et al., 2002). This can be accomplished by explaining and trying out the approach 

on familiar, everyday topics with the objective to verify that the approach is 

equally well understood by all participants. Another important consideration is the 

way that the scenario’s context with the values of the parents are presented to 

the experts for their estimate on the (conditional) frequency of the value of a child. 

The fragments of texts used to describe what is required by the experts, are 

easier to relate to when presented as likelihood / chance instead of frequency. At 

the same time, it is helpful for the comparison to present the whole NPT values 

needed on the same page. 

Of course, any subjective method has the risk of being inaccurate. However, the 

level of inaccuracy depends on the problem’s context and the problem itself, so 

a sensitivity analysis would reveal the variables that are of interest to focus the 

data collection efforts more (Fenton and Neil, 2013, Chapter 8). The suggested 

approach then is to use the elicitation of the values using the probability scale 

with numerical and verbal anchors as a first step, execute a sensitivity analysis 

and then refine the results of the variables that are of higher interest. 

4.3.4 Validating the BN model 

The BN model, after being populated by the NPTs needs to be verified and 

validated to see if the BN is a faithful model, i.e. whether the BN graph represents 

the independencies that exist among the variables and also that it represents the 

dependencies that exist. Approaches to establish such an evaluation include 

(Mahoney and Laskey, 1996; Neil et al., 2000): 

 See if key variables’ marginal NPTs match known distributions 

 Compare opinions from different SMEs 
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 Overall review of the definitions of the nodes, their states and the 

independence assumptions 

 Do an importance analysis of a number of selected focal nodes in order to 

identify the effect of changes of the values of / to peripheral nodes 

 Do the above using different scenarios 

 Do the above using typical, infrequent, and unanticipated conditions 

4.4 Discretisation 

4.4.1 Variables in the BN Models 

The variables that can potentially participate in the demand forecast models are 

not just categorical like the environmental conditions or the types of inventory 

policies, but can also be also numeric. These include continuous variables, with 

some of the obvious ones being the operating hours that a system’s component 

has, the duration of the repair activities and the duration of the resupplying of the 

inventory. Furthermore, in the non-categorical set of variables, one can also have 

discrete variables, like the number of repair equipment that are installed in a 

depot and the number of mechanics that are working.  

There are a number of advantages in keeping the numerical nature of the 

variables. One important advantage is that the numerical variables carry more 

information than the categorical. The numerical variables have the attributes of 

the categorical, i.e. each value is a different “state”, but additionally each value 

has a certain order as compared to any other and finally, two different values 

have a different distance from a third. However, a number of the common 

applications of BNs require that all variables used are categorical, i.e. they have 

a finite set of discrete states. 

There are of course applications of the BNs in which the variables are indeed 

numeric. One such case is the Gaussian Bayesian Networks. In these networks 

all the variables are assumed to follow the normal distribution while the network 

expresses a Multivariate Gaussian Distribution. Nevertheless, Gaussian 

Bayesian Networks make the assumption that all modelled variables are 

continuous and follow a Normal distribution and thus cannot be used for the 
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present research cases where the set of factors can also include categorical 

variables or cannot be well approximated by the normal distribution (e.g. the time 

to experience a failure for a component). On the other hand, there are the Hybrid 

Bayesian Networks that can handle a mixture of variables. 

Hybrid12 Bayesian Networks are a very powerful type of BN models due to their 

ability to handle a mixture of types of variables and thus extend their applicability 

(Margaritis, 2003; Stefano Monti and Cooper, 1998a; Scutari and Denis, 2015a, 

Chapter 2). The joint probability distribution that such a model expresses can be 

estimated by the use of Markov Chain Monte Carlo (MCMC) methods (Fenton 

and Neil, 2013, Chapter 9; Scutari and Denis, 2015a, Chapter 3). Another equally 

interesting approach to combining the mixture of variables in a Hybrid BN is by 

the use of Dynamic Discretisation (Fenton and Neil, 2013, Chapter 9; Neil, Tailor, 

and Marquez, 2007). However, the learning of the Hybrid Bayesian Networks 

structure from data is not as efficient as the equivalent of the conventional BNs 

in which all variables are multinomial (Stefano Monti and Cooper, 1998b), and  it 

has not been widely used (see Monti and Cooper (1998a)). Consequently, there 

is still a need to rely on subject matter expertise for the development of the 

structure. Nevertheless, as shown earlier in Chapters 2 and 3, it is not easy to 

find SMEs with a solid understanding of the width and spread of a multifunctional 

system such as the SC. 

What now follows, is a discussion about modelling challenges in the use of 

numeric and categorical variables in models like BNs. This is followed by a 

discussion about the different methods of discretisation that were considered for 

the problems being investigated in this research. 

4.4.2 Discretisation Challenges 

A general ascertainment is that numeric variables’ investigation can be 

problematic due to the number of degrees of freedom that can inherently exist in 

12 Not to be confused with the use of the term “hybrid” in some of the models that developed in the 
present research (for the list of models see Sections 1.4, 7.2.3 and 7.3.3). In those cases the term refers 
to the BN’s DAG structure-identification approach, while here it refers to the type of variables used 
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arbitrary numeric distributions (Hartemink, 2001). This fact increases the 

dimensionality of the problem of learning the structure of a BN model from data 

and thus is in the root causes of the increased difficulty in doing so when numeric 

variables are included in the variables’ set. Furthermore, given that the amount 

of usable data that might be available can potentially be comparatively limited, 

there is a need to find ways of reducing the dimensionality of the models that are 

developed. 

The dimensionality can be reduced either by making parametric assumptions 

about the distribution of the numeric variables, or by discretising them into a small 

number of intervals where each interval is mapped to a level/category. However, 

choosing the discretisation alternative means that the information inherently 

carried by the numeric variable, namely the ranking among the values and the 

relative distance between them, is lost since the mapping produces simple 

categories with the only attribute maintained being that they are mutually 

exclusive. Furthermore, the resulting model might not be sensitive to new 

situations that have not been included to the dataset that has been used for its 

development. Nevertheless, the preference here is to use discretisation in the 

development of the BNs for the following reasons (Hartemink, 2001)`: 

1. Discretisation reduces the dimensionality of the problem and thus 

unsupervised learning algorithms can be used in order to provide a 

mapping of (hopefully) the majority of the relationships among the 

variables to be modelled 

2. The records kept in the logbooks are just snapshots of the variables’ 

values when that recording was made. Eventually, in order to preserve the 

continuity of the numeric variables there is either a requirement to make 

distributional assumptions or if empirical distributions are preferred, then 

there is a need to interpolate between the recorded values or to 

extrapolate beyond their range 

3. Discretisation in general introduces a means of robustness against error 

that can arise during measurement or recording 

4. It seems that the relationships between some of the numeric variables and 

related categorical ones can stimulate reasonable approximations of their 
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values by the use of qualitative statements. So, for example certain ranges 

of hours worked for a component can be characterised as “High” as 

compared to the related variable that includes the event of a breakdown 

and to the variable of preventive maintenance that includes the event of a 

component’s replacement. Certainly, such characterisations can be 

considered as simplifications and that other non-linear relationships over 

the numeric spectrum would be able to distinguish more detailed 

interactions between the factors. However, a good discretisation is likely 

to capture most of the qualitative sense of the relationships and indeed 

this is what the discretisation algorithms try to do 

5. Discretisation can be the initial step that can help us understand the 

relationships and build a first model, but then it can be followed by another 

iteration that uses more intervals or even consider numeric levels 

6. When it is not clear which distributions to choose in order to model the 

numeric sampled variables then discretisation has the potential to produce 

better models 

4.4.3 Definitions 

While wanting to limit the range of the numeric variable to a set of discrete 

categories, these categories need to have a (discrete) numerical mapping in the 

set of integers. The reason being that it is desirable for the categories to have 

numerical values related to them in order to develop and use algorithms that 

optimise the number and the boundaries of these categories. 

Therefore, the following definition (Hartemink, 2001) is provided in order to be 

used in the discussion of the methods: If 𝑥𝜖ℝ𝑁 (or 𝑥𝜖ℤ𝑁) is a sorted, real valued 

vector with size 𝑁, its discretisation is an integer vector 𝑑 that has the same length 

as 𝑥 and which satisfies the following properties: 

 For some integer 𝐷 ∈ ℕ∗ each element of 𝑑 is in the set of {0,… , 𝐷 − 1}

 𝑑𝑖 ≤ 𝑑𝑗 if and only if 𝑥𝑖 ≤ 𝑥𝑗 for all 𝑖, 𝑗

If additionally the first element in the space of 𝐷 is equal to 0 and the last is equal 

to 𝐷 − 1 then the discretisation is also called spanning (Hartemink, 2001).  
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The discretisation policy of degree D is defined as a vector 𝛬 with real values that 

has length 𝐷 + 1 and has the following properties: 

 Its elements are all ordered, i.e. ∀ 𝑖 < 𝑗, 𝛬𝑖 < 𝛬𝑗

 It includes all the real numbers, i.e. 𝛬0 = −∞,𝛬𝐷 = +∞

In essence the elements of 𝛬 delineate the left and right boundaries of the 𝐷

intervals of the discretisation. Consequently, a discretisation under the defined 

policy results in the following mapping of the real vector  𝑥 to the integer vector 𝑑: 

𝛬𝑗 < 𝑥𝑖 ≤ 𝛬𝑗+1 ⇔ 𝑑𝑖 = 𝑗,            ∀ 𝑖 ∈ {0,… , 𝑁 − 1}, 𝑗 ∈ {0,… , 𝐷 − 1}

4.4.4 Interval Discretisation 

Interval discretisation (or equal-width intervals) is a simple type of discretising 

numeric variables. In the interval discretisation, the area between the 1st and last 

element of 𝑥, i.e.[𝑥0,𝑥𝑁−1 ] is divided in 𝐷 equal intervals, irrespective of the in 

between values, and then the elements of 𝑥 are distributed between these 

intervals: 

𝑥0 +
𝑗(𝑥𝑁−1,𝑥0)

𝐷
< 𝑥𝑖 ≤ 𝑥0 +

(𝑗+1)(𝑥𝑁−1,𝑥0)

𝐷
 , for  𝑖 ∈ {0,… ,𝑁 − 1} and 𝑗 ∈ {0,… , 𝐷 − 1}

respectively. 

The boundaries of the above discretisation can be expressed as following policy 

vector: 

𝛬 = (−∞, 𝑥0 +
𝑥𝑁−1 − 𝑥0

𝐷
, 𝑥0 + 2

𝑥𝑁−1 − 𝑥0
𝐷

,… , 𝑥0 + (𝐷 − 1)
𝑥𝑁−1 − 𝑥0

𝐷
, +∞)

4.4.5 Quantile Discretisation 

Quantile discretisation (or equal-frequency) is another simple type of discretising 

numeric variables. In contrast to the interval discretisation, in this method the 

number of values between the 1st and last element of 𝑥 are taken into 

consideration and thus 𝐷 intervals are chosen in such a way that there are equal 

number of observations in each. In essence the choice of the interval is defined 

by the index of the 𝑥’𝑠 element given of course that the elements are sorted. So, 

if the real vector 𝑥 is of size 𝑁, the 𝑖𝑡ℎ observation is allocated to interval 𝑗𝑡ℎ as 

follows: 
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⌊
𝑗𝑁

𝐷
⌋  < 𝑖 ≤ ⌊

(𝑗+1)𝑁

𝐷
⌋, for  𝑖 ∈ {0, … , 𝑁 − 1} and 𝑗 ∈ {0,… , 𝐷 − 1} respectively. 

The boundaries of the above discretisation can be expressed as following policy 

vector (observe that the boundaries are now defined by the indices of 𝑥 through 

the ratio of 𝑁 the number of elements in 𝑥 over D the degree of discretisation): 

𝛬 = (−∞,

𝑥
⌊
𝑁
𝐷
⌋
+ 𝑥

⌊
𝑁
𝐷
⌋+1

2
,

𝑥
⌊
2𝑁
𝐷
⌋
+ 𝑥

⌊
2𝑁
𝐷
⌋+1

2
, … ,

𝑥
⌊(𝐷−1)

𝑁
𝐷
⌋
+ 𝑥

⌊(𝐷−1)
𝑁
𝐷
⌋+1

2
, +∞)

Contrasting these two simple approaches, quantile discretisation takes into 

consideration only the order of 𝑥’𝑠 elements while interval discretisation accounts 

for their distance as well. However, interval discretisation creates intervals of 

equal length. On the other hand, this same attribute can lead to certain allocated 

value areas not to be represented at all by the data in 𝑥.  

These algorithms can produce a reasonable abstraction of the recorded numeric 

data (Kerber, 1992). However, in multivariate studies the variables are often not 

considered individually. For example, the numeric variable number of hours that 

a subsystem or component has operated is related to the categorical variable 

preventive maintenance incident since the former can be used to inform 

preventive maintenance activities. If the modeller decides to discretise the 

numeric variable without considering its context-relation to the categorical, then 

some of the mutual information will be lost. The same challenge is faced when 

more two or more numeric variables that are associated to each other. An 

example of such a case is between the numeric variables duration of a resupply 

order and duration that a component stays in the repair shop. In this case, the 

latter is affected by the former and thus, discretisation should take their 

relationship into consideration. 

Consequently, doing discretisation in isolation does not preserve the predictability 

of the one variable over the other, which is information that existed before 

discretising them. There are two general approaches to discretising numeric 

variables by considering their associations with other variables; static and 

dynamic. 
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Static discretisation is performed as a preparation step before the development 

of the BN. The main advantages of a static discretisation are that the work needs 

to be done only once and that unsupervised BN-structure learning algorithms can 

be applied with fewer computational limitations (Hartemink, 2001; Stefano Monti 

and Cooper, 1998b) since they have to deal with only the unchanging multinomial 

distributions for all variables involved. On the other hand, with the dynamic 

discretisation the benefit is that it is not as restrictive as the multinomial 

distributional assumption for all the variables and therefore the BN model can 

better preserve the information carried by them (Aven, 2016), given of course that 

the distributional assumptions for all the variables are correct. However, as 

mentioned earlier, the existing unsupervised BN-structure learning algorithms 

that use datasets which are both numeric and categorical are not as efficient 

(Hartemink, 2001; Stefano Monti and Cooper, 1998b). Moreover, to the best of 

the author’s knowledge, most of the commercially available BN structure 

unsupervised learning packages require all the variables to be 

categorical/discretised in a static manner. 

The following sections discuss a number of algorithms which perform 

discretisation of numeric variables by associating them to a categorical 

(ChiMerge and mdlp), and of numeric variables by associating one of them to the 

rest (Hartemink), with the aim to preserve the relative information carried in each.  

4.4.6 ChiMerge Discretisation 

ChiMerge algorithm (Kerber, 1992) is one of the first algorithms that performs the 

discretisation as a pre-processing step (i.e. statically) and not dynamically as the 

model-development algorithm runs.  

The idea is that a sorted vector 𝑥𝜖ℝ𝑁 (or 𝑥𝜖ℤ𝑁) that needs to discretise by 

associating it with an equally sized set 𝐶 that includes elements of categorical 

nature. The number of categories included in 𝐶 is 𝑐. The vector 𝑥 is initially 

discretised by placing one interval for each of its 𝑁 elements (i.e. initially 𝑁 = 𝐷). 

From then on, the algorithm is composed of two steps repeated sequentially: 

1. For each adjacent interval the 𝜒2 value is computed as follows: 
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𝜒2 = ∑ ∑
(𝑂𝑘𝑚 − 𝐸𝑘𝑚)2

𝐸𝑘𝑚

𝑐

𝑚=1

2

𝑘=1

Where: 

𝑘 is the index of the number of intervals that are compared (the adjacent 2) 

𝑚 is the index of the number of classes 

𝑐 is the number of classes of the categorical variable that is associated to 𝑥

𝑂𝑘𝑚 is the number of 𝑥 elements in  𝑘 𝑡ℎ interval that correspond to the  𝑚𝑡ℎ  class 

𝑅𝑘 is the total number of 𝑥 elements in  𝑘 𝑡ℎ interval, i.e. 𝑅𝑘 =  ∑ 𝑂𝑘𝑚
𝑐
𝑚=1

𝐿𝑚 is the number of 𝑥 elements of the  𝑚 𝑡ℎ class in both intervals, i.e. 𝐿𝑚 =

∑ 𝑂𝑘𝑚
2
𝑘=1

𝑛 is the total number of 𝑥 elements in both intervals and it is equal to 𝑛 = ∑ 𝐿𝑚
𝑐
𝑚=1

𝐸𝑘𝑚 is the expected frequency of the 𝑥 elements in  𝑘 𝑡ℎ interval that correspond 

to the  𝑚𝑡ℎ  class, i.e. 𝐸𝑘𝑚 =
𝑅𝑘𝐿𝑚

𝑛

2. After calculating all 𝜒2 values, merge the pair of adjacent intervals with the 

lowest 𝜒2

The algorithm stops when a user-defined threshold 𝜒2 value has been exceeded. 

In this algorithm - it can be observed that, the use of the 𝜒2 test is partly driven 

by the chosen bottom-up approach, i.e. to start by creating a partition for all the 

elements of 𝑥. There are several static discretisation algorithms that have been 

developed (Chmielewski and Grzymala-Busse, 1996; Gonzalez-Abril, Cuberos, 

Velasco, and Ortega, 2009; Huan Liu and Setiono, 1997). The algorithm describe 

next follows the reverse approach which is top-down. It is an efficient algorithm 

that has is applied in the R environment through the discretise package (Kim, 

2012), using the mdlp (Minimum Description Length Principle) function. 

4.4.7 MDLP Discretisation 

Once again, it is assumed that a sorted vector 𝑥𝜖ℝ𝑁 (or 𝑥𝜖ℤ𝑁) and a related set 

𝐶 with categorical values exist. The mdlp algorithm chooses a cut-point 𝑇 that 
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divides 𝑥 into two parts by looking for a candidate 𝑇 through the evaluation of the 

whole range of points in 𝑥. The candidate cut-point 𝑇 is placed between every 

pair of values in 𝑥 and therefore there are 𝑁 − 1 evaluations in order to pick the 

“best”. The criterion that is used in this algorithm is the information entropy that 

the algorithm tries to minimize in 𝑥 given 𝐶. 

If  𝑝(𝐶𝑚, 𝑆1) is the proportion of elements in the subset 𝑆1 ∈ 𝑥 that are associated 

to the class 𝐶𝑚, then the entropy of this subset 𝑆1 is defined13 as 𝐻(𝑆1) =

− ∑ 𝑝(𝐶𝑚, 𝑆1)log2 (𝑝(𝐶𝑚, 𝑆1))𝑐
𝑚=1 . What the specific metric provides can be 

understood if the concept of “entropy” is taken as the “lack of predictability” 

(Oxford University online dictionary, 2018b). Entropy, in the present research’ 

context of associating a class 𝐶𝑚 to a specific value in 𝑆1, can be understood the 

“surprise” of seeing such an association. Consequently, the higher the estimated 

probability (proportion) 𝑝(𝐶𝑚, 𝑆1) the lower the surprise. Therefore, since the 

higher −log (𝑝(𝐶𝑚, 𝑆1) is, the higher the “surprise”, the measure of the entropy 

𝐻(𝑆1) expresses the average of the “surprise” of having a certain set 𝑆1. 

Accordingly, the algorithm searches for the specific 𝑇 that partitions x in  𝑆1

and 𝑆2, so that their average entropy is minimised: min(𝐻(𝑥, 𝑇) =
|𝑆1|

|𝑥|
𝐻(𝑆1) +

|𝑆2|

|𝑥|
𝐻(𝑆2)). 

One could think that the algorithm is inefficient since it searches for 𝑇 𝑁 − 1 times 

as it was stated earlier. However, as Fayyad and Irani (1993) show, a value for T 

found through the minimisation of  𝐻(𝑥, 𝑇) is always between two different classes 

and thus the number of searches are reduced since it leaves out searches in 

subareas of 𝑥 that are associated to the same class. 

The top-down approach continues by bisecting the parts through recursively 

applying the algorithm to the optimum subsets  𝑆1 and 𝑆2. In contrast to the 

ChiMerge that were discussed earlier, the mdlp algorithm uses the Minimum 

Description Length Principle criterion to stop the partitioning (Fayyad and Irani, 

1993; Liu, Hussain, Tan, and Dash, 2002; Ross Quinlan and Rivest, 1989). The 

13 The same notation is used as in the previous algorithm 
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criterion suggests that partitioning of 𝑥 does not continue when the information 

gain as estimated by 𝐺(𝑥, 𝑇) = 𝐻(𝑥) − 𝐻(𝑥, 𝑇) - i.e. the algebraic difference 

between non-partitioning x and partitioning it in  𝑆1 and 𝑆2 – is less or equal 

to
𝑙𝑜𝑔2(𝑁−1)

𝑁
+

𝑙𝑜𝑔2(3𝑐−2)−[𝑐𝐻(𝑥)−𝑐1𝐻(𝑆1)−𝑐2𝐻(𝑆2)]

𝑁
, with 𝑐 the total number of classes 

corresponding to the whole 𝑥, 𝑐1 and 𝑐2 the number of classes corresponding to 

 𝑆1 and 𝑆2 respectively. 

The previous two algorithms that were partitioning the numeric vector x by using 

its association to a categorical vector 𝐶. However, in the problem cases that are 

examined in the present research, there are variables that are associated and 

which can be only numeric. For example, the hours flown of two components of 

a system are both numeric and are associated since they both refer to the usage 

of the same system. In such cases what is wanted is to preserve as much of the 

mutual information that exists between the pair of variables as possible. For these 

cases the present research has adopted Hartemink’s discretisation algorithm 

(Hartemink, 2001) that is also embedded in the bnlearn package in R (Nagarajan 

et al., 2013; Scutari and Denis, 2015a), one of the packages that was used in the 

present study in order to build the BNs. 

4.4.8 Hartemink Discretisation 

Similarly, to algorithms like ChiMerge, Hartemink’s algorithm uses a bottom-up 

approach and it is also a supervised algorithm in the sense that the user needs 

to choose and define certain attributes. For reasons to be subsequently 

explained, n this specific case the attributes that the user needs to choose are 

the stopping criteria and the number of initial intervals. 

In order to be able to deal with the set of variables under consideration that are 

numeric, the user needs to define a number of intervals/breaks that each of the 

variables is going to be partitioned initially using quantile discretisation. The 

choice of quantile as compared to interval discretisation is supported by the fact 

that quantile retains more information (Hartemink, 2001). The number of breaks 

is usually chosen to be large so that there is not any unwanted merging between 

the elements of the variable before the algorithm starts (Scutari and Denis, 

2015a).  
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Subsequently, the algorithm is composed of two loops. There is an outer loop 

which just reduces the number of intervals until the final number which is 

predetermined by the user. This has the role of the stopping criterion. The inner 

loop is the one in which suggested merging is evaluated and eventually decided 

using the Total Mutual Information score as a metric for the evaluation. 

The Total Mutual Information score is defined as the sum of the mutual 

information between all pairs of variables (Hartemink, 2001). The mutual 

information among two variables 𝑋 and 𝑌 is a metric that is defined as: 

𝐼(𝑋, 𝑌) = ∑ ∑ 𝑝(𝑥, 𝑦)𝑙𝑜𝑔2𝑥∈𝑋𝑦∈𝑌 (
𝑝(𝑥,𝑦)

𝑝(𝑥)𝑝(𝑦)
)

As compared to the entropy mentioned earlier, the mutual information metric 

instead of the logarithm of the joint probability, uses the log of the ratio of the joint 

over the two marginal. If the two variables are independent this ratio is equal to 

unity and therefore the logarithm is zero, an output which expresses the lack of 

mutual information due to the independence. Consequently, the ratio compares 

the joint probabilistic relation of the two variables over their joint relation under 

the assumption of independence.  

At each step with the inner loop, for each variable in the set, each pair of the 

neighbouring intervals are merged in turn and the Total Mutual Information score 

between the variable under consideration and all the rest of the variables that are 

to be discretised is calculated and it is compared to the respective value if the 

merging would not take place. The pair that is chosen to become a single interval 

in the specific variable is the one that produces the lowest reduction to the value 

of the Total Mutual Information. In order to avoid the effect of the order that the 

variables are worked, none of the merging takes place before all the variables 

have been considered. 
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4.5 Logistic Regression 

4.5.1 Characteristics of the (Binary) Logistic Regression Models 

The (binary14) logistic regression model belongs to the family of multiple 

regression models but with a response variable that is categorical and can take 

only two values/categories, as compared to the multinomial or polychotomous 

logistic regression with which one wishes to forecast the membership of more 

than two categories. 

In a general multiple regression model, the response variable 𝑌𝑖 can be estimated 

by the straight line formed from the sum of a given set of covariates 𝑋𝑗𝑖: 

𝑌𝑖 = 𝑏0 + 𝑏1 𝑋1𝑖 + 𝑏2 𝑋2𝑖 +⋯+ 𝑏𝑛 𝑋𝑛𝑖 + 𝜀𝑖

, in which the 𝑏𝑗 is the regression coefficient of the corresponding covariate 𝑋𝑗𝑖. In 

logistic regression, instead of providing a forecast for the value of the response 

variable given the values of the model’s covariates, the forecast is for the 

probability of occurrence of one of the two categories of 𝑌. In essence, the model 

gives the exponent in the following function: 

𝑝(𝑌) =  
1

1 + 𝑒−(𝑏0+𝑏1 𝑋1𝑖+𝑏2 𝑋2𝑖+⋯+𝑏𝑛 𝑋𝑛𝑖)

In order to be able to use the linear model of the common regression model, 

instead of the binary-categorical output, use the natural logarithm of the ratio of 

the odds of experiencing one of the two values over the other. The name of this 

logarithmic ratio is 𝑙𝑜𝑔𝑖𝑡: 

𝑙𝑜𝑔𝑖𝑡(𝑝) = log (
𝑝(𝑌)

1 − 𝑝(𝑌)
) = 𝑏0 + 𝑏1 𝑋1𝑖 + 𝑏2 𝑋2𝑖 +⋯+ 𝑏𝑛 𝑋𝑛𝑖

Eventually, given that the output of the above model is the 𝑙𝑜𝑔𝑖𝑡, take its exponent 

on the natural base to get the odds ratio, which can then give the 𝑝(𝑌)

14 For the rest of the present work, logistic regression refers to the binary 
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4.5.2 Assumptions 

The logistic regression has similar assumptions to the general multiple 

regression: 

 Linearity: assume that the 𝑙𝑜𝑔𝑖𝑡 can be modelled by the linear relationship of 

its predictors 

 Independence of errors: This is a general assumption for the datasets that is 

required to be used in the BN models built for the current research as well. It 

suggests that the cases within the dataset are not related (are exchangeable 

- for a discussion on exchangeability see e.g. Gelman et al (2014, Chapter 1)) 

4.6 SMEs’ Judgemental Adjustments of a Model’s Forecasts 

The adjustments of a model’s forecasts by the SMEs is something considered in 

the present thesis due to its wide applicability in industry (Christopher, 2016; 

Fildes et al., 2009; Makridakis, Wheelwright, and Hyndman, 2008, Chapter 11), 

and also due to the fact that decision makers tend to adjust, given knowledge 

about the future context (Fildes et al., 2009). 

4.6.1 Single Exponential Smoothing (SES) 

The forecasting models that are commonly used in the industry are types of time-

series statistical models. There are several reasons that this practice is common. 

Firstly, time series are relatively easy to produce since they usually rely on simple 

functions. Secondly, there is no need to store a large amount of data in order to 

train models and update them. Thirdly, given the very large number of different 

spare parts for which a forecast is needed, a common practice is to forecast in 

segments according to their common historical demand behaviour. This is 

something that is done very easily when only past time series demand data are 

used as predictors of future demand. 

In the cases examined in the present research, it was decided to use the Single 

Exponential Smoothing Model (SES). SES is a very commonly used time-series 

model which has occasionally demonstrated very good results in forecasting 

competitions (Makridakis and Hibon, 2000). 

�̅�𝑡+1 =  𝛼𝑑𝑡 + (1 − 𝛼)�̅�𝑡
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, where �̅�𝑡+1 is the forecast demand value provided for time 𝑡 + 1, 𝑑𝑡 is the 

demand experienced at time 𝑡 and 𝛼 is the weight considered for the experienced 

data point. The current research uses the per month recorded number of 

demands of the training dataset in the “tsintermittent” package in R. 

4.6.2 Forecasts’ Judgemental Adjustments 

Given the amount of changes that can take place during the final phase of the 

operations, one would expect that at least the uninformed forecasts provided by 

SES to be judgmentally adjusted by SMEs. 

As Makridakis, Wheelwright, and Hyndman (2008, Chapter 10) state in 

judgmental adjustments the challenge is to combine the statistical outputs with 

the best aspects of the SMEs’ judgements, while at the same time avoiding the 

human biases. 

4.6.2.1 Dealing with Judgmental Biases 

 There are a number of judgmental biases that can affect judgemental forecasting 

(Goodwin and Wright, 2014, Chapter 10; Makridakis et al., 2008, Chapter 10). 

The first bias is that of "inconsistency”. This bias refers to SMEs changing their 

decisions when there is no clear reason, or in other words, they are unwilling or 

unable to apply the same criteria or procedures when making similar decisions. 

The reasons can be multiple: not being able to recall the criteria that they used, 

or the steps taken in the past, being influenced by mood, wanting to try something 

new or even explaining some signals as indicators of an influential change in the 

forecast’s context when in reality there was no such case. 

The bias of “inconsistency” can be reduced by formalising the processes used for 

the decision making. This can be done by identifying first the influential factors, 

give them a weight of importance to the forecast and evaluate them. The latter 

step is indeed very important. It is the monitoring that can compare historical 

performance of the rules to the new situation and thus identify possible trends. 

Furthermore, the evaluation of whether a calibration worked, or it did not should 

be applied in order to activate and maintain the process of learning. Indeed, if 

learning does not take place, there is a different bias, that of “conservatism”. 
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“Illusory correlations” bias is when the SME considers the associations between 

the output of interest and some factors, when they are really just correlated 

through a confounding factor. This bias can also be accompanied by the “search 

for supportive evidence” bias in which the SME chooses which facts support a 

certain output while disregards the rest. A way to reduce them is similar to what 

it was discussed above, i.e. by verifying the patterns of the relations between the 

variables that are thought to be influential and the forecast output. 

“Optimism” is another bias in which people prefer and thus forecast what they 

think is better for them, and which can also lead to underestimating the 

uncertainty about the future (“underestimating” bias). Diversifying and increasing 

the number of participants in the forecasting process can help in the reduction of 

such a biases. 

Combining a judgements approach to reducing biases can be done either with 

each SME in isolation (see earlier discussion on the Delphi method in section 

4.3.3.2) or as a group. The first approach is too time-consuming for the required 

purposes of getting demand forecasts for many components. On the other hand, 

the second can introduce a different kind of bias, that of groupthink. The 

“groupthink” bias appears when the members of a group tend to be supportive of 

dominant personalities and of each other, in order to avoid conflict during the 

meetings (Makridakis, Wheelwright and Hyndman, 2008). 

A related bias to group thinking is that of "success/failure”. This takes place when 

one believes that either of the two is attributable to unique personal qualities. 

Encouraging the benefits of learning from errors is a way that can help towards 

to reduction of such a bias. 

“Recency” bias appears when more recent events are given a higher weight than 

the older events, while another related is that of “availability” in which the events 

that can more easily be recalled are given a higher weight. Both of these biases 

can be reduced if a sound argument is presented to support the suggestions. 

This remedy approach can be applied to the "anchoring” bias as well in which the 

SME is influenced by improper initial information. Furthermore, in order to reduce 
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the anchoring bias, SMEs can be presented by being initially given the model’s 

forecast. 

“Regression effects” can also appear when just by chance there can be persistent 

unidirectional changes which can be considered as indications of an existing 

trend. In such cases, one could try to support both the “is” and “is not” arguments 

in order to see whether to support the case of a true change. 

Finally, another important judgemental bias is that of “conventional Wisdom” 

when this is supported just by unfounded beliefs. Again, developing an 

argumentative causal chain that is verifiable can help in the challenge of such a 

bias. 

4.6.2.2 Combining Model Forecasts with Judgements 

Makridakis et al. (2008, Chapter 10) suggest starting with reducing the anchoring 

bias by giving each of a group of SME participants a folder with values relevant 

to the forecast. The participants are made clear that even though this is historical 

information, the future might not be the same. The pre-work continues by asking 

the participants to write down the factors that they think can affect the output of 

interest and then adjust the statistical forecast anonymously. The factors and the 

thinking that supports them can be used as a formalising process and learning 

tool. 

In the meeting that follows the participants agree on the value they want to 

acquire. In the  cases  used in this thesis the average of the values provided by 

the experts was used (Fildes et al., 2009). 

4.7 Conclusions 

Chapter 4 presented the BNs’ DAG development methods that have been 

examined in this thesis, as well as the methods for estimating their NPTs. It was 

argued that due to the nature of the data in the FPPs, score-based algorithms are 

preferable for the DAGs that are developed through machine learning, while for 

the same reason Bayesian estimation is suggested for the NPTs. Additionally, 

methods for eliciting the DAG from SMEs using a number of idioms were also 

presented. 
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Furthermore, the BNs employed assume multinomial variables, and therefore 

methods for discretisation of continuous variables have also been examined. 

Finally, the other two forecast methods used for comparison in the current thesis 

have been presented, namely the logistic regression and the SME’s judgmentally 

adjusted forecasts. 
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5 ACCURACY AND ACCURACY IMPLICATION METRICS

5.1 Introduction 

This chapter is divided in two parts. Firstly, a number of accuracy metrics are 

reviewed and evaluated for their applicability in the FPP.  There are two reasons 

for which it is required to be able to evaluate and choose appropriate accuracy 

metrics. The first reason is that the datasets that were used were outputs of the 

demand for not just a single type of spare part. Therefore, one would expect 

different magnitudes of demand and to be able to use accuracy metrics that can 

accommodate such a requirement. The second reason is that the datasets were 

from the multiple runs of every simulated future scenario (see Section 1.3), which 

means that they were different sets of time-series, and this was an additional 

challenge to comparison of the models’ outputs. Consequently, for the above two 

reasons, and in order to develop a better understanding of the accuracy metrics’ 

possible limitations, an algebraic analysis of them was performed.  

In the second part of the current Chapter, some accuracy implication metrics are 

reviewed and evaluated. As discussed then, a decision maker is mostly interested 

in how well a demand forecasting model can help with inventory related 

decisions, and the evaluation of how well each model contributes to such 

decisions is made by the accuracy implication metrics. Given that the FPP is a 

rather new type of problem (see Section 1.2), in the second part of this Chapter 

a study is performed on the required accuracy implication metrics.  As is shown 

for the FPP, the existing metrics need to be complemented by additional ones. 

5.2 Evaluating the Forecast Models 

Evaluating alternative forecasting models is a challenging task and this can be 

inferred by the number of different accuracy metrics that exist in the literature and 

by the still existing lack of an omni-acceptable metric especially for demand data 

with intermittent behaviour (Kourentzes, 2013). Nevertheless, one of the core 

questions that need to be addressed when in the process of choosing the ways 

to compare and evaluate forecast models is whether forecast accuracy is an end 

in itself or is it a means towards an end (Boylan and Syntetos, 2006). The answer 
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depends on the stakeholders’ objectives. The stakeholder can either be a model 

developer whose objective is to compare forecast models for their performance 

in the context of accuracy competitions (Makridakis and Hibon, 2000), or wants 

to down-select among a number of models that are then evaluated. In such 

cases, the accuracy of the forecast model is an end on its own. However, the 

forecasts are also outputs that are used as inputs to inform decisions, and thus, 

should be evaluated by the relative level of value that they bring to their areas of 

application (Gelman et al. 2014, p.142).  

The applications of interest to the current research, are on forecasting the 

demand for spares. The forecast models in such cases aim to produce outputs 

that are accurate enough towards lowering the different stock holding costs and 

at the same time improving the level of service provided by the holding of spares. 

These are two objectives which are often competing. The stock of spares is held 

in order to contribute to the increase of the availability of the systems that need 

them when they are maintained/repaired, by reducing the logistics delay time, i.e. 

the factor 𝑀𝐿𝐴𝐷𝑇 on the right of the denominator in the following function for the 

Operational Availability 𝐴𝑜 metric: 

𝐴𝑜 =
𝑀𝑇𝐵𝑀

𝑀𝑇𝐵𝑀 +𝑀𝑇𝑇𝑅 +𝑀𝐿𝐴𝐷𝑇

𝑀𝑇𝐵𝑀: Mean Time Between Maintenance activities (either corrective or 

preventive) 

𝑀𝑇𝑇𝑅: Mean Time To Repair 

𝑀𝐿𝐴𝐷𝑇: Mean Logistics and Administrative Delay Time 

On the other hand, the competing objective calls for having minimum costs when 

holding stock. These costs include the duration dependent costs of holding 

inventory, the stock obsolescence costs, the re-order costs, the unit purchase 

costs, the costs of backordering and the administrative costs (Axsater, 2006, 

Chapter 3; Hadley and Whitin, 1963, Chapter 1). 

Consequently, accurate forecasts can contribute to the above two objectives, but 

the final improvement is also driven by the inventory rules that are applied, i.e. 

how the forecasts are used in order to determine “when” to place a stock 
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replenishment order and “how much” to order at each replenishment (Boylan and 

Syntetos, 2006; Syntetos, Nikolopoulos and Boylan, 2010). This interaction 

between inventory rules and forecast accuracy performance can be observed in 

the following Figure 5-1 (Boylan and Syntetos, 2006): 

As mentioned earlier, in order for the modeller to decide which model to use, 

he/she needs to assess the accuracy of one model as compared to others and 

therefore would need metrics to do this directly. 

The paragraphs that follow firstly examine a set of accuracy metrics15 and then 

discuss the accuracy-implication evaluation through the two objectives of service 

level and stock-holding costs.  

5.2.1 Accuracy Metrics 

Accuracy evaluation exercises distinguish between the in-sample accuracy and 

the out-of-sample accuracy. The in-sample accuracy uses the historical data that 

are available and tries both to develop and to choose the forecast models’ 

parameters using these data, typically by relying on the calculation of the 

estimated standard deviation of the forecast error in combination with the number 

of observations and the number of model parameters, e.g. the Akaike’s 

Information Criterion (AIC). On the other hand, out-of-sample accuracy uses data 

15 The terms “metric” and “measure” are used interchangeably 

Forecasting 
Method

Inventory 
Rules

Stock 
Management 

System

Stock-
holding 
Costs

Service 
Level

Figure 5-1: Effects of the forecasting methods and the inventory rules on the 

Service Level and Stock-holding Costs 
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that were not used for the development of the models. These data are used in 

order to evaluate the alternative forecast models.  

The two approaches differ in their objectives. The in-sample approach aims to 

identify the best model/model parameters that are used for out-of-sample data 

forecasts. The out-of-sample approach then evaluates which model is the best in 

model evaluation/comparison studies. The analysis that follows assumes an out-

of-sample requirement. 

The metrics of forecast models’ accuracy is an area of research that has received 

a lot of attention by the literature on forecasting, with the concerns being both 

theoretical and practical. Hyndman and Koehler (2006) correctly suggest that 

many of the known forecast accuracy metrics are not applicable to all cases. 

Furthermore, as Fildes (1992 p.85) stresses: “Thus, the choice of error measures 

to summarise the error distribution should not merely be a question of personal 

preference, …, but rather, the forecaster must establish appropriate scaling and 

distributional assumptions for the data under analysis”. 

The following list includes a summary of a number of attributes that the literature 

has pointed out as required for the accuracy metrics: 

1. An accuracy measure needs to make sense and be easily understood by 

the decision makers (Armstrong and Collopy, 1992; Goodwin and Lawton, 

1999; Kourentzes, 2013; Makridakis, 1993) 

2. Equal sized positive and negative errors should be mapped on the same 

accuracy value (Goodwin and Lawton, 1999; Makridakis, 1993) 

3. An accuracy measure needs to be “unit free” when it is used to compare 

methods that produce forecasts for diverse datasets, or as Makridakis 

(1993, p528) states it “… otherwise, we compare apples and oranges in 

ways that make little sense”. Even though this requirement actually falls 

under number 1 above, it is better to consider it on its own because it has 

more often than not been used as being the same as the attribute of “scale-

independence” that is discussed below (see e.g. Hoover (2006, p.34), or 

(Makridakis and Hibon, 2000)). The “unit free” attribute is not required to 
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be considered when the forecasting models are evaluated over the same 

single dataset 

4. An accuracy measure needs to be robust in the following conditions: 

a. The accuracy measures need to be robust in their outputs when 

used with datasets which are different (Makridakis, 1993). This 

attribute is often called being “scale independent” (Hyndman, 

2006). The problem to be dealt with is that those datasets that have 

comparatively large values might dominate the comparisons among 

the forecasting models (Armstrong and Collopy, 1992) 

The approaches that have been used to deal with the previously described 

requirement of the accuracy measure to be “unit free”, have often been 

used at the same time to make the metric “scale independent”. 

Denominators are applied that aim both at the removal of the dimensional 

“units” and also to make the measure robust to the different size that the 

values can have between the datasets. These denominators are 

occasionally some polynomial function of the value 𝐴 that is to be forecast, 

with the simplest of them being plain 𝐴 like in the Absolute Percentage 

Error (𝐴𝑃𝐸) (Section 5.2.2.3). However, as shown later in the analysis 

(Section 5.2.2.3), they do not make the measure completely robust to 

scale differences. 

There are also two other approaches that have been used in order to 

overcome the problem of having datasets with different scales. Firstly, the 

summarising of all the accuracy outputs can be done with a measure of 

location like the median which is insensitive to the actual values, and thus 

of the scales. Secondly, some measure functions use other denominators 

than the plain 𝐴 that are not so dependent on the future value 𝐴: 

 One such approach has been Makridakis' (1993) sAPE 

(symmetric Absolute Percentage Error). Approaches like this 

use a denominator that is a function of the future 𝐴s. 

However, in this way these functions can still be influenced 

by the peculiarities of the future/out of sample values of the 
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datasets. The related issues are discussed more in the 

algebraic analysis that follows 

 Other approaches use the error of another forecast model in 

the denominator. This forms a sort of comparison between 

the errors of the numerator’s model and the denominator’s 

making the ratio a relative error metric RAE (Relative 

Absolute Error). In these cases there are also variations in 

which some approaches use the out-of-sample data for their 

denominator’s outputs, while others use the in-sample data 

Nevertheless, the scale required independence attribute has been quite a 

challenge to the forecasting community both because it has not been fully 

met, but also because the suggested error functions are often not easy to 

be interpreted by the decisions makers (Kourentzes, 2013) 

b. The possibility of division by zero should not exist (Makridakis, 

1993). This is especially a challenge for intermittent datasets 

(Syntetos and Boylan, 2005)  

c. The divisions by very large numbers (not just rare outliers) should 

not distort the output (Makridakis, 1993) by e.g. producing accuracy 

outputs that are hard to discriminate. In such cases, the differences 

among the errors are scored by the accuracy measure as minimal 

and thus, the measure is not able to distinguish among the 

competing models 

d. Outliers in any existing dataset should not be influencing the 

evaluations of the forecasting models (Armstrong and Collopy, 

1992; Makridakis, 1993) 

What can be observed is that required attributes in 2, 3 and 4 are driven by the 

way that the forecast errors 𝑒 have been embedded in the accuracy metric 

functions and also by the robustness/stability that the occasionally applied 

denominator can bring to the metric. Consequently, a study of the effects of 𝑒 and 

especially of 𝐴 in the denominator of the functions that use them could provide 

insight on the measures advantages and weaknesses.
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Therefore, in order to study the different metrics and identify which are more 

applicable to the FPPs, it was necessary to investigate the functions formed to 

produce the metrics through algebraic analysis of their dependence on 𝑒 and 𝐴. 

This was done by a series of algebraic methods which can be applicable to most 

of the forecast error functions.  

The algebraic analysis was required since, as shown in the literature (Armstrong 

and Collopy, 1992; Davydenko and Fildes, 2016; Goodwin and Lawton, 1999; 

Koehler, 2001) the study of the functions’ applicability and investigation of their 

potential weaknesses has mainly been done through empirical analysis, 

experience and intuition, while algebraic analysis is a more structured approach 

that can both prove literature’s reported findings and potentially reveal others. 

All of the functions studied below are evaluations of any single forecast. They 

take as input the error 𝑒 of the forecast, treating it as the fundamental 

unit/argument, but also the value 𝐴 that is to be forecast, and then by the use of 

the function 𝑓(. ), 𝑒 and 𝐴 map to a single value 𝑌 that expresses 𝑒’s accuracy 

evaluation16: 𝑒, 𝐴
𝑓(.)
  𝑌 = 𝑓(𝑒, 𝐴). Consequently, the algebraic analysis of 𝑓(. )

studies how well this mapping serves the accuracy evaluations.  

What should be kept in mind is that the algebraic study of such functions is on a 

single possible value and thus, it does not include statistical analysis. This means 

that the whole space domain of the values 𝑌 of the functions is examined 

irrespective from the fact that some of them may be less likely to be experienced 

than others. The results should then be considered along with the decision for 

the final metric.  

The metric which is eventually used in order to evaluate a forecast model is a 

summary of a number of outputs from the functions that were studied and are 

presented below. The type of the summary to be used is usually chosen among 

one of the following measures of central tendency (Armstrong and Collopy, 1992): 

16 In the analysis further below, the notation of 𝑌 = 𝑓(𝑒) was changed into the more intuitive 𝐴𝑀𝐹(𝑒)
for Accuracy Metric Function 
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 The arithmetic mean 

 The geometric mean 

 The median 

 The trimmed mean 

 The winsorized mean 

5.2.2 Algebraic Analysis of the Accuracy Metric Functions 

Most of the error measures are based on the 𝐿-step ahead forecast error: 

𝑒𝑇(𝐿) = 𝐴𝑇+𝐿 − 𝐹 𝑇(𝐿)

where 𝑇 is the time when the forecast 𝐹 𝑇(𝐿) is produced for 𝐿-steps ahead, and 

𝐴𝑇+𝐿 is the actual value when that future step comes at time 𝑇 + 𝐿. 

Using this simple metric, many different measures/functions have been 

developed by taking e.g. its absolute value, its squared value or the ratio of the 

square or of the absolute with other values. For brevity, any such function has 

been called Accuracy Metric Function, 𝐴𝑀𝐹(𝑒(𝐴, 𝐹 ), 𝐴) where again for brevity 

the 𝐴𝑇+𝐿 = 𝐴. Additionally, the error has sometimes been written as 𝑒(𝐴, 𝐹 ) =

𝑒𝑇(𝐿) to remind us that the error is itself a function of the actual future value 𝐴 and 

its forecast 𝐹 . Furthermore, the error has been expressed as 𝑒 = 𝑒𝑇 when there 

has been no need to investigate the relationship of the error to the actual future 

value and its forecast, while, given that in the FPP it is assumed that
𝐿𝑒𝑎𝑑 𝑇𝑖𝑚𝑒

𝐹𝑃𝑃 𝑝𝑒𝑟𝑖𝑜𝑑
>

1 (Section 1.2) the 𝐿 steps ahead have not been considered. 

Furthermore, in discussing forecasting demand for spare parts, it has been 

assumed that the values of 𝐴 are non-negative. In analytical terms, this 

assumption means that 𝐴𝜖ℕ, i.e. that 𝐴 is a countable number. However, since 

the objective is to develop an understanding of the general case, for the 

convenience of the calculations of limits and of derivatives it has been assumed 

that the generality is not reduced if 𝐴 is considered as a non-negative real 

number, i.e. 𝐴𝜖ℝ+

The 𝐴𝑀𝐹s have been investigated using the following criteria: 
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1. Evaluate if the measure is definable for the whole domain of the function, 

i.e. for ∀𝑒 ∈ ℝ, 𝐴𝜖ℝ+, 𝐹 ∈ ℝ+ →  𝐴𝑀𝐹(𝑒(𝐴, 𝐹 ), 𝐴) ∈ ℝ+. Observe the latter 

point that the 𝐴𝑀𝐹 needs to be mapped to positive real values. The reason 

is that in order to use a measure of central location by taking the sum or 

the products of the 𝐴𝑀𝐹’s outputs, these outputs need to have a positive 

sign. 

2. Examine if the measure treats the positive and the negative error values 

equally, i.e. if for its whole domain, the 𝐴𝑀𝐹 (𝑒(𝐴, 𝐹 ), 𝐴)  is symmetric for 

the error (Goodwin and Lawton, 1999; Makridakis, 

1993): 𝐴𝑀𝐹(𝑒(𝐴, 𝐹 ), 𝐴) = 𝐴𝑀𝐹(−𝑒(𝐴, 𝐹 ), 𝐴)

3. Study the 𝐴𝑀𝐹(. ) function according to 𝑒(𝐴, 𝐹 ) and according to 𝐴

a. This includes taking 𝐴𝑀𝐹’s first and second derivative on 𝑒 and 

on 𝐴, and comment on the outputs. Using these derivatives the aim 

is to facilitate the modeller’s decision regarding her intentions about 

the evaluation. If the modeller wants to have outputs that are “fair” 

indicators, i.e. they produce outputs that treat higher error values 

the same as the lower, then the modeller should be looking for a 

constant first derivative, i.e.
𝑑(𝐴𝑀𝐹(𝑒,𝐴))

𝑑𝑒
= 𝑐, with 𝑐 a non-zero 

constant; in this case the second derivative does not provide any 

additional information. On the other hand, if the modeller wants 

something different, e.g. large errors to be penalised more, then the 

first derivative should be a positive, strictly monotonic function of 

the error, i.e. 
𝑑(𝐴𝑀𝐹(𝑒,𝐴))

𝑑𝑒
= 𝑔(𝑒) > 0. The shape of this function 𝑔(𝑒)

then needs to be further studied by the use of the second derivative 

b. Examine the behaviour of the 𝐴𝑀𝐹 function through the whole 

domain of the errors 𝑒 and the values 𝐴, which means that the limits 

of the function at the edges of 𝑒’s and 𝐴’s domains are estimated as 

well. Consequently, the function is calculated when the errors 𝑒 / 

values 𝐴 take extreme values, which for the present research cases 

they are ±∞, or make the 𝐴𝑀𝐹’s denominator equal to 0 
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4. Discuss how the 𝐴𝑀𝐹 and the resulting accuracy metric(s) can be 

interpreted by the decision maker 

5.2.2.1 Squared Error Function (SE) 

The Squared Error function is defined as: 

 𝐴𝑀𝐹(𝑒(𝐴, 𝐹 ), 𝐴) = 𝐴𝑀𝐹(𝑒(𝐴, 𝐹 )) = 𝑒(𝐴, 𝐹 )2

The actual value 𝐴 in this case is only embedded inside 𝑒(𝐴, 𝐹 ). 

1. Because ∀𝑒 ∈ ℝ, 𝐴𝜖ℝ+, 𝐹 ∈ ℝ+ →  𝐴𝑀𝐹(𝑒(𝐴, 𝐹 )) = 𝑒(𝐴, 𝐹 )2 ∈ ℝ+, there 

is no problem with the function to be used for any value of 𝑒, 𝐴 or 𝐹 

2. 𝐴𝑀𝐹(𝑒(𝐴, 𝐹 )) = 𝑒(𝐴, 𝐹 )2 = (−𝑒(𝐴, 𝐹 ))2 = 𝐴𝑀𝐹(−𝑒(𝐴, 𝐹 )), so, by being 

symmetric both negative and positive errors are treated equally 

3. The first derivative on the error is
𝑑(𝐴𝑀𝐹(𝑒))

𝑑𝑒
= 2𝑒, 𝑒 ∈ ℝ, which means that 

the error values are not mapped to equally changing values. 

Furthermore,
𝑑2(𝐴𝑀𝐹(𝑒))

𝑑𝑒2
= 2 > 0. This means that as the error values get 

further away from 0, the resulting accuracy metric function’s values change 

faster, and thus the higher errors are penalised more. (These results are 

actually the results that one would typically get from a parabola concave 

upwards centred on 0). 

Now, in order to see the effect that the values of 𝐴 can have on the shape 

of the 𝐴𝑀𝐹 functions and its derivatives, the function is written as follows: 

𝐴𝑀𝐹(𝑒(𝐴, 𝐹 )) = (𝐴 − 𝐹  )2,
𝑑(𝐴𝑀𝐹(𝑒))

𝑑𝑒
= 2(𝐴 − 𝐹  ) and

𝑑2(𝐴𝑀𝐹(𝑒))

𝑑𝑒2
= 2. Both 

the function and its first derivative on the error depend on the actual 

value 𝐴. 

The Squared Error function treats different magnitudes of 𝐴s in a different 

way, and this can be seen through the function itself and its first derivative. 

Firstly, this 𝐴𝑀𝐹(. ) function penalises the errors differently, as shown by 

the dependence of the plain function on 𝐴. Secondly, the rate of change in 

the penalisation changes as the error values get higher/lower with different 

datasets/𝐴𝑠. This is shown by the fact that the first derivative is linearly 
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dependent on 𝐴. Theoretically though, neither of the two problems happen 

if the models’ forecasts 𝐹  can keep the difference from 𝐴 the same in all 

datasets; however, this is not always likely.  

Furthermore, if for example there are two datasets in which one has a 

higher spread in its data than the other, then the combined evaluation is 

more affected by that more dispersed dataset. This is something that has 

been reported in the literature as well. For example Thompson (1990) and  

Armstrong and Collopy (1992) suggest that unless there are many 

datasets to compare, taking the Mean of the  Squared Error (𝑀𝑆𝐸), or 

equivalently taking the Root of the Mean (𝑅𝑀𝑆𝐸) gives an unreliable 

indicator of the accuracy. 

Similarly, in cases the measure is used for multimodal datasets, then the 

accuracy evaluation through the Squared Error can become challenging. 

Finally, taking the limits of the errors 𝑒 on ±∞, or on 0 does not add to the 

study. 

4. Given the effect that 𝐴 can have on the 𝑆𝐸, the 𝑅𝑀𝑆𝐸 is suitable only in 

the case where all forecast models are evaluated against a single dataset, 

while in such situations the interpretation to decision makers is not very 

straightforward (Armstrong and Fildes, 1995) 

5.2.2.2 Absolute Error Function (AE) 

The Absolute Error function is defined as: 

 𝐴𝑀𝐹(𝑒(𝐴, 𝐹 ), 𝐴) = 𝐴𝑀𝐹(𝑒(𝐴, 𝐹 )) = |𝑒(𝐴, 𝐹 )|

Again, the actual value 𝐴 is only embedded inside 𝑒(𝐴, 𝐹 ). 

1. For ∀𝑒 ∈ ℝ, 𝐴𝜖ℝ+,  𝐹 ∈ ℝ+ →  𝐴𝑀𝐹(𝑒(𝐴, 𝐹 )) = |𝑒(𝐴, 𝐹 )| ∈ ℝ+

2. 𝐴𝑀𝐹(𝑒(𝐴, 𝐹 )) = |𝑒(𝐴, 𝐹 )| = |−𝑒(𝐴, 𝐹 )| = 𝐴𝑀𝐹(−𝑒(𝐴, 𝐹 )), the function is 

symmetric in regards to 𝑒, so negative and positive errors are treated 

equally 
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3. For 
𝑑(𝐴𝑀𝐹(𝑒))

𝑑𝑒
= 1, 𝑒 ∈ ℝ+ and 

𝑑(𝐴𝑀𝐹(𝑒))

𝑑𝑒
= −1, 𝑒 ∈ ℝ−and also 

that
𝑑2(𝐴𝑀𝐹(𝑒))

𝑑𝑒2
= 0. This means that the error values are mapped into 

equally changing 𝐴𝑀𝐹 values which are first reducing for the negative 

errors until they reach zero and then increasing for the positive errors. 

Expressed in a different way, as the error values get further away from 0, 

the function linearly departs from the origin 𝑂(0,0) having a fixed constant 

45𝑜angle with the 𝑂𝑦 axis. These results are actually the results that one 

would typically get from an absolute linear function with a slope of 1 and 

centred on 0. 

Now, in order to see the effect that the values of 𝐴 and 𝐹  can have on the 

shape of the 𝐴𝑀𝐹(. ), it is written as follows: 

𝐴𝑀𝐹(𝑒(𝐴, 𝐹 )) = |𝐴 − 𝐹 | . The function depends linearly on the actual value 

𝐴 and its forecast 𝐹  . Again, just like the Squared Error function, with the 

Absolute Error function if there are different datasets, then they could also 

have different magnitudes of 𝐴. Consequently, since this 𝐴𝑀𝐹(. ) depends 

on 𝐴, it could penalise the errors differently among datasets. On the other 

hand, for a single dataset the rate of change in the penalisation as the error 

values get higher is unchanged as shown by the fact that the first derivative 

is independent of 𝐴. 

Finally, taking the limits of the errors 𝑒 on ±∞, or on 0 does not add to the 

study. 

Using the mean of a number of the 𝐴𝐸 outputs gives the widely used Mean 

Absolute Error (𝑀𝐴𝐸) metric (also called Mean Absolute Deviation (𝑀𝐴𝐷)) 

which has the dimensions of the forecast. As compared to 𝑀𝑆𝐸 this does 

not have the problems of treating differently the different changes in the 

values of the error. However, even though to a lesser extent than 𝑀𝑆𝐸, 

due to its function 𝑀𝐴𝐸 still gets affected by the datasets with very different 

𝐴 values (Syntetos and Boylan, 2005).  

An additional challenge of the 𝑀𝐴𝐸 that has been reported (see e.g. 

Davydenko and Fildes (2016)) is that since the Absolute Error function 
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turns all errors to become non-negative, its outputs tend to be skewed to 

the right and then the applied mean is not representative. 

4. 𝑀𝐴𝐸’s interpretation is straightforward. It is the average absolute deviance 

of the out-of-sample data from each forecast model’s predictions 

5.2.2.3 Absolute Percentage Error Function (APE) 

The Absolute Percentage Error function is a widely used accuracy measure 

function, often due to its intended objective to be scale-independent: 

 𝐴𝑀𝐹(𝑒(𝐴), 𝐴) = 𝐴𝑀𝐹(𝑒(𝐴)) = |
𝑒(𝐴)

𝐴
|

However, its robustness has often been debated (Goodwin and Lawton, 1999; 

Makridakis, 1993), and as is shown by the algebraic analysis, it does depend on 

the scale when the values of 𝐴 are extreme (very large or very low) relative to the 

errors 𝑒. 

1. For ∀𝑒 ∈ ℝ, 𝐴𝜖ℝ+
∗ , 𝐹 ∈ ℝ+ →  𝐴𝑀𝐹(𝑒(𝐴, 𝐹 )) = |

𝑒(𝐴,𝐹 )

𝐴
| ∈ ℝ+.  

However, if: 

a. 𝑙𝑖𝑚𝐴 = 0+ then it is either 

𝐴𝑀𝐹(𝑒(𝐴, 𝐹 ), 𝐴) → +∞, 𝑒(𝐴) ∈ ℝ∗, or 

𝐴𝑀𝐹(𝑒(𝐴, 𝐹 ), 𝐴) , the function is undefined when 𝑒(𝐴) = 0

(Hyndman and Koehler, 2006) 

The above state two things. Firstly, and as many researchers have 

commented (Boylan and Syntetos, 2006; Hoover, 2006; Hyndman, 

2006; Makridakis, 1993), the measure cannot be defined if in the 

dataset there can be 𝐴 = 0, which is a significant problem when the 

data demonstrate an intermittent behaviour. Secondly, the measure 

produces really high, undiscriminating values if, as compared to 𝐴, 

the forecast errors are very large. This is demonstrated in Figure 

5-2. As 𝐴s get smaller, the values of 𝐴𝑃𝐸 jump from one curve to 

the other at steps of very different size even for very neighbouring 

𝐴s. Furthermore, the problem gets larger at the lower areas of 𝐴s 
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relative to the values of the error. More details are given in step 3 

below 

b. 𝑙𝑖𝑚𝐴 = +∞, then: 

𝐴𝑀𝐹(𝑒(𝐴, 𝐹 ), 𝐴) → 0, 𝑒(𝐴) ∈ ℝ±
∗

The observation here is similar to the one stated above, and which 

seems to have been missing from the literature. If the forecast 

errors are very small as compared to 𝐴, then the accuracy 

measuring function is producing really small, undiscriminating 

values. Again, this is demonstrated in Figure 5-2. As 𝐴s get larger 

the values of 𝐴𝑃𝐸 are not very different to each other, regardless 

the size of the errors (the different curves). More details are given 

in step 3 below 

Furthermore, the ratio of the 𝑒 over 𝐴 has to be definable, i.e. the values 

to be referenced to a clearly defined zero (Hyndman, 2015), that is to be 

of a “ratio” and not of an “interval” type. This is not a problem in the uses 

that have been applied in the present research, because the models 

forecast the mean number of demands for spares where there is a 

meaningful/”absolute” zero set to “no demands on average”. 

2. 𝐴𝑀𝐹(𝑒(𝐴, 𝐹 ), 𝐴) = |
𝑒(𝐴,𝐹 )

𝐴
| = |−

𝑒(𝐴,𝐹 )

𝐴
| = 𝐴𝑀𝐹(−𝑒(𝐴, 𝐹 ), 𝐴), so, in the areas 

where the function can be defined , negative and positive errors are treated 

equally 

3. For 
𝑑(𝐴𝑀𝐹(𝑒,𝐹 ),𝐴)

𝑑𝑒
=

1

𝐴
, 𝑒 ∈ ℝ+ and

𝑑(𝐴𝑀𝐹(𝑒,𝐹 ),𝐴)

𝑑𝑒
= −

1

𝐴
, 𝑒 ∈ ℝ−, with  𝐴 ∈

ℝ∗ and also
𝑑2(𝐴𝑀𝐹(𝑒,𝐹 ),𝐴)

𝑑𝑒2
= 0. Like in the 𝐴𝐸 earlier, these outputs indicate 

that the error values are mapped into equally changing values, but which, 

in the case of 𝐴𝑃𝐸, do depend on 𝐴. This means that as the error values 

get further away from 0, the function’s values linearly depart from the origin 

𝑂(0,0) having an arctan (
1

𝐴
) angle with the 𝑂𝑦 axis, which is not fixed since 

it depends on 𝐴. These derivatives also suggest that if the set of forecast 

errors are concentrated around zero, the mass of the 𝐴𝑃𝐸’s outputs are 
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also close to zero, having a long tail of the few positive values away from 

zero. The result will then be to have the distribution of the 𝐴𝑃𝐸s right-

skewed and asymmetrical (Boylan and Syntetos, 2006). However, the 

distribution’s a/symmetry attribute refers to the mass of the values. 

Asymmetry in this case should not be confused with the function’s 

a/symmetry that is studied here and which refers to the a/symmetry of the 

values that the Accuracy Metric Function can take per symmetrical pair of 

vales of its arguments. 

Actually, the linear departure of the 𝐴𝑃𝐸’s values from the origin could

have been a desirable attribute. Apart from making the measure “unit free”, 

the reason for introducing the value 𝐴 in the denominator is to have a rate 

of change in the penalties to errors 𝑒 that are proportional to 𝐴 and in this 

way to also make the function “scale-independent”. However, as stated 

earlier as well, comparatively really high/low values of 𝐴 tend to make the 

rate of change of the Accuracy Metric Function unusably extreme. In 

support of this observation, one can find in the literature debates like the 

one discussed right after, about 𝐴s’ intended and actual effects on 

the 𝐴𝑀𝐹.  

The discrepancy as presented above, has been brought as an example by 

Makridakis (1993), but has not been highlighted or generalised as it is done 

next here. In his analysis, Makridakis compared the 𝐴𝑃𝐸 output of a 

forecast of 100 when the actual value 𝐴 is 150 (absolute error of 50) which 

gives 𝐴𝑃𝐸 =
|150−100|

150
= 0.33, to a forecast of 150 when the actual value 𝐴

is 100 (absolute error of 50 again) which gives a different value 𝐴𝑃𝐸 =

|100−150|

100
= 0.50. In their comment Goodwin and Lawton (1999) object to 

this statement of asymmetry but do not investigate the root cause that 

Markidakis highlighted: 

𝐴𝑃𝐸1 =
|𝑒|

𝐴1
≠

|𝑒|

𝐴2
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, and the important observation in the above is that the difference in the 

output for the same amount of |𝑒| takes place for any 𝐴1 ≠ 𝐴2, however 

little distance apart the two values might have. In essence, what 

Markidakis stated is that for the same absolute error, the changes in the 

𝐴𝑃𝐸s in close but different 𝐴s are unequal, and even more, as the first 

derivative shows this inequality changes magnitude as the values of 𝐴

change. To see that in more details, it is first required to analyse the 𝐴𝑀𝐹

from the 𝐴’s perspective. 

Taking the derivatives of the function with reference on 𝐴 gives: 

𝑑(𝐴𝑀𝐹(𝑒,𝐹 ),𝐴)

𝑑𝐴
= −

|𝑒|

𝐴2
< 0, ∀𝐴 ∈ ℝ+

∗ [5-1]

𝑑2(𝐴𝑀𝐹(𝑒,𝐹 ),𝐴)

𝑑𝐴2
= 2

|𝑒|

𝐴3
> 0, ∀𝐴 ∈ ℝ+

∗ [5-2]

These results imply that for the same amount of (absolute) error |𝑒|, the 

penalisation reduces with the square of the datapoint’s value 𝐴, while the 

second derivative shows that the curvature of the function remains 

concave up (reducing fast) for the whole domain of 𝐴 ∈ ℝ+
∗ . This 

observation suggests a great sensitivity to the values of 𝐴 – especially the 

low – making the function problematic for an intended use to be a scale-

independent error measure, especially among datasets in which some of 

them include really low values.  

The observation above suggests the existence of the following two 

problems. In the lower values the changes in the penalties can be very 

dramatic between neighbouring values of 𝐴, while in a series of high values 

if one non-high value is included it can determine the result if additive 

location measures like the mean are used. 

Figure 5-2 provides a complementary view of this problem. Starting for 

example with a value of 𝐴 = 2 and then going vertically up, the cuts/output 

values of the different curves at 𝐴𝑃𝐸(𝑒, 𝐴 = 2) are of certain equal 

differences among them: for the error values in the figure 𝛥(𝐴𝑃𝐸(𝑒, 𝐴 =
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2) =
1

2
. However taking half a unit to the left twice i.e. for 𝐴 = 1.5 and 𝐴 =

1, and again going vertically up, in both the two new cuts the differences 

are equal within each curve, but they are not the same among the curves: 

again for the error values in the figure 𝛥(𝐴𝑃𝐸(𝑒, 𝐴 = 1.5) =
2

3
, 

and 𝛥(𝐴𝑃𝐸(𝑒, 𝐴 = 2) = 1. These differences are not linearly proportional 

to each other. In other words, the changes in the penalty are not linearly 

proportional to the changes in the values of 𝐴, and this problem increases 

as the values of 𝐴 get lower. 

Furthermore, taking any of the curves, the higher the values of 𝐴 become 

then the less the 𝐴𝑃𝐸 values get different from each other, and thus the 

function gets less effective in differentiating among the errors.  

The reason for both of these observations is 𝐴𝑃𝐸’s rate of change 

according to 𝐴 which is proportional to 
1

𝐴2
 and which of course is also 

related to the limits that were examined in 1a and 1b above. 

One final point that highlights the importance of this observation and also 

of the algebraic analysis method, has to do with the suggestion of still using 

the 𝐴𝑃𝐸 when 𝐴 = 0, by replacing it with 𝐴 = 1 and thus get the 

Figure 5-2: 𝑨𝑷𝑬 values for a range of possible values of 𝑨. Each curve is 

for a different absolute error |𝒆| = 𝟏, 𝟐, 𝟑, 𝟒
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Denominator-adjusted MAPE (DAM) (Hoover, 2006). Using intuition only, 

one could say that it could be a practical solution. However, algebraic 

analysis in such a case raises questions that can challenge such a 

decision. Using DAM, the function’s outputs of infinity
|𝑒|

𝐴
→ +∞, are 

replaced by |𝑒|, even if the value of |𝑒| is small compared to other errors 

that correspond to non-zero 𝐴s.  

The root cause of the above lies in the intended use of 𝐴 as the 𝐴𝑀𝐹’s 

denominator. The denominator is introduced in order to make the 

Accuracy Metric Function of |𝑒| both unit and scale independent. While 

unit independence is indeed (easily) accomplished, scale independence is 

not. The measured error is about the forecast of the location parameter of 

the distribution that models the 𝐴s, and not of the value 𝐴 iself. 

Individual 𝐴s can fall in the areas that could be outliers, or belong to the 

tails of highly skewed datasets and thus be far from the (unknown) true 

location parameter. Using these 𝐴s instead of the referenced scale does 

not eventually work as a reference/ratio and makes the resulting 𝐴𝑀𝐹

sensitive to their peculiarities. 

As Fildes (1992, p.83) states the function should not depend on the 

datasets and “any automatic forecasting system should not be geared to 

respond to such extremes”, while he also calls their effects on the function 

“contamination”. The 𝐴𝑃𝐸 function is always “noisy” because it is sensitive 

due to 𝐴, or as Fildes (1992, p.85) observes “… MAPE, MdAPE etc. … 

depend to a greater or lesser extent on [outliers]. Equally important, all 

measures based on 𝐴𝑃𝐸 suffer from the lack of equivalence across series 

and across time17”. Consequently, the modeller needs to decide if he/she 

is content with the amount of discrepancies or not, but he/she should be 

cautious if in the dataset(s), as compared to the forecast errors, there are 

either many low values of 𝐴, or many high values. 

17 This is the same as saying that the measures based on 𝐴𝑃𝐸 can provide different outputs from record 
to record in a single dataset and among different datasets 
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Using the mean of a number of 𝐴𝑃𝐸 outputs gives the widely used Mean 

Absolute Percentage Error (MAPE) metric, while, if the concern is if 

occasional outliers might affect the forecast models’ evaluations, then the use 

the median provides the also widely used MdAPE. However, even in this case 

the distributional asymmetry along with the need to preserve the information 

provided by outliers, has led a number of researchers to suggest that when 

𝐴𝑃𝐸 produces outliers, to firstly transform them to make the 𝐴𝑃𝐸 more stable 

(Coleman and Swanson, 2007; Davydenko and Fildes, 2016; Swanson, 

Tayman, and Barr, 2000). 

4. Despite the occasional debates, MAPE is still being widely suggested 

when the datasets are not prone to the problems discussed above (Boylan 

and Syntetos, 2006). MAPE is also quite simple to calculate and intuitive 

when presented to a decision maker since it is understood as the average 

percentage error that the forecast model produces over the values that 

can be experienced 

5.2.2.4 Symmetric Absolute Percentage Error Function (sAPE) – variant 1 

The symmetric Absolute Percentage Error loss function (Makridakis and Hibon, 

2000) was introduced in order to deal with the problem of 𝐴𝑃𝐸’s asymmetry as 

highlighted in (Makridakis, 1993), and variant 1 has been discussed in a number 

of papers (see e.g. (Hyndman, 2006)): 

𝐴𝑀𝐹(𝑒(𝐴, 𝐹  ), 𝐴, 𝐹  ) =
|𝑒(𝐴,𝐹  )|

𝐴+𝐹  

2

This measure seems to be able to handle cases in which 𝐴 is zero or close to that 

value (Hryniewicz and Kaczmarek, 2016; Hyndman and Koehler, 2006; 

Sujjaviriyasup, 2017), but as it is shown in 1b below, it is not done very effectively. 

Next, the algebraic analysis is used in order to identify the problems that might 

be faced when using variant 1 of 𝑠𝐴𝑃𝐸 as a loss function. 

1. For  ∀𝑒 ∈ ℝ, 𝐴𝜖ℝ+, 𝐹 ∈ ℝ+ the 𝐴𝑀𝐹(𝑒(𝐴, 𝐹  ), 𝐴, 𝐹  ) =
|𝑒(𝐴,𝐹  )|

𝐴+𝐹  

2

. In order to 

be able to study the function’s domain according to 𝑒 and A the 𝐴𝑀𝐹 is 

transformed as follows: 
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𝐴𝑀𝐹(𝑒, 𝐴) =
|2𝑒|

𝐴+𝐹 +𝐴−𝐴
=

|2𝑒|

2𝐴−𝑒
, which is definable in  

ℝ  (and not just ℝ+) for  ∀𝑒 ∈ ℝ\2𝐴, 𝐴𝜖ℝ+\
𝑒

2
, the latter considered only when 𝑒 >

 0 under the applied assumption that 𝐴 is non-negative. 

Firstly, the above demonstrates Hyndman and Koehler’s (Hyndman and Koehler, 

2006) point that even though it is called “absolute”, in this form it is not definable 

only on ℝ+ as it is required for an accuracy measure loss function (see earlier 

discussion in the Introduction), but it can also take negative values when 𝑒 >  2𝐴. 

However, examining the error’s requirement for negativity 𝑒 > 2𝐴 ⇒ 𝐴 − 𝐹  >

2𝐴 ⇒ 0 ≥ −𝐴 > 𝐹   shows that in this specific variant of sAPE the negative values 

would be experienced if the forecasts 𝐹   are not just negative, but also lower than 

−𝐴, something should not be expected from models that try to forecast for 

distributions of non-negative values 𝐴 ≥  0. 

In order to study the structure of the function, it is written as follows: 

𝐴𝑀𝐹(𝑒, 𝐴) = {

2𝑒

2𝐴 − 𝑒
, 𝑒 ≥ 0, 𝑒 ≠ 2𝐴,𝐴 ≥ 0

−2𝑒

2𝐴 − 𝑒
, 𝑒 < 0,𝐴 ≥ 0

[5-3]

a. Looking at the function’s limits close to the point where it is not 

defined for e, the following results are acquired18: 

lim
𝑒→2𝐴+

𝐴𝑀𝐹(𝑒, 𝐴) = −∞, lim
𝑒→2𝐴−

𝐴𝑀𝐹(𝑒, 𝐴) = +∞

, which suggests that in the area of 2𝐴, the situation is similar to what 𝐴𝑃𝐸 had 

close to 0, but in this case the problems are not as easily identifiable because 

they depend on 𝐴, and even more, for the present 𝑠𝐴𝑃𝐸 variant they jump from 

+∞ to −∞. On the other hand, as it was discussed earlier, this phenomenon takes 

place for non-positive forecasts, which is something that should not be expected 

for non-negative datasets. 

18 Observe that since the discussion is about the limits around 2𝐴 > 0, both these limits correspond to 
the upper branch of the AMF inError! Reference source not found.
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b. Moreover, investigating for the different values of 𝐴: 

lim
𝐴→+∞

𝐴𝑀𝐹(𝑒, 𝐴) = 0, while for 𝐴 =  0 the 𝐴𝑀𝐹(𝑒, 𝐴 =  0)  =  2 for any negative 

error 𝑒 ∈ ℝ−
∗  and 𝐴𝑀𝐹(𝑒, 𝐴 = 0) = −2 for any positive error 𝑒 ∈ ℝ+

∗  which is the 

result also reported in (Boylan and Syntetos, 2006; Makridakis and Hibon, 2000). 

c. If the forecast 𝐹   is exactly the same as the value A, then the error 

𝑒 and the 𝑠𝐴𝑃𝐸 are equal to 0 

d. If the forecast 𝐹   is equal to 0 and thus the error 𝑒 is equal to 𝐴, then 

from the upper branch of [5-3] the function’s value becomes equal 

to 2. This penalty is twice as much as the respective 𝐴𝑃𝐸’s 

e. Additionally, taking the error limits to infinity, gives:  

lim
𝑒→−∞

𝐴𝑀𝐹(𝑒, 𝐴) = 2, lim
𝑒→+∞

𝐴𝑀𝐹(𝑒, 𝐴) = −2

2. Without loss of generality, in order to investigate the symmetry in relation 

to zero, a value r for the error is chosen so that  𝑒 = 𝑟 ≥ 0. Then: 

𝐴𝑀𝐹(𝑒 = 𝑟, 𝐴) =
2𝑟

2𝐴−𝑟
≠  𝐴𝑀𝐹(𝑒 = −𝑟, 𝐴) =

−2(−𝑟)

2𝐴−(−𝑟)
=

2𝑟

2𝐴+𝑟
 , and thus, the 

examined variant of sAPE is not symmetric in relation to zero.  

Additionally, one point that this analysis also shows and which has not been 

included in the relevant studies that the author has found in the literature, is that 

sAPE is also not symmetric because it is defined for 𝑒 = −2𝐴 < 0 but not for 𝑒 =

2𝐴 > 0 as it can also be observed in Figure 5-3 below. However, as it was again 

mentioned earlier, the latter stands for an error that would come from a non-

positive forecast 𝐹  = −𝐴 < 0
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3. The function’s first and second derivatives on the error 𝑒 are as follows: 

𝑑(𝐴𝑀𝐹(𝑒, 𝐴))

𝑑𝑒
=

⎩
⎨

⎧
4𝐴

(2𝐴 − 𝑒)2
, 𝑒 ≥ 0, 𝑒 ≠ 2𝐴, 𝐴 ≥ 0

−4𝐴

(2𝐴 − 𝑒)2
, 𝑒 < 0, 𝐴 ≥ 0               

𝑑2(𝐴𝑀𝐹(𝑒, 𝐴))

𝑑𝑒2
=

⎩
⎪
⎨

⎪
⎧ 8𝐴(2𝐴 − 𝑒)

(2𝐴 − 𝑒)4
, 𝑒 ≥ 0, 𝑒 ≠ 2𝐴, 𝐴 ≥ 0

−8𝐴(2𝐴 − 𝑒)

(2𝐴 − 𝑒)4
, 𝑒 < 0, 𝐴 ≥ 0               

There are a number observations that can be made from the above. Firstly, if 

𝐴 =  0 the first derivative will be zero for any error value 𝑒 within its domain. This 

sheds more light to the earlier observation that the 𝐴𝑀𝐹’s value will be ±2 without 

any tendency to change apart from when the error is also zero where the AMF is 

undefinable. This situation is also presented in Figure 5-4. 

Figure 5-3: 𝒔𝑨𝑷𝑬 v1, v2 and v3 for a number of possible values of 𝒆. Each line is for 

𝑨 = 𝟓,𝟏𝟓. Observe that all three variants are exactly the same for −∞ ≤ 𝒆 ≤ 𝑨
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Secondly, starting from 𝑒 <  0, for the very large negative values of e (which are 

also large in their absolute values) the 𝐴𝑀𝐹 has values close to +2 (see also 

Figure 5-3, (Goodwin and Lawton, 1999, fig.1)) and similar practical discussions 

Figure 5-4: Plots of 𝒔𝑨𝑷𝑬v1 and 𝒔𝑨𝑷𝑬v2 when 𝑨 = 𝟎. 𝒔𝑨𝑷𝑬v3 is identical to 𝒔𝑨𝑷𝑬v2
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in (Hyndman and Koehler, 2006; Koehler, 2001)). Furthermore, its first and 

second derivatives are always <  0 which means that the 𝐴𝑀𝐹 values decrease 

while the curve’s shape is concave down. Moreover, as it can be seen by the 

values of the first derivative, this decrease happens slowly - which implies a small 

discriminating ability - and from +2 it reaches 0 as 𝑒 gets closer to zero where the 

derivative gets its maximum value. The zero error value is also the local minimum 

of 𝐴𝑀𝐹 =  0.  

From then on, 𝑒 >  0 and the upper branch of [5-3] takes over. Both the first and 

the second derivatives become positive, the curvature changes and the 𝐴𝑀𝐹

increases rapidly and from 0 it tends to +∞ as 𝑒 → 2𝐴− (Koehler, 2001). For 𝑒 =

 2𝐴 the 𝐴𝑀𝐹 is not defined, but as 𝑒 → 2𝐴+the 𝐴𝑀𝐹 starts from −∞. The first 

derivative is still positive which means that the function still increases its values 

(from the  −∞ that it starts) while the second derivative becomes negative and 

thus the curvature changes once more which means that the rate of increase 

reduces rapidly, but the 𝐴𝑀𝐹 never becomes larger than −2 which is its limit as 

𝑒 → +∞.  

Using the assumption that the forecasts F  are non-negative, one can also see 

which parts of the 𝐴𝑀𝐹 correspond to which values of such forecasts range (see 

also Figure 5-3). The left part of the figure up to 𝑒 =  0, corresponds to the lower 

branch of  [5-3] and it is for 𝑒 < 0 ⇒ 0 < 𝐴 < 𝐹  . The right, positive part of the 

figure corresponds to the upper branch. Using the requirement that the 

denominator and the error should both be positive so that 𝑠𝐴𝑃𝐸 is on its positive 

range, it should be that  2𝐴 − 𝑒 > 0 ⇒ 𝐴 > −𝐹  ⇒ 𝐹  > −𝐴 ⇒ 𝐹  > 0, and  𝑒 ≥ 0 ⇒

𝐴 ≥ 𝐹  . These two results imply that any over-forecasting is mapped by the left 

part of the figure and the under-forecasting by the right part up to 𝐹   =  𝐴, that is 

the 𝐴𝑀𝐹 does not reach the really large values close to 2𝐴−. 

5.2.2.5 Symmetric Absolute Percentage Error Function (sAPE) – variant 2 

This variant of the symmetric Absolute Percentage Error loss function is the one 

that was initially introduced by Makridakis (Makridakis, 1993): 
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𝐴𝑀𝐹(𝑒(𝐴, 𝐹  ), 𝐴, 𝐹  ) = |
𝑒(𝐴,𝐹  )

𝐴+𝐹  

2

|

and is still used by researchers (Hamza et al., 2018) 

The algebraic analysis that follows aims to investigate the problems that might be 

faced when using this variant of the 𝑠𝐴𝑃𝐸. 

1. For ∀𝑒 ∈ ℝ, 𝐴𝜖ℝ+, 𝐹  ∈ ℝ+ the  𝐴𝑀𝐹(𝑒(𝐴, 𝐹  ), 𝐴, 𝐹  ) = |
𝑒(𝐴,𝐹  )

𝐴+𝐹  

2

|. In order to 

be able to study the function according to 𝑒 and 𝐴 the function is 

transformed as follows: 

𝐴𝑀𝐹(𝑒, 𝐴) = |
2𝑒

𝐴+𝐹  +𝐴−𝐴
| = |

2𝑒

2𝐴−𝑒
| , which is definable in ℝ+ for ∀𝑒 ∈ ℝ\2𝐴,

𝐴𝜖ℝ+\
𝑒

2
, the latter considered only when 𝑒 >  0. 

In order to be able to investigate what happens to the function at the limits of its 

domain, and also to see if it is symmetric and be able to take the derivatives, the 

function is written as follows: 

𝐴𝑀𝐹(𝑒, 𝐴) = {

2𝑒

2𝐴 − 𝑒
, 0 ≤ 𝑒 < 2𝐴, (𝑒 ≠ 2𝐴),𝐴 ≥ 0

−2𝑒

2𝐴 − 𝑒
, 𝑒 < 0 ∨ 2𝐴 < 𝑒, (𝑒 ≠ 2𝐴),𝐴 ≥ 0

[5-4] 

 For the function’s limits close to the point where it is not defined, the 

present 𝐴𝑀𝐹 gives the following outputs19: 

lim
𝑒→2𝐴+

𝐴𝑀𝐹(𝑒, 𝐴) = +∞, lim
𝑒→2𝐴−

𝐴𝑀𝐹(𝑒, 𝐴) = +∞ a result which is different than the 

previously examined variant of sAPE, and which is also expected because this 

variant can take only non-negative values. Nevertheless, these outputs suggest 

again that around the area of 2𝐴, the problems are similar to what APE had close 

to zero, and again these problems are not as easily identifiable because they 

19 Observe that since the discussion is about the limits around 2𝐴, the left side corresponds to the upper 
branch of [5-4], while the right side corresponds to the lower branch 
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depend on A. However, as it was discussed earlier for the variant 1, this can only 

take place for non-positive forecasts. 

 For the edges of A’s domain: 

lim
𝐴→+∞

𝐴𝑀𝐹(𝑒, 𝐴) = 0, for all error values 𝑒 , while for 𝐴 =  0 the function gives 

again what Boylan and Syntetos report, i.e. 𝐴𝑀𝐹(𝑒, 𝐴 =  0)  =  2 for any non-zero 

error (𝑒 ∈ ℝ∗) (Boylan and Syntetos, 2006) 

 If the forecast 𝐹   is exactly the same as the value 𝐴, then the error 

e and the 𝑠𝐴𝑃𝐸 are equal to 0 

 If the forecast 𝐹  is equal to 0 and thus the error 𝑒 is equal to 𝐴, then 

from the upper branch of [5-4] the function’s value is equal to 2. This 

penalty is twice as much as the respective 𝐴𝑃𝐸’s 

 Additionally, if the error limits are taken to infinity, the function gives:  

lim
𝑒→−∞

𝐴𝑀𝐹(𝑒, 𝐴) = 2, lim
𝑒→+∞

𝐴𝑀𝐹(𝑒, 𝐴) = 2

2. Without loss of generality, in order to investigate the symmetry around 

zero, a value 𝑟 for the error is again chosen so that 𝑒 =  𝑟 >  0 with: 

 0 ≤ 𝑟 < 2𝐴, (𝑟 ≠ 2𝐴), 𝐴 ≥ 0. This means that – 𝑟 <  0, so while 𝑟 is 

mapped using the upper branch, −𝑟 is using the lower branch of 

[5-4] : 

𝐴𝑀𝐹(𝑒 = 𝑟, 𝐴) =
2𝑟

2𝐴−𝑟
≠  𝐴𝑀𝐹(𝑒 = −𝑟, 𝐴) =

−2(−𝑟)

2𝐴−(−𝑟)
=

2𝑟

2𝐴+𝑟
 , which shows that for 

−2𝐴 < 𝑒 < 2𝐴 this variant of sAPE is not symmetric in reference to zero. 

 2𝐴 < 𝑟, (𝑟 ≠ 2𝐴), 𝐴 ≥ 0. Then −𝑟 < −2𝐴 < 0. For both r and 

– 𝑟 correspond to the lower branch of [5-4]: 

𝐴𝑀𝐹(𝑒 = 𝑟, 𝐴) =
−2𝑟

2𝐴−𝑟
≠ 𝐴𝑀𝐹(𝑒 = −𝑟, 𝐴) =

−2(−𝑟)

2𝐴−(−𝑟)
=

2𝑟

2𝐴+𝑟
, which shows that for 

the range 𝑒 < −2𝐴 ∧ 𝑒 > 2𝐴 this variant of sAPE is not symmetric there either 

 Furthermore, as before, sAPE is also not symmetric because sAPE

is defined for 𝑒 = −2𝐴 < 0 but not for 𝑒 = 2𝐴 > 0 as it can also be 

observed in Figure 5-3 
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3. The function’s first and second derivatives on the error 𝑒 are as follows: 

𝑑(𝐴𝑀𝐹(𝑒, 𝐴))

𝑑𝑒
=

⎩
⎨

⎧
4𝐴

(2𝐴 − 𝑒)2
, 0 ≤ 𝑒 < 2𝐴, (𝑒 ≠ 2𝐴), 𝐴 ≥ 0      

−4𝐴

(2𝐴 − 𝑒)2
, 𝑒 ≤ 0 ∨ 2𝐴 < 𝑒, (𝑒 ≠ 2𝐴), 𝐴 ≥ 0

𝑑2(𝐴𝑀𝐹(𝑒, 𝐴))

𝑑𝑒2
=

⎩
⎪
⎨

⎪
⎧ 8𝐴(2𝐴 − 𝑒)

(2𝐴 − 𝑒)4
, 0 ≤ 𝑒 < 2𝐴, (𝑒 ≠ 2𝐴), 𝐴 ≥ 0      

−8𝐴(2𝐴 − 𝑒)

(2𝐴 − 𝑒)4
, 𝑒 ≤ 0 ∨ 2𝐴 < 𝑒, (𝑒 ≠ 2𝐴), 𝐴 ≥ 0

Again, if 𝐴 =  0 the first derivative will be zero for any error value e. The situation 

is also presented in Figure 5-4 and the rate of change related problems are similar 

to what was discussed for variant 1. The largest difference is for 𝑒 >  2𝐴. In that 

area, the loss function is positive but the penalties are reducing as the errors 

increase. 

Finally, if [5-3] is compared to [5-4], or the two top graphs of Figure 5-3 are 

compared, for the errors’ range from -∞ to 𝐴, the two variants of sAPE are 

identical. 

5.2.2.6 Symmetric Absolute Percentage Error Function (sAPE) – variant 3 

According to (Hyndman, 2014), this variant of the symmetric Absolute 

Percentage Error loss function has firstly appeared in a working paper (Chen and 

Yang, 2004) and is used in a number of forecast modelling packages (Spider 

Financial, 2018): 

𝐴𝑀𝐹(𝑒(𝐴, 𝐹  ), 𝐴, 𝐹  ) =
2|𝑒(𝐴,𝐹  )|

|𝐴|+|𝐹  |

Furthermore, most of the recent papers that the present work examined in order 

to see the 𝑠𝐴𝑃𝐸 variants’ applications, use variant 3 ((Andrawis and Atiya, 2009; 

Boulkaibet et al., 2017; Cavdar and Aydin, 2015; Liu et al., 2018; Marcot et al., 

2006; Martínez-Álvarez et al., 2015; Štěpnička et al., 2013; Valle Dos Santos and 

Vellasco, 2015; Zamora-Martínez et al., 2013)). Nevertheless, just like in variant 

2, the absolute values in the denominator give it the advantage of not producing 

negative values as the variant 1 does. Like variants 1 and 2, this variant seems 

to be able to handle cases in which A is zero, but again ineffectively. 
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For variant 3, ∀𝑒 ∈ ℝ, 𝐴𝜖ℝ+, 𝐹  ∈ ℝ+  and 𝐴𝑀𝐹(𝑒(𝐴, 𝐹  ), 𝐴, 𝐹  ) =
2|𝑒(𝐴,𝐹  )|

|𝐴|+|𝐹  |
. In order 

to be able to study the function according to 𝑒 and 𝐴 the function can be 

transformed as follows: 𝐴𝑀𝐹(𝑒, 𝐴) =
2|𝐴−𝐹  |

|𝐴|+|𝐹  |
=

2|𝐴−𝐹  |

𝐴+|𝐹  |
 .  

For 𝐹  ∈ ℝ+, the 𝐴𝑀𝐹 becomes 𝐴𝑀𝐹(𝑒, 𝐴) =
2|𝑒|

𝐴+𝐹
. This form of the function when 

transformed to include only the error 𝑒 and the value A, becomes exactly the 

same function as [5-3] and [5-4] of variants 1 and 2, which means that the three 

variants produce exactly the same outputs for errors less than A. This observation 

can also be seen by comparing the plots in Figure 5-3. Furthermore, this variant 

3 reduces the previous variants’ problem of getting really high values in the area 

of 𝑒 around 2𝐴, but at the expense of not being able to discriminate among the 

errors near that area either. Finally, the issue resulting from having both A and 

𝐹 equal to 0 is the same as for the other two variants. 

5.2.3 Accuracy Metric Functions with more Stable Denominators 

5.2.3.1 Relative-Error Metrics 

Fildes (1992) models the scale-dependence problem of the Squared Error (𝑆𝐸) 

function that was seen above (Section 5.2.2.1) through the following form: 

𝑒2 = 𝜖2𝜐 [5-5]

, where 𝜖 are the errors due to the particular forecasting method, while 𝜐 are the 

errors due to the specific 𝐴 recorded in the out-of-sample dataset and which can 

be regarded as an outlier, or as it was discussed earlier on the 𝐴𝑃𝐸’s issues 

(Section 5.2.2.3), a peculiarity of highly skewed datasets. Fildes makes a similar 

statement about how the scale-independence should be considered by saying 

that “… [the] loss function [accuracy metric] should not depend on 𝜐 … any 

automatic forecast system should not be geared to respond to such extremes. 

Rather they should be dealt with by an exception monitoring scheme” (Fildes, 

1992, p.83).  

Fildes analyses the 𝑆𝐸 (𝑒2) in the two parts as in [5-5] and then takes the square 

root of the geometric mean of the 𝑆𝐸 across the dataset. This is calculated by 
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taking the product of all 𝑆𝐸s in the dataset, taking the geometric mean of the 

product and then taking its square root in order to have it in the same units as the 

data: 

𝐺𝑅𝑀𝑆𝐸 = ((∏ 𝑒𝑡
2𝑛

𝑡=1 )
1

𝑛)

1

2
= (∏ 𝑒𝑡

2𝑛
𝑡=1 )

1

2𝑛 , where 𝑛 is the number of datapoints in 

the dataset. 

The geometric mean is an alternative to the more widely known arithmetic mean. 

In the geometric mean, instead of summing all the values of a variable and 

dividing them by their number 𝑛, their product is taken followed by their 𝑛th root.  

The geometric mean has been usually applied when there is a requirement to 

find a meaningful average when having data that belong to different scales. In 

geometry, the geometric mean of two values is the square that has an area equal 

to a rectangle that has as its sides those two lengths of which the average is 

required. Eventually, since it is necessary to take the root of the product, the 

component values need to be positive. However, given that there are no zero 

values, it is possible to apply the geometric mean to either squared errors as 

Fildes has done with the 𝐺𝑅𝑀𝑆𝐸, or to absolute values as it is shown further 

below. 

In the specific situation, Fildes, in order to make the accuracy metric scale-

independent by eliminating 𝜐, he suggests taking the ratio of the 𝐺𝑅𝑀𝑆𝐸 between 

two competing methods 𝑚 and  𝑘 , and get the Relative 𝐺𝑅𝑀𝑆𝐸 (𝑅𝐺𝑅𝑀𝑆𝐸): 

𝑅𝐺𝑅𝑀𝑆𝐸 =
𝐺𝑅𝑀𝑆𝐸𝑚
𝐺𝑅𝑀𝑆𝐸𝑘

=
(∏ 𝑒𝑚𝑡

2𝑛
𝑡=1 )

1
2𝑛

(∏ 𝑒𝑘𝑡
2𝑛

𝑡=1 )
1
2𝑛

= (∏
𝑒𝑚𝑡
2

𝑒𝑚𝑡
2

𝑛

𝑡=1
)

1
2𝑛

= (∏
𝜖𝑚𝑡
2 𝜐

𝜖𝑚𝑡
2 𝜐

𝑛

𝑡=1
)

1
2𝑛

= (∏
𝜖𝑚𝑡
2

𝜖𝑚𝑡
2

𝑛

𝑡=1
)

1
2𝑛

The latter shows that the ratio between the 𝐺𝑅𝑀𝑆𝐸 metrics of two methods, apart 

from being unit-free, it also eliminates the peculiarities of the datasets from the 

comparison as they are expressed by 𝜐. However, there are a number of 

necessary assumptions to adopt: 
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 The 𝑆𝐸 contains outliers and they are multiplicative. This is a valid 

assumption, since at any datapoint 𝐴 , the squared error 𝑒2 of the forecast 

of the location of the distribution can be expressed as the (unknown) actual 

squared error 𝜖2 times another positive, multiplicative value 𝜐 = 𝑒2
𝜖2
⁄  , 

and which value has the characteristics of the datapoint 

 The actual squared error 𝜖2 is assumed to be stationary while any serial 

relationship among the datapoints is subsumed by 𝜐. This assumption 

means that there are no trends or seasonality in the dataset. In the cases 

examined in the present research there can be strong trends in the dataset 

since at the final stage of the operations the demand context might be 

changing to the level that the number of requests for repairs can either 

increase during the period, or decrease. Examples of this phenomenon 

have been discussed in Section 1.2 and include situations where e.g. there 

are probable changes in the operational demand accompanied with 

changes in the number of the systems supported 

 The value 𝜐 affects all forecasting models equally. Even when this 

assumption is not fully true, the ratio between two methods eventually 

reduces the peculiarities of extreme values of 𝐴 - at least a lot more than 

what was seen when the denominator was a polyonym of 𝐴 like in 𝐴𝑃𝐸, 

or 𝑠𝐴𝑃𝐸

In general, an important consideration regarding the use of relative accuracy 

measures has to do with the practical difficulties and the potential errors when, in 

the presence of many forecasting model candidates, the number of ratios / pair-

wise comparisons can be numerous. Alternatively, the denominator can be 

replaced by a benchmark model like the “random walk”/“naïve” forecast model 

which uses as a forecast for the next period the currently experienced value of 

the out-of-sample dataset. In this way, all other models are compared to the 

benchmark through the ratio.  

Armstrong and Collopy (1992) discuss two other relative methods which use this 

idea of applying the benchmark model’s error as a denominator. They refer to 

Theil’s 𝑈2 measure which is a ratio of the Root of the (arithmetic) Mean Squared 
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Error (𝑅𝑀𝑆𝐸) of a forecast model to that of the naïve (the error of the naïve 

method is expressed as 𝑒∗ = 𝐴𝑡 − 𝐴𝑡−1): 

𝑈2 =
(

∑ 𝑒2𝑛
𝑡=1

𝑛⁄ )

1
2

(
∑ (𝑒∗)2𝑛
𝑡=1

𝑛⁄ )

1
2

= (
∑ 𝑒2𝑛
𝑡=1

∑ (𝑒∗)2𝑛
𝑡=1

)

1

2

Additionally, Armstrong and Collopy (1992) suggest another metric that is based 

on the geometric mean of the absolute errors of a model’s forecast, the Geometric 

Mean Absolute Error (𝐺𝑀𝐴𝐸): 

𝐺𝑀𝐴𝐸 = (∏ |𝑒|
𝑛

𝑡=1
)

1
𝑛

As Hyndman and Koehler (2006) and Hyndman (2006) point out, 𝐺𝑀𝐴𝐸 is exactly 

the same as 𝐺𝑅𝑀𝑆𝐸 since in the products of squares under the squared root, the 

squares and the root cancel out: 

𝐺𝑅𝑀𝑆𝐸 = ((∏𝑒𝑡
2

𝑛

𝑡=1

)

1
𝑛

)

1
2

= (∏𝑒𝑡
2

𝑛

𝑡=1

)

1
2𝑛

= (∏ |𝑒|
𝑛

𝑡=1
)

1
𝑛
= 𝐺𝑀𝐴𝐸

Now, if again the ratio is taken of the model over the naïve method as a 

benchmark, the Relative 𝐺𝑀𝐴𝐸20 (𝑅𝐺𝑀𝐴𝐸) is given: 

𝐺𝑀𝑅𝐴𝐸 = (∏ |
𝑒𝑡

𝑒𝑡
∗|

𝑛
𝑡=1 )

1

𝑛
= exp (

1

𝑛
∑ ln (

𝑒𝑡

𝑒𝑡
∗))𝑛

𝑡=1

Armstrong and Collopy (1992) suggest that the primary advantage of the 𝑅𝐺𝑀𝐴𝐸

as compared to Theil’s 𝑈2 is the ease of interpretation, since the latter carries 

with it the difficulties of explaining the Squared Error (𝑆𝐸) as discussed in Section 

5.2.2.1. 

Another point that needs to be considered is in cases where the produced error 

is equal to zero or tends to infinity, then the whole 𝐺𝑅𝑀𝑆𝐸 becomes zero or infinite 

20 Even though intuitively the fact that it is relative should lead to its naming as 𝑅𝐺𝑀𝐴𝐸, i.e. just like 
(Gardner, 1990) have named the respective relative error as 𝑅𝐺𝑅𝑀𝑆𝐸, the present research keeps the 
convention used when it was originally proposed by (Gardner, 1990), i.e. 𝐺𝑀𝑅𝐴𝐸



135 

regardless of the rest of the error values. The effect of this problem can be 

reduced if the high and low errors are trimmed or winsorized, however, this 

introduces the problem of potential loss of information (Armstrong and Collopy, 

1992; Hyndman and Koehler, 2006). 

Davydenko and Fildes (2016) try to overcome the problem that is created by 

using the geometric mean for the outputs of the functions in case these are zero, 

by using the arithmetic mean which eventually gives the 𝑀𝐴𝐸. Therefore, the 

suggested Relative 𝑀𝐴𝐸 for a single dataset 𝑘, is: 

𝑅𝑀𝐴𝐸𝑘 =
𝑀𝐴𝐸𝑘

𝑀𝐴𝐸𝑘
𝑛𝑎𝑖𝑣𝑒

Furthermore, in order to evaluate the forecast methods using a number of 

different datasets 𝑘 = 1,… , 𝐾, Davydenko and Fildes (2016) suggest using the 

geometric mean across the 𝑅𝑀𝐴𝐸𝑘 and thus avoid the misleading conclusions 

that the arithmetic mean can bring by “averaging” non-relevant values. In order 

to proceed, the authors express the geometric mean of the logarithmic 

transformation of the 𝑅𝑀𝐴𝐸𝑘 to the power of its number of data 𝑙𝑛(𝑅𝑀𝐴𝐸𝑘)𝑛𝑘 - 

each 𝑅𝑀𝐴𝐸𝑘 is raised to the power of its number of (out of sample) datapoints in 

order to take into consideration the difference in the weighting that needs to be 

implemented for each different dataset 𝑘 - and calculate the average to give the 

Average Relative 𝑀𝐴𝐸 measure: 

𝐴𝑣𝑔𝑅𝑒𝑙𝑀𝐴𝐸 = exp (
1

∑ 𝑛𝑘
𝐾
𝑘=1

∑ 𝑙𝑛(𝑅𝑀𝐴𝐸𝑘)𝑛𝑘𝐾
𝑘=1 ) 

Davydenko and Fildes (2016) express concerns that the measure uses the 𝑀𝐴𝐸

and that it is out of sample data used for the denominator. Sitting behind these 

concerns are that, firstly if the size of the out of sample datasets is not large 

enough (they suggest it to be 𝑛𝑘 > 5 for each 𝑘 = 1,… , 𝐾), then there is a chance 

that the 𝑀𝐴𝐸 of the method and that of the naïve forecast has a different level of 

kurtosis and thus the (natural) logarithm is a biased estimate of the ratio. In the 

cases used in this study it is possible to have datasets in which the horizon of the 

final phase can be small, e.g. it may be necessary to have forecasts for the final 

four months of the operations. Secondly, Davydenko and Fildes (2016) point out 
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the earlier discussed limitations of the 𝑀𝐴𝐸 which uses the arithmetic mean, 

when the (absolute) errors’ distribution is heavily skewed. In such cases they 

suggest trimming of the resulting outputs. 

5.2.3.2 Percentage Better / Percentage Best 

A different approach that proceeds in the comparison among the forecasting 

models, without the need of a benchmark model, is the “percentage times better” 

(𝑃𝐵). This method uses e.g. the 𝑀𝐴𝐸 of the methods and expresses as an output 

the percentage number of times that each has been better than the other when 

compared in a number of different out of sample datasets.  

It is an intuitive non-parametric measure that is also easy to calculate. 

Furthermore, when the data are intermittent, the measure is not affected by zeros 

or outliers (Syntetos and Boylan, 2005). Additionally, when there are more than 

two methods to compare, the percentage number of times that each method has 

been better than all the others are calculated, which is the “percentage times 

best” (𝑃𝐵𝑡) measure. On the other hand, these two measures do not provide 

information on by how much each method is better. 

5.2.3.3 Scale-Free Error Metrics 

As seen above (Section 5.2.3.1), the relative-error metric approaches can have 

limitations if, either as a candidate forecast model, or as a benchmark model, 

there is a likelihood that a zero error can exist in the provided forecasts for the 

out-of-sample data. Even in intermittent demand data these cases are probably 

rare (Boylan and Syntetos, 2006), since they can still exist (Hyndman, 2006), one 

would want to look at alternatives. 

In a number of the metrics that were studied earlier using algebraic analysis 

(Sections 5.2.2.3, 5.2.2.4, 5.2.2.5 and 5.2.2.6), one of the main issues that these 

metrics tried to solve was to reduce their dependence from the scale by using as 

a denominator functions of the out-of-sample values 𝐴. A different approach that 

the following metrics use is that they scale through the use of the in-sample data 

which are known in advance and the only way that they can cause problems is if 

they all have extreme values, for instance if all of them are zero or there is an 

infinite value. 
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The first accuracy metric of this type that is considered next is the 𝑀𝐴𝐷/𝑀𝐸𝐴𝑁

Ratio (Hoover, 2006) which uses as the denominator the in-sample mean of the 

data: 

𝑀𝐴𝐷

𝑀𝑒𝑎𝑛
=

∑ |𝑒𝑡|
𝑛
𝑡=1
𝑛

∑ 𝑖𝑛−𝑠𝑎𝑚𝑝𝑙𝑒 𝐴𝑗
𝑚
𝑗=1

𝑚

where 𝑛 is the number of out-of-sample data points and 𝑚 is the number of in 

sample points. 

However, as Hyndman (2006) points out, the choice of the function to be used as 

a denominator should be thought of quite well. The use of the overall mean of the 

in-sample data assumes stationarity and thus, there is no trend or seasonality. If 

the data are not stationary, and there is a need to compare the forecasts several 

steps ahead, then the 𝑀𝐴𝐷/𝑀𝐸𝐴𝑁 Ratio metric might not be as reliable and 

intuitive. 

Another approach has been suggested by Hyndman and Koehler (2006) which 

is called Mean Absolute Scaled Error (𝑀𝐴𝑆𝐸). The authors suggest to use the 

𝑀𝐴𝐸 of the in-sample naïve forecast as a denominator: 

𝑞 =
𝑒

1
𝑚 − 1

∑ |𝑖𝑛_𝑠𝑎𝑚𝑝𝑙𝑒 𝐴𝑗 − 𝑖𝑛_𝑠𝑎𝑚𝑝𝑙𝑒 𝐴𝑗−1|
𝑚
𝑗=2

and the resulting measure is 𝑀𝐴𝑆𝐸 = 𝑚𝑒𝑎𝑛(|𝑞|). 

As compared to 𝑀𝐴𝐷/𝑀𝐸𝐴𝑁 Ratio, 𝑀𝐴𝑆𝐸 takes into consideration the 

peculiarities (trend or seasonality) of the in-sample data for the denominator. 

Furthermore, since it is usually the case that the in-sample dataset is larger than 

the out-of-sample, the naïve 𝑀𝐴𝐸 is stable. Its interpretation is also relatively 

intuitive in the sense that a value of 𝑀𝐴𝑆𝐸 < 1 suggests that the forecast of the 

method in the numerator gives on average smaller errors than the naïve method’s 

in sample errors.  

Davydenko and Fildes (2016) suggest that in the scenario where 𝑀𝐴𝑆𝐸 is used 

for the evaluation of forecasts that are produced from varying origins but constant 

horizon, the metric is equivalent to the weighted arithmetic mean of the 
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relative 𝑀𝐴𝐸s of the forecast method and the benchmark. This can be the case 

when multiple datasets (say 𝐾) are used to produce the final 𝑀𝐴𝑆𝐸 and thus their 

outputs need to be averaged: 

𝑀𝐴𝑆𝐸𝐾 =
1

∑ 𝑛𝑘
𝐾
𝑘=1

∑ 𝑛𝑘
𝑀𝐴𝐸𝑘

𝑀𝐴𝐸𝑘
𝑛𝑎𝑖𝑣𝑒

𝐾

𝑘=1

The problem then is that the arithmetic mean is overrating the accuracy and 

Davydenko and Fildes (2016) suggest the geometric mean as more appropriate.  

Furthermore, they suggest that when the in-sample dataset is small, the value of 

the denominator might be small too, and thus cause the function to produce 

outliers. 

With respect to the cases used in this study, the initial building up and the infinite-

time horizon periods are long and thus they produce enough in-sample data. 

Furthermore, any accuracy metric used would be applied to evaluate forecasts 

for different types of spares and different ranges of values. Therefore, a scale-

free type of metric was required. MASE was chosen as a good candidate. This is 

because apart from being scale free, it also does not require many pairwise model 

evaluations like the other scale-free metrics do like the Relative-Error (Section 

5.2.3.1), while it gives a more precise value of how much better one model is 

compared to another, something that would be missing if the Percentage Better 

/ Percentage Best metrics were used (Section 5.2.3.2). Consequently, the 

geometric mean of the 𝑀𝐴𝑆𝐸 outputs of the final phase out of sample / test data 

has been used for evaluation. 

5.2.4 Accuracy Implication Metrics 

5.2.5 Accuracy Implication Metrics Using Supply-Provision 

Objectives 

The following observation by Gardner (1990, p.492) that “… forecast errors are 

the primary determinant of the safety component investment. In general, the 

better the forecast accuracy, the smaller the inventory investment needed to 

reach any particular target value for customer service” stands out from others in 

that it places emphasis on commercial realities such as that the forecast models 
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are rarely an end on their own, but they usually are a means to an end, that of 

facilitating decision making in the provision of logistics support.  

There are three interrelated points in Gardner’s observation. Firstly, it is the 

“targeted value for customer service”. This is the reason for which inventories are 

operated when used for support. The second point is a related competing 

objective, i.e. that the inventory investment/costs need to be small. Finally, that 

the forecast errors are a very influential factor on how much safety stock is 

maintained in the inventory.  

This final point deserves further consideration. The planned safety stock is 

defined by the assumed probability distribution demand model and the set type 

of service metric along with the set service level. The latter is the decision 

resulting from the trade-off between the customer service that is desired to be 

offered, and the related costs of offering this service. These relationships are 

summarised in Syntetos, Nikolopoulos and Boylan (2010, fig.1): the service level 

and the costs are determined by the interaction of the (accuracy of the) forecast 

method and the inventory rules through the inventory’s stock management 

system. However, as shown below (Sections 5.2.5.1, 5.2.6.1), the accuracy 

implication metrics that have been commonly applied in the literature are not 

enough for the FPP cases to operationalise all the dimensions of the problem 

related to the quality of the forecast, and additional factors need to be included in 

the assessment. In the following paragraphs, the principles that Gardner (1990) 

describes, are compared to the FPP cases to determine where and how they 

differ. 

5.2.5.1 Final Phase Idiosyncrasies 1 

Gardner (1990) developed/demonstrated the idea of using the two objectives of 

the inventory investment and the provision of customer service to evaluate the 

provided models’ forecasts, by using the total costs 𝑇𝐶 over a set time period as 

presented in Hadley and Whitin (1963, chapters. 2, 4). 
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𝑇𝐶 = 𝐴 (
𝜆

𝑄
) + 𝐼𝐶 (

𝑄

2
+ 𝑅 − 𝜇) +

𝜋𝜆

𝑄
(∫ 𝑥𝑑(𝑥)𝑑𝑥 − 𝑅𝐷(𝑅)

+∞

𝑅

)
[5-6]

While Gardner (1990) uses the delay time as a measure of customer service, 

other researchers have used different service levels, like the backlog volume 

(Kourentzes, 2013) etc. Nevertheless, the idea is to have the customer service 

measures expressed in such a way that lower values signify better results. In this 

way, the measure of service used can have the same direction of better quality 

as its twin objective that indicates the costs of having inventory and thus both be 

able to be used in a plot like the one in Figure 5-5. 

Equation [5-6] calculates the average total costs of keeping inventory for a single 

item/component per unit time (say quarter) and in infinite-time-horizon settings. 

The variables involved are: 

𝐴 are the re-order costs, i.e. the costs paid every time a new order is placed 

𝜆 is the average demand for the item during the period / unit time that the 

inventory is used 

𝑄 is the amount ordered for this item every time an order is placed 

𝐼 is the inventory holding cost rate. It includes storage costs (warehousing rents, 

insurance, etc.), obsolescence and tied-up capital as an opportunity cost 

𝐶 is the purchase cost of every unit of the item 

𝑅 is the reorder point. It is estimated by taking into consideration the planned 

service level for the item and the item’s demand during the effective lead time 

(which, in the problem setting examined by Gardner (1990), the effective lead 

time is equal to the lead time (for a discussion on the relationship between 

the lead time and the effective lead time see e.g. Waters (2011, pt. 5))  

𝜇 is the expected (mean) demand during the lead time, i.e. the number of units 

that are expected to be consumed during the lead time 

𝑥 is the random variable of the realised demand during the lead time, i.e. the 

number of units that can be consumed during the lead time 



141 

𝑑(𝑥) is the marginal distribution of the lead time demand 𝑥

𝐷(𝑥) is the complementary of the cumulative distribution of the lead time demand 

𝑑(𝑥), i.e. 𝐷(𝑥) = 1 − ∫ 𝑑(𝑥)𝑑𝑥
𝑥

−∞

𝜋 is the backordered cost/”penalty” per unit item backordered  

Hadley and Whitin (1963, p.19) suggest that a general function for the 

backordered costs should depend both on each unit and on the length of 

time during which the backorder is active: 𝜋(𝑡) = 𝜋 + �̂�𝑡 , with �̂� being the 

rate of increase of the cost per unit time that the backorder is not covered. 

However, for the estimation of [5-6] the author assumes that the backorder 

cost depends only on the number of units and not on the duration that the 

backorder is still on. Later on it is shown that the time dependence needs 

to be considered in the FPP type of problems 

A brief discussion about the terms in [5-6] now follows in order to assist in 

identifying any possible differences that the FPP cases of interest might have.  

The first term expresses the (costs from the) number of orders that can be placed 

in the set period of time. In more details, in the examined period, orders of size 𝑄

are placed whenever the inventory falls to or below the reorder level 𝑅. So, if 𝜆 is 

the average demand for the whole period, the number of orders is
𝜆

𝑄
. However, 

this term is not affected by the forecast accuracy because the forecast is used for 

the duration of the effective lead time and not for the period that the inventory is 

used. The effective lead time is the lead time and – in case the inventory policy 

is a periodic review – it is also the review time. 

It is the other two terms that depend on the forecast and the smaller they are the 

better. The second term is the holding cost and is associated with the first of the 

two in the twin objective, i.e. the inventory investment, which is a measure of the 

efficiency of the supply system. The third term has to do with the penalties 

incurred from unmet orders. In essence it is a proxy of the (reverse of) the 

customer service quality, the effectiveness of the supply system. The fewer 

unmet order penalties incurred the better the service provided by the inventory. 

What Gardner (1990) showed and has since been repeatedly applied (Eaves and 
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Kingsman, 2004; Kourentzes, 2013; Sani and Kingsman, 1997; Syntetos, 

Nikolopoulos and Boylan, 2010; Syntetos and Boylan, 2005), is that different 

forecast model accuracies, for the same systems, give more/less accurate 

forecasts and thus less/more inventory and back-order volumes.  

An example from Boutselis and McNaught (2018) is replicated in Figure 5-5. The 

forecasting model whose resulting curve is closer to the axis is better in the 

accuracy implication metrics.  

Actually, it is the infinite-time-horizon nature of the problem that renders the first 

term 𝐴 (
𝜆

𝑄
) uninfluential in the study about the possible forecast accuracy 

implications. Additionally, in Hadley and Whitin (1963, chap. 2) there was an 

extra additive term in the total costs equation [5-6], the 𝜆𝐶, which was used in 

order to include the costs of the item’s units purchase cost for the period that the 

inventory is used. This term was not further considered by Hadley and Whitin, 

since it would not affect the inventory holding decision policies on the number of 

items to order 𝑄 and on the level of the re-order point 𝑅. In other words, in an 

infinite-time-horizon 𝜆 is going to be consumed anyway – the time is infinite - so 

it does not affect the comparison among the inventory holding policies, neither it 

is directly related to the forecast of interest, which is referring to the effective lead 

time. 
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Figure 5-5: Inventory investment (holding stock) vs number of backorders 

under different target service levels (SL) of two forecast models 



143 

On the other hand, in the FPP cases, the situation is not the same: the time-

horizon is finite. In essence, for the FPPs the whole period is an effective lead 

time and this imposes a number of non-relaxing restrictions that increase the 

decision making risk, like the inability to rely on a backorder that can soon be 

covered, or that there is no subsequent period to consume any likely leftovers 

from this period. Consequently, as it is shown further below, the forecast accuracy 

does not only affect the service level (as approximated by the backorders’ 

volume) and the holding costs (as approximated by the inventory volume held). 

It also affects - intuitively as well - the number of units purchased at the beginning 

of the period, i.e. the respective to the 𝜆𝐶 that was excluded from the 

consideration of the costs in [5-6], and thus, the number of unused leftovers at 

the end of the period or the number of stock-outs occurred. 

In order to show the dependency of the decision on additional factors to what the 

steady-state situations of the infinite-time-horizon do, once more reference is 

made to Hadley and Whitin's (1963, chap. 6) work on “Single Period Models” 

that are also well-known as the Newsvendor Problems (NVPs). 

 So, to develop an argument for the additional dimensions that need to be 

considered, it is necessary to view the NVP from the generic seller’s perspective. 

The gain function version of the NVP problem is being used here in [5-7], as 

opposed to the costs function version of [5-6], so as to use the ”loss of good-will” 

cost 𝜋 (equivalent to backorder costs of [5-6]) explicitly, instead of the opportunity 

costs that are considered of the equivalent NVP problem formulation as a cost 

function (see e.g. Lodree, Kim, and Jang (2008), or Khouja (1999)).  

To present the profit/gain function 𝐺(𝑄), of the Newsvendor decision maker, it is 

necessary to introduce some additional notation: 

𝑆 is the selling price for each unit of the item under consideration. For the cases 

of the “final phase” that are of interest, it could be considered as some notional 

operationalisation of providing a unit spare when it is needed 

𝐿 is the price that any items left at the end of the period are sold, with 𝐿 < 𝐶. 

Again, for the cases of interest to this study, this factor could be considered as a 

notional use of an item after the end of the period of interest. However, if such a 
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use does not take place, its value could be set to zero, or even be negative, if 

there is some kind of disposal cost, or cost of having to pack the unused stock 

and transport it to another place after the operations are over 

Using this notation and the notation of [5-6], it is possible to write the gain function 

𝐺(𝑄) for any amount 𝑄 that the Newsvendor might decide to purchase: 

𝐺(𝑄) = 𝑆∑𝑥𝑑(𝑥) + 𝑆𝑄

𝑄

𝑥=0

∑ 𝑑(𝑥) +

+∞

𝑥=𝑄+1

𝐿∑(𝑄 − 𝑥)𝑑(𝑥)

𝑄−1

𝑥=0

− 𝜋∑(𝑥 − 𝑄)𝑑(𝑥) − 𝐶𝑄

+∞

𝑥=𝑄

[5-7]

None of the above terms depends on time as the inventory holding costs do in 

[5-6]. Regarding the first two terms in [5-7] the first has to do with the gain if the 

demand during the period is less or equal to  𝑄, while the second term expresses 

the gain if the demand is more than 𝑄. A thing to observe is that in contrast to 

[5-6], the [5-7] is a gain function, and these two terms are an additional 

consideration due to requirement to include what the Newsvendor can “sell”, and 

which does not depend to the difference in the type of time-horizon between [5-6] 

and [5-7].  

The third term has to do with something which is a peculiarity of the NVPs and 

thus, an additional concern for the FPP cases as well. This term expresses the 

leftovers that might remain after the end of the period. Consequently, a better 

forecasting model, under the same inventory policies should help produce fewer 

leftovers after the end of the period than the rest of the models. Furthermore, the 

weight that the modeller should give to such an event should depend on if the 

value of 𝐿 could be considered positive, zero or negative.  

Finally, as in [5-6], the fourth term is similar but not exactly the same as in the 

infinite-time-horizon cases. In the infinite-time-horizon this would be the 

backorders placed, but in the finite time-horizon there is no subsequent period to 

fulfil any not covered demands. In these cases, they represent the “loss of good 
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will”/stock-out cost which can be considered equivalent to the “lack of service” 

approximation through the volume of backorders. Nevertheless, for the present 

research use, this term has been treated the same as the backorders’ volume 

used in other cases in the literature. 

However, as Hadley and Whitin (1963, secs. 6-5) explain, the NVP formulation 

can be better estimated by the inclusion in [5-7] of the following time-dependent 

costs (𝑇𝐷𝐶) as well: 

𝑇𝐷𝐶(𝑄) = 𝐼𝐶𝑇 [𝑄 −
𝜇𝑇

2
] + (𝐼𝐶 + �̂�)𝐵(𝑄) [5-8]

, where 𝐵(𝑄) is the probability of a stock-out, given different values of 𝑄, and 

�̂�𝐵(𝑄) is a time-dependent stock-out cost. 

It should be emphasised, and as it has also been mentioned in Chapter 2, that 

due to the inhibiting distances from the resupply centres of the Support Chain 

and the fact that the operations are about to finish and thus, the decision makers 

would usually restrain from placing additional orders. Consequently, the time-

dependent stock-out cost rate �̂� of the second term in [5-8] mainly expresses 

things like the rate at which operational outcomes are decreased when a required 

spare is not available to make the system available for use. 

Finally, the first term of [5-8] expresses the holding costs in a similar way as in 

the infinite-time-horizon cases. 

As seen in the infinite-time-horizon cases of [5-6] there is a dual-objective of 

interest that the quality of forecasts from the different models can affect, namely 

the backorder costs that reflect the service level (expressing the effectiveness) 

and the average inventory holding costs (expressing the efficiency). In these 

cases, due to the lack of knowledge of the cost/monetary factors, these two 

objectives (backorder costs and holding costs) are approximated by the volume 

of inventory backordered and held respectively during a certain typical period of 

the infinite horizon.  

Now, regarding the FPP cases, these two objectives (the volume of inventory 

backordered and volume of inventory held) are still important as seen by the 
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discussions on [5-7] and [5-8], with the only difference that the average 

backordered volume is described as average stock-out volume. However, as 

shown there are two additional factors that need to be included as implications of 

the forecasting accuracy. Firstly, it is the number of items which are “left” at the 

end of the period under consideration. This is an economical/efficiency measure 

and in an ideal situation would have zero such items, so, under the same 

conditions, the higher it is the worse the implication of the forecast model 

accuracy. Secondly, it is the time dependent stock-out effect. This should reflect 

the duration that a stock-out problem has existed for, which is related21 to what 

Schneider (1981) calls α-service level and Axsater (2006) calls S1 service level, 

i.e. the probability of no stock-outs per cycle. Consequently, this measure reflects 

the lack of service from the inventory to the mechanic that needs a spare and 

does not find it. A point that needs to be highlighted is that in the FPP cases, 

duration that a stock-out problem has existed for is related but is not exactly the 

same as the probability of no stock-outs per cycle. This is because when there is 

an infinite-time-horizon, the event of having no stocks on the shelves at any 

period is a random variable, while in the finite time-horizon of the FPPs, the last 

period is more likely than the one before the last etc. Nevertheless, in the present 

research the number of periods that have zero inventory on the shelves are 

calculated to approximate this specific accuracy implication. 

In summary, in the FPP cases a forecast model’s accuracy implications could be 

evaluated using the following four measures: 

1. The average volume of stock-outs during the FPP period, representing the 

number of cases the mechanic did not find the part “on the shelf” (a 

measure of the effectiveness) 

2. The average volume of inventory during the FPP period, representing the 

costs of keeping inventory (a measure of the efficiency) 

21 They are related but not exactly the same because when there is an infinite-time-horizon, the event of 
having no stocks on the shelves at any period is a random variable, while in the finite time-horizon, the 
last period is more likely than the one before the last etc. Nevertheless, in the present research the 
number of periods that have zero inventory on the shelves are calculated to approximate this specific 
accuracy implication 
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3. The volume of spares left at the end of the FPP period, representing the 

amount of unneeded inventory (a measure of the efficiency) 

4. The probability of no stock-outs during the FPP period, representing the 

intensity of the problem to the mechanic caused by the inventory low 

service (a measure of the effectiveness) 

Nevertheless, in order to summarise the evaluation it is necessary to average 

each of the above four metrics over all the different components. On the other 

hand, this simple overall averaging does not accurately reflect the effects on the 

support of the operations, since the components can be highly interdependent, in 

the sense that e.g. stock-outs on a component can make a supported system not 

available and thus reduce the demands for the other components.  

Furthermore, the overall average – either geometric or arithmetic – might not 

represent the real service level provided by the inventory either. For example, low 

volumes of backorder in one or more components might not be a result of the 

good synergy of forecasting methods and inventory rules within the stock 

management system, but it might be due to the fact that another component 

occasionally runs out and keeps many of the operated systems unavailable. 

Consequently, an overall average of the volume of backorders would be biased 

since it would possibly give a low value and thus a good overall service. On the 

other hand, such a case would not necessarily result in high volumes of inventory 

in order to indicate a problematic situation. 

As shown in the following section, there are types of Support Chain relationships, 

like the ones of interest to this research and discussed in Sections 1.2, 1.4 and 

3.4, in which the interdependence consideration in the forecasting evaluation can 

be included. In such cases the service level measure 1 above is considerably 

simplified from averaging for all the items into incorporating them into the 

Operational Availability of the supported systems. 

5.2.6 Accuracy Implication Metrics Using the Systems’ Operational 

Availability as Objective 

The importance of the systems’ Operational Availability objective as a measure 

for the evaluation of the forecast models’ accuracy has been used by a number 
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of practitioners  (see e.g Systecon (2015), Sherbrooke (2004)) and it reveals an 

important difference in the point of view between what was  discussed in the 

previous section and here.  

Sherbrooke (2004) suggests that the supported systems’ (aircraft in Sherbrooke’s 

case) Operational Availability should be used as an objective measure for the 

demand forecast evaluation on a set of components, since the ultimate objective 

of the whole support operations (logistics and repair related activities) is to keep 

as many of the supported systems ready and operational as possible using a 

given budget. Therefore, the Operational Availability is a measure of the SC 

effectiveness.  

The difference found between the measures discussed in Section 5.2.5 which 

use the individual components and what Sherbrooke suggests about the 

supported systems, can be attributed to differences in interests of the decision 

makers. In the first instance of Section 5.2.5, the decision maker is interested in 

meeting the service level requirements of a supply provision contract in an 

efficient way, and thus the interest lies in the discussed trade-off of individual 

components’ (lack-of) service level/stock-out volume (effectiveness) and the 

inventory costs/inventory volume (efficiency). On the other hand, when the 

decision maker’s focus is in the whole Support Chain up to and including the 

Operations - like the cases that Sherbrooke (2004) refers to, or in “availability” 

type of contracts - then the interest lies in  the different levels of systems’ attained 

availability (effectiveness) that the forecast models can help realise, given the 

same investment in spare components (efficiency). 

This observation highlights both the difference in the decision makers’ interests 

but also signifies the difference in the forecast accuracy implication measures 

that each decision maker view values more. As mentioned in Chapter 1, the 

research problem’s interest is in the “final phase” of operations which are 

supported in logistics and repair, and thus, from that perspective the present 

research is more related to Sherbrooke’s view.  

Furthermore, there is an additional advantage/convenience to be gained from 

using the measuring approach that Sherbrooke suggests. In certain cases, e.g. 



149 

when the decision maker serves a contract that does not include the 

consideration and the related ability to have access to data regarding the 

Operational Availability of the supported systems, the two objectives of inventory 

and of backlogged volume, plus 3 and 4 of the list presented earlier in case there 

are NVP and FPP types of problems, can be the only choices. In such cases, 

each forecast model needs to be evaluated through all these objectives by 

averaging over all spares/components examined. On the other hand, in the cases 

where data on the Operational Availability of the systems are accessible by the 

decision maker, the main output of interest is only a single “thing” – the system 

that the logistic and repair activities support, so that it stays available and 

operational. It is this system that “amasses” in a natural way all the components’ 

inventory contribution in one. This conveniently removes any ambiguity that might 

exist when averaging over different units of interest which are thought dependent. 

5.2.6.1 Final Phase Idiosyncrasies 2 

Nevertheless, when compared to the infinite-time-horizon that Sherbrooke 

examined, there are still some differences in the “final phase” cases that were 

considered in the present research. Actually, these considerations have been 

included in related Multi-Indenture Multi-Echelon (MIME) optimisation models like 

the “Endurance” model (Systecon 2015). In such models there are two 

optimisation objectives of a single finite time-period of interest related to the 

effectiveness of the SC: 

1. The deployed/supported systems’ Operational Availability at the very end 

of the period 

2. The deployed/supported system’s average Operational Availability for the 

duration of the period of interest 

This idiosyncrasy of the FPPs as compared to the infinite-time-horizon problems 

that Sherbrooke (2004) was referring to, can be seen as a special case of the 

related discussion in Boylan and Syntetos (2006) and Willemain (2006) on 

whether to forecast for the mean and the variance of the demand distribution, or 

for certain extreme percentiles. In the case of the present research, it is the high 

percentiles accuracy implications of the demand forecasting models that need to 
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be observed. This means that our interest is in the problems incurred by low 

values of Operational Availability. 

So, what is suggested is to compare the candidate forecast models under the 

above two objectives, replacing number 1 in the list of Section 5.2.5.1. In 

summary, in the present research for the FPP, and under the assumptions of 

close relationships within the SC (as referred to in Sections 1.1, 1.2 and 3.4), the 

following accuracy implication metrics have been used: 

1. The average volume of inventory during the period, representing the costs 

of keeping inventory (a measure of the efficiency) 

2. The volume of spares left at the end of the period, representing the amount 

of unneeded inventory (a measure of the efficiency) 

3. The probability of no stock-outs during the period, representing the 

intensity of the problem to the mechanic caused by the low service (a 

measure of the effectiveness) 

4. The systems’ Operational Availability at the very end of the period, 

representing the intensity of the problem to the end-customer (a measure 

of the effectiveness) 

5. The systems’ average Operational Availability for the period of interest, 

representing the intensity of the problem to the end-customer (a measure 

of the effectiveness) 

Finally, in order to create pairwise plots as a useful presentation tool to facilitate 

decision making, measures 1 and 5, and 2 and 4 were paired. The 3rd measure 

was used as a complement to the two pairs. 

5.3 Conclusions 

Chapter 5 considered two ways of evaluating forecasts, namely with accuracy 

metrics and accuracy implication metrics.  

Regarding the accuracy metrics, it was shown that by doing an algebraic analysis 

of their loss functions, the analyst can understand the areas where they can be 

applied, but most of all their limitations. Such intuition was provided by showing 

that the 𝑠𝐴𝑃𝐸 loss function, in any of its variants should not be used for error 
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magnitudes larger than the value of the data point that is to be forecast, while all 

three variants are indeed identical to the rest of the errors’ value space.  

Furthermore, regarding the chosen accuracy metric, it was suggested that since 

the datasets that are used in the FPP are outputs of the demand for not just a 

single type of spare part, one would expect different magnitudes of demand, and 

therefore, the chosen accuracy metrics should be able to accommodate such a 

requirement. In addition, the simulation used in this thesis produced datasets 

from the multiple runs of every simulated future scenario (see Section 1.3). 

Consequently, there were different sets of time-series, and this was an additional 

challenge to the comparison of the forecast models’ outputs that the accuracy 

metric should be able to accommodate as well. Therefore, scale-free accuracy 

metrics were required, and 𝑀𝐴𝑆𝐸 (Section 5.2.3.3) was the one that was chosen, 

because, as compared to Percentage Better / Percentage Best metrics (Section 

5.2.3.1), it is able to give the magnitude of difference among the candidate 

forecast models’ outputs, while it does not need to do multiple pair-wise 

comparisons as the Relative-Error metrics do (Section 5.2.3.2). 

It was also shown that the FPP requires a number of accuracy implication metrics 

in addition to the existing indicators in order to evaluate the quality of a forecast. 

These are the volume of spares left at the end of the period, the probability of no 

stock-outs during the period, and the systems’ Operational Availability at the very 

end of the period. 
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6 SIMULATION

6.1 Introduction 

Chapter 6 presents the Support Chain (SC) system that is simulated in order to 

generate the data required to build and to evaluate the forecast models. The chapter 

also describes the Activity Diagram that was used to build the simulation as a computer 

model. 

6.2 Simulated System 

Using the literature review from Chapter 2 and the SMEs’ interviews from Chapter 3,  

 a number of factors that could be influential in the realisation of the demand (Table 

2-1 and Table 3-1) were identified, as well as three conceptual models. The intention 

has been to study how these factors work in a Support Chain (SC).  

In order to proceed, the option was taken to collect data from a simulation that was 

developed of such an SC. The use of simulation data is obviously less realistic than 

using real-life data. Real data would have the advantage of increased credibility of the 

results, particularly in the eyes of practitioners.  

On the other hand, in order to compare forecasting models, a simulation offers a 

number of benefits as compared to real data. Firstly, real data can include a number 

of errors and anomalies that can be difficult to identify as such, and these can cause 

misjudgements especially when the research is in areas with very little background 

experience. On the other hand, through the use of a verified simulation, the chances 

of errors are reduced. Moreover, in case of an unexpected and debatable outcome, 

the ambiguity can always be resolved by the simulation’s capability to replicate the 

runs, or even investigate them step-by-step. Such a benefit is very important. Low 

noise in the data increases the credibility of the evaluations in the forecasts, the results 

and the conclusions.  

Furthermore, real life data would restrict the evaluation of a study to a single realisation 

of the Support Chain system as well as the ability to investigate different system’s 

settings of interest, or, as in the current research, different possible final phases. 

Having the convenience to use a tool like a simulation, the study can be upgraded into 

an experiment. Different settings of the system can be examined and each can be 

replicated a number of times in order to explore the aleatory uncertainty. This 
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capability benefits the research in a number of ways. Firstly, the range of situations 

researched is expanded and thus our acquired understanding increases as well; a 

number of insights resulting from the simulation experiment are presented in Appendix 

B. Secondly, there is a wider range of situations in which to compare the forecast 

models and this increases the power of the statistical tests when investigating 

differences between these models.  

Additionally, even though the development of a simulation model can be an elaborate 

task, it may still be less demanding in time and resources compared to what might be 

needed in order to collect and process the real-life data from the logbooks. Real-life 

data would require access to multiple nodes within the SC and the acquisition of the 

data from the logbooks may not be in electronic format to process. Furthermore, there 

would be a need to cleanse and synchronise the data. Finally, real-life data can also 

be of a sensitive nature, and therefore accessibility might be restricted or even denied.  

The simulation model (Section 6.4) was built for two uses. Firstly, it provides a means 

by which to generate the data required to build the demand forecast models. These 

were the in-sample data as briefly discussed in Section 5.2.1. This involves a scenario 

being simulated just once to generate data corresponding to what might be collected 

in logbooks in the various phases of operations before the final phase.  

Secondly, as suggested above, the simulation offers the ability to examine different 

possible futures in the form of an experiment. The resulting generated data provides 

the out-of-sample data, again as discussed in Section 5.2.1. Therefore, the simulation 

model was also used to generate data corresponding to several different possible final 

phases by changing factors that could realistically have been changed as a result of 

the operations coming to an end. Such factors were the number of operational 

systems, the number of mechanics, the level of spares in the inventory, etc.; these are 

listed in more detail later. As discussed in Chapters 1 and 2, the operational demand 

does not always decline in the final phase. Consequently, the operational demand was 

included in the set of factors that were examined. Finally, in order to allow for the 

aleatory uncertainty associated with the final phase, it was necessary to run each 

possible final phase multiple times, i.e. 100 replications. 

The following section (Section 6.3), describes the factors that were taken into 

consideration in order to develop the simulation model, along with their assumed range 
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of values. As presented in the same section, the scenario involved the support of a 

number of UAVs that were performing ISTAR operations. The values used do not 

come from real systems. However, they correspond to small-scale operations in which 

a typical 4-hours ISTAR mission per UAV could be used twice a day to provide 24-

hours’ coverage. Consequently, three to four UAVs were considered with a 

corresponding level of support.  

Section 6.4 presents the Activity Diagram that was used as a basis for the simulation. 

The scenarios experiments design along with the results and their analysis are then 

discussed in Sections 7.2 and 7.3. 

6.3 Factors Included in the Simulated Scenarios 

One of the conceptual models referred to in Section 3.3 and which is pictorially 

presented in Figure 6-1, was used in order to identify the factors to include in the 

simulation model. 

This conceptual model considers the four different contexts within which the supported 

systems exist. These contexts are presented schematically in Figure 6-1 

In the Sections that follow, each context is examined in order to present the factors 

that were included in the simulation model. 

Pool of systems 

working within 

their Engineering 

Context

Operational 
Context

Support
Context

Environmental Context

Figure 6-1: Conceptual model of the sources of demand context 
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6.3.1 Engineering System Context 

The first is the engineering system context to which the supported systems belong. 

From this context it is possible to identify the factors that are related to the Equipment 

Breakdown Structure (EBS) of each system. Consequently, what was included in the 

simulation model were the components’ reliability and maintainability (SN 6 Table 2-1).  

In order both to include a variety of component types, but also to make the model more 

manageable, it was assumed that the simulated operation had a number of fictitious 

Unmanned Air Vehicles (UAV)s and that each one was composed of the following 

components: 

 One Line Replaceable Unit (LRU). Such items are fundamental for the 

operation of any system in the sense that if they do not work, then the system 

– the UAV in the present case - cannot operate. Consequently, in a repair 

activity concerned with an LRU, the UAV is repaired by replacement with 

another LRU from the stock of spares. LRUs are also repairable. It has 

therefore been assumed that in order to repair an LRU, one Disposable Part 

(DP) was required. It was also assumed that the LRU’s time-to-failure followed 

an exponential distribution with a Mean Time Between Failures (𝑀𝑇𝐵𝐹) of 80 

hours. Moreover, it was considered that the components did not age for the 

period of interest. Additionally, a diagnostic activity was assumed to precede 

the repair activity. This was assumed to be always correct and to have a 

duration following a truncated normal distribution with a mean of 1.2 hours, a 

standard deviation of 0.7 hours and a minimum value of 0.2 

hours 𝑁(1.2, 0.72, 𝑚𝑖𝑛 = 0.2). Finally, in order to replace the LRU on the UAV, 

the activity duration was sampled from 𝑁(2, 0.82, 𝑚𝑖𝑛 = 0.3)

As stated previously, the LRU was assumed to be composed of a single DP. 

Obviously, since this part would be the only reason for the LRU to malfunction, 

it had the same reliability characteristics. The duration for diagnosing that the 

DP would have been the cause of the LRU’s fault was sampled from 

𝑁(2.5, 12, 𝑚𝑖𝑛 = 0.4) and the duration to replace it was sampled from  

𝑁(2.5, 0.92, 𝑚𝑖𝑛 = 0.3)

 One Partly Repairable Unit (PRU). Such items are also fundamental for the 

operation of any system, and in a repair activity the UAV is repaired by 
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replacement from the stock of spares. PRUs are repairable as well, but they do 

not need another part for their repair. An example of such components can be 

those that need a careful calibration at the repair shop, for instance a compact 

gyroscope.  

It was assumed that the time-to-fail of a PRU followed an exponential 

distribution with a Mean Time Between Failures (𝑀𝑇𝐵𝐹) of 100 hours. It was 

further assumed that the PRUs did not age for the period of interest, and that 

the diagnosis’ duration followed 𝑁(2.8, 0.52, 𝑚𝑖𝑛 = 0.3). Additionally, in order to 

replace the PRU on the UAV, the duration was sampled from 𝑁(3, 0.62, 𝑚𝑖𝑛 =

0.4).  

As mentioned above, PRUs are repairable. Diagnosis of the problem was 

assumed to take a duration of 𝑁(3.5, 0.82, 𝑚𝑖𝑛 = 0.45), while repair time was 

sampled from  𝑁(4, 0.72, 𝑚𝑖𝑛 = 0.45). However, PRUs are not always 

repairable. It was assumed that the probability of a PRU being repairable was 

0.8 

 Finally, it was assumed that the UAVs also contained a single Disposable Unit 

(DU), e.g. landing gear/tyres, which are also fundamental for a UAV’s operation. 

Such components are not repaired after they are replaced by a spare on the 

UAV. It was further assumed that the time-to-fail of a DU also follows an 

exponential distribution with a Mean Time Between Failures (𝑀𝑇𝐵𝐹) of 110 

hours. Again, assuming that the DUs do not age for the period of interest. 

Furthermore, it was assumed that the duration of diagnosis 

follows 𝑁(1.7, 0.12, 𝑚𝑖𝑛 = 0.2). Additionally, in order to replace the DU on the 

UAV, the duration was sampled from 𝑁(1.5, 0.22, 𝑚𝑖𝑛 = 0.2)

 The simulated scenario assumed that each UAV could fly a continuous four-hour 

mission (SN 4 Table 2-1).  

The simulation scenario assumed that the following recorded incidents would be found 

in the “logbooks” of the nodes of the Support Operation: 

 Fault of the UAVs due to LRU, PRU, DU, and from which the respective failure 

rates could be acquired from the outputs of the simulation (for the notation see 
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Table 6-1): 𝐹𝑅𝑇_𝐿𝑅𝑈, 𝐹𝑅𝑇_𝑃𝑅𝑈, 𝐹𝑅𝑇_𝐷𝑈 and also the number of hours that the 

components had operated until they failed: 𝐹𝑙𝐻𝑏𝑑_𝐿𝑅𝑈, 𝐹𝑙𝐻𝑏𝑑_𝑃𝑅𝑈, 𝐹𝑙𝐻𝑏𝑑_𝐷𝑈. 

 Fault of the LRU (due to the DP), fault of the PRU: 𝑊𝐹𝑅𝑇_𝐿𝑅𝑈, 𝑊𝐹𝑅𝑇_𝑃𝑅𝑈

 The decision to discard the PRU when it is beyond repair: 𝑃𝑅𝑈_𝑑𝑖𝑠𝑐. 

6.3.2 Operational Context 

The second context is the operational one (Figure 6-1). The operational context is the 

one that uses and “wears-out” the components of those UAV systems that are 

available. Three relevant factors that are related to this context were identified (SN 4, 

5 Table 2-1). Firstly, the number of systems (𝑥𝑁𝑈) and the number of operators (𝑥𝑁𝑃) 

that are deployed. It was assumed that these numbers vary during the scenario and 

their values are provided when subsequently described. However, it was always 

assumed that there were as many operators as there are UAVs. The second factor is 

the operational demand (𝑂𝑝𝐷𝑒𝑚). It was assumed that the UAVs were deployed in 

support of ISTAR (Intelligence, Surveillance, Target Acquisition, and Reconnaissance) 

operations and the requirement was expressed with the coverage of a certain area 

from the air for a specified percentage of 24 hours every day. Again, the scenario’s 

𝑂𝑝𝐷𝑒𝑚 levels are subsequently described in more detail. Finally, the information 

provided from the interviews (SN 8, 9 Table 3-1), which showed that the experience 

of the operators was a factor that contributes to the spares’ demand (𝑃𝐸𝑥𝑝), was also 

included. It was assumed that there were three levels of experience, 1, 2 and 3, with 

a probability of having each distributed as 0.2, 0.43 and 0.37 respectively. Each level 

would have a different effect on the wear-out of the system, with the most experienced 

level 1 operator having no degrading effect when he/she operated the UAV, level 2 

having a 20% effect and level 3 a 40% effect. 

In the respective logbooks, it was assumed that the following incidents and records 

could be acquired: 

 The operational demand: 𝑂𝑝𝐷𝑒𝑚

 The take-off and landing events (either due to normal, or to emergency landing), 

from which the operational rate and the duration of each flight / Time on Task 

could be acquired: 𝑂𝑝𝑅𝑇, 𝑇𝑂𝑇

 The operator that controlled the flight, whose level of experience could be 

operationalised from  his or her rank: 𝑃𝐸𝑥𝑝
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 The number of units deployed: 𝑥𝑁𝑈

6.3.3 Support Context 

The third context (Figure 6-1) is that of support in which the maintenance and 

logistics/supply activities take place and keep the systems available. This was 

assumed to be the largest of the four contexts because it was expected to include both 

the repair and the supply/logistics policies, activities and resources (SN 11-15 Table 

2-1). 

The repair functions were driven by the EBS of the system. The repair policy is one of 

the factors that was shown in Chapter 2 and has been identified as influential, but it 

was assumed not to take changes into consideration. Therefore, included was a 

single, unchanging policy into which there was a first-line repair through replacement 

of the components (LRU, PRU or DU) and it was assumed that the reason for a fault 

can only be a single one and was always identified correctly.  

However, a simulation was carried out for two different levels of experience of the 

mechanics (𝑀𝐸𝑥𝑝) that perform the diagnosis of the faults and the repair; level 1 and 

level 2 in a 55-45% split, respectively when the number of mechanics changed during 

the scenario (SN 1 Table 3-1). Level 1 mechanics had no increasing effect on the 

duration of the diagnosis, while the less competent level 2 mechanics had a 40% 

increase in the mean duration both of any diagnosis or repair that they did. The 

relevant durations were the ones described earlier in the engineering context (Section 

7.3.1). Apart from experience, it was assumed necessary to consider the resources, 

which in this case included only the number of mechanics (𝑥𝑁𝑀). The pool of 

mechanics deployed was changed as the steady-state phase of the scenario evolved, 

and details of that change follow. 

Since there were components that are repairable (LRU and PRU), consideration was 

also given to a second-line of repair of the components. In the second line, there were 

repair processes and resources. The processes in the simulation were not varied, so, 

it was assumed that there was a priority to the first line, but, when a mechanic took 

over a job he/she followed it till the end. This enforced a “no-batching” repair policy, 

similar to the “no-batching” supply policy that is now described. 

The supply/logistics functions were composed of two lines. One line was right next to 

the second-line repair shop – a second-line depot – in which were held the inventories 
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of the four spare components: LRU, PRU, DU and DP. The no-batching policy was the 

common (𝑆, 𝑆-1) policy in which whenever there is a single reduction in the level of the 

inventory position22, a resupply (or repair) order was issued. The target level of 

inventory was another factor (resource) that was considered as the scenario evolved 

(𝑥𝑆𝐿𝑅𝑈, 𝑥𝑆𝑃𝑅𝑈, 𝑥𝑆𝐷𝑈, 𝑥𝑆𝐷𝑃).  

The resupply was coming from a third-line which was assumed to have unlimited 

resources. The “logistics” connection between the front-line and the second-line took 

place through a limited number of transport vehicles which was another factor that was 

taken into consideration (𝑥𝑁𝑇𝑟). The duration of the one-way transport was sampled 

from 𝑁(2, 0.052, 𝑚𝑖𝑛 = 0.8,𝑚𝑎𝑥 = 12). Furthermore, it was assumed that it was the 

driver that also searched for the spare part in the depot and it took her/him 

𝑁(1, 0.62, 𝑚𝑖𝑛 = 0,𝑚𝑎𝑥 = 4) hours to find it and load it on the vehicle. Finally, the 

connection with the third-line was performed with unlimited resources but with a 

duration that followed23  𝑁(168, 242, 𝑚𝑖𝑛 = 30). 

The related records from the logbooks were inevitably more: 

 As referred to previously, the activities from the engineering context 

were 𝐹𝑅𝑇_𝐿𝑅𝑈, 𝐹𝑅𝑇_𝑃𝑅𝑈, 𝐹𝑅𝑇_𝐷𝑈, 𝑊𝐹𝑅𝑇_𝐿𝑅𝑈, 𝑊𝐹𝑅𝑇_𝑃𝑅𝑈, 𝑃𝑅𝑈_𝑑𝑖𝑠𝑐. But 

from the logbooks it was also possible to get the following repair 

durations: 𝑅𝑑𝑢_𝐿𝑅𝑈,  𝑅𝑑𝑢_𝑃𝑅𝑈, 𝑅𝑑𝑢_𝐷𝑈 for the repair of the UAVs at the first-

line and 𝑊𝑅𝑑𝑢_𝐿𝑅𝑈,𝑊𝑅𝑑𝑢_𝑃𝑅𝑈 for the durations of repair of parts at the 

second-line.  

 The repair resources were also considered as available next to the incidents. 

The data availability also included the experience of each mechanic that took 

over a job: 𝑀𝐸𝑥𝑝𝐵 and 𝑀𝐸𝑥𝑝𝑊 for the first-line and second line respectively, 

their total numbers 𝑥𝑁𝑀 and the condition of the mechanics’ pools during each 

record: 𝑄𝑀,𝐵𝑊𝑘𝑙𝑑,𝑊𝑊𝑘𝑙𝑑, which were the number of mechanics who were 

idle, the percentage that worked in the first-line and the percentage that worked 

in the second-line.  

22 The inventory position is the on-hand inventory plus the ordered but not yet arrived amount (the “due-in”) 
minus the backlogged 
23 The 168 hours are equal to a whole week and it is the duration from the time the resupply order is placed 
until it arrives on the shelf of the depot 
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 Similar records were for the logistics’ administrative resources: 𝑥𝑁𝑇𝑟, 𝑄𝐴𝑑𝑚, 

which were respectively the number of deployed vehicles and the number that 

were idle at any specific time.  

 Regarding the inventory, interest was in the levels: 𝑥𝑆𝐿𝑅𝑈, 𝑥𝑆𝑃𝑅𝑈, 𝑥𝑆𝐷𝑈, 𝑥𝑆𝐷𝑃

and the respective on-hand units: 𝑂ℎ_𝐿𝑅𝑈, 𝑂ℎ_𝑃𝑅𝑈, 𝑂ℎ_𝐷𝑈,𝑂ℎ_𝐷𝑃. 

 Furthermore, there were spare orders as incidents and these could result in the 

estimation of rates as: 𝑂𝑅𝑇_𝑃𝑅𝑈,𝑂𝑅𝑇_𝐷𝑈 and 𝑂𝑅𝑇_𝐷𝑃, for order rates for PRU, 

DU and DP respectively. 

6.3.4 Environmental Context 

The final context (Figure 6-1) that was examined was the environmental one. As 

discussed in Chapters 2 and 3, the environment does not only affect the life of the 

components (i.e. what is included in the engineering context), but as discovered in the 

interviews with the SMEs, it also has effects upon the other two contexts.  

Two levels for the environmental conditions were considered in more detail, level 1 

and level 2, with the latter assumed to be worse. Therefore, whenever a UAV was 

operating, apart from the effects of the operator’s level of skill, it also included a 30% 

further increase in the degradation of all its components if the environment was level 

2. Additionally, if any kind of transport was taking place under these conditions, a 

further 20% increase in the duration was included. The percentage of time that each 

level of environmental conditions took place was 60% and 40% for levels 1 and 2, 

respectively, while the level was assumed not to change during a whole day. A record 

that was available in this case was the level-condition of the environment which was 

called: 𝐸𝑛𝑣. 

A list of the factors that have been included in the simulation and which possibly affect 

the demand for spares is presented in Table 6-1. These are possible factors and not 

certain in the sense that in the scenario in which they interact they might not appear 

to be very influential, and identifying which of them are, is one of the benefits of building 

and investigating using models (e.g. see Section B.1). 

Table 6-1: Nomenclature 

𝑶𝒑𝑹𝑻: Operational incident at FB, with values “Take-off” and “No new take-off”. the 
flight-rate can be acquired from this variable 
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𝒙𝑵𝑼: The number of UAV units deployed 

𝑶𝒑𝑫𝒆𝒎: Operational demand. Two different levels have been assumed, i.e. 4/5 and 
5/5 of a day air-surveillance coverage 

𝑻𝑶𝑻: Time on Task; the realized time on task of the UAV that performs the flight 

𝑷𝑬𝒙𝒑: The skill level of the operator (pilot) with three discrete values 

𝑬𝒏𝒗: The environmental conditions with two discrete values, “OK” and “Not OK” 

𝑭𝑹𝑻_𝑳𝑹𝑼: Failure Incident of a UAV due to LRU, with values “New Failure” and “No-
New Failure” 

𝑭𝑹𝑻_𝑷𝑹𝑼: Failure Incident of a UAV due to PRU, with values “New Failure” and “No-
New Failure” 

𝑭𝑹𝑻_𝑫𝑼: Failure Incident of a UAV due to DU, with values “New Failure” and “No-
New Failure” 

𝑹𝒅𝒖_𝑳𝑹𝑼: The duration of the UAV repair due to LRU fault 

𝑹𝒅𝒖_𝑷𝑹𝑼: The duration of the UAV repair due to PRU fault 

𝑹𝒅𝒖_𝑫𝑼: The duration of the UAV repair due to DU fault 

𝑭𝒍𝑯𝒃𝒅_𝑳𝑹𝑼: The number of flying hours since the last repair  

𝑭𝒍𝑯𝒃𝒅_𝑷𝑹𝑼: The number of flying hours since the last repair  

𝑭𝒍𝑯𝒃𝒅_𝑫𝑼: The number of flying hours since the last repair  

𝒙𝑵𝑴: The number of mechanics deployed 

𝑴𝑬𝒙𝒑𝑩: The skill level of the mechanic that took over the repair of the UAV 

𝑸𝑴: The percentage of mechanics that are idle 

𝑩𝑾𝒌𝒍𝒅: The percentage of the repair facilities that are occupied at the first-line 

𝒙𝑵𝑻𝒓: The number of drivers that have been deployed to do the transport from first-
line to the second-line and back 

𝑸𝑨𝒅𝒎: The percentage of drivers that are idle 

𝑾𝑭𝑹𝑻_𝑳𝑹𝑼: Workbench LRU failure Incident at the second-line, with values “New 
Failure” and “No New failure” 

𝑾𝑭𝑹𝑻_𝑷𝑹𝑼: Workbench LRU failure Incident at the second-line, with values “New 
Failure” and “No New failure” 

𝑾𝑹𝒅𝒖_𝑳𝑹𝑼: The duration of repair  

𝑾𝑹𝒅𝒖_𝑷𝑹𝑼: The duration of repair  

𝑷𝑹𝑼𝒅𝒊𝒔𝒄: The mechanic’s diagnosis output about whether the PRU is repairable or 
not 

𝑴𝑬𝒙𝒑𝑾: The skill level of the mechanic that took over the repair of the component 

𝑾𝑾𝒌𝒍𝒅: The percentage of the second-line repair facilities that are occupied 

𝑶𝑹𝑻_𝑷𝑹𝑼: A PRU resupply incident, with values “New Order placed” and “No New 
Order placed” 



163 

𝑶𝑹𝑻_𝑫𝑼: A DU resupply Incident, with values “New Order placed” and “No New 
Order placed” 

𝑶𝑹𝑻_𝑫𝑷: A DP resupply Incident, with values “New Order placed” and “No New 
Order placed” 

𝑶𝒅𝒖_𝑷𝑹𝑼: The duration of the resupply from the moment that the ordered was 
placed until the item was on the depot’s shelf 

𝑶𝒅𝒖_𝑫𝑼: The duration of the resupply from the moment that the ordered was placed 
until the item was on the depot’s shelf 

𝑶𝒅𝒖_𝑫𝑷: The duration of the resupply from the moment that the ordered was placed 
until the item was on the depot’s shelf 

𝒙𝑺𝑳𝑹𝑼: The nominal (order up-to) level of LRUs in the inventory 

𝑶𝒉_𝑳𝑹𝑼: The on-hand level of LRUs 

𝒙𝑺𝑷𝑹𝑼: The nominal (order up-to) level of PRUs in the inventory 

𝑶𝒉_𝑷𝑹𝑼: The on-hand level of PRUs 

𝒙𝑺𝑫𝑼: The nominal (order up-to) level of DUs in the inventory 

𝑶𝒉_𝑫𝑼: The on-hand level of DUs 

𝒙𝑺𝑫𝑷: The nominal (order up-to) level of DPs in the inventory 

𝑶𝒉_𝑫𝑷: The on-hand level of DPs 

6.4 Description of the Simulation Model’s Activity Diagram 

For the reasons explained in Section 6.2, a simulation of the operations supporting a 

fleet of UAVs was developed.  

The Support Chain is composed of three lines. In the first line of support, the UAVs 

that land due to a fault are diagnosed and repaired by substitution of only one of their 

components; therefore, it is assumed that there is only one fault per “emergency” 

landing and also that preventive maintenance is not included. This part of the diagram 

is described in more detail in Section 6.4.1.2.  

The spare needed for the substitution is brought by a truck driver from the depot which 

is manned at the second line. In the same place, apart from the inventory there are 

also repair facilities for the faulty components. After the repair of a component, it is fed 

back into the depot’s inventory for future use. The details for this level of support are 

presented in Section 6.4.1.3.  
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Finally, there are a number of components that either due to their nature or due to their 

bad condition, are not repaired. Consequently, resupply orders are issued which are 

realised by the third line, the details of which are presented in Section 6.4.1.4.  

Finally, the flight Operations themselves are simulated to include that part of the 

context that was found in Chapters 2 and 3 as being influential. Details for the 

Operations’ functions are presented in Section 6.4.1.1. 

The outline of the activities that were simulated is presented in Figure 6-2 with an 

Activity Diagram (Banks et al., 2001; Law and Kelton, 1991; Page, 1994; Shi, 1997; 

Visual Paradigm online, 2019). It is the Graph that was used as the plan/skeleton for 

the development of the Discrete Event Simulation (DES), which was coded in 

MATLAB.  

As mentioned earlier, in the sections that follow (Sections 6.4.1 till 6.4.1.4), details are 

provided of the events’ flows that take place at the individual lines (nodes) of the 

Support Chain, including the Operations, as they are presented as a whole in Figure 

6-2. At the end of each section a brief revision is provided of the 

connections/communication that each of the lines has with the rest. 
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Figure 6-2: The Activity Diagram of the whole support system, including the operations 
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6.4.1 Activity Diagram details 

6.4.1.1 Operations 

The Operations vignette is presented in Figure 6-3 

Figure 6-3: Operations 

The first event that initiates the simulation model is the “Start Flight” at the 

“Operations” Line. It takes place if the following three conditions are all met: 

 There is a requirement for a take-off (Y) 

 There are systems U available (NU > 0) 

 There are operators P available (NP > 0) 

By the time a flight is initiated, the number of hours of the components (LRU, PRU 

and DU) that are on the system U are reduced. Even though it is not presented 

in the Activity Diagram, the amount of reduction depends on the Environmental 

Conditions and the Operator’s skill-level/experience, and the level of reduction is 

different for each component in order to simulate that not all parts are affected in 

the same way during their operation. Furthermore, the number of systems (NU) 

that are available to be deployed are reduced by 1 and so are the available 

number of operators (NP). The initial number of systems 𝑥𝑁𝑈 and operators 𝑥𝑁𝑃

are decision variables and change as the scenario evolves to each of the different 

Phases (see Table 7-2, Table 7-10). 
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There are two possible Events that can follow. The first one is that the mission is 

fully performed by the system – a “Successful Landing” event - and the system U 

gets back to fill the pool of the available systems. Consequently, the number of 

systems available are increased (+1 to the “U Systems wait to Operate” queue) 

and so are the number of operators (+1 to the “Operators wait” queue). One detail 

that is worth mentioning is that if the operational demand is low – i.e. not for the 

full duration of the 24hrs - and the flight’s time is close to the end of the day and 

thus no systems need to operate, the model checks this condition and lands the 

system. This check has not been included in the Graph to avoid further clustering. 

Finally, a check is performed if another “Start Flight” event needs to take place.  

The second possible event has to do with a fault. The duration asked to be flown, 

modified by the effect of the Environmental Conditions and the skill-level of the 

operator is checked against the residual hours of each component of the system 

and if in one of them the modified duration exceeds the hours left, then there is 

an “Emergency Landing” event. When such an event happens, the operator 

returns (“Operators wait” queue) and the number of available operators is 

increased by 1. Furthermore, a check is made if the mission needs to be covered 

by another system, so as to have another “Start Flight” event. The system that 

has malfunctioned then waits for a mechanic to diagnose the problem (“Wait 

Diagn” queue). 

The Operations’ vignette communicates directly with the First-line support in two 

ways. Firstly, it sends out. The “Wait Diagn” queue is one of the inputs for the 

“End Diagn U” event. Secondly, the Operations receive from the “U Repaired” 

event of the First-line, any repaired systems into the “U Systems wait to Operate” 

queue. 

6.4.1.2 First-Line Support 

The First-line support vignette is presented in Figure 6-4. 
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Figure 6-4: First-line support 

If a mechanic is available from the “Mechanic (MF) waits” queue, then the 

malfunctioned system enters the area of the “Front-line of support” and there is 

the “End of Diagnosis” event. The duration of this event depends on the skill-

level/experience of the mechanic. If a mechanic is not available in the queue, the 

system waits for one to become available from the Second-line support 

(components’ repair shop) where all the mechanics stay (“Queue of mechanics”). 

The initial number of which 𝑥𝑁𝑀 is a decision variable. This is signified in the 

Graph via the “Mechanic arrives” event and then the mechanic is directed to the 

“Mechanic (MF) waits” queue. After the diagnosis is complete – and this is 

signified by the “End of Diagn U” event - an order is sent to the Second-line 

support (depot) to provide a spare component so as to replace the faulty one.  

If the faulty component in the system is a DU then it is discarded (a “Discarded” 

event), but a resupply order is not initiated yet, until a new one is dispatched from 

the inventory. If the fault was either due to an LRU, or a PRU, then the faulty 

component is removed from the system and the component waits in the “Faulty 

LRU/PRU wait” queue in order to be taken back in the repair shop, while the 

system waits in the “U waits to be repaired” queue. Furthermore, the mechanic 
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waits in the “Mechanic (MF) waits” queue, for the new spare to arrive from the 

Second-line. The order is received by one of the drivers through the “Dispatch” 

event. The drivers wait in the “Drivers wait” queue at the “Second-line support 

(depot)” area. If no spare is available at the moment, then there is a “Backlogged” 

event. 

At the First-line support area, the “Arrive with spare” event takes place through 

which a driver brings the required spare component. The duration of the 

transportation depends on the Environmental Conditions. 

The component then sits in the “Spare component” queue. There also is a system 

in the “U waits to be repaired” queue, so if a mechanic is available in the 

“Mechanic (MF) waits” queue, a repair activity leads to the “U Repaired” event. 

The duration of the repair activity depends on the skill-level/experience of the 

mechanic. The “U Repair” event then leads to having one more system available 

for the “U Systems wait to Operate” queue at the “Operations” area, with one of 

the system’s components in new condition, while the others have the previously 

accumulated hours. 

After the “U Repaired” event, the mechanic and the driver are made available. 

The mechanic notionally goes back to the “Mechanic (MF) waits” queue, but then 

immediately, along with the driver and the faulty component that sits in the “Faulty 

LRU/PRU wait” queue, drive to the “Second-line support (components’ repair 

shop)” and the “Mech, Driv, faulty component arrive” event that takes place. The 

duration of the travel depends on the Environmental Conditions. 

The First-line support vignette communicates directly with the Operations, the 

Second-line support (components’ repair shop) but mostly with the Second-line 

support (depot) area in order to get the required spares. Regarding the 

Operations, it receives the faulty system from the “Wait Diagn” queue, and sends 

back a repaired system to enter the “Systems wait to Operate” queue. The 

communication with the Second-line support (components’ repair shop) is again 

not very dense.  

The First-line support receives a mechanic from the “Queue of mechanics” which 

is at the Second-line support (components’ repair shop). The assumption is that 
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if there is one available in the queue then the dispatch to the First-line, which is 

right next to the Operations, is done automatically, without any request. This 

mechanic then stands-by to be ready to deal with any problem. The First-line 

again, sends out to the Second-line support (components’ repair shop) the faulty 

component accompanied by the mechanic who removed it and the driver who 

transports them. The event that takes place is the “Mach, Driv, faulty component 

arrive” event.  

As mentioned earlier, the communication with the Second-line support (depot) is 

denser. It is there that a “Dispatch” order event takes place, or if no parts are in 

the inventory, a “Backlogged” event is recorded. From that area the four queues 

of the three types of components, that can probably be used for the repair of the 

system by substitution at the Front-line (LRU, PRU or DU), and of the drivers, are 

fed into the “Arrive with the spare” event. These queues are the “Inventory of pare 

N_DU”, “Inventory of spare N_PRU”, “Inventory of spare N_LRU” and “Drivers 

wait” respectively. 

6.4.1.3 Second-Line Support: Repair Shop 

The Second-line support (components’ repair shop) vignette is presented in 

Figure 6-5. 

Figure 6-5: Second-line support (components' repair shop) 

At the Second-line support (components’ repair shop) it is the “Mach, Driv, faulty 

component arrive” event that initiates the processes that take place there. Before 
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discussing how this has been modelled, it should be mentioned that after the 

arrival, the driver is released to go back to wait in the “Drivers wait” queue at the 

Second-line support (depot) and also that the repair process of the component is 

performed by the same mechanic that brought it to the shop. The reason that for 

the assumption that the same mechanic performs the repair of the faulty 

component, is that there is also the assumption that no batching in the repairs (or 

the resupply orders) is allowed. 

If the component is a PRU, a diagnosis firstly takes place and thus there is a 

“Diagnosis complete” event. The diagnosis reveals if the PRU component is 

repairable. If it is, then a “Repaired” event takes place. The “Repaired” event then 

fills the PRU inventory (“Inventory of spare PRU”) at the Second-line support 

(depot) with one more part and also the mechanic is released and goes back to 

the “Queue of mechanics”. On the other hand, if the faulty PRU is beyond repair, 

then there is a “Discarded” event. This event triggers a “Backlogged” event at the 

“Third-line (resupply)”. Finally, the “Discarded” event releases the Mechanic who 

then is added to the “Queue of mechanics”. 

If the component is an LRU, a diagnosis firstly takes place again, and thus there 

is another “Diagnosis complete” event. This event places the under repair LRU in 

the “LRU waits for spare” queue. The diagnosis (always) reveals that the LRU 

needs a DP part to be repaired, which is located in the inventory that is called 

“Inventory of spare N_DP” queue which is at the “Second-level support (depot)”. 

If the shelves are not empty, then one is dispatched. Finally, as above, the 

“Repaired” event adds one more LRU spare in the “Inventory of spare N_LRU” 

queue at the “Second-level support (depot)”, and the same event also releases 

the Mechanic who then is added to the “Queue of mechanics”. The replaced DP 

is discarded (“Discarded” event). 

As before, the duration of the diagnosis and of the repair activities depend on the 

skill-level/experience of the mechanic. Furthermore, the duration of the 

transportation of the faulty component from the First-line to the Second-line 

support (components’ repair shop) depends on the Environmental Conditions. 
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The Second-line support (components’ repair shop) vignette communicates 

directly with the First-line support and the Second-line support (depot) area in 

order to get the required spares but also to fill in the inventory with the repaired 

components. 

The Second-line support (components’ repair shop) receives the “triplet” of the 

faulty component, the mechanic and the driver from the “Faulty LRU/PRU wait” 

queue and provided the “Mech, Driv, faulty component arrive” event. 

Furthermore, the Second-line support (components’ repair shop) feeds back to 

the First-line a mechanic from the “Queue of mechanics” when one becomes 

available, and thus the “Mechanic arrives” event takes place. 

The Second-line support (components’ repair shop) feeds the PRU and LRU 

inventory of the Second-line support (depot) with spare parts through a “Dispatch” 

event. As it was shown, the inventory is represented in the Graph via the 

“Inventory of spare N_PRU” and “Inventory of spare N_LRU” queues 

respectively. The “Drivers wait” queue of the drivers at the Second-line support 

(depot) is also fed with one more after the “Mech, Driv, faulty component arrive” 

event takes place. The “Inventory of spare N_DP” from the Second-line support 

(depot) provides one part so the “Repaired” event for the faulty LRU can take 

place at the Second-line support (components’ repair shop). If a part is not 

available on the shelf then a “Backlogged” event takes place at the Second-line 

support (depot) area. A similar backlogging action happens if the diagnosis of a 

faulty PRU shows that it is beyond repair and a “Discarded” event takes place at 

the Second-line support (components’ repair shop). 

6.4.1.4 Second-Line Support: Depot and Third-Line (Resupply) 

The Second-line support (depot) along with the Third-line (resupply) vignette is 

presented in Figure 6-6. 
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Figure 6-6: Second-line support (depot) and Third-line (resupply) 

The Second-line support (depot) is the area where the Depot lies with the 

inventory with spares of the four different component parts (LRU, PRU, DU and 

DP) and which they are represented in the Graph as queues. Furthermore, this 

is also where the dispatching and the backlogging are managed which is 

represented through the “Dispatch” and the “Backlogged” events respectively.   

The “Inventory of spare DU” queue, or the “Inventory of spare PRU”, or the 

“Inventory of spare LRU” is reduced by 1 after the “End of Diagn U” event from 

the First-line support shows that a DU, or a PRU or an LRU is needed 

respectively, and a check that there are available drivers in the “Drivers wait” 

queue shows a driver’s availability. This action takes place through the “Dispatch” 

event.  

Given that there is the assumption that the components’ unit costs are high, then 

a resupply inventory policy of (S, S-1) is justified. Consequently, by the time a 

unit is removed from the shelves, another is backlogged via the “Backlogged” 

event and also ordered from the “Third-line (resupply)”. After some time, which is 

affected by the Environmental Conditions, a respective resupply event fills the 

inventory.  
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Regarding the DU, the “Backlogged” event is controlled from the First-line support 

area and the “Inventory of spare N_DU” is resupplied after a “DU_resupply” event 

takes place from the Third-line. However, this is not exactly the same with the 

other three types of spares. 

As was seen earlier, the backlogging of the PRU and the DP is not initiated from 

the First-line, but from the Second-line support (components’ repair shop) area. 

This is because the PRU is backlogged only if it is judged beyond repair and thus 

is discarded (“Discard” event in the Second-line support (components’ repair 

shop)). From the same area though, those PRUs that are repaired are fed then 

back directly into the “Inventory of spare N_PRU”. Of course, this queue is also 

resupplied after a “PRU_resupply” event from the Third-line area. 

Regarding the DPs, they are used at the Second-line support (components’ repair 

shop) area too, in order to repair a faulty LRU. A dispatch order is initiated there 

and if a new one is available in the inventory then it is dispatched and a resupply 

order is issued (“Backlogged” event). If a DP is not available, then a resupply 

order is issued as well. The “Inventory of spare N_DP” queue is replenished after 

a “DP_resupply” event takes place from the Third-line. 

The LRUs are assumed to be always repairable and thus are never discarded. 

This means that there is no backlogging for them. The only way that the 

“Inventory of spares N_LRU” is filled is after a repair with a “Repaired” event takes 

place at the Second-line support (components’ repair shop) area. 

The Second-line support (depot) is the area where the queue with the drivers is 

(“Driver wait” queue). It sends out a driver in order to participate in the realisation 

of the “Arrive with the spare” event at the First-line and then it is fed back with a 

driver when the “Mech, Driv, faulty component arrive” event takes place. The 

drivers’ nominal number is 𝑥𝑁𝑇𝑟 and it is a decision variable and so are the target 

values for the spares 𝑥𝑆𝐿𝑅𝑈, 𝑥𝑆𝑃𝑅𝑈, 𝑥𝑆𝐷𝑈 and 𝑥𝑆𝐷𝑃 in their respective 

inventories.  

In order to simulate that the resupply from the manufacturer is a long-leg activity 

within the Supply Chain, the duration of the resupply at the Third-line takes a 

comparatively long time and also depends on the Environmental Conditions. 
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6.5 Conclusions 

In this chapter, the third conceptual model presented in Chapter 3 was used as a 

framework to develop a simulation of the Support Chain (SC). Furthermore, 

details were presented of the Activity Diagram that was used as the skeleton for 

the computer simulation model. 

That simulation was then used to generate the required data for model 

development and evaluation in Chapter 7.  
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7 RESULTS AND DISCUSSION

7.1 Introduction 

Two simulation studies were performed of the same system under different 

scenarios. The first one was intentionally simpler than the second, so that it was 

possible to get results from a simple model and then consider how they would be 

transferred and expanded into a comparatively more elaborate model. The 

difference was that in the simple scenario there were only two components of 

interest: the LRU that can make the UAV stop operating and the DP that then 

was required to be replaced in the LRU, while in the second scenario all the 

components that have been described in Section 6.4 could malfunction. The 

Activity Diagram (AD) of the simulation is presented in Figure 6-2.  

A description of each scenario now follows, along with the demand forecast 

models that were used and their evaluation. 

7.2 Simulation Support Scenario – Case 1 

The simulation (see Figure 7-1 and the first part of Section 6.4) concerned the 

support provided to a small fleet of generic Unmanned Aerial Vehicles (UAVs) 

that was used for ISTAR operations at a single Forward Base (FB). Their 

Logistics Support Organisation (LSO) was composed of a Forward support level 

(FORWARD) at which failed components that could make the UAVs non-

operational (it was assumed only LRUs for Case 1) were replaced with new ones 

from inventory, and a Central repair level (CENTRAL) at some distance from the 

FB where the inventory of spares were kept and repairs were performed on the 

failed LRU components. 
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In this Case 1 scenario, the Equipment Breakdown Structure (EBS) of a UAV unit 

was composed of only a single LRU that could be repaired at the CENTRAL depot 

by the replacement of a single Disposable Part (DP) kept in the same store as 

the LRUs. Furthermore, it was assumed that systems’ innate failure rates did not 

change with age and only corrective maintenance was applied, which means that 

preventive maintenance policies were not considered. 

In the assumed scenario, each UAV had a nominal Time on Task (TOT) of four 

hours, after which it had to land for a quick refuelling. If another UAV was 

available then it took off; if not, the same UAV took off again.  

The operational demand was for a single UAV unit to cover an area assigned for 

ISTAR operations during a given proportion of the day, each day. For example, if 

the operational demand was to cover 4/5 of the day, since either there was no 

need to fly during night hours, or a different group took over that period, then the 

operational demand (𝑂𝑝𝐷𝑒𝑚) was “4/5”. Because of the importance of the ISTAR 

functions, any available, unassigned mechanic was assumed to be waiting in 

FORWARD to help in case of a breakdown (B).  

Third-line support (Spares’
'manufacturer)

Second-line (CENTRAL)

First-line (FORWARD)

FB

Depot

Figure 7-1: The simulated Supply Chain and Operations 

DPs

LRUs
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Assuming the occurrence of a breakdown, another UAV would take off if one was 

available. Subsequently, the grounded UAV was taken over by a mechanic who 

then started the diagnosis procedure. The duration of this procedure depended 

on the skill level of the mechanic, and it was assumed that the fault was always 

a single one and was always found correctly. After the diagnosis was over, an 

order for a spare was given to the CENTRAL depot. The spare took some time 

to be located and acquired by a driver and was then brought to FORWARD. The 

mechanic would replace the faulty LRU with the spare, making the UAV available 

again. The faulty LRU was then transported back to CENTRAL by the mechanic 

and the driver in order to be repaired.  

There were three available workbenches (Ws) at CENTRAL which were used for 

diagnosis and repair of the faulty items. Due to the importance of the part, there 

was no batching in the repair activities. Therefore, the same mechanic was 

assumed to undertake the diagnosis and repair on one of the available 

workbenches and bring the LRU in a usable condition back to the LRU inventory, 

provided there was a DP in stock. Due to the assumed high cost of a DP, the 

depot was using an (𝑆, 𝑆-1) inventory policy and thus initiated a resupply order 

whenever there was a single DP unit removed from the DP inventory. 

In case any of the resources were not available, the related activity waited. So, 

for example at a specific moment if all spare LRUs were under repair at the 

CENTRAL, then any broken down UAV would wait FORWARD until a spare one 

would become available, or when all drivers were occupied, no transports of parts 

and mechanics could take place until a driver was released. 

A snapshot example of the data collected is presented in the following table: 
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Table 7-1: Snapshot example of the data collected from the simulation 

Incident Time (hours from 
simulation start) 

Object ID 

StartFlight 196 UAV2 

Landed 200 UAV2 

StartFlight 200 UAV1 

Landed 204 UAV1 

StartFlight 204 UAV2 

UAV broken down 204.6577 UAV2 

Mechanic starts the diagnosis 204.6577 UAV2 

StartFlight 204.6577 UAV1 

Landed 208.6577 UAV1 

Mechanic finishes the diagnosis – spare LRU 
required 

206.787 UAV2 

Mechanic starts LRU replacement on UAV 210.4336 UAV2 

7.2.1 Scenario for Dataset Generation 

The chosen scenario involved a single iteration of the following eight consecutive 

phases (Table 7-2): 

Table 7-2: Scenario Phases 

Phase Duration 

(Months) 

𝒙𝑺𝑳𝑹𝑼 𝒙𝑺𝑫𝑷 𝒙𝑵𝑼 𝒙𝑵𝑴 𝒙𝑵𝑻𝒓 𝑶𝒑𝑫𝒆𝒎

(ratio of 
a day) 

𝑬𝒏𝒗 = 
OK 

(prob) 

1 3 3 3 2 2 1 4/5 0.6 

2 3 3 3 3 3 2 4/5 0.6 

3 4 4 5 4 3 3 4/5 0.6 

4 3 4 6 3 2 3 4/5 0.6 

5 3 3 3 2 2 1 5/5 0.6 

6 3 3 3 3 3 2 5/5 0.6 

7 4 4 5 4 3 3 5/5 0.6 

8 3 4 6 3 2 3 5/5 0.6 

The assumed story behind the phases shown above was that during the 1st phase 

when operations started, there were two UAVs (𝑥𝑁𝑈 = 2) deployed with a mission 
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to provide ISTAR functions for the Operational Demand (𝑂𝑝𝐷𝑒𝑚) of 4/5 of a day. 

For the manning of the LSO in the 1st phase, there were two mechanics deployed 

(𝑥𝑁𝑀 = 2) and one driver (𝑥𝑁𝑇𝑟 = 1), while the initial spares stock levels were 

three LRUs and three DPs (𝑥𝑆𝐿𝑅𝑈 = 3, 𝑥𝑆𝐷𝑃 = 3). The UAVs were flown by an 

equal number of operators with an initially sampled level of proficiency.  

As the operations were seen to continue with an anticipated future increase in 

the need for air-surveillance, in Phase 2 an additional UAV was deployed along 

with an additional driver to help with the transports of the spares and the 

mechanics. This situation lasted for three months and was followed by Phase 3, 

a four months phase when a further 4th UAV was deployed. The target levels of 

spares of LRUs and DPs were also increased at the beginning of Phase 3.  

In Phase 4, one UAV was withdrawn along with a mechanic. In Phase 5, the 

𝑂𝑝𝐷𝑒𝑚 had to be increased to full 24hrs surveillance (5/5), although at the same 

time, one UAV was assumed to have failed beyond repair. In addition, it was 

assumed that two drivers were transferred out of the LSO, while the target level 

of spares was reduced. Further changes of this nature affecting the LSO’s 

configuration were assumed for Phases 6 to 8, as shown in Table 7-2. Finally, 

the environmental conditions throughout these phases were assumed to be good 

(Level 1 / “OK”) with a probability of 60%. 

Records of incidents (e.g. take-offs and landings, of break-downs, of repair and 

re-order), of levels of resources (spares, mechanics, drivers) and of durations 

(hours flown, repair and resupply times) were kept from the single run of the eight 

consecutive phases, just like the records that would be kept in the relative logs of 

real operations. Furthermore, variables that can affect the incidents and the 

duration of diagnosis, repair and transport were also recorded. Such variables 

were the environmental conditions, the operators’ skill levels/ experience, the 

mechanics’ skill level / experience and their workload level. 

7.2.2 Simulation of Test Data to Allow Forecast Comparison 

The end of Phase 8 provided the initial conditions for a follow-on ninth phase of 

six months’ duration that was used to evaluate the performance of the demand 

prediction models. The research of interest has been in how well can demand 
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predictions be provided when the failure-context factors are about to change 

during the final-phase. Consequently, Phase 9 - the final phase (FPP) - could 

take different courses in order to represent a range of changes likely to be 

experienced in practice.  

The following table summarises the full factorial experimental design of the 

contexts which were simulated for 100 repetitions each in order to provide the 

data needed to evaluate the forecast models. The design produced 144 different 

contexts: 

Table 7-3: The combinations of Phase 9 configurations that constituted the test 

dataset 

(𝒙𝑺𝑳𝑹𝑼,𝒙𝑺𝑫𝑷) 𝒙𝑵𝑼 𝒙𝑵𝑴 𝑶𝒑𝑫𝒆𝒎

(ratio of a 
day) 

𝑬𝒏𝒗 = OK 

(prob) 

Phase 9 (3, 3) ,  

(4, 5) ,  

(4, 6) ,  

(8, 8) 

2 , 3 ,4 2 , 3 4/5 , 5/5 0.3 , 0.5 , 0.7 

7.2.3 Forecasting Approaches Employed 

A main objective of the present research (Section 1.4) has been to use the factors 

that could be elicited from the logbook records that were kept during the building-

up and infinite-time horizon phases 1 to 8 in order to model the context of the 

demand for spares. The intention was to use any information that could be 

available at the beginning of the final-phase 9 in order to forecast the demand 

during that phase. The assumption was that what could be known in advance is 

what is presented in Table 7-3.  

The main value of interest was the probability of experiencing a failure incident in 

any given hour (binomial variable 𝐹𝑅𝑇_𝐿𝑅𝑈 in Table 7-2, which for simplicity in 

this scenario was called 𝐹𝑅𝑇). It was possible to derive the required mean 

number of failures for the duration of the forecasting period by multiplying the 

acquired 𝐹𝑅𝑇 by the respective 4,320 hours included in the 6 months of the final 

phase 9. It was assumed that the operated systems do not degrade. The 
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engineering context was not examined since the assumption was that the same 

UAVs operated throughout the study. 

The other core objective of this research has been to evaluate the applicability of 

BNs under different ways of developing their structure (Section 1.4) for the 

forecasting of the demand during the final-phase 9. A BN can be developed in 

different ways, using different combinations of human expertise and data (Korb 

and Nicholson, 2004). It can be developed entirely from a dataset and this was 

what the present research firstly examined. This entails both the structure of the 

network, i.e. the DAG, and the associated NPTs being derived from the dataset. 

While obtaining NPTs from a dataset is relatively straightforward, deriving the 

structure is much more involved. The reason is primarily due to the huge number 

of DAGs which can be built from even a relatively small number of variables. 

Nevertheless, for the reasons that were discussed in Section 4.3, it was found 

that score based structure learning provides a lot of benefits and this method was 

applied here. 

Instead of deriving a BN’s structure from data, another common approach is to 

elicit the structure from a subject matter expert (SME). Such a DAG is usually 

easier to understand and therefore more easily explained and comprehended by 

decision makers. 

However, due to the complexity of the situation, there might be connections that 

are missing from an expert-elicited structure. In such a case a hybrid approach 

can also be adopted. Here, the subject matter expert can provide an initial DAG 

which is then built upon by an automated machine learning algorithm. The aim of 

such an approach is to ensure that key relationships are preserved and that more 

subtle effects are not missed. 

Furthermore, the expert-elicited structure can also be used as a starting solution 

for a score-based algorithm that then starts searching the solutions’ space by 

adding, removing or reversing arcs among the variables. 

All the BN models were built in R, using the bnlearn package (Nagarajan, Scutari 

and Lebre, 2013). 
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In order to provide a comparison with the BN predictions coming from the four 

different BNs, forecasts using two other methods were also provided. The first 

was a logistic regression, which also tried to account for the relationships 

between the contextual factors and the observed number of failures. The 

appropriateness of this type of regression model stems from the underlying 

random process which involves the generation of failed equipment. The output, 

as for the BNs, was the probability of experiencing a failure incident in any specific 

hour. 

The second type of additional forecast was human judgement. Along with the 

starting configuration for the ninth/final operational phase, the judges were also 

supplied with the Single Exponential Smoothing (SES) forecast available at the 

end of the eighth operational phase. This can be described as an expert adjusted 

forecast, with adjustment being made away from the fixed SES forecast.  

The evaluation was performed using both accuracy metrics and accuracy 

implication metrics. Regarding the accuracy metrics,  the Mean Absolute Scaled 

Error (𝑀𝐴𝑆𝐸) was applied but adjusted by taking the geometric mean over the 

different 144 datasets for the reasons that were mentioned in the respective 

Section 5.2.3.3. As far as the accuracy implication metrics are concerned the 

following five measures were used: 

1. The average volume of inventory during the period  

2. The volume of spares left at the end of the period  

3. The probability of no stock-outs during the period  

4. The system’s average Operational Availability for the period of interest 

5. The systems’ Operational Availability at the very end of the period 

7.2.3.1 BN Learnt from Data 

Using the BN learning package in R called “bnlearn” the sampled dataset of 

records from Phases 1 to 8 was fed into a score-based unsupervised learning 

algorithm. The scoring method employed the Modified Bayesian Dirichlet 

equivalent uniform (MBDeu) score (Cooper and Yoo, 1999; Heckerman et al., 

1995). As discussed in Section 4.3.2.2, an optimisation algorithm such as tabu, 
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was applied to search for the structure that could score highest in the MBDeu. 

The search algorithm starts by having a random network, and then proceeds by 

adding and removing connections among the variables/nodes. The inclusion or 

removal of connections aims to increase the value of the MBDeu score. The 

searching process was applied to 300 bootstraps and thus developed 300 

networks that were averaged to form the final network. 

The above procedure produced the network displayed in Figure 7-2.  

Figure 7-2: DAG of the BN model that was learnt from the simulation training 

dataset 

Note that the resulting model is not a causal BN since the causality assumptions 

are not met (see e.g. Pearl (1988)). However, it does provide an interpretation of 

the relationships / associations among the variables. For example, the arc which 

connects 𝑥𝑁𝑈 directly to 𝑂𝑝𝑅𝑇 and the arc that connects the latter to the 𝑇𝑂𝑇
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indicate that the number of units operated (𝑥𝑁𝑈) has a direct effect on the 

Operational Rate (𝑂𝑝𝑅𝑇), and that on the 𝑇𝑂𝑇, which means that the number of 

UAVs deployed is associated with how often take-offs are missed or performed, 

and that has an effect on the duration of any single take-off (𝑇𝑂𝑇).  

Furthermore, most of the arcs are directed towards the variables 𝑂ℎ𝐿𝑅𝑈 (the on-

hand LRU), 𝑊𝑊𝑘𝑙𝑑 (how busy the repair workshops are at the CENTRAL level) 

and 𝐵𝑊𝑘𝑙𝑑 (how busy the workshops are at the FORWARD level). This indicates 

that these facilities are key to the whole system. Finally, many arcs start from 

the 𝑂𝑝𝐷𝑒𝑚, which indicates that this is another key factor to the context. 

7.2.3.2 Expert-Elicited BN 

A BN of the problem situation was developed by eliciting a DAG from a domain 

expert, who was one of the participants of the interviews discussed in Section 

3.2. This DAG displays the relationships believed by the expert to exist in the 

system, using the idioms that were described in Section 4.3.2.5.  

However, the fact that the primary intent was to be able to use the variables that 

would be available from logbook records, created restrictions of how the 

variables’ relationships can be expressed. A failure, an end of repair, the 

condition of the environment, etc. are incidents that have been recorded in the 

logbooks at a specific time-instance. Consequently, when considering the 

relationship of the Environment to the Failure, in a more common case, one would 

apply the cause/consequence idiom and thus, connect an arrow from the 𝐸𝑛𝑣

node to the 𝐹𝑅𝑇 node to indicate that a harsh environmental condition would 

cause/make a failure incident more probable. However, when the datum was 

recorded in an instance-incident form, the values that were acquired were not 

necessarily a result of a causal mechanism: a bad weather in the same record as 

a failure incident, has not contributed to the cause of that failure even though it is 

counted as such in the calculations of the NPTs. In such cases it could be said 

that the relationship between the two variables could be the one suggested by 

the measurement/indicators idiom: the presence of the bad weather indicates that 

a failure is more probable to appear at the same time. On the other hand, if the 

bad weather has been one of the causes for the failure they would have existed 
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at the same time as the failure appeared and thus, the causal relationship exists. 

Similar problems can be expressed for the relationship of the operator’s 

experience (𝑃𝐸𝑥𝑝) and the 𝐹𝑅𝑇.  

In order to resolve this ambiguity, it was decided to try and maintain the intuitive 

causality whenever that was possible. The DAG elicited from the domain expert 

is presented in Figure 7-3. 

As can be observed, Figure 7-3 is different to Figure 7-2. They are different 

because they have been built using different methods and having different 

assumptions. On the one hand, Figure 7-2 maximises the MBDeu score metric 

by the use of certain assumptions. In particular, the assumption of likelihood 

equivalence (Assumption 6, Section 4.3.2.2), as discussed in Section 4.3.2.4 

maintains only the associative relationship among the connected nodes. On the 

other hand, Figure 7-3 has been built using the techniques described in Section 

4.3.2.5 (Sections 4.3.2.5.1, 4.3.2.5.2 and 4.3.2.5.3), These techniques try to use 

the domain knowledge and in this way to preserve the understanding of the SME 

on the conditional probability relationships among the nodes. 
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Figure 7-3: DAG of a BN model elicited from a domain expert 

7.2.3.3 Hybrid BN that Maintains the Elicited Structure (BN hybrid 1) 

A hybrid BN was developed in order to combine the understandable nature of the 

expert-elicited BN combined with the ability to learn less obvious relationships 

provided by the automated BN. The development of this hybrid BN began with a 

simplified version of the expert-elicited BN and used this as a starting point for 

the machine learning algorithm which was employed to develop the learnt BN. 

The resulting structure constrains the final DAG to incorporate the expert-elicited 

components but allows additional relationships to be included. A simplified 

version was chosen of the elicited and not the actual, primarily so as not to restrict 

the tabu algorithm’s search area: starting from the same, very restricting point 

reduces the search space. 
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Figure 7-4: DAG of a hybrid BN, combining expert elicitation and machine learning 

(BN hybrid 1) 

7.2.3.4 Hybrid BN that Starts from the Elicited Structure (BN hybrid 2) 

A further hybrid BN was developed in order to take advantage of the fact that the 

elicited graph could work merely as a more suitable starting point for the tabu 

search algorithm instead of from the random starts that the conventional 

unsupervised method does. The algorithm would then proceed without any user-

imposed restrictions to the structure, as was done in the previous hybrid case. 
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Figure 7-5: DAG of a hybrid BN, starting from the expert elicited structure and then 

applying machine learning (BN hybrid 2) 

7.2.3.5 Logistic Regression Model 

The logistic regression model derived from the first eight phases of the simulation 

training dataset was the following: 

𝑙𝑜𝑔𝑖𝑡(𝐹𝑅𝑇) = 𝑏0  + 𝑏1𝑂𝑝𝐷𝑒𝑚 + 𝑏2 𝐸𝑛𝑣

, where 𝐹𝑅𝑇 corresponds to the occurrence of an equipment failure, 𝑂𝑝𝐷𝑒𝑚

represents the level of operational demand and 𝐸𝑛𝑣 represents the severity of 

environmental conditions. The model was developed using the backward variable 

entry method and by verifying the predictability of the model through leave-one-

out cross validation. 

The resulting coefficients of 𝑏0, 𝑏1 and 𝑏2 were -4.5273, 0.4418 and 0.1836, 

respectively, with standard errors of 0.1276, 0.1212 and 0.1274. The reference 

settings of the variables were ‘4/5 of a day’ for the 𝑂𝑝𝐷𝑒𝑚 and ‘OK’ for the 𝐸𝑛𝑣. 
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In order to forecast demand for Phase 9, where the state of the 𝐸𝑛𝑣 variable is 

not yet known but there is a probability distribution for it, the forecast used the 

probability values as weights for a weighted average of the two outputs obtained 

using the two possible values for the Environment. 

7.2.3.6 Expert-Elicited Forecast  

In order to construct this forecast, four domain experts were consulted. Each was 

talked through the scenario implemented in the simulation and provided with the 

same information. This consisted of the configurations of the eight initial phases 

of operation and the resulting number of failures observed in each. Every expert 

was then asked to provide a forecast of the number of failures expected for a final 

ninth phase of operations given the LSO configuration and the Single Exponential 

Smoothing (SES) estimate. The fixed SES forecast was obtained using the 

“tsintermittent” R-package which was trained with monthly demand data and used 

a smoothing factor of 0.2.  

Due to experts’ time and attention-span limitations, 18 different possible 

configurations for Phase 9 (Table 7-4) were sampled and each of the four experts 

provided forecasts for all of them. The mean of the four forecasts was then taken 

to represent the expert-elicited forecast for each Phase 9 configuration. 

Table 7-4: Sample of 18 possible configurations of Phase 9 

𝒙𝑺𝑳𝑹𝑼 𝒙𝑺𝑫𝑷 𝒙𝑵𝑼 𝒙𝑵𝑴 𝑶𝒑𝑫𝒆𝒎

(ratio of a 
day) 

𝑬𝒏𝒗 = OK 

(prob) 

3 3 2 2 4/5 0.3 

3 3 3 3 4/5 0.5 

4 5 3 2 4/5 0.7 

8 8 3 2 4/5 0.5 

4 5 4 2 4/5 0.5 

3 3 4 2 5/5 0.3 

3 3 3 2 5/5 0.5 

8 8 4 2 4/5 0.3 

4 6 2 3 4/5 0.5 
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𝒙𝑺𝑳𝑹𝑼 𝒙𝑺𝑫𝑷 𝒙𝑵𝑼 𝒙𝑵𝑴 𝑶𝒑𝑫𝒆𝒎

(ratio of a 
day) 

𝑬𝒏𝒗 = OK 

(prob) 

3 3 4 2 5/5 0.7 

4 5 2 2 4/5 0.3 

4 6 4 3 5/5 0.7 

8 8 3 3 5/5 0.7 

4 6 3 3 5/5 0.5 

8 8 4 3 5/5 0.7 

4 5 4 2 5/5 0.5 

4 5 2 2 5/5 0.5 

4 5 3 2 5/5 0.3 

Results from these 18 forecasts are shown over Figure 7-6 and Figure 7-7. In 

each figure, the same set of 18 boxplots have been reproduced to show the 

distribution of the Phase 9 number of failures across the 100 simulation 

replications for each of the 18 configurations. The boxes in each case include the 

inter-quartile range of the number of failures from the 100 replications. The 

crosses indicate outlying values in the simulation results.  

Figure 7-6: A comparison of the BN models’ forecasts and the simulation results
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Overlaid on each boxplot are the forecasts for that Phase 9 configuration. In 

Figure 7-6, forecasts from each of the four BN models are displayed (BN hybrid 

1, BN hybrid 2, BN causal, BN unsupervised) in addition to the boxplots of the 

simulation results. In Figure 7-7, the logistic regression and expert-adjusted 

forecasts are given (Log-regr, SME adjust) in addition to the boxplots. The vertical 

axes of these figures record the number of failures for Phase 9, either observed 

from the Phase 9 simulation results or forecast by one of the considered models. 

The 18 Phase 9 configurations are arranged in increasing order of the median 

number of failures obtained from the 100 replications of each of them. 

Furthermore, Figure 7-8 presents the histograms of each of the sampled 

configuration in the same order as it is presented in the figures with the boxplots. 

Figure 7-7: A comparison of the regression and the mean SME forecasts and the 

simulation results 



194 

Figure 7-8: Histograms of the sample of 18 configurations of Phase 9

There are two observations that are important to make from Figure 7-6, Figure 

7-7 and Figure 7-8, and which though reflect not only the 18 cases but all 144 

cases of Table 7-3:  

1. The range of demand values is quite large. This suggests that just by 

chance there can be an output that is quite distant from a model’s forecast 
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value of location. Moreover, this also supports the use of accuracy 

implication metrics as well as the accuracy metrics 

2.  Even though the outputs indicate that the experienced demand could be 

less than 10 units per month and therefore can be categorised as “low 

volume Stock Keeping Units (SKUs)” (Fildes et al., 2009), none of the 

values that were acquired had zero number of failures in any of the 

months, which makes these outputs non-intermittent. However, as seen in 

the next scenario, when the more complicated EBS is introduced by the 

use of other components as well, the scenario did provide intermittent 

data. As also discussed in Appendix B, this observation demonstrates the 

importance of considering the interactions among the components’ 

failures, and, as shown, BNs can be a very enlightening tool in this 

perspective. What is shown in the Appendix is that the BNs’ DAGs provide 

a visual representation of the associations among the variables, and in this 

way the user can identify which factors could have a driving effect on the 

number of failures experienced  

The discussion now moves on to using the accuracy metrics and the accuracy 

implication metrics in order to evaluate the performance of the forecast models. 

7.2.4 Forecast Models’ Evaluation 

7.2.4.1 Accuracy Metrics  

Firstly the accuracy metrics were calculated for all the forecast models using just 

the 18 cases. This was done because it was not practical to ask the SMEs to 

provide judgementally adjusted SES forecasts for all the 144 alternative futures 

that were examined. Then the accuracy metrics were calculated for the four 

different BN approaches and the logistic regression models using all 144. 

As discussed in Section 5.2.3.3, the 𝑀𝐴𝑆𝐸 metric was estimated as the arithmetic 

mean for the 100 replications of each alternative and then the resulting summary 

was the geometric mean for the 18 and for the 144 arithmetic means. 

The results from the 18 cases (replicated 100 times each) were as follows: 
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Table 7-5: MASE outputs using just 18 of the 144 Phase 9 alternatives24

SN Models 𝑴𝑨𝑺𝑬

1 Unsupervised learning BN 1.7336 

2 Hybrid BN that maintained the elicited structure and then added 
machine learning (hybrid 1) 

1.7727 

3 Hybrid BN that used the elicited structure as a starting DAG for 
machine learning (hybrid 2) 

2.0775 

4 Logistic regression 2.3752 

5 BN with the elicited DAG 2.5369 

6 SMEs’ adjusted SES forecasts 4.4427 

The results from all the 144 cases, including the above 18 were as follows: 

Table 7-6: MASE outputs using all 144 Phase 9 alternatives25

SN Models 𝑴𝑨𝑺𝑬

1 Unsupervised learning BN 1.6125 

2 BN with the elicited DAG  2.0065 

3 Hybrid BN that maintained the elicited structure and then added 
machine learning (hybrid 1) 

2.0760 

4 Hybrid BN that used the elicited structure as a starting DAG for 
machine learning (hybrid 2) 

2.1240 

5 Logistic regression 2.3216 

The above outputs show that the unsupervised BN model performed better than 

the rest, while the SME-adjusted approach was the worst. 

7.2.4.2 Accuracy Implication Metrics  

Since the SME-adjusted forecast performed a lot worse than the rest in its MASE 

outputs, the decision was taken not proceed with further consideration of the 18 

cases. So, the accuracy implication metrics that were calculated were for the 144 

cases with the BNs and the regression models only. 

24 The results are from the lower to the higher MASE output 
25 The results are from the lower to the higher MASE output 
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A plot of the Holding Volume of inventory (horizontal axis) vs the Operational 

Availability (vertical axis) for four different target/planned service levels: 80%, 

90%, 95% and 99% was built. Due to the convenience of the calculations and its 

common use among practitioners (Cohen, Zheng and Agrawal, 1997), the service 

level applied here is the S2 “fill rate” defined as the fraction of the demand that 

can be satisfied immediately from the on-hand stock (Axsater, 2006). 

Following, the assumption of a normal model for the distribution of the demand 

was taken, which is commonly applied in the literature (Kourentzes, 2013; 

Syntetos, Boylan and Croston, 2005). In order to get the variance of the forecast 

errors, the mean squared error (𝑀𝑆𝐸) of each forecast for the monthly realised 

number of failures during the phases 1 to 8 was estimated and multiplied with the 

6 months forecast horizon of Phase 9. 

Furthermore, in order to facilitate the explanation of the outputs, Table 7-7 and 

Table 7-8 have been included. Table 7-7 has each model’s root mean squared 

error which has been used as the standard deviation parameter in the normal 

distribution model of the demand. Using the standard deviations, in combination 

with the forecast locations, one can understand whether the 100 replications were 

correctly included in the calculations. On the other hand, Table 7-8 has the mean 

signed error of each model as an indicator of the bias (Hoover, 2006). 

7.2.4.3 How to Read the Accuracy Implication Metrics  

A way to read these types of graphs is to see the relative value of Holding Volume 

for a given service level, i.e. start from the horizontal axis, and get the curve’s 

projection on the vertical axis. Another way, again for a given service level, is to 

start with a given Operational Availability, i.e. start from the vertical axis and get 

the curve’s projection on the horizontal axis. In either way, the model that for the 

same Holding Volume gives higher Operational Availability is better, or the model 

that gives the same Operational Availability but for a lower relative average 

Holding Volume is better. In simple terms, the comparison is easy when the 

service level points on the curves under examination form a parallel line either to 

the vertical axis, and thus see that they have the same Holding Volume, so it is 

feasible to compare them on their Operational Availability, or form a parallel to 
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the horizontal axis, and thus see that they have the same Operational Availability 

output in order to compare them on the Holding Volume.  

The comparison is even easier when the service level points form a line that is 

more than 90⁰ with the horizontal line. In such a case, the point on the top-left, for 

the same target service level gives a higher Operational Availability for lower 

average Holding Volume. 

Things get challenging when the previously mentioned line forms an angle that is 

less than 90⁰ with the horizontal line. In such a case, the model at the top-right 

corner gives higher Operational Availability but at a higher holding volume. 

Nevertheless, in such a case the decision maker then needs to choose how much 

more Operational Availability is acquired when the extra holding volume is spent. 

Such a decision can be further advised by the other pair of accuracy metrics (on 

the end of the phase), as well as by the probability of no stock-out service level.  

7.2.4.4 Relative Average Holding Volume vs Average Operational 

Availability 

In order to increase the readability of the plot, each value was scaled to the 

respective worse performance of one of the models for the horizontal axis of the 

spares Holding Volume. Another reason for scaling is that the plotted data have 

come from a simulation of a made-up scenario and thus the absolute holding-

volume values would mask the relative performance, while they would not give 

any substantive further information about the importance of the forecasts’ 

differences.  

The model to scale upon was chosen to be the logistic regression. So, all the 

Holding Volumes (“average” and “end”) were divided by the highest service level 

(99%) of the logistic regression respective value. This means that the horizontal 

axis values for a given service level correspond to each forecast model’s Holding 

Volume performance for that service level relative to how bad a service would be 

acquired if the logistic regression forecast with the highest planned (most 

expensive) service level of 99% was used. 

The resulting outputs are presented in the following plot (Figure 7-9): 
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Figure 7-9: Relative average Holding Volumes vs the average Operational 

Availability 26

The derived performance is similar but not exactly the same as the MASE 

accuracy metric output. Nevertheless, these metrics are practical for the decision 

maker.  

The two hybrid structured BNs along with the elicited one have curves that are 

almost parallel, with the two hybrid almost on top of each other. The parallel 

positioning makes the comparison convenient since it is easy to see that for any 

of the four given service levels, for the same relative average Holding Volume the 

elicited BN performs better/gives higher Operational Availability than the one that 

used the elicited as a starting graph and this on its turn is (slightly) better than the 

BN that maintained the elicited structure. This output though is not completely 

consistent with the output from the MASE accuracy metric comparison, where the 

order of the last two is the reverse.  

26 The curves are line- interpolating the points for 80%, 90% , 95% and 99% service levels 
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The elicited BN along with the unsupervised BN and also with the Logistics 

Regression model fall in the challenging comparison category. For any given 

service level, the respective points form an approximate line that has a slope less 

than 90⁰ with the horizontal axis. This means that for any given target service 

level, the regression model gives higher Operational Availability but for a higher 

relative average Holding Volume, followed by the unsupervised BN.  

This behaviour can be explained by considering the outputs of Table 7-7 and 

Table 7-8. The unsupervised BN and the regression tend to underforecast less 

than the other three but also have higher root squared errors and therefore they 

used higher standard deviations in their (normal) demand distribution models. 

Hence, for any given target service level the suggestion of the respective demand 

forecast model was affected by its bias but mostly by its variance. Consequently, 

for the case of the unsupervised BN and for the regression model, they tended to 

suggest higher values for spares to be kept. 

Table 7-7: Root squared errors of the models 

Model RSE27 for LRU 

BN Unsupervised 7.02 

Regression 8.87 

BN elicited 5.47 

BN hybrid – maintained elicited 4.97 

BN hybrid – elicited as starting 5.23 

27 Rounded to the second decimal place 
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Table 7-8: Mean Signed Error (as an indicator of bias) of the models28

Model Mean Signed Error29 for LRU 

BN Unsupervised +0.12 

Regression +0.81 

BN elicited +2.66 

BN hybrid – maintained elicited +1.49 

BN hybrid – elicited as starting +2.12 

7.2.4.5 Holding Volume vs Operational Availability at the end of the final 

phase 

The results from these plots are similar to the ones with the average values: 

Figure 7-10: Relative Holding Volumes at the end of the final phase vs the 

Operational Availability at the end of the phase 

An interesting observation is that the plotting scales of both the horizontal and 

the vertical axes of Figure 7-9 and Figure 7-10 are different. The values were 

28  The positive sign indicates underforecasting 
29 Rounded to the second decimal 
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acquired from averaging (Figure 7-9) are less spread than the ones that acquired 

from the end of the Operations (Figure 7-10). This is an observation that is also 

seen in the second, more elaborate scenario (Section 7.3). The reason for this 

observation is because at the end of the Operations there is a tendency to find 

low values of Operational Availability and of Holding Volumes more often than 

when the average outputs of the whole period are used. However, this also 

stresses the importance of incorporating both measures in order to inform 

decisions as discussed in Sections 5.2.5 and 5.2.6. 

7.2.4.6  Probability of no Stock-Outs During the Whole Phase 

The results of this metric are presented in the following Table 7-9: 

Table30 7-9: Probability of no stock-outs during the whole phase, given the four 

different fill-rates 

BN 
Unsupervised

Regression BN 
elicited 

BN 
hybrid - 
maintain 
elicited 

BN hybrid 
- elicited 
as starting 

F
il
l-

ra
te

80% 94.18 94.40 92.39 92.46 92.24 

90% 96.00 96.91 93.93 93.94 93.84 

95% 97.16 98.26 95.12 94.94 94.97 

99% 98.60 99.51 97.02 96.48 96.70 

This output shows that the regression model as used in the Stock Management 

System provides higher probability of no stock-outs than the other models during 

the whole period of the final phase, followed by the unsupervised BN model. This 

is an implication of interest to the mechanic as a customer of the inventory. 

However, when seen in combination with the figures earlier, this higher 

effectiveness comes at the cost of more inventory volume held both throughout 

30 The outputs that scored higher are in bold, while the second higher are in bold and italics  
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(average Holding Volume: x-axis of Figure 7-9) but especially as an amount of 

unused leftovers (Holding Volume at the end of the phase: x-axis of Figure 7-10).  

Nevertheless, this accuracy implication metric shows that with any of the models 

one would, on average, not expect to have a lack of inventory service for a long 

period. The longest period of being without a spare would be (100-92.24)% of 6 

months, i.e. about 14 days on average if the BN hybrid model was adopted which 

used the elicited BN as a starting structure. 

7.2.5 Discussion 

Considering both the accuracy and the accuracy implication outputs, it can be 

seen that the unsupervised BN performs better in the first but the same cannot 

be claimed as clearly for the second. The regression model seems to be providing 

better customer-oriented outputs (average and at the end of the period 

Operational Availability for the operations, and probability of no stock-outs for the 

repair activities of the mechanics), but at the cost of less efficiency both averaged 

through the period (more holding costs) and when the operations have finished 

(more “waste”). From a modelling perspective this difference between the 

accuracy and the accuracy implication metrics is mainly due to two reasons: 

Firstly, the regression model gave higher variance/standard deviation than the 

rest. This fact also highlights the importance of this parameter in the implications 

(Boylan and Syntetos, 2006; Willemain, 2006; Willemain, Smart, and Schwarz, 

2004). 

Secondly, even though it is very often used in practice (Kourentzes 2013, p.203; 

Syntetos et al. 2009, p.72), the normal distribution model for the number of 

demands might not be the most appropriate. This observations has resulted in 

hindsight coming from plots like the ones in Figure 7-8 but even more from what 

is presented next from the second scenario with the more elaborate EBS (Section 

7.3). This observation is discussed more fully in Appendix B.  

The combination of the two reasons above suggests that when the four target 

service levels were set and used the normal distribution as defined by each 

model’s forecast mean and resulting standard error, resulted in certain quantiles 
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that corresponded to the chosen service levels. These normal model’s quantiles 

were compared with the actual values from the simulation of the 144 times 100 

different outputs of Phase 9. The models’ suggested values were affected mostly 

by the size of the standard error which resulted in suggesting/forecasting higher 

values than actually experienced and thus, high Holding Volumes. 

7.3 Simulation Support Scenario – Case 2 

 In this scenario, the same Operational and Support Chain concept was used but 

the complexity of the UAV’s Equipment Breakdown Structure (EBS) was 

increased. As before, each UAV was composed of a single LRU that could be 

repaired at the CENTRAL depot by the replacement of a single Disposable Part 

(DP) kept in the same store as the LRUs. Furthermore, a UAV also had a Partially 

Repairable Unit (PRU) which could also be repaired – without any additional parts 

needed – at the CENTRAL depot. However, a PRU could be diagnosed as 

“beyond repair” and thus be discarded. In such a case an order was placed at the 

manufacturer. Just like for the DP, due to the assumed high cost of a PRU, the 

depot was using an (𝑆, 𝑆-1) inventory policy and thus initiated a resupply order 

whenever there was a single PRU unit removed from the PRU inventory, while a 

repair activity was also initiated immediately when one was needed. Additionally, 

a UAV also had a Discardable Unit (DU) as a component of its structure. A DU 

could not be repaired, so every time one was removed from the DU inventory in 

order to repair a UAV at the FORWARD support in the first-line, due to the again 

(𝑆, 𝑆-1) inventory policy another unit was ordered from the manufacturer. Finally, 

once more the case where the systems’ innate failure rates would change with 

age was not considered. 

7.3.1 Scenario for Dataset Generation 

The chosen scenario involved a single iteration of the following consecutive eight 

phases (Table 7-10): 
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Table 7-10: Scenario Phases 

Phase Duration 

(Months) 

𝒙𝑺𝑳𝑹𝑼 𝒙𝑺𝑫𝑷 𝒙𝑺𝑷𝑹𝑼 𝒙𝑺𝑫𝑼 𝒙𝑵𝑼 𝒙𝑵𝑴 𝒙𝑵𝑻𝒓 𝑶𝒑𝑫𝒆𝒎

(ratio of 
a day) 

𝑬𝒏𝒗 = 
OK 

(prob) 

1 1 3 3 3 3 2 2 1 4/5 0.6 

2 1 3 3 3 4 3 2 2 4/5 0.6 

3 4 3 3 4 4 4 3 3 4/5 0.6 

4 6 4 5 5 6 4 3 3 4/5 0.6 

5 4 4 6 6 6 4 3 3 5/5 0.6 

6 4 4 6 4 5 3 2 2 5/5 0.6 

7 2 3 5 3 5 3 2 2 5/5 0.6 

8 2 3 5 3 4 2 2 1 5/5 0.6 

Again there were eight phases before the final, and the assumed story regarding 

the operational demand (𝑂𝑝𝐷𝑒𝑚) and the environmental conditions as shown in 

Table 7-10 above, was similar to the one in the previous scenario in Case 1. 

7.3.2 Simulation of Test Data to Allow Forecast Comparison 

As before, the end of Phase 8 provided the initial conditions for a follow-on ninth 

phase of six months’ duration that was used to evaluate the performance of the 

demand prediction models. 

The following table summarises the full factorial experimental design of the 

contexts which were simulated for 100 repetitions each in order to provide the 

data needed to evaluate the forecast models. The design produced 512 different 

contexts: 

Table 7-11: The combinations of Phase 9 configurations that constituted the test 

dataset 

𝒙𝑺𝑳𝑹𝑼 𝒙𝑺𝑫𝑷 𝒙𝑺𝑷𝑹𝑼 𝒙𝑺𝑫𝑼 𝒙𝑵𝑼 𝒙𝑵𝑴 𝒙𝑵𝑻𝒓 𝑶𝒑𝑫𝒆𝒎

(ratio of 
a day) 

𝑬𝒏𝒗 = 
OK 

(prob) 

Phase 9 3 , 4 3 , 6 3 , 4 4 , 6 2 , 3 2 , 3 2 , 3 4/5 , 
5/5 

0.3 , 
0.7  
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7.3.3 Forecasting Approaches Employed 

Using what can be known in advance, i.e. the values in Table 7-11, the main 

variables of interest were the probability of experiencing a failure incident in either 

an LRU, PRU or DU component in any given hour.  

Yet again the interest was to examine the same types of demand forecast 

models, i.e. BNs built through unsupervised learning, BNs that their DAG is 

elicited from experts, BNs with DAG built in a hybrid way either by maintaining 

the elicited DAG and building on it through machine learning, or using the elicited 

as a starting DAG and then using machine learning, and finally a logistic 

regression. However, another consideration came to play in Case 2 where a more 

elaborate EBS scenario was used. The question was whether to have a single 

BN that includes the 𝐹𝑅𝑇 nodes of all the components or to have an individual 

BN for each 𝐹𝑅𝑇. Consequently, the following demand forecasting models were 

compared: 

Table 7-12: List of the models that have been explored for the modelling of the 

demand in the second scenario 

ID Models explored 

BN1 A BN which used unsupervised learning for its DAG and that had only the 
𝐹𝑅𝑇 of  

1. The LRU as an 𝐹𝑅𝑇 node, or 

2. The PRU as an 𝐹𝑅𝑇 node, or 

3. The DU as an 𝐹𝑅𝑇 node 

This means that three different BN models were built 

BN2 A BN that its DAG structure was elicited and that had only the 𝐹𝑅𝑇 of  

1. The LRU as an 𝐹𝑅𝑇 node, or 

2. The PRU as an 𝐹𝑅𝑇 node, or 

3. The DU as an 𝐹𝑅𝑇 node  

This means that three different BN models were built 

BN3 A BN with a hybrid DAG which was developed using the elicited structure as 
its start and that had only the 𝐹𝑅𝑇 of  

1. The LRU as an 𝐹𝑅𝑇 node, or 

2. The PRU as an 𝐹𝑅𝑇 node, or 

3. The DU as an 𝐹𝑅𝑇 node  

This means that three different BN models were built (corresponds to BN 
hybrid 2 of scenario Case 1) 
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ID Models explored 

BN4 A BN with a hybrid DAG to which the elicited structure was maintained and 
that had only the 𝐹𝑅𝑇 of  

1. The LRU as an 𝐹𝑅𝑇 node, or 

2. The PRU as an 𝐹𝑅𝑇 node, or 

3. The DU as an 𝐹𝑅𝑇 node  

This means that three different BN models were built (corresponds to BN 
hybrid 1 of scenario Case 1) 

BN5 A single BN which used unsupervised learning for its DAG and that had 

1. The 𝐹𝑅𝑇 of the LRU as one of its nodes 

2. The 𝐹𝑅𝑇 of the PRU as one of its nodes 

3. The 𝐹𝑅𝑇 of the DU as one of its nodes 

BN6 A single BN that has its DAG structure elicited and that had  

1. The 𝐹𝑅𝑇 of the LRU as one of its nodes 

2. The 𝐹𝑅𝑇 of the PRU as one of its nodes 

3. The 𝐹𝑅𝑇 of the DU as one of its nodes 

BN7 A single BN with a hybrid DAG which was developed using the elicited 
structure as its start and that had  

1. The 𝐹𝑅𝑇 of the LRU as one of its nodes 

2. The 𝐹𝑅𝑇 of the PRU as one of its nodes 

3. The 𝐹𝑅𝑇 of the DU as one of its nodes 

(Corresponds to BN hybrid 2 of scenario Case 1) 

BN8 A single BN with a hybrid DAG to which the elicited structure was maintained 
and that had  

1. The 𝐹𝑅𝑇 of the LRU as one of its nodes 

2. The 𝐹𝑅𝑇 of the PRU as one of its nodes 

3. The 𝐹𝑅𝑇 of the DU as one of its nodes 

(Corresponds to BN hybrid 1 of scenario Case 1) 

M9 A logistic regression for the 𝐹𝑅𝑇 of  

1. The LRU, or 

2. The PRU, or 

3. The DU  

This means that three different regression models were built 

In summary, what was developed consisted of eight BN modelling approaches 

and a logistic regression for demand forecast of each of the three components. 

Therefore, the number of models that were built in total were 19: three BN1, three 

BN2, three BN3, three BN4, one BN5, one BN6, one BN7, one BN8 and three 

M9.  



208 

All the BN models were built in R, using the bnlearn package (Nagarajan, Scutari 

and Lebre, 2013). The DAGs of the BNs and the coefficients of the regression 

models are presented in the Appendix A. 

The discussion now moves on to using the accuracy metrics and the accuracy 

implication metrics in order to evaluate the performance of the forecast models. 

7.3.4 Forecast Models’ Evaluation 

7.3.4.1 Accuracy Metrics  

The 𝑀𝐴𝑆𝐸 metric was again calculated as the arithmetic mean for the 100 

replications of each alternative and then the geometric mean for the 512 

arithmetic means respectively. Furthermore, this process was performed once 

per individual component and once overall: 

Table 7-13: MASE values for the 512 cases for the forecast of the LRU/DP only 

SN ID Models 𝑴𝑨𝑺𝑬

1 BN1 Unsupervised learning BN – a different model for every 
component 

1.9719 

2 BN5 Unsupervised learning BN – all components in a single 
model 

2.2005 

3 BN4 Hybrid BN that maintained the elicited structure and then 
added machine learning - a different model for every 
component  (corresponds to BN hybrid 1 of scenario Case 
1) 

2.7106 

4 BN3 Hybrid BN that used the elicited structure as a starting DAG 
for machine learning - a different model for every component 
(corresponds to BN hybrid 2 of scenario Case 1) 

2.7106 

5 BN2 BN with the elicited DAG - a different model for every 
component 

2.8862 

6 M9 Logistic regression 3.5030 

7 BN7 Hybrid BN that used the elicited structure as a starting DAG 
for machine learning - all components in a single model 
(corresponds to BN hybrid 2 of scenario Case 1) 

10.4920 

8 BN6 BN with the elicited DAG - all components in a single model 10.6798 

9 BN8 Hybrid BN that maintained the elicited structure and then 
added machine learning - all components in a single model 
(corresponds to BN hybrid 1 of scenario Case 1) 

13.2647 
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Table 7-14: MASE values for the 512 cases for the forecast of the PRU only 

SN ID Models 𝑴𝑨𝑺𝑬

1 BN1 Unsupervised learning BN – a different model for every 
component 

2.4680 

2 BN2 BN with the elicited DAG - a different model for every 
component  

2.6555 

3 BN4 Hybrid BN that maintained the elicited structure and then 
added machine learning - a different model for every 
component (corresponds to BN hybrid 1 of scenario Case 1) 

2.9651 

4 BN5 Unsupervised learning BN – all components in a single 
model 

3.0390 

5 BN3 Hybrid BN that used the elicited structure as a starting DAG 
for machine learning - a different model for every component 
(corresponds to BN hybrid 2 of scenario Case 1) 

3.5019 

6 M9 Logistic regression 4.1482 

7 BN7 Hybrid BN that used the elicited structure as a starting DAG 
for machine learning – all components in a single model 
(corresponds to BN hybrid 2 of scenario Case 1) 

9.8553 

8 BN6 BN with the elicited DAG – all components in a single model 10.3616 

9 BN8 Hybrid BN that maintained the elicited structure and then 
added machine learning – all components in a single model 
(corresponds to BN hybrid 1 of scenario Case 1) 

11.5068 

Table 7-15: MASE values for the 512 cases for the forecast of the DU only 

SN ID Models 𝑴𝑨𝑺𝑬

1 BN1 Unsupervised learning BN – a different model for every 
component

2.8817

2 BN4 Hybrid BN that maintained the elicited structure and then 
added machine learning - a different model for every 
component (corresponds to BN hybrid 1 of scenario Case 1)

3.2480

3 BN2 BN with the elicited DAG - a different model for every 
component

3.2919

4 M9 Logistic regression 3.5570

5 BN5 Unsupervised learning BN – all components in a single 
model

3.6811
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SN ID Models 𝑴𝑨𝑺𝑬

6 BN3 Hybrid BN that used the elicited structure as a starting DAG 
for machine learning - a different model for every 
component (corresponds to BN hybrid 2 of scenario Case 1)

3.9711

7 BN7 Hybrid BN that used the elicited structure as a starting DAG 
for machine learning – all components in a single model 
(corresponds to BN hybrid 2 of scenario Case 1)

11.5251

8 BN6 BN with the elicited DAG – all components in a single model 12.1332

9 BN8 Hybrid BN that maintained the elicited structure and then 
added machine learning – all components in a single model 
(corresponds to BN hybrid 1 of scenario Case 1)

13.4399

Table 7-16: MASE values for the 512 cases for the forecast of All parts 

SN ID Models 𝑴𝑨𝑺𝑬

1
BN1 Unsupervised learning BN – a different model for every 

component
2.4115

2
BN5 Unsupervised learning BN – all components in a single 

model 
2.9090

3
BN2 BN with the elicited DAG - a different model for every 

component
2.9330

4
BN4 Hybrid BN that maintained the elicited structure and then 

added machine learning - a different model for every 
component (corresponds to BN hybrid 1 of scenario Case 1)

2.9665

5
BN3 Hybrid BN that used the elicited structure as a starting DAG 

for machine learning - a different model for every component 
(corresponds to BN hybrid 2 of scenario Case 1) 

3.3530

6
M9 Logistic regression 3.7250

7
BN7 Hybrid BN that used the elicited structure as a starting DAG 

for machine learning – all components in a single model 
(corresponds to BN hybrid 2 of scenario Case 1)

10.6021

8
BN6 BN with the elicited DAG – all components in a single model 11.0320

9
BN8 Hybrid BN that maintained the elicited structure and then 

added machine learning – all components in a single model 
(corresponds to BN hybrid 1 of scenario Case 1)

12.7062

The above outputs show that the BN models that incorporated all of the 

components in a single model and used either the elicited DAG or the hybrid 

DAGs (BNs 6 to 8) performed worse in each comparison. The model that 
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performed best in all cases was the BN that used unsupervised learning to build 

DAGs that included only one of the targeted components each time (BN 1). 

The performance of the rest of the models varied. The BN that used machine 

learning but by having all components in a single model (BN 5) was the second 

best in the MASE comparison using all the parts (Table 7-16). This output is 

encouraging for practical purposes because it could mean that fewer BN models 

(a single in the specific case) would need to be built, with very little SMEs 

engagement, and thus a higher efficiency in the process could be acquired due 

to the automation. However, this promising performance of BN 5 was not 

sustained in the individual parts, except for the LRU/DP (Table 7-13). BN 5 had 

the 4th best performance out of the 9 models for the PRU (Table 7-14), and the 

5th best for the DU (Table 7-15). 

BN 2, the model that was elicited individually for each part was the 3rd best in the 

overall parts comparison, which again indicates the effectiveness of careful 

consideration of the mechanisms that exist among the variables in the demand 

context. However, again BN 2 was 5th for the LRU/DP, 2nd for the PRU and 3rd for 

the DU. 

The extension of BN 2, the hybrid BN 4 that maintained the elicited structure(s) 

and then added machine learning, was 4th overall. This output seems to be 

related to that above regarding the merits of using the understanding of the 

mechanisms within the demand context, but it also shows that – at least in the 

examined cases – the extra effort through machine learning did not give better 

results. BN 4 was 3rd for the LRU/DP and the PRU, while it was 2nd for the DU. 

Finally, BN 3, the hybrid that in an effort to replace random starting of the 

conventional machine learning process of BN 1 (and BN 5) started from the 

assumed knowledge of the SMEs, was 5th in the overall comparison. The 

observations are similar to the ones above, i.e. that the random starting seemed 

better. BN 3 was 4th for the LRU/DP, 5th for the PRU and 6th for the DU. 

On the other hand, the logistic regression was 6th for the overall parts comparison, 

for the LRU/DP, and for the PRU, while it was 4th for the DU. 
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7.3.4.2 Accuracy Implication Metrics  

Again, the (relative) Holding Volume of inventory (horizontal axis) versus the 

Operational Availability (vertical axis) plots of four different target/planned service 

levels were developed: 80%, 90%, 95% and 99%. Furthermore, in order to study 

the outputs in more detail, the forecast implications were included both for the 

three individual components and for their overall summary. Additionally, given the 

large difference in the MASE accuracy of the BN models BN 6, 7 and 8 (Table 

7-13, Table 7-14, Table 7-15 and Table 7-16), and in order to reduce the cluster, 

these models were  placed in different plots and then compared to the regression 

model.  

The regression model has been included in both the comparisons of BN 1 to 5 

and of BN 6 to 8. Moreover, the two different groups have different in the 

horizontal and vertical axes scales due to the distance in their respective range 

of values, especially the Holding Volume.  

Finally, to support further explanation of the outputs, Table 7-17 and Table 7-18 

were produced. Table 7-17 includes each model’s root mean squared errors for 

each component which was used as the standard deviation parameter in the 

normal distribution models of the demand, and Table 7-18 presents the mean 

signed error of each model as an indicator of the bias (Hoover, 2006). 

7.3.4.3 Relative Average Holding Volume vs Average Operational 

Availability 

Discussion now starts with the plots in Figure 7-12. The poor performance of the 

BN models 7 and 8 is obvious for all components and of course overall as well. 

For high holding costs, their suggested forecasts cannot deliver average 

Operational Availability beyond 65% even at the 99% targeted service level.  

At first glance, this result may look counter-intuitive. How can the model result in 

such relatively high Holding Volumes and at the same time give such low 

Operational Availability in every single component and overall? The reason is that 

the forecast models BN 7 and 8, in some of the cases – but not in all – have large 

negative errors (i.e. the forecasts are a lot higher than the actual values; see also 

Table 7-18). The resulting high inventory volume does not produce equally high 
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levels of Operational Availability, since the latter cannot go beyond 100% of the 

supported units and for the cases of these BN models – as the plot shows - it was 

usually low. Consequently, the mean values of the Holding Volumes are affected 

a great deal by such outlying outputs, while the Operational Availability means 

are not.  

The case of BN 6 is similar but not exactly the same. The model’s performance 

is giving good Operational Availability on average, but at the expense of high 

relative average Holding Volumes. The behaviour of the BNs 6, 7 and 8 can be 

partly explained by their comparatively high mean signed errors (Table 7-18). 
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Figure31 7-11: Relative average Holding Volumes vs the average Operational 

Availability (four plots) 

31 One plot for each of the forecast spare component (LRU, PRU and DU) and one overall. The present 
plot presents the BN models 1 to 5 and the logistic regression models as per the list in Table 7-12 
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Figure32 7-12: Relative average Holding Volumes vs the average Operational 

Availability (four plots) 

32 One plot for each of the forecast spare component (LRU, PRU and DU) and one overall. The present 
plot presents the BN models 6 to 8 and the logistic regression models as per the list in Table 7-12 
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Looking at Figure 7-11, BN 1 is consistently parallel and to the left of the 

regression, which shows that BN 1 for any of the tested target service levels, 

delivers the same average Operational Availability as the regression but for lower 

average relative Holding Volume. This output is supported by the MASE accuracy 

metric. The explanation of this output can be inferred by comparing the two 

models’ outputs in Table 7-17 and Table 7-18. The regression model tends to 

overforecast – especially in the LRU case – and also has a higher root squared 

error. 

BN 2 performs better than the regression model too. For any given target service 

level, BN 2 points on the plot are above and to the left of the respective ones of 

the regression, which shows that it gives higher average Operational Availability 

for lower average relative Holding Volumes. As before, BN 2 has better mean 

signed error values and lower root mean squared error as well. 

The situation is not as clear in the comparison of the regression and BNs 3, 4 and 

5. For any of the target service levels these BNs provide lower average 

Operational Availability than the regression model but they also use lower 

average relative Holding Volumes. 

The same dilemma comes from the comparison of BNs 3, 4 and 5 to BN 2 which 

is above and to their right. 

When comparing BN 1 to BN 3, 4 and 5 on the LRU component, the first performs 

clearly better followed by 4, 5 and then 3. However, for the PRU and the DU, BN 

3 has not done as well as BNs 4 and 5, while the comparison among the latter 

two and BN 1 is not as clear. Finally, in the curves with the overall parts, the order 

is BN 1, 4, 5 and 3. 

Similarly, to the Case 1 scenario, there seems to be a slight inconsistency 

between these results and the MASE accuracy ones, where considering MASE 

the BN 1 performed better in all comparisons. The reason for this inconsistency 

is that in MASE the comparison was of the performance of the location parameter 

of the distribution only, while with the accuracy implication metrics the comparison 

was of the output of the location as used in the (normal distribution) model along 

with the respective estimate of the variance. 
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Table 7-17: Root squared errors of each modelling approach 

Model33 RSE for LRU RSE for PRU RSE for DU 

BN1 7.47 5.98 5.17

BN2 10.34 6.38 6.13

BN3 11.23 5.67 6.13

BN4 11.23 6.07 5.79

BN5 9.33 5.79 6.04

BN6 11.77 5.72 5.46

BN7 11.80 5.76 5.47

BN8 11.85 5.57 5.30

M9 12.26 6.82 5.07

Table 7-18: Mean Signed Error (as an indicator of bias) of the models34

Model35 Mean Signed Error 
for LRU 

Mean Signed Error 
for PRU 

Mean Signed Error 
for DU 

BN1 -0.30 +0.93 +0.80

BN2 -7.11 -1.61 -2.85

BN3 +3.74 +6.18 +6.86

BN4 +3.74 +4.53 +2.84

BN5 +0.83 +6.68 +6.50

BN6 -60.92 -35.05 -31.06

BN7 -42.99 -23.14 -20.32

BN8 -56.80 -32.23 -28.54

M9 -14.43 -3.37 -6.39 

7.3.4.3.1 Holding Volume vs Operational Availability at the End of the Final Phase 

The results from the end of the phase plots are similar to the ones that were 

acquired on average, with the only characteristic difference on the horizontal and 

33 Rounded to the second decimal 
34  The negative sign indicates overforecasting 
35 Rounded to the second decimal 
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vertical axes scales. As in Case 1 scenario, the plots of the averages have less 

spread out ranges, which is the effect of averaging. 
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Figure36 7-13: Relative Holding Volumes at the end of the final phase vs the 

Operational Availability at the end of the phase (four plots) 

36 One plot for each of the forecast spare component (LRU, PRU and DU) and one overall. The present 
plot presents the BN models 1 to 5 and the logistic regression models as per the list in Table 7-12 

E
n
d
in

g
O

p
e
ra

ti
o
n

a
lA

v
a
ila

b
ili

ty
E

n
d
in

g
O

p
e
ra

tio
n
a
lA

v
a
ila

b
ili

ty



222 

E
n
d
in

g
O

p
e
ra

tio
n
a

lA
v
a
ila

b
ili

ty
E

n
d

in
g

O
p
e

ra
ti
o
n

a
lA

v
a
ila

b
ili

ty



223 

Figure37 7-14: Relative Holding Volumes at the end of the final phase vs the 

Operational Availability at the end of the phase (four plots) 

37 One plot for each of the forecast spare component (LRU, PRU and DU) and one overall. The present 
plot presents the BN models 6 to 8 and the logistic regression models as per the list in Table 7-12 
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7.3.4.3.2 Probability of no Stock-Outs during the Whole Phase 

This output shows that the regression model as used in the Stock Management 

System provides higher probability of no stock-outs than the other models during 

the whole period of the final phase, followed by the BN 2 model, in all components 

and target service levels apart from the PRU. The lowest performance is 

delivered by BN 3 for an 80% target service level of the PRU component, in which 

one would expect on average to get a stock-out situation (100-81.78) % of 6 

months, i.e. about 33 days before the end of the final phase. 

Table 7-19: Probability of no stock-outs during the whole phase, given the four 

different fill-rates 

BN 1 BN 2 BN 3 BN 4 BN 5 BN 6 BN 7 BN 8 M 9 

L
R

U

F
ill

-r
a
te

80% 95.67 98.49 93.64 93.64 95.70 95.27 92.91 94.32 99.82 

90% 98.09 99.30 97.39 97.39 98.51 97.72 96.12 96.64 99.99 

95% 99.10 99.65 99.12 99.12 99.46 99.13 98.12 98.09 100.00 

99% 99.79 99.92 99.90 99.90 99.91 99.91 99.71 99.52 100.00 

P
R

U

80% 92.55 94.65 81.78 87.39 85.02 88.33 85.44 88.58 89.31 

90% 94.96 96.44 85.07 90.83 88.99 90.51 88.10 90.57 92.14 

95% 96.58 97.53 87.45 93.15 91.54 92.32 90.01 91.99 94.21 

99% 98.46 98.85 91.41 96.40 95.47 95.05 93.37 94.28 96.91 

D
U

80% 91.70 95.55 82.83 89.35 84.65 87.94 84.95 88.37 96.18 

90% 94.34 97.23 87.23 92.45 89.05 90.26 87.63 90.29 97.58 

95% 96.06 98.22 90.33 94.75 92.11 92.15 89.64 91.71 98.51 

99% 98.14 99.33 94.83 97.47 96.21 95.04 93.22 94.42 99.46 

A
ll

80% 93.31 96.23 86.08 90.13 88.46 90.52 87.76 90.43 95.10 

90% 95.80 97.65 89.90 93.56 92.18 92.83 90.62 92.50 96.57 

95% 97.25 98.47 92.30 95.67 94.37 94.53 92.59 93.93 97.57 

99% 98.80 99.37 95.38 97.92 97.20 96.67 95.43 96.07 98.79 

Another quite interesting observation comes when one looks to identify which of 

the components gave the highest risk of a stock-out with any of the 9 models. 

This can be observed by looking at any single individual service level for all the 

parts, e.g. the 80% row for the LRU/DP versus the respective rows of the PRU 

and of the DU, for the lowest values. Such a comparison shows that firstly the 

PRU and then the DU are more likely, for any of the forecasting models to have 
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a stock-out. This output is at odds with what one would expect from a part like 

the LRU/DP which was specified in the simulation model to have the lowest 

reliability among the parts (Section 6.3.1). This is a very important observation 

that has come as an indirect output of the present research, and is discussed in 

more detail in Appendix B. 

7.3.5 Discussion 

Again, even though MASE’s outputs were clear and showed that the 

unsupervised BN with only the component of interest each time to forecast for 

(BN 1) had the best performance in all comparisons, the conclusion was not so 

clear with the accuracy implication metrics. 

Regarding the latter, the decision maker receives more information to use, 

including how much more the Operational Availability increases for more Holding 

Volume, as well as which component part is more prone to create a stock-out 

problem and thus is more likely to be responsible for the lack of Operational 

Availability. 

The reasons for this discrepancy between the accuracy metric outputs and the 

accuracy implication metrics are concerned with the bias of the forecasting 

model, the actual data, the appropriateness of the used demand distribution 

model and the spread parameter. The latter two are choices that were made  

following the approaches that are more usually taken in practice: a normal 

distribution model and the root mean square error (Strijbosch, Syntetos, Boylan, 

and Janssen, 2011; R. H. Teunter and Duncan, 2009). As was also demonstrated 

in Figure 7-6, Figure 7-7 and Figure 7-8 and is discussed further in Appendix B, 

the spread of the results also depends on the demand context and thus – given 

the amount of influence it has on the outputs – it also needs to be modelled as 

was done in the present research with the location parameter. 

7.4 Conclusions 

Chapter 7 presented the results of the two FPP scenarios that were simulated 

and studied. In both scenarios the Mean Absolute Scaled Error (𝑀𝐴𝑆𝐸) accuracy 

metric suggested that the unsupervised approach to developing a BN DAG 
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performed better than the other BN DAG development approaches, as well as 

the logistic regression and the SME adjusted Single Exponential Smoothing 

(SES) forecast.  

However, the results were not as conclusive when the accuracy implication 

metrics were studied, mainly because apart from the accuracy of the forecast, the 

variance is also influential. 

Finally, regarding the FPP itself, a number of observations were made that are 

further studied in the accompanying Appendix B. 



227 

8 CONCLUSIONS AND FUTURE RESEARCH

8.1 Introduction 

This chapter starts by reviewing the thesis aim and objectives, and also briefly 

presents the way that these were addressed. The chapter then proceeds in 

reviewing the results and the contributions made for the studied FPP. 

Furthermore, the limitations of the study are also reviewed. These limitations, 

along with a number of additional points are discussed and presented as areas 

for future work. 

8.2 Review of the Thesis’ Aim and Objectives 

The aim of this research has been to study the demand context which exists 

during the final phase of support operations and moreover investigate the benefits 

of using Bayesian Networks as spares’ demand forecasting models within that 

context. The problem examined was that of a support provider, when the 

customer announces that the operated systems will no longer be supported. This 

general problem was named the Final Phase Problem (FPP). In Chapter 2, the 

distinctive nature of this problem was established and its relationship to similar 

problems (newsvendor and last time buy problems) discussed. More specifically, 

the problem was examined in the context of military operations that are about to 

start their withdrawal phase. Bayesian Network models were chosen to model 

demand in this type of problem for the following reasons (Section 1.3): 

 As shown in Section 2.4, there has been growing interest in and successful 

application of BNs in areas like reliability, dependability and maintenance, 

which are related to the problem of demand forecasting within the FPP 

context 

 The changes in the support and operational context of the final phase are 

a cause of high uncertainty to the support providers, and the BNs have 

powerful features that facilitate modelling uncertainty 

 The BNs’ graphical component maps the associative relationships among 

the variables of the study, which as shown in Sections 7.2.3 and 7.3.3 and 
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further examined in Appendix B can help identify relationships among the 

variables that are not easily captured by intuition only 

 The BNs’ structure as a joint probability distribution provides the additional 

ability to answer questions (queries) about the relationships among any 

other subsets of the participating variables 

Four different methods of BN structure development were employed and their 

forecasts compared:  

 Unsupervised machine learning  

 Elicitation of the BN structure from experts’ knowledge  

 Hybrid development of the BN structure using the expert knowledge as a 

prior structure and adding a machine learning algorithm that builds upon 

the elicited structure 

 Hybrid development of the BN structure using the expert knowledge and 

adding a machine learning algorithm that uses that structure as a starting 

model 

To benchmark results, the following commonly employed forecasting models 

were also developed: 

 A logistic regression for the modelling of the probability of component’s 

failure 

 A Single Exponential Smoothing  (SES) algorithm that provides predictions 

to decision makers based on past demand in order for them to adjust given 

their knowledge of changing demand context factors 

In order to make meaningful comparisons, accuracy and accuracy implication 

measures were reviewed and their suitability was assessed for the FPP type of 

problems. 

The data that were used for the development of the forecast models, but also for 

their evaluation, were acquired from a number of computer simulated scenarios 

(Sections 6.2, 6.3, 6.4, 7.2 and 7.3). The scenarios that were examined, included 

the systems that had components with different reliabilities and different repair 

practices. The research interest was in the forecast of the experienced failure rate 
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of these components and therefore these were the main variables of interest of 

the BN models. 

8.3 Review and Contributions 

Using the assumption of close partnerships among the organisations that operate 

the Support Chain (SC), the thesis has assumed that the modeller has access to 

different areas to collect data. This assumption was justified mainly by the type 

of support contracts that can exist (availability type of contracts), and also by the 

literature’s reported trend that today’s organisations tend to have closer 

relationships and thus increased visibility (Section 1.2). Consequently, this 

research intended to exploit the type of data records likely to be found in the 

logbooks of the different nodes of the SC including the Operations, and to use 

them in order to develop the forecast models. 

The use of the data from the nodes in the SC system is not only a convenience 

but, in the case of major changes to the support requirements and resources, it 

is also a necessity. As was shown both from a number of the research papers in 

the literature review and subsequently reinforced from SME’s interviews, a 

dominant issue in the SC is the lack of a cross-node view and therefore a lack of 

an overall understanding of the SC (Section 3.2). On the other hand, the data are 

inevitably the results of the synergies of the SC activities and thus, they do include 

an objective pool of SC-wide information. 

The specific problem examined in the thesis, the Final Phase Problem (FPP), has 

not been examined in the literature as was shown in Chapter 2 where its 

relationships with Newsvendor problems and Last Time Buy problems were 

discussed. The literature review also identified a set of factors influencing spares 

demand. In Chapter 3, some additional influential factors were identified from 

interviews with subject matter experts. Additionally, a number of conceptual 

models were developed that can help in the identification of the specific factors 

to use in for spares’ demand forecast models (Section 3.3). The use of one of 

these conceptual models was demonstrated in Chapter 6 where the development 

of the simulation model was discussed. 
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Apart from the lack of a cross-nodes’ view, an additional challenge identified has 

to do with what can be learnt from the past data. Both scenario simulated 

experiments assumed that the particular demand pattern and support chain 

configuration experienced in the final phase did not exactly repeat one found in 

an earlier phase of operations (end of Section 7.2.3.6 and Appendix B). This 

demonstrates one of the benefits of using models like BNs which can take 

account of the factors that are responsible for the changes in the demand context 

(Section B.1 of Appendix B). 

The above highlight two additional novel outputs of the thesis. Firstly, the changes 

in the support and operational context that can take place during the FPPs can 

be such that the use of past demand patterns to provide forecasts can be 

misleading. Secondly, models like BNs can identify those factors that are most 

influential and thus should be included as variables in the forecast of the demand. 

Regarding the thesis objectives related to the BNs’ structure development 

(Section 1.4), one of the early identified outputs was that the chosen type of BNs’ 

unsupervised structure learning algorithm should be a score-based and not a 

constraint-based one. The research verified this observation by tests using data 

from the scenario, and the thesis presented two reasons for preferring the score-

based approach (Section 4.3.2.3). Firstly, in the datasets of interest to the present 

research, a number of variables had values that were comparatively very rare, 

and this created a serious problem of increased false negative outputs in the tests 

of independence (the null hypothesis) which are used in the constraint-based 

algorithms. Secondly, the MBDeu score metric used in the score-based 

algorithms has been developed using a Bayesian parametrisation with an 

assumption of prior values for the parameters and then averaging over the 

resulting members of a family of Dirichlet distributions. This approach works as a 

safeguard against parameter overfitting.  

All BN structures had their NPTs calculated using the dataset acquired from the 

simulated scenarios, via the Bayesian estimation approach as compared to the 

maximum likelihood estimation. The reason is again that certain variable 
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combinations of the joint probability distributions were empty of counts in the 

dataset due to a number of the variables having very rare values. 

Two simulation experiments were used to compare the models: one with a simple 

type of supported system and another with a more elaborate one. The first 

scenario compared four BN models, a logistic regression and an expert-elicited 

forecasting approach, while the second scenario had eight BN models and a 

logistic regression. The first scenario’s out of sample data were 144 different 

alternative cases, each replicated 100 times (14,400 outputs), while the second 

were 512 different alternative cases, each replicated again 100 times (51,200 

outputs). The research did not proceed further with the expert-elicited forecasting 

approach because in the first scenario where it was applied, it gave comparatively 

poor outputs. 

The study on the accuracy metrics and on the accuracy implication metrics that 

was performed in order to choose from for the evaluation of the forecast models, 

provided two additional outputs that the author considers to be novel.  

Firstly, the algebraic method of analysis of the accuracy metrics, apart from 

confirming literature’s empirically identified problems of certain accuracy 

measures, it also revealed some more, while it additionally demonstrated that not 

considering the algebraic analysis can lead to badly defended suggestions 

(Section 5.2.2). Particularly, the analysis showed that the Absolute Percentage 

Error (𝐴𝑃𝐸) can be problematic when there are datasets that occasionally have 

very small or very large values as compared to a forecast method’s resulting 

errors (Section 5.2.2.3). The analysis also showed that for the symmetric 

Absolute Percentage Error (𝑠𝐴𝑃𝐸) (Sections 5.2.2.4, 5.2.2.5 and 5.2.2.6), apart 

from the already documented lack of symmetry, it is also unable to distinguish the 

performance among competing forecast models for a large range of error values. 

Moreover, the analysis showed that its three variants are identical in the errors’ 

range from -∞ and up to an error value equal to the data point, while neither of 

the three should be used for errors larger than that. 

The second related novel contribution of this thesis was about the accuracy 

implication metrics that are required in order to evaluate the forecast models in 
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the FPPs (Sections 5.2.5, 5.2.6). It was shown that for the cases that were 

examined, the commonly applied average spares Holding volume and average 

spares Backlogged volume need to be complimented by the end of period 

corresponding values and the probability of stock-out during the final phase 

period. Additionally, it was suggested that the measures of the support system’s 

effectiveness approximated by the average and the end-of period volume of 

components’ backlogs can be biased when averaging over datasets of different 

parts which can be strongly dependent. Given the assumption of having access 

to the level of operations for the acquisition of data, it was recommended that this 

potential problem can be mitigated by replacing the spares Backlogged volume 

as a measure of effectiveness by the Operational Availability of the supported 

systems. 

In both the scenarios that were examined, the 𝑀𝐴𝑆𝐸 accuracy measure that was 

eventually adopted suggested the unsupervised machine learning approach to 

BN structure development as best. However, the evaluation output was not as 

clear when the accuracy implication measures were used. Even though that BN 

did well in these measures too, in the first scenario the logistic regression and in 

the second scenario the elicited BN produced better Operational Availability but 

for higher inventory investment both on average and at the end of the final phase.  

The research showed that the reason for this discrepancy between the accuracy 

and the accuracy implication measures’ results is that the first compare only the 

models’ forecasts of the demand’s location parameter, while the second 

incorporate the effects of the spread and the distribution model (Sections 7.2.5, 

7.3.5). 

From the modelling perspective, a number of benefits were identified from the 

development and use of BNs in the FPP cases. One such benefit has to do with 

the predictor variables’ values. A common way for the models to provide forecasts 

is by using the known, fixed values of their explanatory variables (Gelman et al., 

2014, p.5) and then producing the forecast value of the response variable. 

However, there can be predictors of interest, such as the workload level at the 

repair shop (𝑊𝑊𝑘𝑙𝑑) (Table 6-1) whose values are not certain/fixed at the time 
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that the forecast is required. This is where models like BNs provide an important 

benefit. Even though other modelling approaches can be modified to 

accommodate such a modelling challenge (see for example the logistic 

regression models of Sections A.1.3 and A.3.3 in Appendix A) this situation is 

quite common in models like BNs. They can still use variables whose values are 

not known by marginalising them out. 

The research also revealed that there are dependencies among the components 

that can affect a number of the support factors. The simulated scenarios and 

subsequent experiments showed that the experienced times between failures 

and the logistic delay times of all the components are affected by specific 

influential ones. This is where the BN DAGs can provide useful information, since 

they can highlight what these influential parts might be (Section 7.3.4 and 

Appendix B). In addition, the most influential factors that were identified were (see 

also DAGs in Appendix A): 

1. The factors related to the repair workload (𝐵𝑊𝑘𝑙𝑑, 𝑊𝑊𝑘𝑙𝑑) 

2. The environmental conditions (𝐸𝑛𝑣) 

3. The operational demand (𝑂𝑝𝐷𝑒𝑚) 

4. The number of units (𝑥𝑁𝑈) 

5. The number of mechanics (𝑥𝑁𝑀) 

Also studied were the differences that could be identified from the simulation of 

the two scenarios and what intuition could be derived from the models, the results 

of which can be also considered novel. It was realised that the transition from a 

simple system to a more elaborate one had an effect on the spread of the demand 

distribution, on the shape and on the negativity of its skewness. Furthermore, the 

latter fact made a component with non-intermittent demand to become 

intermittent (Appendix B).  

This observation can have multiple implications if it is not correctly dealt with. 

Firstly, the non-zero likelihood of having intermittent future demand can mislead 

models that rely on only simple time-series data to predict for the final phase of 

operations, if just by chance – as happened in the scenarios of Section 7.3 – the 

in-sample dataset is not intermittent. Secondly, it was also shown (Appendix B) 
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that either the estimation or the evaluation of the Operational Availability of 

subsystems could be miscalculated if those components that are mostly 

influential for the waiting times are not considered within the terms of the 

Operational Availability function. Moreover, it is suggested that the latter risk is 

higher when a system undergoes modifications or upgrades on some of its 

components, since in such cases all components’ calendar times to failure could 

be affected. 

What was shown is that as compared at least to the regression models, using the 

BNs, either as an overall model with all the parts or using an individual model for 

each part, produces DAGs that can highlight in a very efficient way which factors 

are more influential and what other factors they influence. This output can then 

be used to inform priorities for inventory management decisions. 

The following list summarises the thesis’ outputs related to the aims and 

objectives (Section 1.4): 

1. Regarding the BNs’ structure development: 

a. For the development of the unsupervised BNs, the score-based 

algorithm was preferred to the constrained-based ones 

b. All the NPTs were calculated from data using a Bayesian estimation 

approach which was preferred to the maximum likelihood 

estimation 

c. The BNs that were built using the unsupervised learning algorithm 

performed better in the accuracy metric comparison. However, 

when the comparison used the accuracy implication measures, the 

results were not as conclusive, mainly because the higher 

effectiveness accuracy implication output was given at the expense 

of lower efficiency 

d. It should be expected that at the beginning of the final phase period, 

the values of a number of influential variables will not be known with 

certainty. Even though other modelling approaches can potentially 

be modified to use those variables’ probability distributions instead, 

such a situation is intrinsic in the calculations of the BNs, and thus 
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they can more efficiently handle the problem and thus provide with 

a forecast 

e. The BNs’ directed acyclic graphs, particularly the one associated 

with the unsupervised learning algorithm, can identify those 

components whose failure rate is more influential for the support 

system. Having such an output can help in a number of decisions, 

ranging from the development of other forecast models to 

managing the inventory. This can also offer practitioners useful 

information about which variables are key. 

2. Regarding the study of the demand context during the FPP: 

a. The use of data from different nodes of the Support Chain can 

reveal cross-nodes’ synergies that can affect the demand for 

spares, and which are not readily perceived by SMEs and 

practitioners. These effects can be captured by models like BNs 

b. The identification of the possible factors that can be influential on 

the modelling of the demand for spares can be facilitated by the use 

of one of the conceptual models described in Section 3.3 

c. Due to the difference in the components’ anticipated failure rates, 

accuracy metrics like 𝑀𝐴𝑆𝐸 (Section 5.2.3) should be preferred to 

those based on functions like the 𝐴𝐸, 𝑆𝐸, 𝐴𝑃𝐸 or 𝑠𝐴𝑃𝐸

d. The simulation experiments showed that the patterns of the 

demand for spares that existed prior to the final phase are likely not 

to be repeated due to the changes in the support system, and thus 

care should be taken not to mislead decision making 

e. The simulation experiments also showed that an increase in the 

complexity of the Equipment Breakdown Structure of a system can 

change the components’ demand behaviour. Again models like 

BNs can help in the identification of which components are more 

influential for such changes 

Finally, the general operationalised suggestions that would be provided to an 

operations manager overseeing the FPP in a critical mission, are the following: 
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1. It would be advised to maintain and oversee data on the factors presented 

in Table 6-1, or at least on the influential ones presented earlier in the 

current Section 8.3 

2. The manager should be aware that the relationship between the numbers 

of resources (number of units, number of mechanics) is not guaranteed to 

be linear in the number of failures. Consequently, ways that can capture 

these non-linearities should be developed to facilitate informed decisions  

3. On the same topic, developing models like BNs that can capture and 

present the associations among the variables can highlight dependencies 

and drivers that are not always apparent 

8.4 Limitations 

 An apparent limitation of the research was that the data that were used came 

from simulated scenarios. However, as also discussed in Section 6.2 the 

approach followed had a number of benefits, including the ability to study the 

situation and also test the models by the use of simulation experiments. 

Furthermore, a simulation approach helps to identify what type of data from the 

support chain is most important to have. This can help to influence future practice 

in the collection and sharing of such data. 

Another limitation of the study concerns the assumptions used in the simulated 

scenarios. These assumptions included the inventory policy of (𝑆, 𝑆-1) which is a 

policy commonly applied when supporting high-value systems like the ones 

operated by the Armed Forces (Sherbrooke, 2004, sec.1.2), perfect fault 

detections and perfect repairs.  

 While the supported system in the second scenario did include a number of 

different components, each with different reliability and different repair process, 

real systems are even more complex. 

Furthermore, the operational demand that was assumed in the scenarios had 

only two levels, while in a real situation the number of different mission 

configurations can be higher. 
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A limitation to the BN models that were developed was the need to discretise 

certain variables. This is a limitation, especially when at the time of the forecast 

there is information about a variable’s value that is not included in the set of its 

multinomial discretised mapping. On the other hand, in the scenarios that were 

explored, whenever such a situation emerged, the respective variable was 

marginalised out, while there are also a number of benefits from discretisation 

(Section 4.4). 

8.5 Future Work 

Regarding ways in which this research can move forward, these can be seen 

under the following four categories: 

 The support 

 The supported system 

 Its usage 

 The forecast models 

The support scenarios should have some of their assumptions changed. These 

include the assumption of the support policies, including the lack of preventive 

maintenance and the (𝑆, 𝑆-1) resupply and repair policies, while the effects of  

imperfect fault-detections and repairs on the demand models should also be 

explored.  

Furthermore, regarding the operated and supported systems’ complexity, they 

should include more components, with even larger differences in their inherent 

reliabilities and also ageing effects (see also discussion about a system with more 

elaborate Equipment Breakdown Structure (EBS) at the end of Section B.1).  

Additionally, the Operational context should be more complex than the assumed 

two states. Nevertheless, the conclusions resulting from the methods and the 

observations should be test-validated using real-life datasets. 

Moreover, regarding the forecast modelling itself, it would be interesting to see 

whether a model of not only the demand location parameter, but also of the 

spread or even the skewness of the demand distribution would result in more 

accurate demand forecasts, especially when accuracy implication metrics are 
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used. On this topic, it would be interesting to study other modelling approaches 

that do not require the data discretisation pre-processing step of the current 

thesis’ BNs. More specifically, relevant approaches of interest are BNs with 

dynamic discretisation, hierarchical Bayesian regression models or more 

advanced generalised regression models like the Generalised Additive Models 

for Location, Scale and Shape (GALMSS). Furthermore, as was suggested by 

the simulation outputs (Sections 7.3.5), future research could benefit if alternative 

demand models to the commonly applied normal distribution were also explored. 

The Final Phase Problem that this thesis studied is an important, challenging 

problem that has been overlooked by the literature. The research examined its 

features and studied the development of BNs for use as demand forecasting 

models. This study of the BN models and also the route taken of using simulated 

scenarios provided a number of novel outputs that can shed light on support 

decisions when faced with this type of problem. 
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APPENDICES

Appendix A Forecast Models used in the Second 

Scenario 

A.1 Models for the Forecast of the Demands in LRU 

A.1.1 A Single BN with All the 𝑭𝑹𝑻 Nodes Included 

Figure A-1: All parts model, machine learnt DAG38 (BN 5) 
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Figure A-2: All parts, elicited DAG (BN 6) 

Causal BN

Env

xSDP

xSPRU xSDU

xNU

xNM

xNTr

OpDem

FlHbd_PRU FlHbd_DU FlHbd_LRU

MExpB

QAdm

QM

OpRT

FRT_LRUFRT_PRU FRT_DU

BWkld

WWkld



263 

Figure A-3: All parts, hybrid DAG that maintains (parts of the) elicited39 (BN 8) 
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Figure A-4: All parts, hybrid DAG that started from (parts of the) elicited (BN 7) 
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A.1.2 A BN DAG for Only the 𝑭𝑹𝑻 of the LRU 

Figure A-5: LRU only, machine learnt DAG (BN 1) 
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Figure A-6: LRU only, elicited DAG (BN 2) 
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Figure A-7: LRU only, hybrid DAG that maintains (parts of the) elicited (BN 4) 
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Figure A-8: LRU only, hybrid DAG that started from (parts of the) elicited (BN 3) 

A.1.3 A Logistic Regression Model for Only the 𝑭𝑹𝑻 of the LRU 

𝑙𝑜𝑔𝑖𝑡(𝐹𝑅𝑇𝐿𝑅𝑈) = 𝑏0  + 𝑏1𝑂𝑝𝐷𝑒𝑚5/5: 𝑥𝑆𝐷𝑃 + 𝑏2 𝐸𝑛𝑣𝑁𝑜𝑡𝑂𝐾: 𝑥𝑆𝐷𝑃 + 𝑏3 𝑥𝑆𝐷𝑃

The coefficients of 𝑏0, 𝑏1,  𝑏2 and 𝑏3 are -4.71342, -0.03432, 0.03321, and 

0.12309 respectively, with standard errors of 0.34858, 0.03141, 0.02482 and 

0.08373. The reference settings of the variables are ‘4/5 of a day’ for 𝑂𝑝𝐷𝑒𝑚, 

‘OK’ for 𝐸𝑛𝑣 and “No failure” for the 𝐹𝑅𝑇.  

None of the coefficients is significant at the 5% level but the cross validation tests 

showed that this model gave the best prediction out of the ones tested. What the 

model’s coefficients show is that for any of the values of the 𝑥𝑆𝐷𝑃, the log odds 

of getting a failure is increased when the Operational Demand increases (sum of 

 𝑏1 and  𝑏3) or when the Environmental conditions get worse (sum of  𝑏2 and  𝑏3) 

In order to forecast demand for Phase 9, where the state of the 𝐸𝑛𝑣 variable is 

not yet known but there is a probability distribution for it, the forecast uses the 
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probability values as weights for a weighted average of the two outputs obtained 

using the two possible values for the Environment. 

A.2 Models for the Forecast of the Demands in PRU 

A.2.1 A Single BN with All the 𝑭𝑹𝑻 Nodes Included 

See Figure A-1, Figure A-2, Figure A-3 and Figure A-4 above. 

A.2.2 A BN DAG for Only the 𝑭𝑹𝑻 of the PRU 

Figure A-9: PRU only, machine learnt DAG40 (BN 1) 
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Figure A-10: PRU only, elicited DAG 
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Figure A-11: PRU only, hybrid DAG that maintains (parts of the) elicited41 (BN 4) 

41 Observe the participation of the 𝑥𝑆𝐷𝑃
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Figure A-12: PRU only, hybrid DAG that started from (parts of the) elicited42 (BN 3) 

A.2.3 A Logistic Regression Model for Only the 𝑭𝑹𝑻 of the PRU 

𝑙𝑜𝑔𝑖𝑡(𝐹𝑅𝑇𝑃𝑅𝑈) = 𝑏0  + 𝑏1𝑂𝑝𝐷𝑒𝑚5/5 + 𝑏2 𝑥𝑆𝐷𝑃 + 𝑏3 𝑥𝑁𝑀 + 𝑏4 𝑥𝑁𝑇𝑟

The coefficients of 𝑏0, 𝑏1,  𝑏2, 𝑏3 and 𝑏4 are -5.97291, 0.61480, 0.05437, 0.54505 

and -0.22579 respectively, with standard errors of 0.64786, 0.28305, 0.11968, 

0.36318 and 0.25177. The reference settings of the variables are ‘4/5 of a day’ 

for 𝑂𝑝𝐷𝑒𝑚 and “No failure” for the 𝐹𝑅𝑇.  

Only the 𝑂𝑝𝐷𝑒𝑚 coefficient is significant at the 5% level but the cross validation 

tests showed that this model gave the best prediction out of the ones tested. What 

the model’s coefficients show is that as the values of the all the predictors apart 
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from 𝑥𝑁𝑇𝑟 increase (or the 𝑂𝑝𝐷𝑒𝑚 changes to 5/5), the log odds of getting a 

failure increases as well. 

A.3 Models for the Forecast of the Demands in DU 

A.3.1 A Single BN with All the 𝑭𝑹𝑻 Nodes Included 

See Figure A-1, Figure A-2, Figure A-3 and Figure A-4 above. 

A.3.2 A BN DAG for Only the 𝑭𝑹𝑻 of the DU 

Figure A-13: DU only, machine learnt DAG43 (BN 1) 

43 Observe the participation of the 𝑥𝑆𝐷𝑃
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Figure A-14: DU only, elicited DAG (BN 2) 

Figure A-15: DU only, hybrid DAG that maintains (parts of the) elicited44 (BN 4) 
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Figure A-16: DU only, hybrid DAG that started from (parts of the) elicited45 (BN 3) 

A.3.3 A Logistic Regression Model for Only the 𝑭𝑹𝑻 of the DU 

𝑙𝑜𝑔𝑖𝑡(𝐹𝑅𝑇𝐷𝑈) = 𝑏0  + 𝑏1𝑂𝑝𝐷𝑒𝑚5/5 + 𝑏2𝑥𝑆𝐷𝑃 + 𝑏3 𝐸𝑛𝑣𝑁𝑜𝑡𝑂𝐾

+ 𝑏4 𝑂𝑝𝐷𝑒𝑚5/5: 𝑥𝑆𝐷𝑃

The coefficients of 𝑏0, 𝑏1,  𝑏2, 𝑏3 and 𝑏4 are -4.879939, 0.712373  , 0.004159, 

0.223769 and -0.078618 respectively, with standard errors of 0.48648, 1.287017, 

0.115224, 0.158063 and 0.240377. The reference settings of the variables are 

‘4/5 of a day’ for 𝑂𝑝𝐷𝑒𝑚, ‘OK’ for 𝐸𝑛𝑣 and “No failure” for the 𝐹𝑅𝑇.  

None of the coefficients is significant at the 5% level but the cross validation tests 

showed that this model gave the best prediction out of the ones tested. What the 

model’s coefficients show is that for any of the values of the 𝑥𝑆𝐷𝑃, the log odds 
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of getting a failure is increased when the Operational Demand increases (sum of 

 𝑏1 and  𝑏4) or when the Environmental conditions get worse. 

In order to forecast demand for Phase 9, where the state of the 𝐸𝑛𝑣 variable is 

not yet known but there is a probability distribution for it, the forecast uses the 

probability values as weights for a weighted average of the two outputs obtained 

using the two possible values for the Environment. 

Appendix B Observations from Contrasting the Phase 9 

Outputs of the Scenarios 

B.1 Benefits from Using the BNs to Identify the Influential 

Contributors 

Of the two simulation scenarios cases, the main difference implemented was that 

the system in Case 2 (Section 7.3) had a more elaborate Equipment Breakdown 

Structure (EBS) than the first. The additional components that were included in 

Case 2 were built to be comparatively a little more reliable than the one that was 

used in both cases. In the current section some of the effects are explored that 

the changed system had in the number of the demands and an effort is also made 

to investigate their causes in order to inform modelling. 

Figure B-1 shows a random sample of 30 cases from the 144 simulated in Case 

1 and an equal random sample from the 512 simulated in Case 2. In all cases the 

boxplots have been sorted by their increasing medians. Each box includes the 

25% up to 75% of the 100 replications of each test case (the 25th (𝑞1) and 75th 

(𝑞3) percentiles respectively). The red line inside the box signifies the median, 

while the crosses outside the box show any outlying value. An outlying value in 

these cases are defined as those values that are higher than 𝑞3 +

𝑤 × (𝑞3 − 𝑞1) or less than 𝑞1 − 𝑤 × (𝑞3 − 1), where 𝑤 is the maximum whisker 

length. The default value for whisker corresponds to approximately +/–2.7σ 

(MATLAB, 2017). All figures have the same horizontal and vertical axes range. 
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The three bottom plots are from Case 2. These plots verify the fact that the DU 

component was slightly more reliable than the PRU which in its turn was more 

reliable than the LRU/DP46 component.  

The first interesting observation though comes from comparing the top two plots 

which are of the same component (LRU/DP). In Case 2, the component presents 

a potential intermittent behaviour, which means that not all the periods/months 

have a demand, while in Case 1 it does not. In Case 2 the 25%-75% percentile 

boxes are lower than the Case 1, they are more spread with more outliers, but 

most of all these outliers are more on the lower side with some of them 

occasionally reaching zero. This shows that without changing the reliability of the 

component, the fact that the EBS of the system has been made more elaborate, 

resulted in experiencing a change in its demand distribution model.  

46 The reader is reminded that the notation which shows two parts, i.e. LRU/DP is due to the fact that 
the LRU is repaired by a single DP which means that the demand for the LRU is due to the malfunction of 
the DP and thus their rate of demand is the same 
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Figure B-1: Boxplots of sampled cases of Scenarios 1 and 2, sorted by their 

median value (four plots) 

Figure B-2 presents an example of this change. The three plots on the top present 

the histograms of three of the 144 cases examined in Case 1 (each example 

replicated 100 times), while the ones at the bottom present three of the 512 cases 

of Scenario 2. Even though these are just three examples from each scenario, 

they are characteristic of the result: the shape of the demand distribution has 

changed in Case 2 and presents a skew to the left while it is less populated on 

the right side. The most interesting output of these is the fact that the component 

– even though as an outlier - can now present an intermittent behaviour which is 

a very challenging characteristic for a demand pattern47. Such a result can be 

seen in the left two time-series of Figure B-3 (each plot is a single case of the 

100). 

47 Discussions on the challenges of predicting intermittent demand time-series can be found in 
many research papers, see e.g. Teunter and Duncan (2009), Petropoulos and Kourentzes (2015), 
Wallström and Segerstedt (2010), Syntetos and Boylan (2005)
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Figure B-2: Three histograms of the 144 cases (top row) vs three of the 512 cases (bottom row) 
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Figure B-3: Three 6-month cases out of the 𝟓𝟏𝟐 × 𝟏𝟎𝟎 that were simulated48 49

48 Compared to the boxplots of Figure B-1, the first two time series are just two of the outliers presented as red crosses at the bottom of the boxplots 
49The two left present a characteristic intermittent behaviour, while the third one is a common case 
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In order to further explore the changes in the spread of the data, Figure B-4 has 

also been created. In this figure, the ranges, the minimum and the maximum 

values of all the cases from the two scenarios for all modelled components have 

been plotted in an ordered sequence. The thin blue line represents the ranges, 

the thick red with the stars are the minimums and the thick black with the squares 

are the maximums.  

The first thing to observe is that the line of the ranges in the first scenario is below 

the line of the minimums, indicating a lower spread of the data, while, in the 

second scenario (both for the LRU/DP and for the other two components) the line 

of the ranges is above the line of the minimums and can take larger values, mainly 

due to the fact that the minimums have dropped a lot, while the maximums have 

reduced but not as influentially. 
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Figure B-4: Plots of the sorted values of Range, Minimum and Maximum for all 

values of Scenarios 1 and 2 (four plots) 

The above can be also verified by the plots of the Coefficients of Variation in 

Figure B-5. The metric compares the standard deviation over the mean obtained 

from each 100-replications set, and here, it demonstrates that the second 

scenario produced comparatively higher spread in the values of the demand. 
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Figure B-5: Coefficients of variation for all components of both Scenarios50

From all the above a strong interaction can be observed among the components, 

and this interaction affects: 

1. The location of the demand distribution, see e.g. the medians in the top 

two plots of Figure B-1, where the ones at the first are generally higher 

than the ones at the second 

2. The skewness of the distribution to the left, see e.g. the increased number 

of outliers in the second of the top two plots of Figure B-1 and the shapes 

of the histograms in Figure B-2. This skewness also reaches the level of 

experiencing intermittency in a number of occasions 

3. The spread of the distribution, see e.g. the observations about the 

accuracy implication metrics, where the mean root squared errors of the 

LRU/DP were smaller in Case 1 (Section 7.2) than the respective of Case 

50 The light line at the bottom plots the respective values of LRU/DP from Scenario 1 and the thick lines 
above that are from Scenario 2 for the LRU/DP, DU and PRU respectively 
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2 (Section 7.3) and also in Figure B-4 and Figure B-5 where the ranges 

and the coefficients of variation can take a lot higher values in the more 

elaborate EBS 

What can be deduced is that the complexity of a system’s EBS is one of the 

reasons for the above phenomena and an explanation of the mechanisms are 

going to be suggested in the next Section B.2. However, firstly the resulting 

demand intermittency is explored, which is one of the challenging situations in an 

SC (Fisher, Hammond, Obermeyer, and Raman, 1994). 

When the BN models were being developed, it was realised that in Case 2, the 

𝑥𝑆𝐷𝑃, i.e. the nominal level of DPs in the inventory, was identified by the BN-

structure machine learning algorithms as a variable that increased the 

predictability of all models for any of the components – i.e. regardless if it was for 

the LRU/DP or the PRU or the DU. Furthermore, this observation was made 

either when the work was during the development of the BN with all the 

components in a single model, or when working on the BNs for individual 

components. Moreover, using this observation it was also realised that the 

predictability of the regression models that were built, again for any of the 

components, increased when the 𝑥𝑆𝐷𝑃 was included in the covariates (see 

Sections A.2.2 and A.3.3 for more details on the regression models of scenario 

Case 2). This ability of the BNs to identify factors that are not straightforward to 

identify is also discussed further below, after highlighting the modelling 

challenges resulting from comparing the examined two scenario cases. 

The challenge of intermittency forecasting increases even more when one 

considers that the demands during Phases 1 to 8 in Case 1 and the respective of 

Case 2, were not very different. This can be inferred from the mean naïve forecast 

values of the two scenarios51. In Scenario 1 the mean naïve forecast was equal52

to 3.7826, while for Scenario 2 it was: 

 LRU/DP : 3.4348 

51 These are the values that were also used as denominators in the calculations of MASE 
52 Rounded to the 4th digit 
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 PRU : 3.0435 

 DU : 2.3478 

What can be observed from the above values is that the values of the respective 

LRU/DP outcomes are not very different in the two scenarios. This fact indicates 

that the initial phases produced not very different demands for this component 

which was common in the two scenarios. In other words, even though both 

scenarios had a similar number of demands in their training dataset, due to the 

fact that the second scenario employed a more elaborate UAV system, the 

likelihood of experiencing challenging very low and even intermittent demands 

increased, suggesting two modelling challenges. 

Firstly, one would expect that models like the commonly applied time-series 

statistical models that do not use explanatory variables for their forecasts, could 

be misled and not identify the differences on the infinite-time horizon phases and 

the forthcoming final phase, a fact which is very important in the FPP cases where 

there would be only a single opportunity to provide and use a forecast.  

Secondly, even more, models like regression, that do use explanatory variables 

could skip / miss trying to use an “irrelevant” covariate like the 𝑥𝑆𝐷𝑃 when the 

model was about the demand of a different component than DP. 

This observation amplifies the need to use models like the BNs that can both 

identify but also highlight in their graph those factors which are more influential. 

Consequently, the fact that the BN DAG can show which of the components are 

more responsible for the intermittency of the rest – the DP in the examined cases 

- is an important finding for the demand forecasting and consequently for the 

better planning as well, and this finding can be used for the development of other 

models as it was done with the regression models. 

Finally, going back to the other observations, it can also be said that the fact that 

the spread and the skewness of the demand distribution is also affected by the 

changed EBS, indicates that these also need to be modelled using explanatory 

variables, something that was not addressed in the current research. 
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B.2 Explaining the Intermittent Behaviour of the Components 

Two reasons have been identified for which the LRU/DP was actually responsible 

for the observations above. Firstly, the LRU/DP was the least reliable of the 

components. Due to this fact, the SC system would experience more failures of 

the LRU/DP than the rest. Therefore, the LRU/DPs requirement for 

repair/resupply resources was the reason for any of the other components to 

“extend” their calendar life by waiting for the execution of the repair and resupply 

activities for the LRU/DP. Consequently, this extension in the other parts’ 

calendar life resulted in experiencing a reduction in their failure rate as well. On 

the other hand, this also explains why the LRU/DP demand pattern presented 

intermittent behaviour in the second scenario: its own calendar life was 

“extended” due to the presence of the other components and their breaks, repairs 

and logistic delays.  

Secondly, apart from being the least reliable, the LRUs’ repair process is longer 

and requires more resources. So, by the time an LRU would require repair, apart 

from the common first-line diagnosis and repair delays on the UAV, there was 

also a second line delay due to the diagnosis and repair at the shop, something 

that was not included at such a length for the other components and thus made 

the LRU/DP even more influential.  

Regardless of the mechanism that is behind these phenomena, from a practical 

perspective what needs to be again stressed is that a model like the BN can alert 

the modeller of the existence of such phenomena and also of the factors which 

are more influential. 

Using what was observed from the case studies and the conceptual models that 

were introduced in Chapter 3, in what follows, the factors that might control the 

calendar life and thus the experienced failure rates of the components are 

generalised. 

The time from when a component is put into operation until it breaks down can 

be partitioned into the following two parts: 

1. Its wait duration which includes any kind of non-operational time while it is 

mounted on the system of which it is a component. For those systems that 
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are on continuous operation, e.g. a power generator, such a time includes 

the waiting time for which the system is under maintenance due to a 

different component  

2. Its actual working / operational duration which is related to its reliability 

Placing each of the above two categories under the lenses of the individual 

contexts that were identified as a conceptual model in Section 3.3 (Engineering, 

Environment, Operations and Support), one can see the way that they work on 

the total duration of a component’s life without repairs - its calendar life - and 

consequently the rate that breakdowns are experienced and consequently 

demand for spares as well. 

On the one hand, there is the wait duration (the first of the two categories in the 

list above) inside the system on which the component has been mounted. As it 

was mentioned earlier, the important observation in this case, is that this duration 

is not affected necessarily by the effects of the contexts on this specific 

component. This duration is affected by the stand-by operational duration (“not-

used but working”), but also by the effects of the previously mentioned contexts 

on the specific components that are mounted on the same system,  but which are 

more prone to repair and logistic delays and which can be identified by models 

like the BNs. This is part of the Engineering context perspective and it includes 

both those influential components’ Reliability and Maintainability. Moreover, in 

order to explore and model the wait duration of any component, the 

Environmental, Operations and Support contexts’ effects should be considered 

on those influential components since it is their durations that drive the wait 

durations of the other components. 

On the other hand, the operational duration /reliability of a component (the second 

of the two categories in the list above), apart from its nominal engineered life, it 

is also affected by the Environmental conditions under which it operates, the 

proficiency of its operators and the Operational/usage rate, and the quality of its 
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Support/repair. This set of factors can extend or reduce the component’s 

operational duration. 

In the next Section B.3, the explanations provided above have been used to 

further extend the previous observations into the examination of the factors that 

compose the Operational Availability function.  

B.3 Looking Closer at the Operational Availability Function 

If the LRU/DP component is seen not just as a part but as a repairable subsystem 

- a system with its own functional output that contributes to the whole system’s 

Operational Availability – the previous observations can be extended and 

probably (re)form the thinking when the Availability of that subsystem is 

calculated.  

The Operational Availability function is used either to evaluate the performance 

of a system, or even plan its availability as a requirement: 

𝐴𝑜 =
𝑀𝑇𝐵𝑀

𝑀𝑇𝐵𝑀 +𝑀𝑇𝑇𝑅 +𝑀𝐿𝐴𝐷𝑇

𝑀𝑇𝐵𝑀: Mean Time Between Maintenance activities (either corrective or 

preventive) 

𝑀𝑇𝑇𝑅: Mean Time To Repair 

𝑀𝐿𝐴𝐷𝑇: Mean Logistics and Administrative Delay Time 

Firstly, the two observations that were discussed in Section B.2 are directly 

related to the function’s numerator 𝑀𝑇𝐵𝑀. Both the reliability, but also the waiting 

periods of the component as a subsystem are included in the 𝑀𝑇𝐵𝑀. However, 

the waiting periods might not be driven by the subsystem itself but by one or more 

other subsystems (components), possibly irrelevant to the one under 

consideration, and which are the ones that are more responsible than the rest for 

the range of values of the logistic delays which affect the whole (super)system 

that they belong. 

Moreover, the discussed effects on the 𝑀𝑇𝐵𝑀 can also be related to subsystems 

that are planned to work continuously (e.g. the power unit of a critical system at 
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a hospital) and a waiting duration might be not thought of being included in 

their 𝐴𝑜 function. Again, the numerator of their availability function might be better 

approximated if it includes the wait time due to other influential parts. 

Furthermore, the denominator of the 𝐴𝑜 is also affected by components different 

to the one considered by the 𝐴𝑜 function through its 𝑀𝐿𝐴𝐷𝑇 term. Again, one 

would expect that the term would be more effectively calculated if one considers 

not only the subsystem/component under consideration but also others that are 

more influential. In this case, the subsystem/component under consideration 

might be waiting on the workbench to be repaired not because a spare related to 

its maintenance is absent, but because another part, more “sensitive”, is under 

repair. 

Finally, these observations are also relevant when the (super)system undergoes 

a modification, since even if this modification is irrelevant to some of the 

subsystems, it can still affect their availability calculations. 

Appendix C Pre-print of “Using Bayesian Networks to 

Forecast Spares Demand from Equipment Failures in a 

Changing Service Logistics Context” 

Abstract 

A problem faced by some Logistic Support Organisations (LSOs) is that of 

forecasting the demand for spare parts, corresponding to equipment failures 

within the system.  Here we are particularly concerned with a final phase of 

operations and the opportunity to place only a single order to cover demand 

during this phase. The problem is further complicated when the service logistics 

context can change during this final phase, e.g. as the number of systems 

supported or the LSO’s resources change. Such a problem is typical of the final 

phase of many military operations.  

The LSO operates the recovery and repair loop for the equipment in question. By 

developing a simulation of the LSO, we can generate synthetic operational data 

regarding equipment breakdowns, etc. We then split that data into a training set 

and a test set in order to compare several approaches to forecasting demand in 
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the final operational phase.  We are particularly interested in the application of 

Bayesian network models for this type of forecasting since these offer a way of 

combining hard observational data with subjective expert opinion.  

Different LSO configurations were simulated to create a test dataset and the 

simulation results were compared with the various forecasts. The BN that learned 

from training data performed best, followed by a hybrid BN design combining 

expert elicitation and machine learning, and then a logistic regression model. An 

expert-adjusted exponential smoothing model was the poorest performer and 

these differences were statistically significant. The paper concludes with a 

discussion of the results, some implications for practice and suggestions for 

future work. 

Keywords: Bayesian Networks, failure rates, spare parts forecasting, changing 

demand context 

1. Introduction 

 The management and forecasting of spare parts for repairable systems is a vital 

part of support operations. This is particularly true for military equipment. For 

example, Moon et al. (2012) examine the forecasting of spare parts demand in a 

naval setting. Dekker et al. (2013) also clearly stress the importance of good 

demand forecasts. The usual methods applied are variations of time-series 

(Petropoulos et al. 2014). However, as Dekker et al. (2013) discuss, there are 

cases where time-series cannot cope well. Firstly, many parts do not exhibit a 

constant failure rate. Secondly, the usage context is unlikely to stay the same 

throughout the life of a supported system. Usage rate changes not only due to 

changes in the workload but also because of how many systems share the 

workload. The number of systems sharing the workload changes due to 

purchases and retirements, and the length of time for which some systems are 

undergoing repairs. This is where availability affects consideration of future 

failures:  if periods of downtime are comparable to the designed time between 

failures of important parts, then equipment downtime becomes a driving factor 

affecting the frequency of failures. Consequently, the effectiveness of the whole 

support system itself becomes an indirect but important contributor to the 
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experienced failure rates. Finally, time-series cannot cope well when such 

changing conditions are combined with time-limited operations such as Search 

and Rescue (SAR), Disaster Relief, etc. The change in the demand producing 

context and the need for a single period demand forecast calls for more research 

in approaches to forecasting which might be better suited to such problems.   A 

similar call is made by Dekker et al. (2013), to develop a forecasting method that 

explicitly takes account of installed base information: 

 “One could say that installed base forecasting is a kind of causal forecasting, in 

the sense that the forecast is not only made on the historic demand data but also 

on data about installed base aspects that trigger demand.”  (Dekker et al. 2013 

p36) According to their definition, installed base refers to “the whole set of 

systems/products for which an organisation provides after sales service”. 

Relevant information related to  this definition includes maintenance and spare 

parts needed to support the systems, the service network with repair and stock 

locations, the maintenance concept, the age and the condition of equipment (e.g. 

for UAVs, the number of flying hours / usage), the lead times for spare parts and 

other logistic delays.  

Additional factors that can affect the installed base functions include the 

environmental conditions, the number of operating hours and users’ interventions 

such as decisions to change the geographical distribution of the operational 

systems or the repair capabilities at certain nodes of the support network. This 

thinking was indirectly supported by the study of Sherbrooke (2000) on the effect 

of the number of sorties and of the flying hours on the prediction of aircraft spares 

demand in Operation Desert Shield/Desert Storm in Iraq (1993-1996). In his 

analysis of more than 700,000 sorties, Sherbrooke understood that he needed to 

control for factors such as material condition, aircrew proficiency and mission 

type.  

 In this paper, we investigate the final phase  of operations of an LSO in which 

contextual factors, such as those mentioned above, can change, thus influencing 

failures and subsequent spare parts demand.  This is an important problem in 

practice but one which has received little attention in the literature. A notable 
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recent exception in this regard is work by Rekik, Glock, and Syntetos (2017). 

While the focus of their work is on improving the level of adjustment made by the 

human expert, however, ours is on investigating the potential of an alternative 

approach, that of Bayesian Networks.   

A useful review of spare parts forecasting was conducted by Boylan and Syntetos 

(2010). Within this, they suggested that the activities supported by a forecasting 

support system (FSS) (Fildes, Goodwin, and Lawrence 2006) could be split into 

three phases: pre-processing, processing and post-processing. These phases 

corresponded to problem classification, implementation of an appropriate 

forecasting approach and subsequent expert judgemental adjustment, 

respectively. They also noted that in practice, the use of both simple forecasts 

based on some kind of exponential smoothing and expert judgemental 

adjustment were widespread in spare parts forecasting. This helps to explain our 

inclusion of such an approach as a comparator to Bayesian networks. 

 The particular problem considered here can be categorised as a  single-period, 

non-stationary forecasting problem since we have to forecast spare part demand 

for a limited time-period ahead, during which the operational context can be very 

different to that which has been recently experienced. The literature concerning  

non-stationary forecasting problems suggests increasing the available relevant 

dataset by gradually collecting demand data from the new period, and applying 

Bayesian (Popović 1987; Huang, Leng, and Parlar 2013) or time series (Alwan et 

al. 2016) updates to the first moment of the assumed distribution . However, such 

methods are not suitable for the problem considered here due to its single-period 

nature. For example, in an overseas military operation, where the lead times are 

quite long, only a single order can usually be made before any additional data 

can be collected, and therefore the ability to regularly update the forecast of 

remaining demand in the light of fresh demand information is of little value.  

In order to provide comparisons with the forecasts developed using BNs, we have 

chosen logistic regression and a forecast employing expert adjustment away from 

a single exponential smoothing baseline. The logistic regression model can take 

account of the changing contextual factors and, like the BN models, estimate the 
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probability of an equipment failing during a time interval within the final period of 

interest which can then be scaled up to create a demand forecast. The expert-

adjusted forecast relies on the expert’s judgement to take suitable account of the 

information available regarding the contextual factors. Full information was made 

available to the experts concerning the values taken by the contextual factors 

during earlier operating periods, together with the associated baseline forecasts 

and realised demands. They were then presented with the values taken by the 

contextual factors corresponding to the final period along with the SES baseline 

forecast and asked to predict the demand. Such contextual information is 

sometimes described as ‘market intelligence’ in the context of sales. Our reason 

for including this comparison was motivated by our expectation of this being 

typical of current practice. As well as Boylan and Syntetos (2010), many other 

authors, including Franses and Legerstee (2010), Fildes et al. (2009) and Klassen 

and Flores (2001), make clear that many of the model-provided demand forecasts 

are often then adjusted by the decision makers/subject matter experts before 

arriving at the final figure to be used, “ostensibly to take account of exceptional 

circumstances expected over the planning horizon” (Fildes et al. 2009 p.3). 

 Our main interest in this paper is in exploring the application of BNs (Pearl, 1988) 

to this problem. These provide a powerful and flexible approach to reasoning 

under uncertainty.  There have been a number of studies investigating the use of 

BNs in related fields including reliability (Langseth and Portinale 2007), 

maintenance (Weber, Jouffe, and Munteanu 2004; Weber and Jouffe 2006), 

system testing in manufacturing (Chan and McNaught 2008) and supplier 

selection (Hosseini and Barker 2016). However, we have not found any 

application to the kind of logistical support problems outlined here.  

We present a comparison of results generated from BNs developed in different 

ways along with those generated from more traditional forecasts – a statistical 

regression model and expert predictions adjusted from a fixed exponential 

smoothing forecast. The comparison makes use of data from a simulated 

scenario of a logistics support network of a fleet of generic UAV systems. 

Differences arise due to the way in which the different methods make use of 
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available information on the demand and support defining context.  Furthermore, 

as we discuss later, BNs have the potential to provide not only predictions of the 

failure rates, but also of other factors such as the time to repair and to resupply 

which are needed for Multi-Indenture Multi-Echelon (MIME) spares optimization 

models. 

The rest of the paper is organised as follows. In Section 2 we describe the 

simulation that we built in order to generate the data needed to develop the 

demand prediction models that we compare and also for the evaluation of their 

performance. In Section 3 we describe the forecasting methods employed to 

predict the number of failures in the final phase of operations. Section 4 contains 

the results from the simulation runs and a comparison of the various models’ 

forecasts. These are discussed before some final conclusions are drawn and 

potential future work outlined.  

2. Simulated system 

Given the lack of readily available data of the kind needed to develop and test 

our models, and the likely sensitivity of such data even if it were available, it was 

necessary to simulate a Logistics Support Organisation (LSO) instead. In this 

section we describe the nature of the LSO, the scenario chosen for investigation 

and the generation of data for model building and subsequent testing. 

2.1 Simulation of the LSO 

The simulation (see Figure 1) concerned the support provided to a small fleet of 

generic Unmanned Aerial Vehicles (UAVs) that are used for surveillance at a 

single Forward Base (FB). The Logistics Support Organisation (LSO) was 

composed of a Forward support level (FORWARD) at which broken down items 

(Line-Replaceable Units (LRUs)) that make the UAVs non-operational are 

replaced with new ones from the inventory, and a Central repair level (CENTRAL) 

at some distance from the FB where the inventory of spares is kept and repairs 

are performed on the broken down items (the LRUs). The scenario was 

intentionally kept simple, so only corrective maintenance has been considered.  

Again, for the sake of initial simplicity, the Equipment Breakdown Structure (EBS) 
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of a generic UAV unit was composed of only a single LRU that could be repaired 

at the CENTRAL depot by the replacement of a single Disposable Part (DP) kept 

in the same store as the LRUs. Furthermore, we did not consider the case where 

systems’ innate failure rates change with age. Finally, even though in real-life 

situations the spares demand might be intermittent, in order to get enough data, 

we simulated a UAV system that has breakdowns each month. 

Figure 15: The simulated Logistics Support Organisation 

The main objective of the LSO is to provide logistical support to a number of UAVs 

in their air-surveillance operations. In the assumed scenario, each UAV has a 

nominal Time on Task (TOT) of four hours, after which it has to land for a quick 

refuelling. If another UAV is available then it will take off; if not, the same UAV 

will be used again. The operational demand is to cover an area assigned for aerial 

surveillance by a single unit for a given proportion of the day, each day. For 

example, if the operational demand is to cover 4/5 of the day, since either there 

is no need to fly during night hours, or a different group takes over that period, 

then the operational demand (OpDem) is 4/5. Because of the importance of the 

air-surveillance function, there is always a mechanic assumed to be waiting to 
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help in case of a breakdown (B). If a breakdown occurs, another UAV takes off if 

one is available, and the grounded UAV is taken over by the mechanic who starts 

the diagnosis procedure. The duration of this procedure depends on the skill level 

of the mechanic, but we assume that the fault is always a single one and is always 

found correctly. After the diagnosis is over, an order for a spare is given at the 

CENTRAL depot. The spare takes some time to be located and acquired by a 

driver and is then brought to FORWARD. The mechanic replaces the faulty LRU 

with the spare, making the UAV available again. The LRU is then transported 

back to CENTRAL by the mechanic and the driver in order to be repaired. There 

are three available workbenches (W) at CENTRAL which are used for diagnosis 

and repair of the faulty items. The same mechanic is assumed to undertake the 

diagnosis and repair on one of the available workbenches and brings the LRU in 

a usable condition back to the LRU inventory, provided there is a DP in stock. 

Due to the assumed high cost of a DP, the depot uses an (S-1, S) inventory policy 

and thus initiates a resupply order whenever there is a single DP unit removed 

from the DP inventory. 

2.2 Scenario for dataset generation 

The chosen scenario involves a single iteration of the following consecutive eight 

phases (Table 20): 

Table 20: Scenario Phases 

Phase Duration
(Months)

xSLRU xSDP xNU xNM xNTr OpDem 

1 3 3 3 2 2 1 4/5 of a day

2 3 3 3 3 3 2 4/5 of a day

3 4 4 5 4 3 3 4/5 of a day

4 3 4 6 3 2 3 4/5 of a day

5 3 3 3 2 2 1 5/5 of a day

6 3 3 3 3 3 2 5/5 of a day

7 4 4 5 4 3 3 5/5 of a day

8 3 4 6 3 2 3 5/5 of a day

The assumed story behind the phases shown above is that during the 1st phase 

when operations started, there were two UAVs (xNU = 2) deployed with a mission 

to provide an air-surveillance function for the Operational Demand (OpDem) of 
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4/5 of a day. For the manning of the LSO in the 1st phase, there were two 

mechanics deployed (xNM = 2) and one driver (xNTr = 1), while the initial spares 

stock levels were three LRUs and three DPs (xSLRU = 3, xSDP = 3). The UAVs 

were flown by an equal number of operators with an initially sampled level of 

proficiency. As the operations built up in Phase 2, an additional UAV was 

deployed along with an additional driver to help with the transports of the spares 

and the mechanics. This situation lasted for three months and was followed by 

Phase 3, a four months phase when a 4th UAV was deployed along with an 

additional operator and driver.  The spares holdings of LRUs and DPs were also 

increased at the beginning of Phase 3. In Phase 4, one UAV is withdrawn along 

with its operator and a mechanic. In Phase 5, the OpDem had to be increased to 

full 24hrs surveillance, although at the same time, one UAV was assumed to be 

failed beyond repair. In addition, it was assumed that one operator, two drivers 

and some spares were transferred out of the LSO. Further changes of this nature 

affecting the LSO’s configuration were assumed for Phases 6 to 8, as shown in 

Table 1. 

Records of take-offs and landings, of break-downs, of repair and re-order 

incidents, of on-hand (OH) and due-in (DI) spares and of number of deployed 

UAVs, mechanics and operators were kept from the single run of the consecutive 

eight phases, just like the records that would be kept in the relative logs of real 

operations. Furthermore, variables that can affect the incidents and the duration 

of diagnosis, repair and transport were also recorded. Such variables were the 

environmental conditions, the operators’ skill levels/ experience, the mechanics’ 

skill level / experience and their workload level. 

2.3 Simulation of test data to allow forecast comparison 

The end of Phase 8 provided the initial conditions for a follow-on ninth phase of 

six months’ duration that was used to evaluate the performance of the demand 

prediction models. Our interest is in how well we can provide demand predictions 

when the failure-context factors are about to change. Consequently, Phase 9 

could take different courses in order to represent a range of changes likely to be 

experienced in practice. Therefore, we simulated 18 different possible 
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configurations of Phase 9, none of which exactly replicate any of the earlier 

phases. These 18 configurations are listed in Table 2. 

Table 21: The sample of LSO configurations that constituted the test 

dataset

xSLRU xSDP xNU xNM OpDem Env 

3 3 2 2 1 30% 

3 3 3 3 1 50% 

4 5 3 2 1 70% 

8 8 3 2 1 50% 

4 5 4 2 1 50% 

3 3 4 2 2 30% 

3 3 3 2 2 50% 

8 8 4 2 1 30% 

4 6 2 3 1 50% 

3 3 4 2 2 70% 

4 5 2 2 1 30% 

4 6 4 3 2 70% 

8 8 3 3 2 70% 

4 6 3 3 2 50% 

8 8 4 3 2 70% 

4 5 4 2 2 50% 

4 5 2 2 2 50% 

4 5 3 2 2 30% 

3. Forecasting Approaches Employed 

 Within the described LSO and operating context, there are many interacting 

factors to consider. This suggests the need for a modelling methodology that can 

take into account the effects of and the associations among the context defining 

variables. A natural modelling framework to consider here is that of Bayesian 

Networks (BNs). This is because within the problem being considered there are 

several random variables with probabilistic dependencies between them and BNs 

provide an efficient way of representing and manipulating such joint probability 

distributions. BNs also provide a flexible way of combining subjective expert 

opinion with observed data so that the same type of approach can be applied to 

situations with varying levels of available hard data.  
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The qualitative structure of a BN is represented by a directed acyclic graph 

(DAG), portraying probabilistic dependencies and independencies within the 

domain. This contains a great deal of information, even before we consider any 

probability distributions. The nodes correspond to variables of interest within the 

domain and arcs correspond to direct probabilistic dependencies. A fully specified 

BN, however, also requires a conditional probability table (CPT) for each node. 

These can be obtained from an appropriate dataset or elicited from a domain 

expert when insufficient data exists. Once complete, a BN offers efficient 

probabilistic inference over the domain of interest, allowing a decision maker to 

see how the probability distribution of some target variable is likely to change in 

response to new observations or other relevant information. In our specific case, 

our main value of interest is the probability of experiencing a failure incident 

(binomial variable “FRT” in Table 3) at any specific hour. Under the assumption 

of a Poisson process we get the required mean number of failures for the duration 

of the forecasting period by multiplying the acquired rate figure by the respective 

4320 hours included in the 6 months of the final phase. We believe that the 

Poisson process is a valid assumption in these cases, given that we have also 

assumed that the operated systems do not degrade and that the only reason for 

the change in the failure rates is the context formulated by the support operations 

and the operational demand. 

In order to provide a comparison with the BN predictions, we also provide 

forecasts using two other methods. The first is a logistic regression, which will 

also try to account for the relationships between the contextual factors and the 

observed number of failures. The appropriateness of this type of regression 

model stems from the underlying random process which involves the generation 

of failed equipment. The output, as for the BNs, is the probability of experiencing 

a failure incident in any specific hour. 

The second type of additional forecast is the one most likely to be encountered 

in practice – human judgement. Since, along with the starting configuration for 

the ninth/final operational phase, our judges were also supplied with the simple 

exponential smoothing forecast available at the end of the eighth operational 
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phase, this could be described as an expert adjusted forecast, with adjustment 

being made away from the fixed SES forecast.  

A BN can be developed in different ways, using different combinations of human 

expertise and data (Korb and Nicholson, 2004). When developed entirely from a 

dataset, it is said to have been learned from that dataset. This entails both the 

structure of the network, i.e. the DAG, and the associated CPTs being derived 

from the dataset. While obtaining CPTs from a dataset is relatively 

straightforward, deriving the structure is much more involved. This is primarily 

due to the huge number of DAGs which can be built from even a relatively small 

number of variables. Since there are also potentially a large number of DAGs 

which can represent the dependence structure of the joint probability distribution 

of interest, albeit some more efficiently than others, we need a way of identifying 

an efficient DAG for our purposes.  

Instead of deriving a BN’s structure from data, another common approach is to 

elicit the structure from a subject matter expert. In particular, making use of their 

causal knowledge of the domain, human experts can often quickly identify an 

efficient DAG. Such a DAG is usually easier to understand and so explain to 

decision makers. However, this DAG may omit subtle or less obvious 

relationships within the domain. In such a case, a BN learned from data might 

outperform the expert-elicited ‘causal’ BN. 

A hybrid approach can also be adopted. Here, the subject matter expert (SME) 

can provide an initial DAG and some constraints on the structure which is then 

built upon by an automated machine learning algorithm. This ensures that key 

relationships are communicated in an understandable way and that more subtle 

effects are not missed. 

As should now be clear from this discussion, different types of BNs can be applied 

depending on the quantity of data available. Of course, when datasets are 

plentiful, many approaches are possible, including, for example, artificial neural 

networks. The situation is very different, however, when data are sparse. Their 

ability to cover the spectrum of data availability is one of our key motivations for 
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employing BNs in this paper. They still allow a logical forecasting model to be 

developed for new products or situations with very limited historical data. 

 In order to develop forecasts using the approaches described above, we began 

by identifying candidate variables. Key to our thinking was to use the kind of data 

we could expect to be recorded in log-books across the LSO.  

3.1 Grouping of the variables 

The failure rate of repairable systems and the associated demand for spare parts 

is affected not only by how many systems we have deployed but also by their 

availability. This makes the factors that affect the systems’ operational availability 

an important set of variables that indirectly contributes to the experienced number 

of failures.  

Additionally, we can expect the failure rates of the systems to be affected by a 

number of factors such as the conditions in which each one works, the skill level 

of the operator, etc. Hence, we can identify three groups of “causal” variables. 

Each of these groups can be considered individually at each level of the LSO, 

including the level where the supported systems work. These groups are: 

1. Factors related to the amount of use of the supported system – the “failure 

creators”,e.g. the operational demand for number of missions in a given 

day, and the time required on task. 

2. Factors that make the usage more prone to failure - the “failure 

enhancers”,e.g the environmental conditions, the number of hours that the 

system has flown without maintenance, and the level of expertise of the 

system’s user such as the pilot. 

3. Factors that affect the repair loop – the “repair loop characteristics”, such 

as the time to repair a fault and the level of on-hand spares. 

Eventually, we included the following variables: 

Table 22: Nomenclature 

OpRT: Operational Incident at FB, with values “Take-off” and “No new take-off”

xNU: The number of UAV units deployed
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OpDem: Operational demand, with values 4/5 and 5/5 of a day
TOT: Time on Task; the realized continuous but discretized time on task of the 
UAV that performs the flight
PExp: The skill level of the operator (pilot) with three discrete values
Env: The environmental conditions with two discrete values, “OK” and “Not OK”
FRT: Failure Incident at FORWARD, with values “New Failure” and “No-New 
Failure”
Rdu: The duration of repair at FORWARD (discretized)
FlHbd: The number of flying hours since the last repair (discretized)
xNM: The number of mechanics deployed
MExpB: The skill level of the mechanic that took over the repair at FORWARD
QM: The percentage of mechanics that are idle
BWkld: The percentage of the FORWARD repair facilities that are occupied
xNTr: The number of drivers that have been deployed to do the transport from 
CENTRAL to FORWARD and back
QAdm: The percentage of drivers that are idle
WFRT: Workbench LRU failure Incident at CENTRAL, with values “New 
Failure” and “No New failure”
WRdu: The duration of repair at CENTRAL (discretized)
MExpW: The skill level of the mechanic that took over the repair at CENRTAL
WWkld: The percentage of the CENTRAL repair facilities that are occupied
ORT: Order for a resupply Incident, with values “New Order placed” and “No 
New Order placed”
Odu: The duration to be realised of the resupply that was ordered (discretized)
xSLRU: The nominal level of LRUs in the inventory
OhLRU: The on-hand level of LRUs
xSDP: The nominal level of DPs in the inventory
OhDP: The on-hand level of DPs
DiDP: The number of DPs which are on order but have not arrived yet (Due-in)

The variables in Table 3 that are highlighted in bold relate to incidents at the LSO 

levels in which the UAVs are used and supported. The other variables correspond 

to the three groups of contextual factors discussed earlier.  

3.2 Expert-elicited BN 

A BN of the problem situation was developed by first eliciting a DAG from a 

domain expert. This DAG displays the relationships believed by the expert to exist 

in the system. Such a human-elicited DAG can often be portrayed as a causal 

model since humans think naturally about relationships in a causal manner and 

this is in fact how we usually encourage experts to think when eliciting a BN DAG 

from them. Naturally, this predominantly causal form makes the model easier to 
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understand and explain to others. The DAG elicited from our domain expert is 

presented in Figure 2. 

Figure 16: DAG of a BN model elicited from a domain expert 

3.3 BN learned from data 

It is important to realise that a BN learned from a dataset will not necessarily 

produce the same DAG as a BN developed using expert elicitation. The simulated 

log-book records can be used to obtain values for all the variables. Using the BN 

learning package in R called “bnlearn”53 this sampled dataset of records from 

Phases 1 to 8 was fed into a score-based unsupervised learning algorithm. This 

applied the tabu search algorithm to 300 bootstraps and developed 300 networks 

that were averaged to form the final network. The scoring method employed the 

53 Developed and maintained by Dr Marco Scutari 
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Modified Bayesian Dirichlet equivalent uniform (MBDeu) score (Cooper and Yoo, 

1999; Heckerman, Geiger and Chickering, 1995) 

The above procedure produced the network displayed in Figure 3. The resulting 

graph is a representation of the joint probability distribution of the modelled 

variables.  

Figure 17: DAG of the BN model that was learned from the simulation 

training dataset 

Note that the resulting model is not a causal BN since the causality assumptions 

are not met (see eg Pearl (1988)). However, it does provide an interpretation of 

the relationships / associations among the variables. For example the arc which 

connects xNU directly to OpRT and the arcs that connect the latter to the TOT 

indicate that the number of units operated (xNU) has a direct effect on the 

Operational Rate (OpRT), i.e. how often missing take-offs affect directly the 

resulting duration of any single take-off (TOT).  Furthermore, most of the arcs are 
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directed towards the variables OhLRU (the on-hand LRU), WWkld (how busy are 

the repair workshops at the CENTRAL level) and BWkld (how busy are the 

workshops at the FORWARD level). This indicates that these facilities are key to 

the whole system.  

3.4 Hybrid BN 

A hybrid BN was developed in order to try and obtain the best of both worlds. 

Ideally, we would like to have the understandable nature of the expert-elicited BN 

combined with the ability to learn less obvious relationships provided by the 

learned BN. To develop this hybrid, we began with a simplified version of the 

expert-elicited BN and used this as a starting point for the machine learning 

algorithm which was employed to develop the learned BN. This constrains the 

final DAG to incorporate the expert-elicited components but allows additional 

relationships to be included alongside that. 
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Figure 18: DAG of a hybrid BN, combining expert elicitation and machine 

learning 

As should now be evident, in order to obtain the joint probability distribution of the 

variables chosen to model the system, many different factorizations are possible, 

corresponding to different DAGs. However, some of these are simpler and more 

efficient, depending on the actual relationships between the variables. For each 

of these DAGs, the simulated data were then used to calculate the Conditional 

Probability Tables (CPTs) associated with them (Korb and Nicholson, 2004).  

3.5 Logistic regression model 

The logistic regression model derived from the first eight phases of the simulation 

training dataset was the following: 

𝑙𝑜𝑔𝑖𝑡(𝐹𝑅𝑇) = 𝑏0  + 𝑏1𝑂𝑝𝐷𝑒𝑚 + 𝑏2 𝐸𝑛𝑣𝐶𝑜𝑛𝑑,

where FRT corresponds to the occurrence of an equipment failure, OpDem 

represents the level of operational demand (in this scenario, how much of the day 

an equipment is required for) and EnvCond represents the severity of 

environmental conditions.  

The coefficients of 𝑏0, 𝑏1 and 𝑏2 are -4.5273, 0.4418 and 0.1836, respectively, 

where the reference settings of the variables are ‘4/5 of a day’ for OpDem and 

‘OK’ for EnvCond. In order to forecast demand for Phase 9, where the state of 

the EnvCond variable is not yet known but we have a probability distribution for 

it, the forecast uses a weighted average of the output obtained with the two 

possible values of this variable. 

3.6 Expert-elicited forecast  

In order to construct this forecast, four domain experts were consulted. Each was 

talked through the scenario implemented in the simulation and provided with the 

same information. This consisted of the configurations of the eight initial phases 

of operation and the resulting number of failures observed. Each was then asked 

to provide a forecast of the number of failures expected for a final ninth phase of 

operations given the LSO configuration and the simple exponential smoothing 
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estimate, purely based on the previous eight phases and independent of the 

Phase 9 configuration.  The fixed SES forecast was obtained using the 

“tsintermittent” R-package and provided monthly predictions with a smoothing 

factor of 0.2. 18 different possible configurations were considered for Phase 9 

and each expert provided an individual forecasts for each of these. The mean of 

the four forecasts was then taken to represent the expert-elicited forecast for each 

Phase 9 configuration. 

4. Results and Discussion 

4.1 Results from the simulation and the forecasts 

Results from the various forecasts are shown over Figures 5 and 6 in order to 

reduce the amount of cluttering in the overlaid plots. In each figure, the same set 

of 18 boxplots are reproduced to show the distribution of the Phase 9 failure rates 

across 100 simulation replications for each of the 18 configurations. The boxes 

in each case include the inter-quartile range of the number of failures from the 

100 replications. The crosses indicate outlying values in the simulation results. 

Overlaid on each boxplot are the forecasts for that Phase 9 configuration. In 

Figure 5, forecasts from each of the three BN models are displayed in addition to 

the boxplots of the simulation results. In Figure 6, the logistic regression and 

expert-adjusted forecasts are given in addition to the simulation boxplots.  The 

vertical axes of these figures record the number of failures for Phase9, either 

observed from the Phase 9 simulation results or forecast by one of the considered 

models. The 18 Phase 9 configurations are arranged in increasing order of the 

median number of failures obtained from the 100 replications of each of them. 

Apart from the indicative differences evident within Figures 5 and 6, we tested for 

significant differences in the forecast accuracy, as measured by the Absolute 

Relative Error (ARE) score: 

𝐴𝑅𝐸 =  
|𝑌 − 𝑌′|

𝑌
, 

(𝑌: 𝐴𝑐𝑡𝑢𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠,  𝑌′: 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠)



310 

 The AREs of the various models were compared using the Friedman non-

parametric test over the 18 configurations of simulated futures, each such 

configuration being replicated 100 times. Friedman’s test was chosen instead of 

its parametric equivalent, ANOVA, since we cannot assume sphericity in the 

measured absolute relative errors (Demšar, 2006). The test’s p-value was less 

than 1%, providing evidence to reject the null hypothesis of no difference in the 

forecast accuracy between methods at that significance level. Furthermore, we 

applied a post-hoc Nemeneyi test to rank the models (Garcia and Herrera, 2008). 

This test showed that the order for the accuracy performance of the examined 

models (from best to worst) was the unsupervised BN learned from data, the 

hybrid BN, the logistic regression model, the causal BN with its DAG elicited from 

an SME and the SME adjusted SES, with a critical distance between ranks of 

2.098 at the 1% significance level and mean ranks of 178.7, 211.2, 249.6, 254.1 

and 359.1, respectively, i.e. the accuracy performance of all forecast methods 

are significantly different at the 1% level. 

Figure 19: A comparison of the BN models’ forecasts and the simulation 

results 
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Figure 20: A comparison of the regression and the mean SME forecasts and 

the simulation results

4.2 Discussion 

 From Figures 5 and 6, and the subsequent statistical analysis, we can see that 

the Bayesian network models outperformed both the expert-adjusted forecast 

and the logistic regression model. Furthermore, of the three approaches to BN 

construction considered, the BN developed by machine learning algorithm 

performed best, followed by the hybrid BN and then the expert-elicited BN. Of 

course, we need to speculate on why the BN models did not perform even better.  

Predicting failures with the BN and logistic regression models essentially treats 

the situation like a classification problem, taking some characteristics of the 

period during which a failure occurred in the training data and using these to help 

estimate the probability of a failure when such characteristics are present at the 

start of a new period in the test data. However, there could still be differences in 

a time period’s initial conditions outwith these characteristics, having some 

influence on demand. Simple aleatory or random variation of the Poisson failure 

process is also going to play a part.  
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Regarding the dataset, one of the decisions that needed to be made was on the 

time periods that would be used in the collection of the data and in the subsequent 

development of the regression and the BN models. A useful framework to 

consider in this regard is the Aggregate-Disaggregate Intermittent Demand 

Approach (ADIDA) (Nikolopoulos et al (2011)). The method mainly addresses the 

problem that models have when there are intermittent demand time series. 

Fildes et al (2009) note that provision of a statistical forecast to the expert is likely 

to influence their thinking which may result in under-adjustment from that 

forecast, based on Tversky and Kahneman’s (1974) anchoring heuristic. That 

could have been true in our experiment as we provided our experts with the SES 

forecast. However, since this forecast was fixed and known to take no account of 

planned changes to the LSO configuration, it is likely to have had a weaker effect 

than a forecast which did account for planned changes. In fact, looking at the 

mean performance of the experts in Figure 6, the magnitude of adjustment does 

not appear particularly small but the direction of the adjustment is often wrong. 

This appears to echo Sterman’s observations on the difficulty of incorporating 

feedback into our thinking. The nature of the repair system considered gives rise 

to dynamic feedback effects which can sometimes create counter-intuitive 

behaviour and present difficulties for human judgment (Sterman, 2000). 

The benefits of using a BN to forecast the number of failures are not limited to 

that immediate forecast. Other variables can also be queried which is useful in 

itself and also for providing explanations. In Phase 9 of the simulation, for 

example, we found that if there are 4 UAVs deployed for an operational demand 

of 24/7 surveillance, which are supported by 3 mechanics and by an investment 

on 3 DPs, a TOT of at least 3 hours has a probability of 0.85 while the probability 

of such a desired event increases to 0.92 if one more mechanic is deployed and 

the level of DPs is increased by 2. Furthermore, a TOT of at least 3 hours has a 

probability of 0.91 when there are 3 mechanics and 5 DPs but with one less UAV, 

i.e. 3 instead of 4. As another example, our BN suggested that the duration from 

the time that a DP resupply order was placed until it arrived was most probably 

less than 210 hours, while the median value experienced throughout Phases 1 to 
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8 was 215.7 hours. This is useful since MIME optimization models make use of 

time durations, like time to repair, time to transport / resupply, etc., which are 

used in order to calculate the parameters for the pipeline levels’ probability 

distributions. A final example for the intuition that the development of the BN can 

offer is related to a logical fallacy that decision makers tend to make due to the 

human limitations in seeing the support system as a whole. We have experienced 

cases in which the decision makers, in order to maintain the required fleet 

availability in the face of anticipated increases in operational demand, they 

suggest the deployment of more units. In our case, Phase 8 ended with an 

operational demand for a unit to be in the air 24/7 and 4 UAVs deployed. In the 

following table we see what we should expect if during phase 9 the decision 

makers deploy 2 UAVs and what if instead they deploy 4 UAVs without though 

affecting any parameters of the repair or the resupply configuration of the support 

system. In the table’s first column (Table 23) we have these two questions which 

we examine under three different possible environmental conditions (30%, 50% 

and 70% of Phase 9’s 6-months environmental conditions to be ok), while on the 

fourth column we have the percentage of the day that the decision makers should 

expect to actually have a UAV in the air. What we observe is that by operating 4 

UAVs (3rd column rows 4 to 6) the percentage of time we actually have one in the 

air is less than when 2 UAVs are deployed (rows 1 to 3). The cause can be 

inferred from the two last columns. When deploying 4 UAVs without sufficiently 

amending the repair and resupply configuration of the support chain, the jobs 

both forward and at the repair shop increase to a level such that the actual flights 

performed are reduced.  

Table 23: Additional BN queries 

OpRT BWkld WWkld
Phase 9 - 
alternatives

Env OK Flying Working Working 

OpDem:2 - U:2 - 
M:3

30% 97.82% 36.45% 60.79% 

50% 97.71% 38.13% 61.27%
70% 97.58% 40.09% 61.83%

OpDem:2 - U:4 - 
M:3

30% 92.59% 75.37% 78.26% 

50% 93.12% 75.54% 78.15%
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70% 93.74% 75.75% 78.02%

Naturally, using simulation data can be criticised as being less realistic than using 

real-life data collected from an LSO. The acquisition of real-life data would require 

access to multiple logbooks from the different nodes within the LSO and 

subsequent cleansing and synchronising of that data which would nearly always 

be of a sensitive nature. The main advantage of using real data in studies such 

as this one would be the increased credibility of the results, particularly in the 

eyes of practitioners. However, for the purposes of comparing forecasting 

approaches, the use of simulation offers real benefits. Since real data can be 

contaminated with all kinds of errors and contain anomalies which are 

unrepresentative, the use of simulation provides a control to remove such 

undesirable effects. Reducing the level of noise in the data makes forecast 

comparisons more accurate and it is this comparison which is our primary 

interest. Furthermore, whereas the use of real life data would restrict us to just 

one realised future configuration of the LSO to make a prediction for, with 

simulation we can create many such possible future configurations. This provides 

a wider range of situations to compare the forecasting approaches over and 

increases the power of statistical testing when looking for significant differences 

between them. Finally, although the development of a simulation is not a trivial 

task, it may well still be quicker than the time that would be needed to collect and 

process the necessary real-life data.  

However, we also need to reflect on the cleaner nature of simulation data when 

drawing any conclusions about the likely benefits arising from the use of any of 

the forecasting approaches in practice. The introduction of messier, real data is 

undoubtedly likely to cause the level of improvement obtained from using any of 

these approaches to be less than that indicated when using simulated data. 

4.3 Implications for Practice 

In a review of forecasting within supply chains, Syntetos et al (2016) note that 

many important problems faced by practitioners have not been addressed by 

academic research. We believe that the problem addressed in this paper comes 

close to falling in that variety. While there is little published work in this area, a 
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notable recent exception is (Rekik, Glock and Syntetos, 2017) which investigates 

expert judgmental adjustments from a statistical forecast in a finite-time horizon 

setting and proposes an analytical model to support this. 

We believe that our initial investigation is useful to practitioners in that it shows 

that relying purely on human judgmental adjustments in such situations is sub-

optimal and can be improved upon to some extent by an alternative approach. 

Our work suggests that approaches based on Bayesian Networks and machine 

learning are worth further investigation in problematic areas where the 

assumptions of traditional forecasting methods such as those based on time 

series analysis could be questioned.  

As alluded to in 4.2, practitioners can often obtain additional benefits from the 

development of a BN to forecast a particular variable since it is a more general 

and flexible type of model. For example, military commanders might be interested 

in the probabilities of the Time on Task (TOT) duration of a typical mission under 

certain support settings (which can be entered as “evidence” in the BN model 

already developed). This helps to illustrate a useful advantage of BNs in this kind 

of setting – having developed a joint probability distribution across a set of 

variables, we can quickly use it to make inferences about variables other than the 

immediate forecast variable.  

Several authors have established that human judgmental adjustments applied to 

statistical demand forecasts are common in industry (e.g. Klassen and Flores, 

2001). Various cognitive biases, such as optimism bias, have also been 

postulated as influencing those adjustments (Fildes et al, 2009). However, most 

of this research has been conducted in the context of sales, where higher demand 

is generally desirable. When the context is instead demand for spare parts 

following equipment failures within the same organization, lower demand is 

desirable. This different framing of the problem may lead to different biases being 

at work or to different effects arising from the same biases. Practitioners should 

be aware of the need to take such framing effects into account.  

5. Conclusions 
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In this paper, we have applied a novel approach to a problem which despite being 

of real practical relevance has received relatively little attention in the literature.  

The problem setting considered is that of an LSO, where an accurate forecast of 

spare parts demand is required, corresponding to equipment breakdowns within 

the system. However, the distribution of demand is non-stationary due to several 

contextual factors which can take different values in each time period. 

Furthermore, we are particularly concerned with the final phase of operations and 

the placement of a single order to cover demand during this single period.  

In current practice, the most common approach to such a problem is that of 

unaided expert judgement or else expert judgment applied to adjust a relatively 

simple statistically based forecast such as single exponential smoothing. Our 

results showed the relatively poor performance of expert adjusted forecasts away 

from a SES forecast. Supplied with information regarding configuration changes 

to the LSO, forecast adjustments were often made in the wrong direction, possibly 

indicating counter-intuitive behaviour.  

 The BN-based approaches that we investigated, and particularly the machine 

learning BN, outperformed both the expert-adjusted forecasts and the logistic 

regression model. However, although the differences in performance were 

statistically significant, the level of improvement was less than we had 

anticipated. This might be due to both the presence of simple random variation 

from the failure generating process and the inherent dynamic feedback within the 

simulated system which poses a challenge to all of the approaches considered.  

Boylan and Syntetos (2010) have discussed how it may be beneficial to adopt a 

Forecasting Support System for spare parts forecasting. We agree with them but 

suggest that the scope of such a system should be expanded to include and cater 

for a wider range of circumstances than those they discussed. The criteria 

considered during their initial pre-processing or classification phase, should be 

expanded to cover these new situations; e.g. the number of periods to be 

forecast, the presence and extent of contextual factors affecting demand, and the 

extent of market (or equivalent) intelligence available regarding the values of 

these factors. Such an expansion would also cater for the kind of problem 
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described by Dekker et al. (2013) and outlined in Section 1. Similarly, the range 

of approaches which can be used in the second processing phase needs to be 

expanded to suit the wider range of problems. 

Finally, regarding future steps: 

 Our simulation settings created failure data which were not intermittent. 

These demand data were sufficient to learn a BN to adequately model the 

examined variables. In future work, we will consider scenarios  with 

intermittent failures 

 We further need to investigate how frequently such a BN should be 

updated to take account of fresh data.  

 We also plan to investigate the applicability of neural network approaches 

for this type of problem since neural networks lend themselves to problems 

where non-linearities are prevalent. However, it is not yet clear whether 

the kind of simulation data we have employed in this paper would be 

sufficient to train such a model adequately. 

 More realistic support problems will be investigated by increasing the complexity 

of the Equipment Breakdown Structure of the generic UAV and in that way we 

will also be able to use service level metrics in our evaluation criteria. 
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