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Abstract: Along the Mediterranean coastlines intense and localized rainfall events are responsible1

for numerous casualties and several million euros of damage every year. Numerical forecasts of2

such events are rarely skillful, because they lack information in their initial and boundary conditions3

at the relevant spatio-temporal scales, namely O(km) and O(h). In this context, the tropospheric4

delay observations (strongly related to the vertically integrated water vapor content) of the future5

geosynchronous Hydroterra satellite could provide valuable information at high spatio-temporal6

resolution. In this work, Observing System Simulation Experiments (OSSEs) are performed to assess7

the impact of assimilating this new observation in a cloud-resolving meteorological model, at different8

grid spacing and temporal frequency, and with respect to other existent observations. It is found that9

assimilating the Hydroterra observations at 2.5 km spacing every 3 or 6 hours has the largest positive10

impact on the forecast of the event under study. In particular, a better spatial localization and extent of11

the heavy rainfall area is achieved and a realistic surface wind structure, which is a crucial element in12

the forecast of such heavy rainfall events, is modelled.13

Keywords: Mediterranean, extreme rainfall, geosynchronous satellite, InSAR, ZTD, IWV, data14

assimilation15

1. Introduction16

The Mediterranean region is frequently struck by severe rainfall events causing numerous casualties17

and several million euros of damage every year [1]. In particular, the unusually complex terrain of the18

western Mediterranean areas, characterized by high mountains close to the coastlines (Alps, Apennines,19

Massif Central, Pyrenees), can enhance or trigger the deep convective processes often originating over20

the warm sea in the fall season [2–4]. Among the heaviest rainfall phenomena of this region, there21
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are Mesoscale Convective Systems (MCSs). On short time-scales, their relevance is due to their high22

probability of triggering floods and flash-floods, with significant societal impacts, often combined with23

numerous shortcomings in their forecast [5–7]. Being characterised by very high accumulated rainfall24

depths, they are also responsible for a large proportion of rainfall on annual time-scales. Climate25

projections suggest that their importance, in terms of frequency and intensity, is likely to increase in a26

warming climate. Recent studies demonstrate a strong sensitivity of the predicted climate impacts to27

the numerical representation of MCSs, with current climate models not generally capturing MCSs well28

enough [8]. Thus, improving the forecast accuracy of MCSs is a fundamental step towards managing29

their social and economic damage on both the short and the long term.30

The advance of Numerical Weather Prediction (NWP) models to increasingly higher grid spacing31

(km and sub-km) is paving the way to potential new synergies with space-borne systems. On the one32

hand, to drive high resolution NWP models, high resolution input data and boundary conditions are33

needed. On the other hand, the present state-of-the-art high resolution NWP models coincides with the34

increasing availability of space-borne observational data sources characterized either by high spatial35

resolution (e.g. the Sentinel missions developed in the Copernicus program framework) or by high36

temporal resolution (Global Navigation Satellite System, GNSS).37

In this context, the Synthetic Aperture Radar (SAR) Interferometry (InSAR) technique [9–12] applied38

to Sentinel-1 data enables the retrieval of information on a wide range of spatial scales of the potentially39

highly turbulent atmospheric water vapour field [13–18]. Many studies demonstrate the positive impact40

of assimilating Integrated Water Vapor (IWV) (measured in kg m−2) or, equivalently, Zenith Total Delay41

(ZTD) [m] observations in the forecast of heavy rain, both from InSAR [19–23], and from GNSS [22,24–27].42

Hence, it is expected that feeding NWP models with EO (Earth Observation) data-derived ZTD maps43

combining high spatial resolution and short revisit time can represent a breakthrough in the ability to44

forecast extreme weather events. However, nowadays, such space-borne observations with concurrently45

high spatial and temporal resolution are not available yet. On the one hand, Sentinel-1 ZTD maps have46

very high spatial resolution [28,29] but a too low temporal one, of the order of some days. On the other47

hand, GNSS ZTD timeseries are point measurements characterized by a coarser resolution (on the order48

of 30 km at best, much less in some regions) but they reach a temporal resolution of 30 s [22].49

In the future, InSAR data at high temporal resolution (daily, or sub-daily) could be provided by50

geosynchronous satellites. The geosynchronous C-band SAR mission called Hydroterra is currently a51

phase 0 candidate mission for the 10th Earth Explorer Programme of the European Space Agency (ESA).52

Hydroterra aims to observe the key processes of the daily water cycle by supplying frequent images53

(e.g., 1-12 h repeat time) at 1-3 km resolution. The geosynchronous orbit is expected to cover Europe and54

Africa. One of its main scientific objectives is to improve the physical insight and therefore the predictive55

capability of heavy rainfall and its possible consequences (floods, landslides) by providing estimates of56

ZTD, as well as of soil moisture, flood extent and presence of melting snow [30].57

Concerning soil moisture, the added value of Hydroterra-derived estimates has been discussed58

in Cenci et al. [31]. To the best of our knowledge a similar kind of analysis has never been carried59

out for ZTD estimates from Hydroterra observations and their impacts on the predictive capability of60

severe hydro-meteorological events. In this work, to assess the added value of high resolution/high61

frequency ZTD estimates using future Hydroterra observations, a set of Observing System Simulation62

Experiments (OSSEs) is built. An OSSE is a numerical experiment conducted with a numerical prediction63

model (in this case a NWP model) and a data assimilation system that ingest simulated rather than64

real observations. Thus, a simulated scenario is used as reference instead of real-world observations, as65

explained in section 3. The OSSE approach is widely used to estimate the impacts of proposed designs66

of new satellites or new kinds of observations [32,33]. However, this is the first time that an OSSE is67

used to evaluate the potential of the Hydroterra data for NWP applications. In particular, the OSSEs are68

used both to understand the best way to assimilate this new kind of observation with the state-of-the-art69
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data assimilation systems and to assess the most useful spatio-temporal resolution for NWP applications70

[34–38].71

The aim of this work is twofold. Firstly, the sensitivity to different spatio-temporal resolutions of72

this new kind of ZTD observation is assessed to identify the best-performing setup in the simulation73

of a heavy rainfall event. Secondly, the added value of assimilating the Hydroterra-like ZTD field74

is compared to the forecasting skills of some experiments where already existing ZTD observations75

are assimilated, namely mimicking the GNSS Italian network coverage. Beyond a traditional and an76

object-based validation of the rainfall forecasts, the OSSEs results are also investigated using some77

physical criteria that are relevant for operational activities. Despite the OSSEs not being performed in78

fully operational configurations, this assures the relevance of the assimilation of the Hydroterra product79

to operational activities.80

The work is organised as follows. In section 2, the use case is presented. Section 3 introduces the81

OSSE setup, a comparison between the reference run (to be used to produce the synthetic observations)82

and the experiment with no data assimilation, the observations to be assimilated, the assimilation83

techniques, the experiments, and the validation method. Results are presented in section ??. Section 5 is84

devoted to the discussion and the interpretation of the results, while the conclusions are given in section85

6.86

2. Case study description87

2.1. Study area88

The study area, corresponding to the territory of the Italian region called Liguria, is located along89

the north-western coast of Italy (see Figure 1). From the morphological point of view, the region is90

characterized by high mountain ranges, with a maximum height between 1000 and 2000 m a.s.l. (above91

sea level) that run parallel to the coast and reach their maximum height a few kilometers from the92

coast. The particular morphology leads to the formation of meteorological patterns specific to the region,93

capable of producing rainfall of relatively short duration and extremely high intensity (up to an average94

of 200 mm in one hour and 500-600 mm in 12 hours) (see e.g. [39]). The particular meteorological95

situation, combined with the morphology, characterized by small basins with a high average slope,96

makes the region particularly exposed to flash flood risk. This type of morphology is very similar to97

that of several areas of the Mediterranean (e.g. Spanish, Greek, Algerian, French and Turkish coasts) as98

well as the hydro-meteorological events that cause economic damage and deaths [40–42]. The region99

provides an excellent study area representative of the entire Mediterranean belt subject to flash floods.100
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Figure 1. Study Area with orography and hydrography.

2.2. Case study description101

The OSSEs are performed for a high impact weather event characterised by low predictability that102

occurred in Italy over the Liguria region between the 14th and the 15th of October 2019. The selected case103

study corresponds to a back-building MCS; these are among the most important flash-flood producing104

storms in the Liguria region area [2,4,43] and other Mediterranean coastal regions, such as southern105

France [3,44] and eastern Spain [45,46]. MCSs are known to have been common in these areas also in the106

past [47] and there is evidence that climate change could increase their frequency [48]. It is also known107

that their dynamics generally develop over the sea [44,49], which can control the rainfall intensity by108

modifying the atmospheric stability according to the average value of sea surface temperature [50–52],109

and can influence the low-level wind field by means of the differential thermal forcing due to sea surface110

temperature gradients [53,54]. The low predictability of this kind of event [4,55,56] is due to the fact that111

small-scale meteorological processes drive their dynamical evolutioy fiori17, for example, highlight the112

role of the convergence line that forms over the sea when a cold and dry continental air mass coming113

from inland meets a warm and wet maritime air mass. The cold air mass acts as a virtual orographic114

barrier that lifts the unstable warm air and triggers convection.115

In addition to the mesoscale lifting, the other known ingredients for the development of a116

back-building MCS are a relatively high level of moisture, the presence of a conditionally unstable117

air mass, and slowly-evolving synoptic conditions [44].118

On the 14th of October 2019 a surface low pressure system located off the south-western coast of119

Ireland was associated with an upper-level trough extending as far south as the north African coasts,120

as shown in Figure 2(A). At that time, a cold front was approaching the Spanish coasts and a southerly121

low-level flow was developing off the Ligurian coasts (not shown). Similar conditions characterised the122

15th of October, see Figure 2(B), where the upper level divergence of the synoptic trough was placed123

over the Ligurian coasts and the moist and unstable flow kept blowing from the Mediterranean Sea.124

Such conditions are typical of the heavy rainfall events that are known to hit northern Italy in the125

Autumn [57–59]. As outlined before, these slow-evolving synoptic conditions are necessary for the MCS126

development but need to be accompanied by other local forcing factors (conditional instability, low-level127

moisture and mesoscale lifting), which significantly challenge the predictive capabilities of current NWP128

modelling tools.129
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Figure 2. Sea level pressure (white contours, hPa) and 500 hPa geopotential height (colors, dam) on the
14th of October 2019 00UTC (A) and on the 15th of October 2019 00UTC (B). Data from ERA5 [60].

3. Methods and experiments130

The underlying hypothesis of this study is that by assimilating high resolution ZTD maps, the NWP131

model can improve its spatial representation of the low-level moisture and the conditional instability.132

For the event under consideration, this can affect the local dynamics, possibly helping the development133

of a convergence line, which can act as a lifting factor for the triggering of the back-building MCS.134

3.1. OSSE setup135

The OSSEs setup is built following key points from Hoffman and Atlas [34] to guarantee its validity.136

The state-of-the-art Weather Research and Forecasting model [61, WRF, v3.8.1] is used to produce both137

the truth run (TR hereafter) and the forecast runs (FC hereafter), characterised by the following features:138

• the TR and FC simulations are performed at different grid spacing using 3 two-way nested domains:139

13.5, 4.5 and 1.5 km for TR (Figure 3A) and 22.5, 7.5 and 2.5 km for FC (Figure 3B). Both FC and TR140

have 50 vertical levels and all domains top reach 50 hPa;141

• the TR is initialised at 00UTC of the 14th of October 2019 with the ECMWF-IFS (European Centre142

for Medium-Range Weather Forecasts Integrated Forecasting System) global model at 0.125◦ grid143

spacing and forced at the boundaries at an hourly frequency with the same product. The FC144

simulations are initialised at 00UTC of the 14th of October 2019 with the NCEP-GFS (National145

Centers for Environmental Prediction Global Forecast System) analysis and forecast data available146

at a horizontal grid spacing of 0.25◦ × 0.25◦ and forced at the boundaries every three hours;147

• the microphysical parameterizations used in the two use cases are the Aerosol-aware Thompson148

scheme for the TR [62] and the WSM6 (WRF Single Moment six-class) scheme for the FC simulations149

[63];150

• the Digital Elevation Model (DEM) used in the numerical simulations is smoother in the FC setup151

than in the TR one: the WRF default filter has been applied 24 times for the TR and 36 for the FC.152

The choice to use a higher resolution for the TR is mainly dictated by three considerations. Firstly, we153

needed to represent the phenomena under study with a sufficiently high resolution in the TR. Secondly,154

we wanted to have a TR ZTD field at a resolution which was as close as possible to the maximum155

resolution planned for the Hydroterra observations (on the order of 1 km) [64]. Thirdly, we aimed to156

evaluate the impact of the assimilation in a model with a setup currently used for operational forecasting157

activities. The remaining parameterizations (listed below) are the same for the TR and the FC experiments158

and follow the setup adopted in recent research [22,65,66]. They are also used in the setup implemented159
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for operational forecast at CIMA Research Foundation1 and include the Yonsei University scheme [67] for160

the planetary boundary layer turbulence closure; the RRTMG shortwave and longwave schemes [68–70]161

for radiation; the Rapid Update Cycle (RUC) scheme for the land surface model [71,72]. No cumulus162

scheme is activated in the two innermost domains (of both TR and FC runs), because the grid spacing163

is fine enough to explicitly resolve convection. An appropriate convective scheme, consistent with the164

boundary condition product, is activated in the outermost domain of both configurations: the Tiedke165

scheme [73,74] in the TR, and the new simplified Arakawa-Schubert scheme [75] in the FC experiments.166

Figure 3. (A) TR setup: three two-way nested domains with 13.5, 4.5 and 1.5 km grid spacing. (B) FC
setup: three two-way nested domains with 22.5, 7.5 and 2.5 km. Grey shading indicates the model terrein.

3.2. Comparison between TR and FC Open Loop167

To assess the impact of ZTD assimilation at different spatial and temporal resolutions it is necessary168

that the TR differs significantly from the FC_OL (the FC Open Loop simulation, i.e. with no data169

assimilation) and, conversely, that it represents the rainfall field well enough.170

In the TR, a back-building MCS is simulated, producing accumulated rainfall depths higher than 300171

mm in 12 hours (Figure 4B). The simulation is very close to the back-building MCS accumulated rainfall172

observed by the merged radar and rain-gauges product (Figure 4A). As introduced in the previous173

subsection, MCSs are generally triggered by a strong and persistent (in time) convergence line over the174

sea, which fixes the generation of convective cells at the same position for a few hours, so that very high175

values of accumulated rainfall are produced [4,65,76]. Such a convergence line is visible during the main176

phase of the event (00, 01, 02 UTC) in the TR, as shown in Figure 5A-C.177

Conversely, the FC_OL is not able to capture the correct dynamics of this event: Figure 5D-F178

shows that the convergence line is completely absent in the FC_OL simulation between 00 and 02 UTC.179

Consequently, the peak accumulated rainfall in 12 hours is less than 100 mm and the precipitation is180

more spatially distributed (Figure 4C). The dynamics of the TR and the FC_OL seem to significantly181

diverge in the afternoon of the 14th of October. In fact, in the morning of the 14th both configurations182

model a convergence line over the sea. Later during the day, in the FC_OL this line moves towards183

France and gets weaker, while in the TR the convergence line intensifies (not shown). This is likely due184

to either a wrong description of the thermodynamical state of the continental air mass in the FC_OL,185

which prevents it to overcome the orographic barrier and flow over the sea, or a too strong south-easterly186

flow from the sea, or a combination of both.187

1 www.cimafoundation.org/foundations/research-development/wrf.html
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A correct representation of the convergence line in the NWP model has both dynamical and188

thermodynamical consequences. In fact, other than possibly producing vertical motion, the surface189

convergence line is also characterized by an anomalous water vapor content. This happens because190

the relatively dry continental air mass acts as a barrier for the moister maritime air mass [4], resulting191

in an accumulation of water vapor, which affects the air column stability. This is visible in Figure 5,192

where the 252 mm isoline of ZTD is shown in magenta. In fact, it is possible to see that, corresponding193

to the convergence line over the sea, a well defined finger-like structure of high water vapour content194

is modelled perpendicular to the Ligurian coast in the TR (Panels A, B, C). This area of relatively high195

humidity, in the first place, acts as source of water for the intense heavy rain, which is one of the necessary196

ingredients for the development of such phenomena [44]. Secondly, the higher humidity content in197

the TR, decreases the atmospheric stability. In fact, over the Ligurian Sea, the maximum Convective198

Available Potential Energy (mCAPE) is significantly higher in the TR, O(2000 J kg−1), than in the FC_OL,199

O(1500 J kg−1), as discussed in section 5 . Since in the FC_OL the convergence line is not produced, also200

the area of higher humidity is completely absent, with the consequences for the accumulated rainfall201

field discussed above (Panels D, E, F).202

Figure 4. 12 hours accumulated rainfall between 21 UTC of the 14th of October and 09 UTC of the 15th

from the merged radar and rain-gauges observation OBS (Panel A), the TR (Panel B) and from the FC_OL
(Panel C).
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Figure 5. Wind field (colors and arrows) and ZTD 252 mm isoline (magenta line) from the TR (A, B, C)
and from the FC_OL (D, E, F) in three hours of the main phase of the event: 00 UTC (A, D), 01 UTC (B, E)
and 02 UTC (C, F) of the 15th of October.

3.3. Synthetic observations description and retrieval from the TR203

All the observations used in this work, namely the Hydroterra-like and the GNSS ZTD are synthetic204

observations retrieved from the TR fields. ZTD can be modeled as the difference between the distance in205

the zenith direction covered by an electromagnetic signal assuming to be in vacuum, i.e. moving with206

constant velocity c, and the actual distance, i.e. that covered at the actual velocity v ≤ c. In particular, it207

can be expressed as the vertical integral of the atmospheric refractivity N [77], namely208

ZTD = 10−6
∫

N(z)dz, (1)

where N is a function of the pressure of dry air pd, the partial pressure of water vapour e, and the209

temperature T along the zenith profile :210

N(z) = k1
pd(z)
T(z)

+ k2
e(z)
T(z)

+ k3
e(z)

T(z)2 . (2)

The ki, i = 1, 2, 3 constants are experimentally determined and, in this work, their values are taken from211

Smith and Weintraub [78] and Bevis et al. [79], in agreement with the WRF implementation. ZTD is212

related to IWV through213

ZTD = ZHD + ZWD = ZHD + IWV/Π, (3)

where ZHD is the Zenith Hydrostatic Delay, which is substantially controlled by the surface pressure214

[80], ZWD is the Zenith Wet Delay, which is controlled by the highly variable water vapor content, and Π215

is a conversion factor. It depends on the vertical mean value of the inverse of the temperature weighted216

by the water vapor density and is approximately equal to 0.15 [77,79]. To go from ZTD to IWV, thus, it is217

clear that additional information on surface pressure and temperature is needed. As these observations218
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are sometimes hard to retrieve and they add processing steps that can be avoided by directly assimilating219

ZTD in the model, in all the experiments of this work, the assimilated variable is ZTD.220

The Hydroterra-like ZTD is assimilated only over land, since Hydroterra will not retrieve ZTD over221

the sea. This is mainly because the ZTD InSAR maps (as the Hydroterra ones) are derived by taking222

phase differences for of each pixel using multi-temporal observations. The phase is the optical path delay223

and the own target’s signature, which should be stable in the time between the two SAR observations, in224

order to provide a reliable measure of the differential path delay. This does not occur when observing225

water, where the kinematic instability of the surface changes its radar reflectivity within milliseconds226

[81,82]. In SAR interferometry, water surfaces have random phase, even when observed by a very short227

revisit.228

To obtain the GNSS-like ZTD the TR ZTD field is interpolated on the positions of the receivers of229

the Italian GNSS network, with a nearest-neighbour approach. The inter-distance between the GNSS230

receivers of the Italian network is between 30 and 50 km, and for a map of the receivers the reader is231

referred to Figure 4 of Lagasio et al. [22].232

As with many heavy rainfall events, this case study was completely missed by Sentinel-1: the first233

observation was at 5.35 UTC of the 14th of October, too early to give some information for such very234

localised event, and the second one was at 5.25 UTC of the 15th of October, when the event was already235

over. The difficulty to find a case study in which to assimilate Sentinel-1 ZTD map with a timely passage236

[22,66] is due to its very low temporal resolution with respect to the dynamics of this kind of explosive237

high impact weather events.238

3.4. Data assimilation setup and experiments configuration239

The data assimilation procedure is performed with the state-of-the-art 3DVAR WRFDA package,240

V3.9.1 [83]. The 3DVAR finds the optimal estimate of the atmospheric state, called ‘analysis’, by241

minimising an appropriate cost function that weights the background atmospheric state(coming from a242

NWP model run) and the observations, by their uncertainties. A technical description of the assimilation243

procedures used in this study is given in Appendix A.244

It has been shown that when high resolution radar observations are assimilated, if the cost function245

is not properly constrained, such a large number of inputs can dominate the analysis result by adding246

large unbalanced wind increments, especially when convective systems are present [84,85]. Also the247

high resolution ZTD Hydroterra-like observations can lead to unrealistic dynamics, by changing the248

atmospheric stability and producing very vigorous vertical motion throughout the domain (not shown).249

This is why an additional constraint in the assimilation procedure is needed.250

The additional constraint used is sensitive to the large-scale features. It is well known that one of251

the challenges in convective-scale data assimilation is to extract as much information as possible from252

the observations while maintaining the background large-scale balance. In other words, the problem253

is to find a way to add high resolution observational data to the initial conditions through a data254

assimilation system without damaging the large-scale pattern, nor causing spurious convection [84].255

A possible solution to improve the data assimilation procedure is to use a method to minimise the256

imbalance problem in the 3DVAR system by adding a constraint in the cost function using information257

at larger scales. This is defined in terms of the departure of a high resolution 3DVAR analysis from a258

coarser-resolution large-scale analysis, as explained more in detail in Appendix A [84]. In this work, the259

version of large-scale constraint (LSC) used in Tang et al. [85] is adopted. Firstly, the GFS forecast fields260

(instead of analysis fields) are interpolated into the same regular grids as the outer domain via the WRF261

pre-processing system. Secondly, they are assimilated as bogus observations in the inner domain during262

the regular DA cycles. Note that, as discussed in Appendix A, not all the grid points of the large domain263

are considered. In particular, in the present work, the LSC sampling step is set to 45 km, corresponding264

to retaining every second point of the d01 grid.265

Submitted to Remote Sens., pages 9 – 27 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing


The assimilation experiments are performed sampling the observation at different spatial (2.5 km,266

5 km, GNSS network location) and temporal (3 h, 6 h) resolutions in all the possible combinations. Table267

1 introduces the experiments and Figure 6 shows a schematic of the OSSEs data assimilation timing.268

Note that in the first 6 hours the OSSEs have no assimilation due to the TR spin-up. The lower spatial269

resolution is set to 2.5 km (the FC resolution) because higher resolution violates the assumption of270

spatially independent observation errors for the R matrix [19,21,22].271

Table 1. Short description of the OSSEs to determine the optimal spatio-temporal resolution of the
Hydroterra-like ZTD observations.

Experiment Assimilated ZTD Obs. resolution DA cycling interval LSC activated

FC_OL run without data assimilation
FC_DA_2.5km_3h Hydroterra-like 2.5 km 3-hour yes
FC_DA_5km_3h Hydroterra-like 5 km 3-hour yes
FC_DA_gnss_3h GNSS GNSS Italian network 3-hour no

FC_DA_2.5km_6h Hydroterra-like 2.5 km 6-hour yes
FC_DA_5km_6h Hydroterra-like 5 km 6-hour yes
FC_DA_gnss_6h GNSS GNSS Italian network 6-hour no

Figure 6. Schematic of the OSSEs assimilation timing. TR and FC_OL have no assimilation cycles, while
DA_6h and DA_3h denote a generic assimilation experiment with assimilation every 6 and 3 hours,
respectively.

3.5. Validation Method272

The evaluation of the assimilation performances is done using the MODE tool [86,87], by comparing273

the TR accumulated rainfall field with the forecast fields of the other runs. The main advantage of274

such a validation is that the forecast is not only evaluated point-wise but also at feature level, thus275

overcoming the so-called “double-penalty” issue [88]. MODE identifies precipitation structures above276

given thresholds in both the forecast and the observed fields and performs a spatial evaluation of the277

model capability of reproducing the identified objects [22]. Especially for high resolution observations278

and cloud-resolving meteorological forecasts during deep convective events, it is preferable to use279

feature-based verification techniques, such as MODE, because traditional methods cannot provide a280

measure of spatial and temporal match between observed and forecast fields.281
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In this work, to evaluate the ZTD assimilation performances, 10 different indices are considered282

above 48 mm threshold. They include both pairs of object attributes and classical statistical scores,283

namely, for the geometrical indices we consider: centroid distance (CENTROID_DIST), angle difference284

(ANGLE_DIFF), area ratio (AREA_RATIO), symmetric difference (SYMMETRIC_DIFF), intersection area285

(INTERSECTION_AREA) and union area (UNION_AREA), while for the classical statistical indices we286

consider: Frequency BIAS (FBIAS), Probability of Detection Yes (PODY), False Alarm Ratio (FAR) and287

Critical Success Index (CSI). For a complete description of the indices refer to References [22,65,76].288

4. Results289

Looking at the 10 m wind field in the first hours of the event (Figure 7) it is possible to see that290

the presence or the absence of the convergence line over the sea is one of the most evident differences291

between the forecasts. As previously discussed, the convergence line is strong and persistent in the TR292

(Figure 7 Panels A, I, Q). It is interesting to underline that from a strictly forecasting view point, Poletti293

et al. [89] identify the presence of a convergence line over the sea as one of the most important factors294

that leads to the issue of a hydro-meteorological alert, as argued in what follows.295

As discussed in Section 3.2, the convergence line is completely absent in the FC_OL simulation296

(Figure 7 Panels B, J, R). It is found that, the higher the spatio-temporal resolution of the assimilated ZTD297

field, the better the impact on the convergence line dynamics. In fact, assimilating the Hydroterra-like298

ZTD at 2.5 km grid spacing, in simulations FC_DA_2.5km_3h (Panels C, K, S) and FC_DA_2.5km_6h299

(Panels F, N, V), produces the most realistic convergence line. In particular, the convergence line is300

better defined by assimilating every 3 hours, although in both cases it is still different from the TR one.301

Assimilating the Hydroterra-like ZTD at 5 km grid spacing, as in the FC_DA_5km_3h (Panels D, L, T)302

and FC_DA_5km_6h (Panels F, N, V) runs, introduces smaller improvements in the modelling of the303

convergence line with respect to the previous experiments, while assimilating the ZTD at the GNSS304

locations in simulations FC_DA_gnss_3h (Panels E, M, U) and FC_DA_gnss_6h (Panels H, P, X) seems305

not to influence the surface wind dynamics at all. A better representation of the surface wind field in306

FC_DA_2.5km_3h (Panels C, K, S) and FC_DA_2.5km_6h (Panels F, N, V) is also accompanied by an307

increase of water vapor along the convergence line, more similar to the TR, as highlighted by the 252 mm308

isoline in Figure 7.309

Lagasio et al. [22] showed that, for a similar back-building MCS that caused the severe Livorno 2017310

flood, the ZTD assimilation from GNSS provided significant improvements in the heavy rainfall forecast.311

In particular, it was found that the GNSS ZTD assimilation was more effective when the wind field was312

simultaneously assimilated. This, together with the present findings, suggests that the coarse spatial313

resolution of the GNSS receivers helps in the correct modelling of the total amount of water vapor, which314

acts as a source for the heavy rainfall, but struggles in reproducing the fine-scale water vapor spatial315

distribution, that modifies the surface dynamics. This is especially true when, as in this case, the FC_OL316

dynamic is very far from the TR one. Thus, only by assimilating the Hydroterra-like ZTD observations317

at high spatial resolution, does the FC dynamic move towards the TR one showing a convincing intense318

convergence line.319
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Figure 7. 10 m wind field (colors and arrows) and ZTD 252 mm isoline (magenta line) comparison during the main phase of the event: 00 UTC (first row), 01
UTC (second row), 02 UTC (third row) between TR (Panels A, I, Q), OL (Panels B, J, R), FC_DA_2.5km_3h (Panels C, K, S), FC_DA_5km_3h (Panels D, L, T),
FC_DA_gnss_3h (Panels E, M, U), FC_DA_2.5km_6h (Panels F, N, V), FC_DA_5km_6h (Panels G, O, W), FC_DA_gnss_6h (Panels H, P, X).
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Thus, the effects of the ZTD assimilation on the surface wind dynamics have direct impacts on320

the forecast of the rainfall pattern (Figure 8). In particular, the presence of the well-defined surface321

convergence line when assimilating the ZTD at 2.5 km grid spacing, in experiments FC_DA_2.5km_3h322

and FC_DA_2.5km_6h, results in a more localized rainfall pattern (Panels B and F, respectively). Although323

being weaker, this is very consistent with the TR rainfall field, which shows the typical V-shape pattern324

of the Ligurian MCSs [4]. Assimilating a coarser ZTD product, namely the Hydroterra-like ZTD at 5 km,325

in the FC_DA_5km_3h (Panel C) and FC_DA_5km_6h (Panel G) runs, results in a rainfall pattern that326

is more localised than the OL one, but less than in the above mentioned 2.5 km experiments. With327

respect to the FC_DA_2.5km experiments, the rainfall peak appears to be shifted westward. Concerning328

the simulation of the surface convergence field, the assimilation of ZTD at the GNSS locations, in the329

experiments FC_DA_gnss_3h (Panel D) and FC_DA_gnss_6h (Panel H), instead, maintains a more330

widespread rainfall pattern very similar to the FC_OL one. Note that the time intervals of the rainfall331

accumulation are different. In the TR the 12 hour accumulation interval is between 21 UTC of the 14th
332

and 09 UTC of 15th of October. In the FC experiments, instead, it is between 00 and 12 UTC of the 15th of333

October. The reason for this is because in the FC runs, despite the assimilation procedure, a temporal334

shift of roughly three hours of the intense rainfall remained.335

None of the FC simulations is able to reach the TR accumulated rainfall peak values. However,336

the assimilation of Hydroterra-like observations at 2.5 km (FC_DA_2.5km_3h and FC_DA_2.5km_6h)337

allows a big improvement with respect to the OL run as quantitatively highlighted by the Method for338

Object-Based Evaluation (MODE) rainfall validation.339

Figure 8. 12-hours accumulated rainfall comparison. A: TR, B: FC_DA_2.5km_3h, C: FC_DA_5km_3h, D:
FC_DA_gnss_3h, E: OL, F: FC_DA_2.5km_6h, G: FC_DA_5km_6h, H: FC_DA_gnss_6h. In the TR (Panel
A) the time window is between 21 UTC 14 Oct and 09 UTC 15 Oct, while in all the other cases is between
00 and 12 UTC 15 Oct.

Figure 9 shows statistical indices that evaluate all the objects in the whole domain of Figure 8. It is340

possible to see that the 48 mm threshold (Figure 9) reveals that when assimilating the Hydroterra-like341

ZTD observation at 2.5 km, the accumulated rainfall structure is better captured by the model (higher342

POD, CSI and better FBIAS and FAR), with respect to assimilating the same observation at 5 km grid343

spacing. In particular, assimilating at 2.5 km every 6 hours provides the lowest FAR, due to a correct344

spatial distribution of the rainfall field. In fact, with respect to the simulation assimilating at 2.5 km345

every 3 hours, no rainfall overestimation is produced inland (north of 45°N, as visible in Panels B and F346
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of Figure 8). This is probably due to the eastward displacement of the convergence line at 1UTC (Figure347

7K), that is strongly reduced in the FC_DA_2.5km_6h (Figure 8F) forecast. In fact, the FC_DA_2.5km_6h348

has a weaker convergence line (Figure 7 Panels C, K, S) with respect to the FC_DA_2.5km_3h (Figure 7349

Panels F, N, V), that is, however, more persistent in terms of location.350

The validation in terms of the MODE geometrical indices is restricted to the core rainfall object, and351

not to the entire WRF innermost domain, d03. This procedure cannot be completely automated because it352

is specific for each event. It is also necessary to focus the validation on the area of interest, instead of the353

full WRF grid, in order to avoid mixing the multiple rainfall objects that appear in the simulation results,354

which could affect the validation results. Looking at these geometrical indices (Figure 10) it is possible355

to see that the angle difference (ANGLE_DIFF) of the FC_OL and the FC_DA_gnss runs are the worst356

ones, remarking a more widespread rainfall pattern with respect to the TR one. The CENTROID_DIST357

and the SYMMETRIC_DIFF highlight how the simulations assimilating Hydroterra-like observations at358

2.5 km resolution (FC_DA_2.5km_3h and FC_DA_2.5km_6h) produce a better localised intense rainfall359

object, with a shape closer to the TR one. Furthermore, the INTERSECTION_AREA shows that the360

FC_DA_2.5km_6h has a better pattern extent.361

Summarizing, it is possible to say that assimilating the ZTD Hydroterra-like observations produces362

the best improvement in a very challenging forecast, where the dynamical and thermodynamical363

differences between FC_OL and TR are large. In particular, the higher spatial resolution (2.5 km) seems364

to be the most effective in changing the wind dynamics and, consequently, the rainfall pattern. Both365

temporal resolutions of the assimilation (3 and 6 hours) produce this improvement. However, the366

simulation assimilating every 3 hours (FC_DA_2.5km_3h) still maintains a high FAR due to the shifting367

of the simulated convergence line. Instead, a more persistent convergence line in the simulation with368

data assimilation performed every 6h (FC_DA_2.5km_6h) gives a lower FAR (Figure 9).369

Figure 9. OSSEs statistical MODE indices for the 48 mm threshold. The red horizontal lines indicate the
ideal scores.
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Figure 10. OSSEs geometrical MODE indices for the 48 mm threshold. The red horizontal lines indicate
the ideal scores.

5. Discussion370

Only the high resolution Hydroterra-like observation experiments are capable of changing the OL371

dynamics enough to provide some of the main ingredients that are important to forecast this kind of372

back-building MCS. As previously outlined, the MODE analysis indicate that the 6-hour assimilation373

experiment has better performance than the 3-hour one. This suggests that a 3-hourly DA cycle may374

not leave enough time for a proper dynamical adjustment to the new humidity information, which can375

be reached with a 6-hourly cycle. Thus, it appears that the assimilation of the Hydroterra-like ZTD376

modifies the dynamics at the mesoscale, so that the environment is properly set for the development of377

the convective V-shape storm.378

Due to the characteristic low predictability of this kind of event, Liguria region’s meteorological379

forecaster developed a check-list tool [89] to consider various ingredients indicating the possible380

occurrence of severe, organized, and stationary storms, like the back-building MCSs, during the381

operational forecasting activities.382

To assess the impact of assimilating Hydroterra-like observations, the TR, OL and FC_DA_2.5km_6h383

runs are compared following Table 2 of the checklist by Poletti et al. [89]. In the first part (a) of this table,384

an analysis of some thermodynamic parameters such as the K-Index (KI), the Total totals (TT), the CAPE385

and the Precipitable Water (PW) allows to evaluate the probability of severe thunderstorms (see Poletti386

et al. [89] for their definitions). If some of these parameters exceed the identified thresholds, the second387

part of the table (b) is used to evaluate whether the event under consideration is likely to be organized388

and persistent. Some of the parameters that are considered in this second part are the presence of a389

wind convergence line over the sea for more than 3 hours, and the strength of the 950 hPa temperature390

(and humidity) gradient between the Po Valley and the Ligurian Sea. In this work, the use of both parts391

of Table 2 of Poletti et al. [89] (the checklist) allows to evaluate the impacts that assimilating the high392

resolution Hydroterra-like ZTD maps has on some physical quantities that are relevant for operational393

applications.394
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It is worth noticing that even if specific thresholds are identified in the Poletti et al. [89] checklist,395

their values need to be interpreted. For example, the CAPE parameter threshold should be modulated396

on the annual cycle, as summer events are usually characterised by higher CAPE values than autumn397

ones. Furthermore, the K-index is mentioned as a good indicator of severe and organized thunderstorms,398

but not for persisting ones, like this kind of back-building MCSs. Also the TT index and the CAPE399

do not show a relevant predictive ability for persistent events because for almost the whole data sets400

their values fall within the respective low ranges. Thus, these indices are here used to evaluate if the401

simulations produce scenarios leading to severe events with respect to some metrics that are currently402

used for operational activities. The presence of the persistent convergence line and the surface humidity403

gradients are evaluated to analyse if the event can be both organized and stationary (meaning that it is404

more prone to generate flash floods).405

A representative point within the moist and conditionally unstable air mass in the Ligurian sea406

is chosen to produce the Skew-T diagram and to calculate the relevant indices of the Poletti et al. [89]407

checklist. The virtual vertical soundings are shown in Panels A-C of Figure 11, while the corresponding408

surface water vapor mixing ratio maps are shown in Panels D-F. The soundings are taken in the early409

phase of the event, which are a few hours apart depending on the configuration, as discussed above.410

In particular, the virtual sounding is taken at 4 UTC in the TR experiment and at 7 UTC of the 15th of411

October in the FC_OL and FC_DA_2.5km_6h experiments.412
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Figure 11. First row: Skew-T diagrams for TR (A), FC_OL (B) and FC_DA_2.5km_6h (C). Second row:
Q2m instantaneous field with the 0.013 kg/kg isoline in red for TR (D), FC_OL (E) and FC_DA_2.5km_6h
(F). The white dots indicate the point where the Skew-T are calculated. The TR is investigated at 04:00
UTC while the FC_OL and the FC_DA_2.5km_6h are taken at 07:00 UTC.

While the TR and the FC_DA_2.5km_6h runs are characterised by thermodynamic indices that fall413

in the moderate to high ranges, the FC_OL has generally weaker values. For example, the CAPE over414

the Ligurian Sea in the TR and FC_DA_2.5km_6h runs is of the order of 2000 J kg−1 and it is only around415

1500 J kg−1 in the FC_OL. The KI is moderate for the TR and FC_DA_2.5km_6h runs, with values around416

30°C, and is weak for the FC_OL, roughly 25°C. The TT and the PW indices, instead, do not highlight417

significant differences, as they all fall in the same range (weak for the TT, between 45 and 50°C, and418

moderate for the PW, between 30 and 35 mm). Thus, the first part of the checklist evaluation suggests419

that severe events can occur in all forecasts, with the FC_OL generally having weaker indices.420

Moving to the organization and persistence evaluation, Poletti et al. [89] highlights the importance421

of the presence of the convergence line for more than three hours over the sea. In fact, this persistent422

dynamics is responsible for the development of convective cells over the same location, producing very423

high values of accumulated rainfall. The fact that in the TR the convergence line lasts for at least three424

hours is visible in Panels A, I, Q of Figure 7, showing the surface wind field between 0 and 2 UTC, and425

in Panel D of Figure 11, showing the surface water vapor mixing ratio field (at 2 m, Q2m) at 4 UTC.426

In particular, the surface convergence is highlighted by the 0.013 kg/kg isoline shown in red, which427

marks the dividing line between the drier continental air mass and the moist maritime one. The FC_OL428

simulation does not present any sign of convergence line, neither at the beginning of the event (Figure429
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7, Panels B, J, R), nor during its main phase, as indicated by the more homogeneous Q2m distribution430

over the sea at 7 UTC (Figure 11E), with the 0.013 kg/kg isoline closely following the coastlines. The431

FC_DA_2.5km_6h simulation shows the presence of the convergence line (Figure 7 Panels F, N, V) since432

the beginning of the event. Even if weaker and slightly shifted with respect to the TR, the convergence433

line is clearly visible for at least three hours, and it strengthens at 7 UTC, as revealed from the Q2m434

distribution shown in Figure 11F.435

Thus, this important ingredient, associated with the presence of a temperature gradient (not shown)436

and a Q2m gradient between the Po Valley and the Ligurian Sea (Figure 11D-F) allows us to conclude437

that the TR and the FC_DA_2.5km_6h simulate a severe organized and persistent event (consistent with438

the back-building MCS dynamics) while the FC_OL simulates a weaker and non-organized event. This439

analysis, using physical criteria that are relevant for operational activities, shows that the assimilation440

of Hydroterra-like observations is able to change the model dynamics and thermodynamics so that,441

starting from a run that simulates a relatively weak, widespread, and non-organized rainfall event, a442

realistic back-building MCS is produced.443

Note that the FC_DA experiments are not fully operational configurations, as the Hydroterra-like444

ZTD is assimilated during the event. Future works will be devoted to study the impact of assimilating445

the Hydroterra-like ZTD product in fully operational configurations, taking into account, for example,446

the availability of the forecasts and of the Hydroterra products. In this way, a more precise quantification447

of the lead time of the improved forecast in different meteorological conditions could be performed.448

The proven relevance of the Hydroterra-like observations, albeit structurally retrievable only over449

the land, can be further interpreted in light of the results of Chu and Lin [90], and Chen and Lin [91].450

These authors identified four moist flow regimes for a (two-dimensional) conditionally unstable flow451

over a mesoscale mountain ridge and proposed an unsaturated moist Froude number Fw = U/(hNw) as452

the control parameter for these flow regimes, where U is the wind speed, h the mountain height and Nw453

the moist Brunt-Väisälä frequency. In the regime with low Fw, the quasi-continuous and heavy rainfall is454

produced over the upslope side of the terrain as individual convective cells develop upstream at the head455

of the density current, thus resembling the typical back-building MCS scenario over the Mediterranean456

area. Propagating precipitation is caused by convection triggered ahead of the hydraulic jump over457

the lee slope, in this case coincident with the seaward side of coastal mountain range, and is advected458

by the basic large-scale flow. Thus, the aforementioned hydraulic jump is controlled by downstream459

conditions over the land, then supporting of the relevance of continental Hydroterra-like observations.460

This means that the assimilation of ZTD observations over land modifies the thermodynamical state461

of the upstream flow, which significantly impacts the surface wind dynamics over the Ligurian Sea, as462

shown in Figure 7 and discussed previously. To explicitly show the link between the mesoscale dynamics463

and the convective dynamics in this region characterized by complex terrain, Figure 12 shows the surface464

wind speed and the isosurfaces of the updraft (green) and downdraft (gold) velocities at 1 m/s in the TR,465

FC_OL and FC_DA_2.5km_6h experiments. As visible in the figure, the FC_OL run is the only one that466

does not produce ascending motion with a narrow and well organized structure along the surface wind467

convergence line.468

Submitted to Remote Sens., pages 18 – 27 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing


Figure 12. Rendering of the surface wind speed (colors) and vertical updrafts (green isosurfaces at 1 m/s)
and downdrafts (gold isosurfaces at -1 m/s) for TR at 4 UTC (A), FC_OL (B) and FC_DA_2.5km_6h (C) at
7 UTC on the 15th of October 2018.

6. Conclusions469

The main goal of the present work is to evaluate the possible added value of directly assimilating470

in a NWP model the high resolution ZTD estimates that will be provided by the SAR sensor flying on471

board of the Hydroterra geosynchronous satellite, an ESA 10th Earth Explorer mission candidate. Firstly,472

a set of OSSEs is built to identify the spatio-temporal resolution of the new ZTD observations that has473

the largest positive impact on the forecast of a heavy rainfall event. Secondly, a comparison with the474

improvements induced by the assimilation of ZTD from the currently available GNSS Italian network475
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is performed for the same case study. All validations are done both in a qualitative way by looking476

at appropriate maps, and in a quantitative way using an object-based diagnostic tool applied to the477

accumulated rainfall field [86,87, MODE].478

The case study is a MCS that occurred over the Liguria region between the 14th and the 15th of479

October 2019, characterized by a very low predictability. As in the present case, MCSs are often triggered480

by the encounter of a cold and dry continental air mass and an unstable, moist and warmer maritime481

air mass [4], resulting in a persistent and well-defined surface wind convergence line. The reference482

TR is performed using an initialization and a setup allowing to obtain a good representation of the real483

extreme event, with very intense accumulated rainfall values over a relatively small area. Conversely,484

the FC_OL is not able at all to model this event and its dynamics differ significantly from the TR, with485

the convergence line completely missing in the FC_OL.486

The OSSEs highlight that, even if the starting point (the FC_OL) completely lacks some of the487

fundamental ingredients for a skilful forecast of a back-building MCS, the assimilation of high resolution488

(at 2.5 km) Hydroterra-like observations is able to deeply improve the forecast. In fact, this is the only489

observation, among the ones used in this work, that modifies the wind dynamics so that a persistent490

and well-defined convergence line is modelled. This is particularly relevant because, although the491

Hydroterra-like ZTD observation is assimilated only over land, it is able to produce more realistic492

dynamics over the sea, which is crucial for a correct forecast of the MCSs. A better surface wind493

representation is accompanied by a more localized and more intense accumulated rainfall simulation494

that resembles the reference run more closely.495

The comparison with the skills of the simulation assimilating the currently available GNSS receivers’496

ZTD observations (with a spacing of roughly 30-50 km) shows that it is indeed the fine spatial resolution497

that adds information to the model so that the surface wind and the accumulated precipitation are498

simulated more accurately.499

It is worth noticing that none of the simulations reach the TR rainfall peak. However, it is well500

known that this kind of event is characterized by an intrinsic low predictability [3,4,43]. For this reason,501

in an operational framework, some regions particularly prone to this kind of event developed tools502

(in the form of a checklist) to account for all the relevant dynamical and thermodynamical processes503

that could help to forecast this kind of extreme event [89]. From the evaluation of the most important504

parameters highlighted in the Liguria region checklist, it appears that FC_OL and FC_DA_2.5km_6h505

are both indicating the likely occurrence of a severe event (with the FC_OL having a weaker signal),506

but only the FC_DA_2.5km_6h is able to suggest the probable occurrence of a severe, organized, and507

persistent event, as in the TR. In fact, one of the most important dynamical ingredients is the presence of508

a convergence line over the sea for more than three hours, and only by assimilating the Hydroterra-like509

observations at 2.5 km is the model able to reproduce it.510

Summarizing, the Hydroterra-like observations are found to have great potential for use in a511

meteorological framework. In particular, the assimilation of such high spatio-temporal resolution512

information of water vapor (in form of ZTD) seems to be able to correct the model dynamics so that the513

heavy rainfall event is better reproduced. Such an influence in the model simulation can be important514

not only in the operational framework but also lead to deeper physical insights on the evolution of such515

events. In this work, the time resolution used for Hydroterra-like observations is 3 and 6 hours because a516

conservative approach in the the state-of-the-art assimilation procedure was selected. However, having517

hourly ZTD observations from Hydroterra could pave the way for various new applications such as:518

the implementation of ensemble NWP nowcasting chains with hourly initialization, the use of different519

kinds of data assimilation techniques to exploit the ZTD temporal evolution (i.e. 4DVAR), and the520

development of storm detection and prediction algorithms based on the spatial distribution of the water521

vapor field [92–94]. Furthermore, in this case, the impact evaluation is performed on an explosive rainfall522

event, but it is demonstrated that assimilating ZTD at high resolution is useful also to improve forecasts523

of slowly evolving rainfall cases [22].524
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Another important future development of this work would be to evaluate the added value of525

assimilating Hydroterra-like ZTD in other regions covered by the Hydroterra geostationary observations,526

e.g. Africa. West Africa, including the Sahel, is a good example because MCSs are frequent and can cause527

significant damage. Due to the lack of observations in that area, the Hydroterra ZTD observations could528

be very valuable for improving the forecast capabilities, especially when coupled with the Hydroterra529

soil moisture observations, because soil moisture plays a fundamental role in the dynamics of MCSs in530

this region [95]. In fact, the MCSs which form over land (e.g. in the Sahel where they are responsible531

for the majority of annual rainfall [96]) are known to be controlled by the surface properties [97]. The532

added value of the Hydroterra soil moisture observation in the hydrological framework have been533

discussed in [31]. Future works are needed to assess the impact of these new observations (ZTD and soil534

moisture) in a complete hydro-meteorological framework that is very important to forecast high impact535

weather events over areas with complex terrain, such as the Mediterranean region. Furthermore, also the536

differences and the interactions of these new data with other traditional sensors (e.g. radar and ground537

stations) will be investigated in future works.538
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Appendix A. Data assimilation procedures552

The standard data assimilation 3DVAR technique implemented in the WRFDA package [83] looks553

for the minimum of the following cost function [98]554

J(x) = Jb + J0 =
1
2

(
x− xb

)T
B−1

(
x− xb

)
+

1
2

(
y− y0

)T
R−1

(
y− y0

)
, (A1)

in which x is the analysis, xb is the first guess coming from a NWP model, y0 is the observation vector555

to be assimilated and y = H(x) is the model-derived observation vector. y is obtained by applying the556

observation operatorH on the analysis x, namely y = H(x). The solution of equation (A1) represents an557

a posteriori minimum variance estimate of the true state of the atmosphere given two sources of data: the558

numerical first guess xb and the available observation y0. Their relative importance is weighted by the559

estimates of their errors contained in the background error covariance matrix, B, and the observation560

error covariance matrix, R. The R matrix is actually the sum of two distinct error covariance matrices: the561

observation (instrumental) matrix and the representativity error matrix (that contains the approximations562

introduced by geometrical transformations, interpolations, etc.). This matrix is assumed to be diagonal,563

as done in most of the models [99], implying that the correlations between different instruments and564

between different observations made by the same instruments are equal to zero.565

In this work, the Control Variable option 7 (CV7) of the WRFDA package is used for the B matrix566

calculation with the National Meteorological Center (NMC) method [100]. In previous works, where567

ZTD from Sentinel and GNSS was assimilated [22,66], the CV5 option was used, instead. The CV5 option568

exploits the velocity potential and the streamfunction (ψ, χ) as momentum control variables. This has569

been shown to improve the representation of the large-scale features, thanks to the balance between570
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the mass and wind fields, but the small-scale features are missed [101]. Instead, the CV7 option uses571

the wind components (U, V) as momentum control variables. In CV7, since no balance constraints are572

applied, the use of (U, V) as control variables can provide closer fitting to dense observations in limited573

area convective scale data assimilation experiments [101]. The NMC method is applied over the entire574

month of October 2018 with a 24-hour lead time for the forecasts starting at 00:00 UTC and a 12-hour575

lead time for the ones initialised at 12:00 UTC of the same day. The differences between the two forecasts576

(t + 24 and t + 12) valid for the same reference time are used to calculate the domains specific error577

statistics.578

Concerning the Large-Scale Constraint (LSC), it is mathematically implemented into WRFDA579

3DVAR by adding a new term Jc to equation (A1), namely, using the incremental formulation,580

J(x) = Jb + J0 + Jc = Jb + J0 +
1
2
(dc −HUv)T R−1

c (dc −HUv) , (A2)

where dc = yc −H(xb) is the innovation vector that measures the departure of the LSC yc from its581

counterpart computed from the background xb; v = U−1(x− xb) is the control variable vector, with U582

being the decomposition of the background error covariance B via B=UUT ; and H is the linearization583

of the nonlinear observation operator H. The yc variable includes the meridional and zonal wind584

components, the temperature, and the water vapour mixing ratio from the large-scale analysis that are585

being assimilated as bogus observations. The errors for wind, temperature, and water vapour mixing586

ratio are 2.5 m s−1, 2°C, and 3 g kg−1, respectively, and are determined by the diagnostics of the GFS587

product [84,85]. They form the Rc matrix, which weights the importance of the LSC term in the cost588

function minimization.589

Starting from the results obtained by Tang et al. [85], some experiments are performed as sensitivity,590

to understand the effect of the LSC scheme to different scales of the analysis fields and the precipitation591

forecast (not shown). In [85] the sensitivity on the assimilation scheme is performed using LSC every 1,592

5, 10 grid points of the outer WRF domain (d01) at 15 km resolution and starting from different vertical593

levels. By skipping the first few levels in the LSC scheme, they allow the lower atmosphere to develop594

the small-scale dynamics that can be important for the convection development, due to, for example, the595

horizontal gradients of the surface fluxes and the interactions with the orography. Their best results are596

achieved sampling every 5 grid points (at, thus, 75 km grid spacing) and starting from the fourth vertical597

level. However, in all the experiments performed, the forecast is found to improve with respect to the598

open loop reference run.599

In this work, the WRF d01 domain at 22.5 km resolution is used for LSC sensitivity retaining a value600

every 1, 2, and 3 grid points. Further experiments are performed by skipping the first few vertical model601

levels, to minimise the possible impact of the large scale constraint on the small-scale features and result602

in a more effective assimilation of surface observations. In this particular case, reproducing the same603

sensitivity of [85], no significant differences are highlighted skipping the lower three vertical levels (not604

shown). The final setup chosen for this work is the LSC sampling every 2 grid points of d01 without605

skipping any vertical level.606
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