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ABSTRACT 

Over the past two decades soil spectroscopy, particularly, in the infrared range, is becoming a 

powerful technique to simplify analysis relative to the traditional chemical methods. It is known 

as a rapid, cost-effective, quantitative and eco-friendly technique, which can provide 

hyperspectral data with narrow and numerous wavebands, both in the laboratory and in the 

field. In this context, the present article reviews the recent developments in mid and near 

infrared techniques coupled with chemometrics and machine learning tools in addition to the 

preprocessing transformations and variable selection strategies to diagnose soil physical and 

chemical properties. Both spectral techniques demonstrated a good ability to provide accurate 

predictions of specific properties. Moreover, the MIR spectroscopy outperformed NIR for the 

estimation of most indicators used for fertilizers recommendation. Herein, a detailed overview 

on the opportunities and challenges that soil spectroscopy offers as efficient diagnostic tool in 

soil science was provided. 
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1. Introduction 

Quantitative and qualitative analyses of soil properties ensure acquiring proper knowledge and 

skills for managing soil fertility and productivity through development of adjusted fertilizer 

formulations and recommendations [1]. The conventional soil laboratory methods require the 

use of chemical reagents, which are often not eco-friendly, a whole range of sophisticated 

laboratory equipment, and, moreover, the protocols are time consuming and expensive. The use 

of infrared spectroscopy method has gained ground, not so much as a substitute of conventional 

soil measurements, but as an additional option providing efficient, rapid, robust and cheap 

methods for soil characterization. 

Spectroscopic techniques are considered as physical methods of characterization that can be 

defined as the study of the interaction of electromagnetic waves in the ultraviolet, visible and 

infrared wavelengths with a the material under consideration [2]. Furthermore, these techniques 

have shown, when coupled with a multivariate data analysis, to be powerful tools for developing 

quantitative and classification models in many disciplines including food technology [3–5], 

petroleum engineering [6–11] and soil science [12–14] among many others. Nowadays, the 

application of chemometrics and machine learning techniques are among the most relevant 

tools to investigate the relationship between the chemical variables and the measured 

instrumental signals [15–17].  

The present paper aims at bringing together the recent developments in the coupling of infrared 

spectroscopy in the medium and near ranges with chemometrics and machine learning 

including the preprocessing tools in soil spectroscopy to diagnose soil physical and chemical 

properties. 

2. Spectroscopic fingerprints 

Spectroscopic techniques operate at different ranges of electromagnetic radiation. Among the 

various techniques, in the field of soil analysis, spectroscopic application includes near infrared 

spectroscopy (NIR) between 4000 and 13000 cm-1, visible-near infrared (Vis-NIR) 

spectroscopy (4000 to 28600 cm-1), mid-infrared (MIR) analysis that comprises Fourier 

transform infrared spectroscopy (FTIR) and FTIR-ATR (attenuated total reflection) between 

(400 to 4000 cm-1) and the Raman spectroscopy (500–1500 cm-1). These non-destructive 

techniques are characterized by the ease of use since they only require minimal sample 



preparation, they do not  require sample treatments with chemicals and reagents, and they do 

not  generate chemical wastes (i.e., eco-friendly) [18,19]. In this review a comparison was 

caried out between two common spectroscopic techniques i.e. NIR/Vis NIR and MIR in order 

to assess their usefulness in coupling with machine learning techniques to facilitate the 

prediction of key soil properties.     

3. Chemometrics/Machine learning tools 

Chemometrics is a discipline of analytical chemistry that uses mathematical, statistical and 

computer applications to reveal the hidden information from chemical analyses in order to 

optimize processes and/or products [20]. Most of the techniques used in this discipline aim at 

reducing the dimension of the data at hand to highlight the relationships between the group of 

samples or between the spectra and selected variables. There are two main categories of 

chemometrics tools, namely the unsupervised (generally for data visualization) and the 

supervised methods (prediction). 

3.1.Preprocessing tools  

Several factors can affect the quality of the infrared spectra. These factors include the particle 

size of the samples [21] and the variations of the optical path [22]. This is why it is necessary 

to have a well-defined sample preparation and analysis protocol for each spectrometer [23]. 

With the purpose of reducing these interferences, thereby improving the predictive ability of 

the models, a pre-treatment is highly recommended to be applied to the raw data (Figure 1). 

The most commonly used treatments in the vibrational spectroscopy are smoothing (remove 

the high-frequency noise from samples) [24], mean centering (include an adjustable intercept 

in multivariate models) [25], derivatives (reduce the drift of the baseline and highlight some 

parts of the spectral information) [26–28], normalization (minimize errors presented due to the 

samples preparation step) [29], standard normal variate (eliminate the effect of uncontrolled 

variations, viz, instrument optical path) [30] and multiplicative scatter correction (mitigate 

problems arising from scattered light) [31,32]. 

 

Figure 1 here 

Figure 1. Effect of different preprocessing tools on MIR spectra. A: raw spectra, B: first 

derivative, C: standard normal variate, D: second derivative. 



 

3.2.Data visualization 

The most used visualization method is the principal component analysis (PCA). A well-known 

exploratory method which is used to unveil the underlying structure of the data. This is achieved 

by reducing the dimension of the data, from a very high number (in the thousands of variables) 

into a few orthogonal synthetic variables called Principal Components (PCs) whose aim is to 

recover as much variation as possible in the data at hand[33]. The number of PCs can be chosen 

on the basis of the explained total variance. 

3.3.Regression tools 

The supervised techniques are generally multivariate calibration techniques. This encompasses 

tools that involve setting up a relationship between two matrices; the predictor variables X 

(fingerprints), on the one hand, and the variables to be predict Y (quantitative response), on the 

other hand. The commonly applied multivariate calibration tools are the partial least squares 

regression (PLS) and orthogonal projections to latent structures [34,35], support vector machine 

regression (SVMR) [36], principal component regression (PCR) [35] and multiple linear 

regression [37]. 

4. Prediction of soil properties  

As shown in Tables 1-3, several studies were carried out using infrared fingerprinting (i.e., in 

the MIR and NIR/Vis-NIR infrared ranges) in combination with chemometric methods for rapid 

soil properties diagnosis. 

4.1.Application of NIR and Vis-NIR spectroscopy  

Relevant studies carried out for soil diagnostic using NIR/Vis-NIR spectroscopy techniques 

and chemometric/machine learning methods are listed in Table 1 and discussed in the sections 

below. 

4.1.1. Total and Organic carbon 

Applications of NIR and Vis-NIR spectral techniques with the PLS algorithm were found to be 

efficient for evaluating the soil organic carbon (SOC) in soils [14,38–46], where the difference 

between all these studies are the type of soils, sample set representativeness,  the number of soil 

samples, sample preparation,  the preprocessing strategies and model validation methodologies. 



Combining NIR and Vis-NIR spectral databases on the one hand and PLS regression on the 

other hand yielded results that showed a good agreement between measured and predicted 

values, indicating accurate SOC predictions. One study [47] evaluated the effect of dataset 

division methods on the model accuracy, i.e., 50 strategies for dividing the data into calibration 

and validation samples were tested with PLS-NIR as a calibration model to predict soil organic 

carbon. Several data preprocessing strategies were also compared. The results showed that the 

optimization of data set division combined with PLS could improve the model prediction. In 

addition, [48] studied the effect of the data size on the prediction of total carbon using three 

different algorithms, namely PCR, PLS and SVMR applied on the same Vis-NIR spectra. The 

results showed that the required minimum number of samples for calibration was 29 for PCR, 

72 for SVMR and 130 for PLSR, which confirmed that the PCR was less sensitive to the sample 

size than PLS and SVMR. On the other hand, the three predictive models were better in terms 

of correlation and prediction errors RMSEP (Root Mean Squared Error of Prediction). [49] 

compared the performance of a miniaturized (mobile) and a conventional (bench-top) near 

infrared reflectance (NIR) spectrometer for characterizing soil carbon and nitrogen, concluding 

that the PLS model that was set up on the spectral data of the two instruments led to acceptable 

results. Furthermore, coupling Vis-NIR spectra with SVMR and using eight preprocessing 

methods led to an improvement of the prediction accuracy of soil organic carbon contents in 

soil samples [50]. The results indicated that the Savitzky-Golay (SG) derivative was the best 

preprocessing method to predict SOC from Vis-NIR-SVMR spectra. [51] investigated the 

prediction of SOC using PLS regression applied to Vis-NIR data belonging to three external 

soil spectral libraries at national, regional and field scales. The calibrated models based on the 

three datasets led to good results. Moreover, the field scale calibration using a local library led 

to more accurate predictions than calibrations using regional or national libraries, which 

nevertheless yielded good results when completed with some spiking samples (originating from 

the target fields). [51] explored the PLSR calibration method and its ability to predict SOC from 

Vis-NIR data. The results obtained confirmed that the proposed approach provided reliable 

estimates with a large coefficient of determination R² and small predictions errors. In [52] the 

performances of infield estimation of SOC using a portable Vis-NIR spectrometer and moist 

soils with a laboratory NIR instrument on dried soil samples were compared. The model on air-

dry spectra outperformed the one obtained from fresh samples in terms of correlation between 

predicted and measured SOC values. The performance of a cheap, micro-electromechanical 

system NIR spectrometer coupled with PLS, SVM and Cubist tree model regressions for SOC 

and total carbon (TC) prediction was assessed by [53]. The results showed that the Cubist model 



predicted SOC and TC more accurately than PLSR and SVMR. [54] evaluated the precision of 

Vis–NIRS, LIBS (Laser Induced Breakdown Spectroscopy), and combined Vis–NIRS - LIBS 

spectral data for simulated in-situ soil profile total C, inorganic C and SOC measurement. The 

calibrated Vis-NIR and LIBS models predicted soil C satisfactorily although not very 

accurately. Even data fusion of Vis–NIRS-LIBS did not consistently increase the accuracy of 

soil C prediction. 

4.1.2. Soil pH 

The applicability of Vis-NIR, pXRF and sensor data fusion (Vis-NIR+PXRF) for rapid 

characterization of soil pH was investigated by [55] comparing linear PLS method with a non-

linear SVMR method. The results showed that Vis-NIR, pXRF and their fusion can be used to 

predict soil pH through SVMR more accurately. 

4.1.3. Total Nitrogen 

NIR spectroscopy was evaluated as a commercial pre-sowing test to estimate soil N supply of  

irrigated rice in south-eastern Australia [56]. The performance of the calibrated model was 

satisfactory in terms of prediction error and correlation between the predicted and measured N 

uptake. A similar study was conducted [58] to predict the soil total nitrogen (TN) content using 

NIR spectroscopic techniques along with two algorithms (i.e., PLS and SVMR). The study 

revealed that the calibrated SVMR model outperformed the PLS algorithm in terms of 

correlation (calibration and validation) and error values (RMSEP). [57] studied the effect of 

soil moisture on TN prediction using the Vis/NIR-PLS method, after applying four spectral 

preprocessing approaches, namely Savitzky–Golay (SG) smoothing, SG smoothing followed 

by first derivative (FD), orthogonal signal correction (OSC) and generalized least squares 

weighting (GLSW). The results demonstrated that the strength of OSC and GLSW in 

eliminating the effects of moisture when estimating TN is superior. Consequently, the GLSW-

PLSR approach was recommended for improved Vis/NIR estimation of TN content under 

different soil moisture conditions. 

4.1.4. Prediction of multiple soil properties 

Several research studies investigated the predictive ability of PLS applied to Vis-NIR spectra 

for the prediction of four soil properties, namely pH, free iron oxide, clay and CaCO3 [58–60]. 

Accordingly, the prediction performances of the PLSR models were stable and globally 

accurate for the four selected soil properties. [59] compared Vis-NIR Spectrometers of different 



resolutions for the prediction of seven soil properties, namely extractable P, K, Ca, Mg, Al, 

SOC and CEC using PLS modeling. The two instruments (Veris and FieldSpec brands) yielded 

both good results, making it hard to conclude which one performed better. Other previous 

research [61] studied different modeling techniques, viz., PLS, MLR, RR (Regression Rules) 

and ANN (Artificial Neural Network) for predicting soil texture and the SOC. The study 

concluded that machine learning techniques such as RR and ANN combined with Vis-NIR 

spectral data can provide precise predictions. A similar study [62] tested the accuracy of 

combining PLS with NIR and Vis-NIR techniques as a soil multi-nutrient availability index. 

The coupling of PLS - Vis-NIR proved to be relevant since it accurately predicted plant 

available P, Ca, Mg and K. [63] confirmed that soil Vis-NIR spectroscopy can accurately 

estimate SOC, TN, pH and texture. [64] examined the effect of considering soil samples from 

different depths during calibration modelling on the accuracy using Vis-NIR spectroscopy for 

the prediction of SOC and SON. This study proved that collecting samples from various depths 

resulted in increasing the robustness of the developed models. A large, regional scale study was 

carried out to inspect the potential of the NIR spectroscopy coupled with modified partial least 

squares regression (mPLS) for measuring several mineralogical and physico-chemical 

properties of Brazilian soils [65]. The models gave good predictions of soil organic matter 

content, clay content and the amounts of kaolinite and gibbsite. In addition, Vis-NIR spectro-

radiometers can be used to predict SOC and hot water-extractable C (HWE-C) contents 

accurately in a wide range of soil types and soil properties [66]. A comparison of four 

multivariate techniques (i.e., PCR, PLS, ANN and SVMR) was conducted for the rapid and 

accurate prediction of four soil properties, namely SOC, TN, total P (TP) and total K, using 

Vis-NIR spectral data [67]. It turned out that SVMR yielded the best predictions for SOC, TN, 

and TP, whereas ANN yielded the best predictions for TK. In [68] the applicability of Vis–NIR 

spectroscopic technique coupled with PLS for estimating eighteen different soil properties, 

namely coarse crumb, pH (H2O), pH (KCl), cation exchange capacity, sand, silt, and clay 

contents, total nitrogen, soil organic carbon, total potassium, total phosphorus, soluble salts, 

free iron (Fe2O3), available phosphorus, aluminum saturation, exchangeable aluminum, bulk 

density (BD) and base saturation (BS) was tested. Good prediction values were found for pH, 

SOC, TN, Fe2O3, salt, and aluminum saturation whereas satisfactory results were found for 

sand, silt, clay, TP, TK, CEC, AP and Alex (figure 2). The study of a spectral data-mining 

system was designed to minimize or eliminate any subjective or random variation during model 

development for the prediction of SOC, CaCO3 and CEC [69]. The effect of this algorithm was 

clear, and predictions of all parameters were successful with good correlations and low 



prediction errors. [70] examined the potential of Vis-NIR spectroscopy for the prediction and 

mapping of sand and clay fractions of soils in one irrigated field with clayey texture in Turkey. 

The results showed a good prediction performance for both sand and clay. [71] compared four 

different portable near infrared sensors with different sizes for the prediction of soil 

characteristics, viz., pHCaCl2, CEC, TC, clay, sand, silt, Kex, Caex, Mgex, and Naex. The results 

showed that the four portable infrared sensors presented good prediction accuracy for clay, 

sand, total carbon, CEC, pH, exchangeable Mg and Ca, but were poor in predicting silt, 

exchangeable Na, and K. Moreover,  the regression tree modeling (Cubist) outperformed PLSR. 

[12] provided an assessment of the performance of portable and miniature Vis-NIR 

spectrometer to predict soil properties (i.e., pH, SOC, TC, TN, CEC, Caex, Mgex, Naex, K ex, 

sand, silt and clay). The results showed that the small Vis-NIR spectrometer coupled with 

chemometrics tools was able to predict the proposed soil characteristics with acceptable 

correlations and errors. [72] studied the effect of soil particle size on the prediction of Naex by 

multivariate models (PLS and PCR) based on NIR spectroscopy. The results proved that particle 

sizes have an important effect on the multivariate predictions (particle sizes larger than 0.212 

mm led to better predictive models). [73] applied the Vis-NIR spectroscopy combined with 

PLS, PCR and wavelet analysis for the prediction of SOC and TN in soil. The results suggested 

that wavelet analysis was a better method for capturing the absorption features of soil properties 

and determining SOC and TN content. [74] tested short wave Vis-NIR reflectance spectroscopy 

for the prediction of four soil properties, including SOC, Ca, K and Mg. The prediction models 

were successful for SOC estimation and less successful for the three remaining properties. [75] 

evaluated an in-field NIR instrument combined with the PLS algorithm to predict the contents 

of TN, SOC, K, S, P and the pH in soil. The obtained results in this work suggested that good 

predictions of TN, SOC, S, P, and pH were obtained using the portable NIR spectrometer. [76] 

developed a new MLR model for the proper estimation of soil potassium content. The calibrated 

model showed a high potential for soil potassium prediction. [77] studied the effect of six 

different soil-water contents on the Vis–NIR predictions of four soil properties. The results 

demonstrated that the contents of clay, silt, and sand were well predicted at different soil 

moisture levels, whereas the estimation of SOC was good at air-dry soil conditions. [78] 

evaluated the feasibility of Vis-NIR spectroscopy for rapid determination of the four Fe forms: 

total Fe (Fet), pyrophosphate-extractable Fe (Fep), dithionite-citrate-bicarbonate extractable Fe 

(Fed), and oxalate-extractable Fe (Feo). The results indicated that the nonlinear SVMR models 

performed better than PLSR models for the predictions of all Fe forms. Several other studies 

investigated the usefulness of NIR and Vis-NIR spectroscopy combined with chemometrics, 



viz., PLS and SVMR for the prediction of soil fertility indicators [79–85], and the calibrated 

models were in most cases of good quality . 

 

Figure 2 here 

Figure 2. PLSR models of each soil property using Vis-NIR spectroscopy. Reused with 

permission [68] 

 

Table1. A summary of recent applications of NIR and Vis-NIR techniques in combination with 

multivariate calibrations for the prediction of soil properties. A: well predicted (R2 > 0.8), B: 

acceptable prediction (0.6 < R2 < 0.8), C: poor prediction (R2 < 0.6) ) 

  



IR technique Multivariate 

calibration 

Sample 

size 

Predicted properties References 

Vis-NIR PCR, PLS, SVMR 216 TCA(PCR) [48] 

NIR PLS 360 CA and TNB [49] 

Vis-NIR PLS 291 SOCA [38] 

Vis-NIR PLS 148 clayB, CaCO3
A and pHC [58] 

NIR PLS 400 SOCB, TNB [86] 

Vis-NIR PLS 798 PC, KC, CaB, MgB, AlC, 

SOCB, CECC 

[59] 

Vis-NIR PLS 201 SOCA [14] 

Vis-NIR PLS 95 clayB, sandC, siltC, 

CaCO3
B, free ironB, CECB, 

organic carbonC, pHB 

[60] 

Vis-NIR PLS, MLR, ANN, RF, 

RR 

850 bulk density, 

SOCB(ANN,RF,RR), soil 

texture B(ANN,RF,RR) 

[61] 

Vis-NIR PLS, Cubist 11213 SOCA(cubist) [39] 

NIR, Vis-

NIR 

PLS 36 TPA, clayA, pHB, SOCB, 

CECB, NaC, KB, MgA, CaB, 

FeA, 

[62] 

Vis-NIR SVMR 298 SOCB [50] 



NIR PLS 22 Mineralizable NA [56] 

Vis-NIR PLS 120 SOCA [51] 

Vis-NIR PLS 83 SOCB, TNB, pHC, SiltB [63] 

Vis-NIR PLS 324 SOCA, SONC [64] 

Vis-NIR PLS, SVMR 96 SOCA(PLS), pHC, TNA(PLS), 

CECA(PLS), SandA(PLS), 

SiltC, ClayA(PLS) 

[83] 

Vis-NIR PLS 255 pHC, CECC, SandA, ClayC, 

SiltC, TCC, TNC, KC, PC, 

SC, FeC, CuB, MnC, ZnC 

[84] 

NIR PLS 148 ClayB, SiltC, SandB, pH 

(H2O and KCl)C, TCB, PC, 

Mehlich III, CaC, MgC, KC, 

AlC, CECB, Mineralogical 

propertiesB 

[65] 

Vis-NIR PLS 48 SOCB, HWE-CB [66] 

Vis-NIR PLS 138 pHB [55] 

Vis-NIR PCR, PLS, ANN, 

SVMR 

148 SOCA(SVMR), TNA(SVMR), 

TPB(SVMR), TKB(ANN) 

[67] 

Vis-NIR PLS 146 SandB, SiltB, ClayC, 

pH(H2O and KCl)A, SOCB, 

[68] 



TNB, KB, TPB, CECB, 

Fe2O3
B, APC, Ex. AlC, ASB 

NIR PLS, SVMR 90 TNB(SVMR) [87] 

Vis-NIR PLS 7120 SOCB [40] 

Vis-NIR PLS 514 TCB [41] 

Vis-NIR PLS, SVMR 149 TCB(SVMR) [88] 

Vis-NIR PLS 91 SOCA, CaCO3
A, CECA [69] 

Vis-NIR MLR 28 KA [76] 

Vis-NIR PLS, SVMR 592 FeA(SVMR) [78] 

Vis-NIR PLS, CCR 113 SOCB(PLS), Sand B(PLS), Silt 

B(PLS), Clay B(CCR) 

[85] 

NIR Mowing window PLS 91 SOCA [47] 

NIR PLS 431 SOCA, TNA, PB, KB [79] 

NIR PLS 86 ClayA, SandA [70] 

NIR PLS, PCR 332 Exch. NaB(PCR) [72] 

NIR PLS 179 TCA, TNA [81] 

NIR PLS 60 SOCA, TNA, NitrateA [82] 

NIR PLS 384 TCA, TNA [80] 

NIR PLS, SVM, Cubist 

tree model 

151 SOCB(Cubist), TC B(Cubist) [53] 



 

 

 

NIR vs LIBS PLS, LASSO      

regression, MRCE 

236 TCB(PLS), SOCB(PLS), 

ICA(PLS) 

[54] 

Vis-NIR, 

NIR 

PLS 392 pH(CaCl2)B, CECA, TCA, 

ClayA, Sand B, SiltC, 

Exch.(KB, CaB, MgB, NaB) 

[71] 

Vis-NIR PLS 70 SOCB, SandA, SiltA, ClayA [77] 

Vis-NIR PLS 458 pHB, SOCA, TCA, TNA, 

CECA, CaB, MgB, NaB, KC, 

Sand, SiltB, ClayA 

[12] 

Vis-NIR PLS 62 TNB [57] 

Vis-NIR PLS, PCR, wavelet 

analysis 

60 SOCA( WA), TN A( WA) [73] 

Vis-NIR PLS 98 ICB, TOCB [43] 

Vis-NIR PLS 20 SOCA [52] 

Vis-NIR PLS 168 SOCB, CaC, KB, MgC [74] 

Vis-NIR PLS 194 SOCB [44] 

Vis-NIR PLS 173 SOCA [45] 

Vis-NIR PLS 12128 SOCB [46] 

NIR PLS 50 SOCB [42] 

NIR PLS 70 TNB, SOCB, KB, SA, PB, 

pHB, 

[75] 



4.2.The use of MIR spectroscopy 

The coupling of MIR spectroscopy with chemometrics/machine learning modeling algorithms 

proved its capabilities to generate multivariate models that make it possible to rapidly perform 

a soil diagnosis. Relevant studies that were carried out using MIR spectroscopy and are 

summarized in Table 2 and discussed in the sections below. 

4.2.1. Soil organic carbon 

[89] investigated data fusion strategies for laser-induced breakdown spectroscopy (LIBS) and 

attenuated total reflectance Fourier-transform mid-infrared spectroscopy (FTIR-ATR), as well 

as a combination of multivariate calibration methods (PLS, SVMR and ANN) for the prediction 

of soil organic carbon (SOC) content in soil samples. The findings from this work suggest that 

the use of LIBS and FTIR-ATR spectra in combination with multivariate calibration namely 

the ANN can be a fast and non-destructive approach to monitor SOC. 

4.2.2. Phosphorus 

[90] explored the application of MIR DRIFT in combination with chemometrics (PLS), for the 

prediction of one of the most important indicators of soil fertility and quality which is the P 

sorption property. The validation of the model to predict the P sorption index was satisfactory 

for most types of sorption.  

4.2.3. Multi-prediction of more than one property 

Recent work [12] proposed  an effective approach based on portable MIR spectroscopy data 

modeled by machine learning techniques (Random Forest [RF] and PLSR) to predict TC, TN, 

CEC, clay, silt and Naex in 458 representative Australian soil samples. All models were proven 

to have a good performance with excellent results obtained by means of the RF algorithm. Early 

works [91] investigated the possibility of using diffuse reflectance infrared Fourier transform 

(DRIFT) spectroscopy to predict soil quality in the form of a soil quality index (SQI). To do 

this the infrared spectra were modeled using the PLS method for the prediction of the most 

important soil properties, namely pH both in water and KCl, CaCO3, SOC, CEC, sand, silt and 

clay. The study demonstrated that DRIFT data could be calibrated to estimate a soil quality 

index by directly predicting measurable soil parameters. [92] tested a small portable prototype 

MIR spectrometer to collect soil spectra from two agricultural fields (predominantly organic 

and mineral soils). Those spectra were used for setting up PLS multivariate models for the 



prediction of pH, CEC, SOC, Ca, Mg, TN, TP, Fe, Cu, K, Na in Canadian soils. The results 

showed that in both organic and mineral soils, SOC, CEC, Ca and Mg were predicted with 

varying levels of accuracy. It was found that Fe in an organic soil field could be predicted with 

a moderate accuracy. [93] examined the ability of MIR to predict lime requirements (LR) of 

cultivated soils. The precision of the PLSR model was not sufficient to predict the spatial 

variability of LR. However, the authors suggested that MIR spectroscopy can be used to predict 

the averaged value of LR. [94] compared the coupling of mid-infrared spectroscopy with PLS 

and PLS-NN (Partial Least Squares combined with Neural Network) methods for the prediction 

of a wide range of chemical and physical soil properties. This study proved that the predictions 

using the novel PLS-NN approach appeared to be the most precise based on the coefficient of 

determination (R2) and root-mean squared errors of prediction (RMSEP) values for total 

organic carbon (TOC) which were improved from R2 = 0.87 and RMSEP = 0.7% by PLS, to an 

R2 = 0.94 and RMSEP = 0.5% by PLS-NN. [95] The MIR spectroscopic technique combined 

with Random Forest was used to predict soil properties related to its fertility (pH, Mehlich-3 

(i.e., Ca, K, Mg, Na, P, Al, B, Cu, Fe, Mn, Zn, S), P sorption, clay, sand, silt, TN and SOC). 

The prediction models from MIR spectra were good (R2 > 0.80) for SOC and TN, pH and 

Mehlich-3 (Ca and Al); intermediate (R2 > 0.60) for sand, silt, clay, P sorption index and 

extractable Mg and less satisfactory (R2 < 0.60) for Mehlich-3 extractable K, Mn, Fe, Cu, B, 

Zn, P, S, and Na. The predictive performance of linear (PLS) and non-linear (SVM) multivariate 

regression models were evaluated by predicting four physico-chemical properties of soil (pH, 

sand, clay and TOC) using MIR spectral data [96]. The results showed that support vector 

machines outperformed PLS models for all soil properties tested. [97] compared the 

performance of the commercial OPUS Quant 2 software, which uses partial least squares 

regression (PLSR), with the PLS, ANN, and SVMR calibration algorithms. It turned out that, 

on the one hand, support vector machine regression slightly outperformed the other algorithms 

and resulted in better predictions and, on the other hand, the performance of SVMR and PLSR 

decreased when the sample size used for the calibration decreased. [98] used the diffuse 

reflectance spectroscopy (DRF), attenuated total reflectance spectroscopy (ATR) and Fourier 

transform infrared photoacoustic spectroscopy (PAS) coupled to the self-adaptive partial least 

squares model (SAM–PLS) to predict four soil properties and to explore their features in the 

Mid-Infrared range by the use of uninformative variable elimination (UVE) algorithm as a 

variable selection tool. The results showed that selected wavenumbers improved the accuracy 

of prediction for pH, SOC, TN and P contents. [99] proposed and developed simple methods 

for partitioning the African spectral library (Afsis) into subspaces from which local calibration 



models were developed and assessed against global models. The results proved that the global 

models were more accurate than the local ones. Furthermore, several researchers studied the 

performance of coupling MIR and PLS for the prediction of important soil properties [100–

108]. The results generally led to successful predictions, figure 3 shows as an example the 

result obtained by Waruru et al. [105]. 

 

Figure 3 here 

Figure 3. Scatterplot for measured vs predicted values of selected soil properties for mixed 

depth data sets using MIR spectroscopy. LL: liquid limit, PL: plastic limit, PI: plasticity 

index, LS: linear shrinkage, COLE: coefficient of linear extensibility, VS: volumetric 

shrinkage, tClay: total clay content, tSa: total sand content, W: air-dried moisture content, 

CEC: cation exchange capacity. Reused with permission [105] 

 

Table 2. A summary of the recent applications of MIR technique in combination with 

multivariate calibrations for the prediction of soil properties. A: well predicted (R2 > 0.8), B: 

acceptable prediction (0.6 < R2 < 0.8), C: poor prediction (R2 < 0.6)  

  



IR 

technique 

Multivariate 

calibration 

Sample 

size 

Predicted properties References 

MIR PLS, SVMR 933 pHA(SVMR), ClayA(SVMR), 

SandA(SVMR), TOCA(SVMR) 

[96] 

MIR PLS, RF 458 TCA(RF), TNB(PLS), CECB(PLS), 

ClayB(PLS), SiltB(RF), NaB(RF) 

[12] 

MIR PLS 225 P sorptionB [90] 

FTMIR-

ATR 

PLS 89 pH(H2O, KCl)B, CaCO3
B, SOCB, 

CECB, SandB, SiltB, ClayB, 

[91] 

MIR PLS 300 pHC, CECB, SOCA, CaB, MgB, 

TNC, TPC, FeB, CuC, KC, NaB 

[92] 

MIR PLS 54211 SOCA, CECA, pHB, TNA, SandB, 

SiltB, ClayA 

[100] 

MIR PLS, ANN, 

SVMR 

144 SOCA(SVMR), TN B(SVMR), Sand 

B(ANN), Silt A(ANN), Clay B(ANN) 

[97] 

MIR PLS, PLS-NN 964 pH (H2O, CaCl2)B(PLS-

NN),SandB(PLS-NN), ClayB(PLS-NN), 

SiltC, Exch (Al,Ca, Mg, 

Na)A(PLS-NN),  KC, P-

SorptionA(PLS-NN), TOCA(PLS-NN) 

[94] 



MIR PLS 255 ClayB, SiltC, SandB, Exch(Ca, 

Mg, Na, K)B, CECA, SOCB, 

[105] 

MIR PLS 291 pHB, ECB, TCA, TNA,C/NC, PC, 

KC, ClayB, SiltC, SandC 

[104] 

MIR PLS 80000 TCA, OCA, CECA, CaCO3
A, 

pHB, ClayA 

[107] 

MIR RF 700 pHB, Mehlich-3(CaB, KB, MgB, 

NaC, PC, AlB, BB, CuC, FeC, 

MnB, ZnC, SC), P sorptionB, 

ClayB, SandB, SiltB, TNA, SOCA 

[95] 

FTMIR, 

LIBS 

PLS 204 SOCB [89] 

MIR PLS 180 TOCA, TNA, TOC/TNA, TPA [103] 

MIR PLS, ANN 20000 pHA(ANN), SOCA(ANN), ICA(ANN), 

TCA(ANN), TNA(ANN), clayA(ANN), 

siltB(PLS), sandB(PLS), M3 

extractable (P)C, KB(PLS), 

CECA(ANN), SA(ANN) 

[108] 

MIR PLS 1456 pHA, SOCB, TNB, PC [98] 

MIR PLS 307 pHA, clayB, sandB, Mehlich-

3(Al, Ca)A, TCA 

[99] 



 MIR PLS 270 ClayA, sandA, organic CB, 

inorganic CA 

[106] 

MIR PLS 68 TCA, SOCA, TNC, pHC, sandC, 

clayB, siltB 

[101] 

MIR PLS 655 Lime Requirement (LR)A [93] 



4.3.Comparative studies between the NIR and MIR spectroscopy 

As summarized in table 3, several researchers compared the performance of the two infrared 

techniques MIR and NIR in addition to the fusion of the two techniques [109–125], for the 

prediction of one soil property [111,114,117,119,125,126] (e.g. figure 4 that shows the results 

obtained by Viscarra Rossel et al. [126]), two soil properties [110,124] or multi-predictions 

[109,112,113,115,116,118,120–123]. The results and conclusions differ depending on the case 

and the properties to be predicted and the quality of predictions can be affected by many factors, 

Viz. the presence of some outliers, the existence of chemical compound that hide the bonds 

corresponding to the desired property (e.g. Carbonate ion mask the ones corresponding to the 

organic C) [127]. Some researchers concluded that MIR spectroscopy is the best 

[111,112,114,119–123,125], others prefer NIR [115], and several studies have shown that 

combining and merging the two datasets can significantly improve the predictions 

[113,116,124]. 

 

Figure 4 here 

Figure 4. Partial least-squares regression modelling and prediction output for soil lime 

requirements (LR) for each of the VIS, NIR, MIR and VIS–NIR–MIR methods used. Columns: 

(a) shows the cross-validated root mean squared errors of prediction (RMSEP) against the 

number of factors (NF); (b) shows selection of the model with the fewest number of factors, 

such that the RMSE for this model is equal to, or not significantly larger than RMSEref. The 

level of significance used was α = 0.1; and (c) shows the observed (y) against the cross-validated 

PLSR predictions (Ŷ) of soil LR with the validation statistics. Reused with permission [126] 

Table 3. A summary of the recent studies that have compared the MIR and NIR techniques in 

combination with multivariate calibrations for the prediction of soil properties.  A: well 

predicted (R2 > 0.8), B: acceptable prediction (0.6 < R2 < 0.8), C: poor prediction (R2 < 0.6) 

 



IR technique Multivariate 

calibration 

Sample 

size 

Predicted properties References 

MIR vs NIR PLS 111 SOCA(NIR), pHA(NIR), AsA(NIR), 

CuA(NIR), ZnA(MIR), PbB(NIR), 

CrB(MIR) 

[109] 

MIR vs NIR PLS 217 SOCA(MIR), TNA(MIR) [110] 

MIR vs NIR 

vs MIR-NIR 

PLS, SVMR 280 Available NA(NIR), PA(MIR), 

KA(MIR) 

[118] 

MIR vs Vis-

NIR 

PLS, RF 305 TCA(MIR, RF) [119] 

MIR vs Vis-

NIR 

PLS -- (Clay, sand, silt)B(MIR), 

TCA(MIR), TNA(NIR), C/NA(NIR-

MIR), CECA(MIR), Exch (Ca, K, 

Mg, P, Cu, Fe, Mn, Na, Zn, Al, 

Si)B(MIR), TPB(Vis-NIR), pHB(Vis-

NIR), CaCO3
A(MIR) 

[120] 

MIR vs Vis-

NIR 

PLS 60 SOCA(MIR), pHA(MIR) [121] 

MIR vs Vis-

NIR 

PLS 198 CECB(MIR), SOCA(MIR), pHC, 

PB(MIR), exchCaB(MIR) 

[122] 



MIR vs Vis-

NIR 

SVMR 1259 (pH(H2O), sand, clay, TOC, 

CEC)B(MIR), PC, KC, (Ca, Mg, 

Al, Cu, Fe, Zn, Mn)B(MIR), BC 

[123] 

MIR vs Vis-

NIR 

PLS, RF 1014 TCA(VisNIR-MIR), SOCA(MIR) [124] 

MIR vs NIR PLS 150 TCA(NIR) [125] 

MIR vs Vis-

NIR 

PLS 3800 SOCA(MIR) [111] 

MIR vs Vis-

NIR 

PLS 458 (pH, CEC, sand, clay, silt, Na, 

Ca, Mg)B(MIR), KC 

[112] 

MIR vs NIR PLS 2845 pH (H2O)B(MIR), (TN, TC, Clay, 

sand, Silt, CEC)B(NIR-MIR), 

Exch(P, K, Ca, Mg, Na)B(MIR), 

SC, CuC, MnC, BB(NIR-MIR), ZnC, 

(Al, Fe)B(NIR-MIR 

[113] 

MIR vs NIR PLS 90 SOCA(MIR) [114] 

MIR vs Vis-

NIR 

PLS -- (N, P, K) B(NIR) [115] 

MIR vs NIR 

vs MIR-NIR 

PLS, CNN 14594 (pH, clay, sand, CEC, TC, 

SOC)A(MIR) 

[116] 



 

 

MIR vs Vis-

NIR 

PLS 95 SOCA(Vis-NIR) [117] 



4.4.Data preprocessing tools for soil properties prediction improvement  

Spectral preprocessing techniques are mathematical transformations that aim to account for the 

noise in the spectrum or to eliminate some sources of variation that disturbs the prediction of 

the variables of interest, whether related to soil chemistry, physic or the biology of the analyzed 

samples. In the field of soil spectroscopy, several studies have been carried out to select the best 

preprocessing treatment to improve soil properties prediction. However, there is no general 

agreement about which pre-treatment is the most effective. Different options should be tested 

including the combination of several strategies of pre-treatment. [128] used the first-derivative 

transformation with a smoothing interval of 21 data points. [129] tested various 

transformations, each one having a specific effect: first-derivative transformation with a 

smoothing interval of 21 data points to minimize the variation in the data caused by sample 

grinding and optical setup, and the multiplicative scatter correction to correct the noise caused 

by the light scattering effects. [130] studied the effect of the six most used pretreatments, 

namely Savitzky–Golay smoothing, first derivative, log(1/R), mean centering, standard normal 

variate, and multiplicative scatter correction, the finding was that the first derivative 

transformation led to the best predictive models. [131] found that the first derivative 

preprocessing method gave the best results for the prediction of soil heavy metals, whereas 

multiplicative scatter correction and standard normal variate spectral preprocessing showed 

weak prediction for all the measured metals. [132]found that among the preprocessing 

techniques they studied, the scatter-correction group MSC and SNV showed improved 

prediction capability. [133] reduced the noise by smoothing the soil spectra using the Savitzky–

Golay first-order polynomial across a moving window of five bands. Then, the first order 

detrending transformation was used to remove the baseline of the signals in the spectral data. 

This study confirmed the high potential of using spectral preprocessing techniques to predict 

soil properties. [38] proved that by combining more than one preprocessing strategy, namely, 

Savitzky–Golay smoothing with SNV and the first derivative yielded the best predictions of 

organic matter content in saline-alkali soils (figure 5). 

 

Figure 5 here 

Figure 5. Effect of applying different preprocessing techniques on predictive soil 

organic matter models based on Vis-NIR data. Reused with permission [38] 

 



5. Conclusion & perspectives 

This review has evidenced the effectiveness of infrared spectroscopy for soil characterization. 

Unlike the routine agrochemical analytical methods, which are time consuming, costly and 

which use hazardous chemical reagents, infrared spectroscopy is a rapid, inexpensive and eco-

friendly alternative. Therefore, the advances in the instrumentation and the efforts to improve 

the machine learning and preprocessing tools should be considered as an opportunity to improve 

the effectiveness of these methods of diagnosis. In particular, the advances include the new 

generation of portable instrumentation available for the two discussed techniques (MIR and 

(Vis-)NIR) and the coupling of the generated spectral database with appropriate multivariate 

calibration strategies, which yield accurate predictions of several properties, especially when 

in-field measurements are needed. 

Advanced multivariate models performed on infrared spectra in both ranges after applying 

appropriate data preprocessing tools can generate accurate predictions for most of the soil 

characteristics.  

The studies cited in this paper showed that infrared spectroscopy especially in MIR led to 

predictive models that are able to give reasonable estimations of important key soil health 

indicators, namely, SOC, pH, sand, clay... etc. and offered several important advantages over 

the conventional soil laboratory methods where chemical reagents are ubiquitous. 

The big challenges facing this new generation of dry chemistry laboratories are the model 

transfers from one instrument to another, between laboratories and countries. Future research 

must include as an important objective to standardize the working methods including the 

methods of sample preparation (drying and grinding), the spectral wave ranges (Vis-NIR, NIR, 

MIR) and even the brands of instruments used when scanning the samples. These efforts will 

undoubtedly contribute to solve the model transfer issue. 
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Abbreviations 

Soil Science: 

AfSIS: Africa Soil Information Service  

AS: Aluminum Saturation 

B: Boron  

C: Carbon 

CEC: Cation Exchange Capacity 

Cl: Chlorine  

Cu: Copper 

Alex: Exchangeable Aluminum 

Fe: Iron 

HWE-C: Hot-Water Extractable Carbon 

IR: Infrared spectroscopy 

K: Potassium  

LR: Lime Requirement 

Mn: Manganese 

Mo: Molybdenum 

N: Nitrogen 

NIR: Near Infrared Spectroscopy 

pH: potential Hydrogen 

SOC: soil organic carbon 

SOM: Soil organic matter 

TC: Total carbon 

TN: Total nitrogen 

TP: Total Phosphorus 

Vis-NIR: Visible and Near Infrared spectroscopy 

Zn: Zinc 

 

Chemometrics: 



ANN: Artificial Neural Network 

CCR: Correlated Components Regression 

CNN: Conventional Neural Network 

FD: First Derivative 

GLSW: Generalized Least Squares Weighting 

MC: Mean Centering  

MIR: Mid Infrared Spectroscopy 

MLR: Multiple Linear Regression 

OSC: Orthogonal Signal Correction 

PCA: Principal Components Analyses 

PCs: Principal Components 

PCR: Principal Components Regression 

PLS: Partial Least Squares 

PLS-NN: partial least-squares regression and neural networks 

RF: Random Forest 

RR: Regression Rules 

SVMR: Support Vector Machine Regression 

SG: Savitzky-Golay 
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