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Abstract. The design of electrical, mechanical and fluid systems on aircraft is becoming increasingly integrated with the 

aircraft structure definition process. An example is the aircraft fuel quantity indication (FQI) system, of which the design is 

strongly dependent on the tank geometry definition. Flexible FQI design methods are therefore desirable to swiftly assess 

system-level impact due to aircraft level changes. For this purpose, a genetic algorithm with a two-stage fitness assignment 

and FQI specific crossover procedure is proposed (FQI-GA). It can handle multiple measurement accuracy constraints, is 

coupled to a parametric definition of the wing tank geometry and is tested with two performance objectives. A range of 

crossover procedures of comparable node placement problems were tested for FQI-GA. Results show that the combinatorial 

nature of the probe architecture and accuracy constraints require a probe set selection mechanism before any crossover process. 

A case study, using approximated Airbus A320 requirements and tank geometry, is conducted and shows good agreement with 

the probe position results obtained with the FQI-GA. For the objectives of accessibility and probe mass, the Pareto front is 

linear, with little variation in mass. The case study confirms that the FQI-GA method can incorporate complex requirements 

and that designers can employ it to swiftly investigate FQI probe layouts and trade-offs. 

Keywords: Evolutionary Algorithm; Multi-objective optimization; Aircraft Fuel System; Sensor System Design; Quantity 

Indication; Knowledge-based engineering

1. Introduction 

The design and development process of complex 

airframe systems, such as the fuel system, requires 

close interaction between safety and performance 

analyses [1]. Within this process, performance 

analysis is a key activity, and the support of it has 

seen much development in terms of computational 

modelling and simulation capabilities. The 

development of these capabilities is driven by the 

need to consider as many design options as possible 

during early stage systems architecture definition 

and sizing. This is to ensure that no potentially high 

performing solutions are omitted [2-4].  

One system that requires extensive design support 

is the fuel system.  Its multiple subsystems fulfil the 

top-level functions of — storage, delivery, and 

quantity indication. The design of these is closely 

coupled to the aircraft geometry, with the wing 

geometry being the most influential, as it contains 

most of the system equipment and the integral fuel 

tanks [5]. Previous work has addressed this, through 

parametric formulations of wing and integral wing 

fuel tank geometries. These were then coupled with 

a multi-disciplinary design optimization framework 

for preliminary aircraft design, or used within 
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knowledge based engineering (KBE) frameworks 

aimed at fuel system conceptual design [6]. KBE is 

a design philosophy in which geometry and 

performance modelling efforts are modular, 

parametric and make use of embedded design rules. 

This enables fast execution of design studies, from 

the aircraft to the airframe system level, with a 

higher level of detail than is traditionally the case [7]. 

The subsystem most dependent on the wing 

geometry is the fuel quantity indication (FQI) 

system. Typically, aircraft rely on capacitance-based 

fuel level gauging probes as part of a dual redundant 

and dual channel FQI architecture. In the traditional 

design process, only a small number of FQI probe 

placement architectures are investigated, with little 

consideration of the tank and FQI design 

relationships. Therefore, even though it is a mature 

subsystem, approaching its design with a KBE 

framework [8,9] would provide new insights into 

FQI, fuel system and aircraft level trade-offs. 

 The academic literature on probe placement 

algorithms is sparse, as they are often part of the 

intellectual property portfolio of the airframe system 

supplier delivering the subsystem design and hence 

unpublished.  
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This paper presents the investigations of one 

implementation approach to establish probe 

architectures that satisfy the accuracy and 

redundancy requirements. The method is aligned 

with KBE principles and uses a heuristic 

optimization routine for the FQI probe placement 

problem. A parametric automated link is maintained 

between the wing geometry and the FQI system 

design process. This provides substantial flexibility, 

as new or modified wing geometries can be analysed 

in a single workflow, without geometry data import 

and export issues. 

The subsequent sections of this paper are 

organized as follows. Section 2 presents the FQI 

design problem and links it to the wider class of node 

placement problems and algorithms. Section 3 

describes the FQI-GA algorithm and tests a range of 

crossover procedures. An application case study 

involving a re-design of the Airbus A320 FQI 

system is described in Section 4. The final section 

provides the conclusions from this research. 

2. FQI design problem description 

The FQI design process is heavily influenced by the 

types of sensors used within the system. The basic 

principles of the most widely used sensor 

technology, the capacitance probe, has changed little 

since its early presentation in the 1940s [10]. In an 

abstract sense, a single probe represents a means to 

establish the fuel level at a specific point in the tank. 

Level measurements from several sensors establish 

a fuel surface geometry which, is translated into a 

volume by using known tank geometry information. 

Eventually the fuel mass is established, with the help 

of a fuel density measurement.  

The traditional design processes are well described 

and a set of requirements for the probe placement 

can be summarized from [11,12] as: 

− Define a minimum number of probes consistent 

with the method of gauging and the 

requirements to minimize weight and cost, and 

maximize reliability. 

− Accuracy requirements (per attitude, fill state 

and flight state) for a complex tank are to be 

satisfied with a number of placed probes. 

− Maximize the gaugeable fuel. 

− Maintain probe – structure clearances, to 

minimize fringing and water bridging effects, 

and to safeguard against thermal movements. 

− Establish probe locations that are compatible 

with structure mounting interfaces. 

− Ensure that probe positioning does not 

contribute to fouling of fuel system 

components. 

− Avoid potential water collection areas. 

− Ensure repeatability in production. 

Computing the tank fuel volume from probe 

measurements has been approached by different 

means. In early designs, the analogue summation of 

the capacitance readings from each probe is scaled 

with the tank’s height- volume relationship. Probes 

can then also be profiled, i.e. have a non-constant 

diameter along the probe length, to accommodate 

the non-linear nature of the height-volume curve 

[10,13]. The curve also changes with aircraft attitude, 

acceleration or tank structure deflections, requiring 

a compromised profiled probe selection [14]. This 

makes the probe profiling approach inherently 

inaccurate for tanks with complex geometries.  

In modern approaches, the computation is 

performed digitally. From a set of probe 

measurements, a software program establishes fuel 

volume via a nonlinear fitted model of the height-

volume relationship, or a stored tank geometry 

model [13]. Models and data specific to attitudes and 

flight conditions, can be stored and selected as 

required. The flight attitude is a key input to the 

computation process. It is either established through 

a data connection with the air data/inertial reference 

systems (ADIRS) or calculated from a plane formed 

by the submerged length measurements of three 

active probes. Fig.1 presents a typical dual 

redundant FQI architecture for a single tank and the 

operational states for capacitance probes. A placed 

capacitance probe is either inactive (fully 

submerged or dry) or active (partially submerged). 

A single active probe is typically enough to establish 

a tank volume if the current flight attitude is received 

from the ADIRS. 

 

Fig.1. FQI Architecture and Probe operation. An active probe cuts 

across the fuel-ullage interface surface. 



The FQI probe placement design problem is part 

of a wider class of engineering problems referred to 

as node placement problems (NPP). Applications, 

such as wind farm layout design [15], wireless 

sensor placement [16] and structural health 

monitoring sensor networks [17], are typical 

examples of NPPs. Such problems require an 

unknown number of nodes to be placed to cover a 

defined area [18], achieve a degree of coverage 

redundancy [19], or maximize power extraction over 

a given area and wind-profile [20]. In Table 1, an 

overview of comparable NPP design problems and 

their design and optimization variables are provided.  

In NPPs, the main property information per node 

is its x and y position in an area, bound by an upper 

and lower limit. For the FQI problem, additional 

properties, such as probe mass and an access metric 

are continuous variables, mapped directly to nodes. 

These are comparable to properties, such as 

transmitted power for a sensor node, or wind turbine 

hub height in NPPs [15]. However, other aspects of 

the FQI probe placement problem (FQI NPP) make 

it unique and arguably more challenging than past 

studied NPPs. These aspects include: 

− There is a strong non-linear and discontinuous 

relationship between probe position and tank 

study surface coverage. This can lead to sudden 

changes in fitness for even small changes in 

probe position. Other NPPs have more gradual 

changes in fitness, such as the wake impact 

diminishing with spacing distance of turbines, 

or obstructions causing coverage variations 

when sensor positions change. 

− Three related solutions to the NPP are required, 

in the form of the two independent probe sets 

and the single combined probe architecture. 

This adds a combinatorial dimension to the 

problem, not previously studied in NPPs. 

Mixed design spaces of continuous and 

combinatorial nature, with discontinues objective 

functions, are typical in problems addressed by 

heuristic search methods, such as evolutionary 

algorithms (EA). 

 

Table 1: Overview of FQI comparable NPP design problems. 

 Wind farm design 

[15,20,21,22] 
Wireless Sensor 

Networks  [16,19,18] 
Structural Health 

Monitoring sensor 

networks [23,24] 

FQI probe 

placement 

Constraints Turbine proximity, 

Wind conditions 

 Sensor network 

pattern 

Measurement 

accuracy, 

Probe proximity 

Objectives Installation cost, 

Generated power 

Static coverage, 

Energy consumption, 

Coverage redundancy 

Probability of 

damage detection, 

Maximum area 

coverage 

System mass, 

Probe access 

Design 

variables 

Turbine position, 

No. of turbines, 

Turbine type and height 

Sensor position,  

No. of sensors, 

Sensing range 

Sensor position,  

No. of sensors,  

Sensor parameters  

Probe position,  

No. of probes, 

Probe set members 

Interactions Turbine wake Obstruction regions Structural boundary 

signal reflections 

Tank study surface 

case coverage 

EAs use populations of solutions, in combination 

with variation and selection operators, to increase 

the mean fitness of the population over several 

generations [25,26]. Various engineering design 

problems have been approached with EAs, from the 

domains of energy and transport networks [27,28], 

to task scheduling [29,30] and aerospace [31-35]. 

Most real-world engineering optimization 

applications are of a constraint, multi-objective 

nature, and EAs should establish a set of Pareto-

dominant solutions, which approximate the true 

front accurately in a region of interest to a decision 

maker. 

Early algorithms, such as NSGA-II [36] and 

SPEA [37], made use of Pareto-ranking, crowding 

distance metrics and dominance strength ranks, to 

achieve evenly spaced and advancing Pareto fronts. 

An alternative has been proposed with MOEA/D 

[38], which decomposes the optimization problem 

into a set of scalar vector functions in the objective 

space and concurrently optimizes each. Therefore, 

some control over the spacing and diversity of 

solutions on the final Pareto front is available. 

Similarly, NSGA-III predefines a set of reference 

points on a hyperplane in the objective space and 

couples them to a niching strategy [39]. It is shown 

to perform well for optimization problems with 

more than 5 objectives. Another popular approach is 

the generalized differential evolution 3 algorithm 

GDE3 [40]. This operates with a fitness domain 

adaptive mutation and crossover operator, which 

makes GDE3 less reliant on control parameter 

settings. 

In the domain of NPPs, genetic algorithms 

[41,42] have been applied frequently. Since the 

solution representations to NPPs can be of  variable-

length, also referred to as metameric [43], special 

consideration when designing cross-over, mutation 

and selection mechanisms are needed to 

accommodate offspring generation, and prevent 

premature length convergence and solution bloat 

[44]. A flexible GA algorithm proposed by Zhang et 

al. [15], does not discretize the node position space, 

which has been typical in previous implementations. 



Instead, a subarea-swap crossover procedure 

ensures variable number of nodes are inherited by 

individuals. 

Based on the success of heuristic optimization 

methods, for NPPs and due to the unique 

requirements of the FQI NPP, a new crossover 

procedure and constraint handling approach for a 

genetic algorithm is required.  

3. Genetic algorithm implementation for the 

FQI NPP 

3.1. FQI NPP formulation 

Establishing fuel-ullage interface surfaces for 

complex 3D tank geometry data is computationally 

intensive and undesirable to be in the loop for an 

optimization process. This can be avoided by 

converting the continuous geometry space of the 

tank into a finite, discrete set. This enables 

computing grid cell data prior to executing the 

optimization routine, therefore decoupling it from 

the tank study execution.  

With this approach, the tank grid data set 

constitutes the main set of information on tank study 

fuel surfaces, probe height, distances from access 

panels, and accuracy of the grid cell over the fuel 

surface cases. From this, an optimizer has to re-

compute constraint and objective values of cell 

combinations only.  

The grid data set is summarised in Table 2 and the 

projection process for the tank study surface data is 

visualized in Fig.2. 

Table 2: Grid cell information. 

ID Grid Cell Data Variable Size 

1 Tank study surfaces 𝒯 𝑁𝑐𝑒𝑙𝑙𝑠 ∗ 𝑁𝑐𝑎𝑠𝑒𝑠 

2 Probe height at cell ℋ 𝑁𝑐𝑒𝑙𝑙𝑠 

3 
Min. distance from 

access panel 
𝒟 𝑁𝑐𝑒𝑙𝑙𝑠 

4 Grid case accuracy ℰ𝑔𝑟𝑖𝑑 𝑁𝑐𝑒𝑙𝑙𝑠 ∗ 𝑁𝑐𝑎𝑠𝑒𝑠 

 

3D Fuel - ullage surface intersection for tank study case 

 

Fig.2. 3D surface projection along the z-axis vector, onto an x-y 

plane of 2D tank grid cells. Boolean grid data representing tank 

study surface (red=1, black=0) 

The 3D tank geometry is projected on an x-y 

plane along the z-direction vector to define a tank 

grid, as shown in Fig.2.  

This grid is the set 𝒞 of cells with (x, y) position 

pairs: 𝒞 = {(𝑥, 𝑦)1, (𝑥, 𝑦)2, (𝑥, 𝑦)3, … , (𝑥, 𝑦)𝑁𝑐𝑒𝑙𝑙𝑠} (1) 

A grid cell can represent a probe position 𝑝 and a 

combination of probes form the probe set 𝒫. 𝒫 = {𝑝1 , 𝑝2, 𝑝3, … , 𝑝𝑁𝑝𝑟𝑜𝑏𝑒𝑠} (2) 

The redundant probe sets A and B form an FQI 

architecture, 𝒜𝐹𝑄𝐼: 𝒜𝐹𝑄𝐼 = {𝒫𝐴, 𝒫𝐵} (3) 

A tank study produces a set of 3D fuel-ullage 

interface surfaces, 𝒯: 𝒯 = {𝒮1, 𝒮2, 𝒮3 , … , 𝒮𝑁𝑐𝑎𝑠𝑒𝑠} (4) 

Each surface 𝒮 is projected on the same x-y plane 

and then defined by a set of Boolean entries per tank 

grid cell. The statement 𝑏 = 1 indicates that the cell 

is part of the fuel surface 𝒮: 𝒮 = {𝑏1, 𝑏2, 𝑏3, … , 𝑏𝑁𝑐𝑒𝑙𝑙𝑠} (5) 

where 𝑏 ∈ {0,1} (6) 

The accuracy requirements are represented by a 

set of volumetric errors ℰ𝑟𝑒𝑞   for each tank study 

case, where each volumetric error entry 𝑟 , is 

calculated from the defined percentage errors for 

tank fill states and attitude: ℰ𝑟𝑒𝑞 = {𝑟1, 𝑟2, 𝑟3, … , 𝑟𝑁𝑐𝑎𝑠𝑒𝑠} (7) 

The accuracy set ℰ𝑔𝑟𝑖𝑑  is computed for all tank 

study cases and grid cells. ℰ𝑐𝑒𝑙𝑙 = {𝑒1, 𝑒2, 𝑒3, … , 𝑒𝑁𝑐𝑎𝑠𝑒𝑠} (8) ℰ𝑔𝑟𝑖𝑑 = {ℰ𝑐𝑒𝑙𝑙 ,1, ℰ𝑐𝑒𝑙𝑙 ,2, ℰ𝑐𝑒𝑙𝑙 ,3, … , ℰ𝑐𝑒𝑙𝑙 ,𝑁𝑐𝑒𝑙𝑙𝑠} (9) 

The error value 𝑒  in ℰ𝑐𝑒𝑙𝑙  is the accuracy of a 

probe in a grid cell and depends on the current 

submerged length and the probe upper and lower 

accuracy bounds. It is also a combination of probe, 

tank modelling and density measurement errors, as 

described in Section 5.  

The tank height ℎ in each cell and the minimum 

distance 𝑑 of the cell from the closest access panel 

point are contained in sets ℋ and 𝒟, respectively. ℋ = {ℎ1, ℎ2, ℎ3, … ℎ𝑁𝑐𝑒𝑙𝑙𝑠} (10) 𝒟 = {𝑑1, 𝑑2, 𝑑3 … 𝑑𝑁𝑐𝑒𝑙𝑙𝑠} (11) 

The performance objectives for each 𝒜𝐹𝑄𝐼  are 

defined by the architecture mass 𝑚𝐹𝑄𝐼  and the 

distance of probes from access panels, 𝑑𝐹𝑄𝐼 . For 

Fuel 

Fuel–ullage surface 

Ullage 



mass, the total architecture probe length is used as a 

proxy. This is effective, as the probe length-to-mass 

relationship is well established and often quoted by 

equipment suppliers [45]. However, representing 

accessibility with a simple access panel distance 

metric is only appropriate for preliminary design, 

but is insufficient during detailed design where 

component packaging, visibility and other 

ergonomic factors need to be evaluated. 

𝑚𝐹𝑄𝐼 → ∑ ℎ𝑝𝑟𝑜𝑏𝑒,𝑗
𝑁𝑝𝑟𝑜𝑏𝑒𝑠

𝑗=1  (12) 

𝑑𝐹𝑄𝐼 = ∑ 𝑑𝑝𝑟𝑜𝑏𝑒,𝑗
𝑁𝑝𝑟𝑜𝑏𝑒𝑠

𝑗=1  (13) 

where ℎ𝑝𝑟𝑜𝑏𝑒,𝑗 ∈  ℋ (14) 𝑑𝑝𝑟𝑜𝑏𝑒,𝑗 ∈  𝒟 (15) 

The FQI probe placement optimization problem 

(FQI-NPP) is to minimize a range of objective 

functions for a probe architecture, 𝒜𝐹𝑄𝐼 = {𝒫𝐴 , 𝒫𝐵}. 

Here, two objectives for mass and access panel 

distance are chosen, namely min 𝑚𝐹𝑄𝐼 = 𝑓1(𝒜𝐹𝑄𝐼) (16) min 𝑑𝐹𝑄𝐼 = 𝑓2(𝒜𝐹𝑄𝐼) (17) 

Subject to the constraint that the gauging error of 𝒜𝐹𝑄𝐼  , 𝒫𝐴 and 𝒫𝐵 , as established by ℰ𝑔𝑟𝑖𝑑, is within 

the required error bounds for all ℰ𝑟𝑒𝑞 , as follows: 𝑔𝑐1 (ℰ𝑐𝑒𝑙𝑙(𝒜𝐹𝑄𝐼), ℰ𝑟𝑒𝑞(𝒜𝐹𝑄𝐼)) ≤ 0 (18) 𝑔𝑐2 (ℰ𝑐𝑒𝑙𝑙(𝒫𝐴), ℰ𝑟𝑒𝑞(𝒫𝐴)) ≤ 0 (19) 𝑔𝑐2 (ℰ𝑐𝑒𝑙𝑙(𝒫𝐵), ℰ𝑟𝑒𝑞(𝒫𝐵)) ≤ 0 (20) 

A further constraint is that the minimum distance 

between probes in 𝒜𝐹𝑄𝐼   must be above a cut-off 

value 𝑑𝑐𝑢𝑡𝑜𝑓𝑓 , to prevent probes being too close to 

each other: 𝑔𝑐3(𝒜𝐹𝑄𝐼) >  𝑑𝑐𝑢𝑡𝑜𝑓𝑓  (21) 𝑝𝑖 ∈  𝐶 (22) 

3.2. Overview of the FQI-GA 

The FQI-GA algorithm is an elitist GA with a two 

staged fitness assignment approach, random parent 

selection and a FQI-NPP specific formulation of 

crossover and mutation. A block diagram overview 

of its processes is presented in Fig. 4. 

3.3. Genetic representation 

The representation of a solution to the FQI NPP 

problem takes the form of a set of grid cell identifiers. 

If the absolute x-y position values are required, the 

cell identifier is related back to the set 𝒞  of grid 

position pairs. 

A population of solutions is a matrix of grid cell 

identifiers with rows of variable length, where each 

row is an FQI probe architecture. The probe sets A 

and B are defined by a vector, storing the set split 

points per solution, as shown in figure 3. 
Set split point 

Cell ID 3 23 193 45 9841 76 409 398 

      

 𝒫𝐴 𝒫𝐵 𝒜𝐹𝑄𝐼 
Fig. 3: Solution representation in the FQI-GA 

 

Fig. 4. Block diagram of the FQI GA process 

3.4. Constraint and Objectives handling 

The three accuracy constraints, as expressed in eq. 

(18–20), are translated into a single composite 

objective, through equal weighting. This is 

appropriate for the FQI problem, since the 

constraints are continuous [46]. For example, a 

probe architecture may only cover a certain number 



of fuel surface cases, leading to unmeasurable fuel 

states, which degrade the measurement accuracy. 

Therefore, as more surface cases are covered, the 

accuracy improves. The probe proximity constraint 

is considered through a death penalty method [46], 

i.e. solution sets with probes violating the constraint 

are discarded. 

Meeting the accuracy constraints, while 

minimizing the probe mass and access, is a trade-off. 

It could be approached through a Pareto-based 

sorting method of the objectives with included 

penalty factor scaled constraint objectives. However, 

determining the penalty scaling factors is 

application-specific, and a different approach is 

therefore chosen. 

 Seok et al. [18], proposed a bi-population method, 

in which one set of constraint-satisfying and a 

second of partially-satisfying solutions are evolved 

in parallel. Rather than operating in parallel, the 

approach taken for the FQI problem operates in 

series to ensure only fully constraint-converged 

solutions can explore the performance objectives.  

In the first stage, solutions with partially fulfilled 

constraints dominate the population. Their fitness is 

assigned through an equally weighted ranking of 

their three accuracy constraints and their number of 

probes in the solutions set. Including the probe 

number in the fitness assignment is a requirement, 

as its omission leads to premature convergence on 

solutions with high number of probes. 

In the second stage, the elite population of 

accuracy-converged solutions is explored against 

the defined performance objectives. Solution fitness 

is now assigned with a standard non-dominant 

sorting mechanism, including crowding distance 

considerations [36]. Even though an NSGA-II type 

approach is outperformed by methods such 

MOEA/D and NSGA-III, it is simple in 

implementation and does not need a pre-definition 

of the reference domain for the Pareto-front.   

3.5. Selection and survival process 

As only the elite population produces offspring, 

its definition process, as described in section 3.4, 

already strongly drives selection. The parent 

selection method from this elite population is a 

uniform random selection. From the offspring and 

the elite population, a new population is formed, and 

all other solutions are therefore discarded. 

3.6. Crossover and mutation 

For the FQI problem, the transferable 

characteristics are the (x, y) position of the probes, 

the number of probes and their arrangement in sets. 

The FQI-GA offspring generation process is 

described by the block diagram in Fig. 5. First, the 

offspring solution length is determined by a uniform 

random selection of a value from the set 𝒲  of 

solution lengths, where 𝑁𝑝𝒜𝑃1  and 𝑁𝑝𝒜𝑃2  are the 

solution lengths of parent 1 and 2 respectively. 𝒲 = [𝑁𝑝𝒜𝑃1 − 1, 𝑁𝑝𝒜𝑃1 , … , 𝑁𝑝𝒜𝑃2 , 𝑁𝑝𝒜𝑃2 + 1] (23) 

Therefore, the number of probes of the parent 

architectures, determines the number of probes of 

the offspring, but can also increase or decrease by 

one. This extension ensures that both larger and 

smaller probe solution sets can be generated from 

the initial randomly seeded population. 

The convergence of the accuracy constraint 

values of eq. (19) and eq. (20), for the four parent 

sets 𝒫𝐴1, 𝒫𝐵1, 𝒫𝐴2, 𝒫𝐵2, are used to select candidates 

for crossover. If none have converged, all sets have 

uniform probability of being inherited. This solution 

set based selective crossover approach ensures that 

converged sets are more likely to be regenerated 

with the same probe configuration. This part of the 

process is marked as (A) in Fig. 5. 

 

Fig. 5. Block diagram of the recombination method, using a 

constraint converged sorted set process (CC-SS) 

A range of options have been investigated for the 

crossover process, marked as (B) in Fig. 5. In NPPs, 

the crossover has been addressed with a subarea-

swap operator in the past [15]. This operator 

randomly chooses two nodes and establishes the 



area swept by the radius of halve their Euclidian 

distance. Any nodes which fall in this area are 

swapped between the two parents to form an 

offspring node set. Other recombination 

mechanisms, such as single point crossover [25] and 

a performance-weighted ranked crossover were also 

implemented and investigated, with results 

presented in section 3.7.  

Mutation, as described by part (C) in Fig. 5, either 

induces small positional variations for a probe 

position, or sets a new random position. The 

probability values, 𝑝2𝑚 and 𝑝3𝑚, control mutation 

with the options of a mutated position operation in 

the surrounding area of the parent probe, and a fully 

random new probe position, respectively. The third 

possibility is a maintained probe position, controlled 

by 𝑝1𝑚. The probability of inheriting a fully random 

probe and a probe with a maintained or slightly 

modified position are EA parameters which trade-

off search diversity with convergence rate. 

3.7. Numerical experimental tests 

This section presents performance results for a set 

of experimental runs of variations of the FQI NPP 

GA. All experimental results are derived from the 

study of a single tank geometry, as visualized in Fig. 

6. Algorithm parameter settings are constant for 

each variation investigated and are shown in Table 

3. The algorithm variations studied focus on the 

crossover and parent selection processes only, while 

maintaining the NSGA-II like fitness assignment 

strategy for the Pareto set of solutions.  

For each study case, the performance is measured 

using two hypervolume indicators (HV) [47], one 

for the performance objectives and the second for 

accuracy constraints. HV is a widely used metric, 

which captures the solution population’s cardinality, 
accuracy and diversity in a single value, making it 

effective for comparisons [48]. The HV reference 

vector for both the median and 95% percentile 

confidence intervals of the HV results are calculated 

from a sample of six independent experiment 

executions.  

In the first experiment, the recombination process 

feature of identifying and maintaining constraint 

converged sets separate from un-converged is tested. 

The baseline algorithm (FQI-GA-CC-SS) is as 

shown in Fig. 5, but with no operation taking place 

for step (B). The first modified process removes the 

decision step (A) and therefore produces offspring 

sets from any parent sent (FQI-GA-SS) with the 

mutation operation (C) only. 

The subarea-swap crossover operator is also 

tested, again in combination with constraint-

converged set sorting (FQI-GA-CC-SAS) or 

operating on any two randomly selected sets (FQI-

GA-SAS). Even though care was taken to follow the 

implementation as described by Zhang et al. [15], it 

is important to note that the choice of software 

platform and difference in implementation can lead 

to significant performance differences [49]. 

Finally, two further crossover candidates, which 

operate after sorting sets by convergence, are tested.  

A single point crossover approach (FQI-GA-CC-

SPC), with random crossover point selection and a 

probe performance metric crossover (FQI-GA-CC-

PPW). The probe metrics relate to the fuel surface 

cases a probe is uniquely active for, i.e. no other 

probe in the set is active. Metric 𝑀1 expresses the 

number of unique surface cases covered as a ratio of 

total tank study cases 𝑁𝑐𝑎𝑠𝑒𝑠. The second metric 𝑀2 

identifies the surface cases which have the highest 

ratio of fuel surface area 𝐴𝑘,   𝑢𝑛𝑖𝑞𝑢𝑒 𝑗  to tank area 𝐴𝑡𝑎𝑛𝑘.  𝑀1,𝑗 = 𝑁𝑐𝑎𝑠𝑒𝑠,   𝑢𝑛𝑖𝑞𝑢𝑒 𝑗 𝑁𝑐𝑎𝑠𝑒𝑠 (24) 

𝑀2,𝑗 = max ( 𝐴𝑡𝑎𝑛𝑘𝐴𝑘,   𝑢𝑛𝑖𝑞𝑢𝑒 𝑗) (25) 

Probes from the selected sets of the parents are 

ranked according to metrics 𝑀1  and 𝑀2 . Their 

combined rank determines the order in which they 

will be inherited by an offspring set. The rationale 

for including such metrics into a crossover process 

is to encourage offspring probe sets, which maintain 

probes that are effective at covering the tank study 

fuel surface cases. 

Table 3: FQI-GA parameters 

Symbol Parameter Value 𝑁𝑔𝑒𝑛 Number of generations 1000 𝑁𝑝𝑜𝑝 Population size 500 𝑁𝑝𝑎𝑟𝑒𝑡𝑜 Elite population size 50 𝑝1𝑚 Probability to maintain position  30% 𝑝2𝑚 Probability to mutate to local position 60% 𝑝3𝑚 Probability to mutate to random position 10% 

Note: 𝑝1𝑚 + 𝑝2𝑚 + 𝑝3𝑚 = 100 
 

 
Tank study cases, 𝑁𝑐𝑎𝑠𝑒𝑠 990 (3 roll x 11 pitch x 30 fill states) 
Grid cell size 0.05 m x 0.05 m 
Tank grid cells, 𝑁𝑐𝑒𝑙𝑙𝑠 7788 

Fig. 6. Tank geometry and parameters for the numerical 

experiments 



  

 

(a) (b) (c) 

(d) (e) (f) 

Fig. 7. Hypervolume indicator mean and 95% confidence interval (CI) results against generation count from the recombination variation 

experiments. (a-c) show the HV for the accuracy constraints. (d- f) show the HV for the performance objectives.   

Table 4. HV results after 𝑁𝑔𝑒𝑛=1000 for accuracy constraint and performance objectives 

 Hypervolume indicator of accuracy constraint fitness Hypervolume indicator of performance objectives 

Worst Mean Best 95% CI Worst Mean Best 95% CI 

Random Search 17674 19586 22563 ± 2094 31.21 73 130 ± 38 

FQI-GA-CC-SS 36450 36450 36450 ± 0 1537 1596 1718 ± 83 

FQI-GA-SS 18782 31357 36450 ± 8429 171 847 1479 ± 557 

FQI-GA-SAS 11183 24756 36450 ± 13485 185 555 1229 ± 476 

FQI-GA-CC-SAS 36450 36450 36450 ± 0 258 828 1268 ± 357 

FQI-GA-CC-SPC 36450 36450 36450 ± 0 607 860 1028 ± 173 

FQI-GA-CC-PPW 36450 36450 36450 ± 0 1281 1490 1611 ± 134 

 

Results in Fig. 7a, Fig. 7b and Fig. 7c show that 

making a distinction between non-converged and 

converged accuracy constraints sets is key to enable 

convergence, independent of the crossover process. 

This is due to the combinatorial nature of the 

solution, where specific sets of probes together fulfil 

a constraint.  

The results of the different crossover processes 

show that both the subarea swap crossover and a 

single point crossover are performing poorly for the 

FQI NPP. The mixing of probes from two converged 

sets does not effectively lead to offspring sets which 

are both converged and explore the Pareto front well. 

An exception is the FQI-GA-CC-PPW crossover 

method, where probe metrics influence the selected 

probe to be inherited. However, as shown by the Fig. 

7f, and Table 4, even if such a crossover process is 

chosen, the baseline algorithm FQI-GA-CC-SS 

outperforms with only the use of mutation 

operations. 

Even for the best performing crossover 

implementation, FQI-GA-CC-SS, the Pareto-front 

quality, as indicated by the HV mean and 95% CI 

could be improved. One option would be to use the 

HV for solution fitness assignment. Calculating the 

contribution each Pareto-optimal solution makes to 

the HV and combining it with a grid based objective 

space niching strategy, has been shown to be 

effective [50,51].  This does not require significant 

changes to the FQI-GA two-staged architecture, as 

would be the case with MOE/D or NSGA-III.  

Finally, algorithm performance results presented 

here need to be investigated for grid cell size 

sensitivity. The chosen value of 0.05 m is based on 

typical physical probe size diameters and therefore 

represents the lower limit on grid cell size. 



4. Application study 

4.1. Analysis of the Airbus A320 FQI System 

Available data from the A320 FQI system and 

wing geometry [52-54] was compiled to re-create an 

approximation of the wing tank geometry, as shown 

in Fig. 8. The geometry is generated with a bespoke 

parametric representation for the wing, which could 

be replaced by other parametric aircraft geometry 

tools, such as OpenVSP [55]. The main purpose is 

to couple the FQI-GA method to a parametrically 

defined geometry, to enable its implementation in 

KBE frameworks. 

Gauging accuracies are especially important in 

the ground attitude for accurate refuelling. ARINC 

611-1 specifies typical requirements for large 

aircraft of -0.5% under-read at empty and no over-

read, increasing linearly to +/-1% at full tank [11]. 

The Airbus A340 gauging system has an accuracy 

of around 0.4% at empty and 1% at full [56]. 

Accuracies for the A320 are quoted as being 

between +/-1% at empty and +/-2% at full [57,58]. 

In order to have zero over-read at empty/unusable 

fuel conditions [59], FQI systems are bias corrected 

to shift their over and under read curves downwards. 

Based on standard practice, three attitude 

scenarios were defined for the case study: ground, 

normal flight, and flight with extended roll and pitch 

attitude. Aircraft operations data sheets [60,61] were 

used to define the roll and pitch attitude limits for 

the given scenarios. The extended scenario values 

were based on the A320 flight envelope protection 

limits for angle of attack and pitch, whereas normal 

flight values are based on typical climb and descent 

flight path angles. On the ground, typical runway 

slope limits were used to define the ground attitude 

range [61]. 

Given these data, the estimated A320 accuracy 

requirements for the attitude scenarios were defined 

as shown in Table 5. A standard accuracy 

degradation factor (DF) of three was used for cases 

where the failure of one redundant probe set had 

occurred [11]. 

The case study focuses on the inboard tank only, 

which runs from the root rib, until rib number 15. 

Rib 2 has a set of flap valves, which only allow fuel 

to flow inboard. For the purpose of this case study, 

these flap valves have not been considered in the 

model.  

The attitude envelope of +/-10° pitch and +/- 3° 

roll over the tank fill state was discretized to conduct 

the tank study. Roll was selected to be represented 

by 3 cases, whereas pitch was discretized at 2-degree 

intervals, leading to 11 pitch cases. The tank fill state 

was varied at 3% steps, leading to 30 discrete cases, 

including empty and full. The empty and full cases 

correspond to the unusable fuel and max fill case of 

the tank, respectively. For the A320, these were 

approximated to be 0.1% and 98% of the tank 

volume. With these attitude and fill state step sizes, 

a total of 990 tank study cases are needed. Fig. 9 

illustrates some of the resulting tank study fuel-

ullage interface surfaces. 

The total number of tank study cases, together 

with the chosen grid cell size, determines memory 

allocation requirements. For this case study, a 

combined parallel runtime of 30 minutes on an Intel 

i7-2600 CPU @ 3.4GHz using 8GB of RAM and 

Windows 7, was sufficient. 

 

 

 

 

Fig. 8. A320 wing and tank geometry approximation. 

Table 5: Approximated A320 accuracy requirements from [57,58]. 

Mode DF 
Accuracy Attitude Range (°) 

Hi Lo Pitch Roll  Case 

Normal 1 
+ 1% FOB 

- 0.5% FF – 0.5% FOB +/- 3 

+/- 3 

 

Ground 

- 1 %FF - 0.5% FOB -3<< +5 Normal 

+ 1 %FF + 1.5% FOB - 1 %FF - 1.5% FOB +/-10<<+/-3 Extended 

Degraded 3 
+3% FOB 

- 1.5% FF – 1.5% FOB +/- 3 Ground 

- 3 %FF – 1.5% FOB -3<< +5 Normal 

+ 3 %FF + 4.5% FOB - 3 %FF – 4.5% FOB +/-10<<+/-3 Extended 

FOB= Fuel on Board, FF = Full Fuel, DF = Degradation factor 



The A320 wing FQI probe system consists of 

two sets of probes, each having their own in-tank 

wiring harness and a probe oscillator driver. Both 

sets provide data to the fuel quantity indication 

computers, which calculate the current fuel mass per 

tank from the probe readings, ADIRS inputs, and 

stored tank height-volume tables. Probes are 

generally non-vertical, which allows them to cover 

more fuel surface but increases their length and 

therefore weight. An approximated representation of 

the dual redundant FQI architecture [58,62], is 

shown in Fig. 10. Each set has six probes and can 

cover all measurement requirements for the 

extended flight envelope under degraded accuracy 

values. As the FQI-GA operates on a 2D projection 

grid, the angled probes from the A320 are 

approximated with a vertical probe. In the optimal 

re-design approach, an FQI architecture redundancy 

is integrated by requiring two probe sets to 

independently fulfil the accuracy requirements. This 

makes the approach specific to a dual redundant FQI 

design philosophy, which is common in modern 

aircraft, as seen in the A320 example, but not 

explicitly required by civil certification standards. 

Table 6: Error sources included in error modelling. 

Error 

source 
Value Type Symbol 

Density 

error 

0.4% of density 

indication 
Random 𝑒𝑑𝑒 

Tank 

modelling 

0.2% of max tank 

volume 
Bias 𝑒 𝑉,𝑡 

Probe 

error 

±0.5% (dry) linearly 

increasing to 

±1.6% (full) of probe 

indication 

Random 𝑒𝐿𝐵, 𝑒𝑈𝐵 

No 

coverage 

Non-measurable 

volume between two 

probes 

Bias 𝑒𝑉,𝑐 

The gauging accuracy of a probe set, or 

architecture is calculated by considering three error 

sources: density measurement, tank modelling, and 

probe indication errors. For each tank analysis case, 

the levels of submersion of probes in the architecture 

varies, leading to changes in total gauging accuracy. 

A fourth error term is required in the case of a non-

measurable volume, due to no probes being active 

for a tank. This is visible in Fig. 11, in which some 

cases are not covered by the probes and a resulting 

high spike in gauging error results. A summary of 

the error sources and their estimated values based on 

the available literature [63,45], is presented in Table 

6. 

The total gauging mass error 𝑒𝑇 is the arithmetic 

combination of errors, as shown in eq. (26-28). The 

volume error for a probe is based on its length 𝑙𝑝, 
wetted length 𝑙𝑝, 𝑠, measurement error 𝑒 𝑝,𝑧 and the 

gradient of volume change per height 
𝑑𝑉𝑑𝑧   of the 

corresponding tank section. The volume error is 

combined with a density error 𝜀𝑑𝑒𝑛 and expressed as 

a ratio of maximum fuel mass, shifted by the bias 

term ∆𝐹𝑄𝐼,𝑏. 𝑒 𝑝,𝑧 = (±𝑒𝐿𝐵 + 𝑙𝑝 ∗ (∆𝑒𝑈𝐵−𝐿𝐵)) ∗ 𝑙𝑝, 𝑠 (26) 𝑒 𝑉,𝑝 = 𝑒 𝑝,𝑧 ∗ 𝑑𝑉𝑑𝑧        (27) 

𝑒𝑇 = (±𝑒𝑉,𝑡 ± e𝑉,𝑝 ± 𝑒𝑉,𝑐) ∗ (𝜌 ± 𝜀𝑑𝑒𝑛)𝑉𝑇 ∗ 𝜌 − ∆𝐹𝑄𝐼,𝑏  (28) 

Some tank study cases have multiple active 

probes. Each has its own volume error magnitude, 

depending on its wetted length and local 

volume/height gradient. The probe with the lowest 

error value is chosen as active for this case. Finally, 

all gauging errors are shifted with a system-bias, 

equal to the over-read value at the zero useable fuel 

level. This is a certification requirement for large 

civil aircraft under §25.1337 [59]. 

There is a relation between accuracy estimations 

and the tank geometry and fuel surface calculations. 

For example, tank geometries with low dihedral 

angles, may require more roll angle steps, as the fuel 

surface changes more drastically compared with a 

high dihedral wing. In addition, the chosen 

discretization step size for the fuel state has a direct 

impact on the probe accuracy calculation in the case 

of a non-covered fuel surface. This is because the 

error term 𝑒𝑉,𝑐 depends on the next case at which a 

probe is active, which may be closer or further, 

depending on the fill state step size. Finally, as the 

tank volume and surface calculations are coupled, 

the simplified geometry of the tank structure and the 

omission of internal fuel system components can 

render volume estimates inaccurate, which impacts 

the probe accuracy estimations. 

Notwithstanding these potential modelling 

uncertainties, Fig. 11 shows the A320 tank study 

accuracy results for the two independent sets of 

probes and the nominal case where all probes are 

active. For the three attitude envelope cases, the 

highest over and under-read results are plotted as a 

boundary around the rest of the non-critical cases. 

This boundary can then be compared to the 

requirements, represented by the dashed lines. 

The results show that, for the assumed error 

source magnitudes, the specified degraded accuracy 

limits were achieved. For the nominal limits of 

ground and normal flight attitudes, the under-read 

error between the 25 and 40% tank fill states was 

marginally exceeded as, indicated in Fig. 11. 



  

  
a) Fill state cases at 0° pitch and 0° roll angle b) Pitch and roll angle cases at zero fill state 

Fig. 9. Tank study results. The red lines represent contours of example fuel-ullage interface surfaces. 

  

Fig. 10. Approximated A320 probe positions and directions. 

   
Set A active Set B active Both Sets 

Tank fill state (%) 

Fig. 11. A320 tank study accuracy results for redundant probe sets and full architecture. 



4.2. Optimal FQI probe placement redesign and 

comparison with the A320 baseline 

Given the case study geometry data and accuracy 

requirements, an overall satisfactory agreement 

between requirements and achieved accuracy was 

shown for the reconstructed A320 FQI architecture. 

Subsequently, this design is the baseline reference 

for comparisons with re-designs produced by the 

FQI-GA under equivalent requirements and 

constraints. Three studies were conducted, as shown 

in Table 7, with the same algorithm parameter 

settings from Table 3. 

Table 7: A320 FQI probe placement redesign studies 

Study Performance Objective(s) 

A Minimize mass 

B Maximize access 

C Minimize mass & maximize access 

The resulting probe architectures from studies A 

and B are shown in Fig. 15. The optimization 

achieves a total probe count reduction of four for 

both. The probe count is driven by the accuracy 

constraints rather than the performance objectives 

and therefore is equal in both studies, whereas the 

probe positions varies. The reduced probe count 

leads to reduced overlap coverage of tank study fuel-

ullage interface surface cases. This is illustrated in 

Fig. 12 and Fig. 13 for study A, with coverage for 

redundant set A shown only. Coverage is displayed 

for three single roll angle cases and a range of pitch 

angles and fill states. In the 0 to 50% fill state range, 

the coverage is provided by the A320 probes A1, A2 

and A3, located in the tank rib bays (RB) 1, 2 and 3. 

Their combined coverage can be achieved by probes 

AA1 and AA2, which are located in RB1 and RB3. 

 

Fig. 12. Tank study coverage for the A320 and the study A 

resulting probes of set A. 

 

Fig. 13. Tank study coverage for the study A resulting probes of 

set A. 

All individual probe coverages are combined to 

form the probe set coverage, as shown in Fig. 14. 

Overlap is reduced throughout the tank study cases, 

with the peak values reducing from 6 to 4. There was 

some increase in areas of non-coverage, such as the 

90-100% fill state at pitch angles above -8°. 

However, this non-coverage does not lead to a 

violation of the accuracy requirements, as solutions 

from the FQI-GA are fully constraint-converged. 

A simplification, which impacts the probe count 

for the re-design study, is the omission of the flap 

valves located in rib 2. Flap valves only allow fuel 

to flow unidirectional through a rib. Therefore, in 

the case of the A320, with a negative roll angle two 

fuel surfaces would form for the inboard tank; one 

located in RB1 and the second in the rest of the tank. 

This requires additional probes in RB2 in order to 

measure this surface at low fuel states, which are 

present in the A320 arrangement. 

In the re-design studies, it is assumed that 

accuracy, rather than tank study case coverage 

requirements are to be met. However, it is possible 

that the A320 FQI probe placement requirements 

were based on coverage and accuracy, resulting in a 

design with more probes. 

A probe position comparison is presented in Fig. 

15 for studies A and B. In study A, probes were 

forced towards the front spar, where their length 

reduced due to the tank shape. Probe length can vary 

by as much as 0.5 m between the front and rear spars, 

at RB2. In contrast, for study B, probes are located 

towards the access panels, to minimize the access 

objective. Because the access panels are located 

around the thickest part of the rib bays, the resulting 

architectures have longer probes.  
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Fig. 14. Tank study coverage comparison for one probe set of the A320 and the FQI-GA study A. 

  
Study A  

  

Study B  

Fig. 15. FQI-GA and A320 probe position comparison and objective function grid values.  

Fig. 15 also compares the A320 probe positions 

and highlights differences with the closest probes of 

the re-design. The A320 arrangement favours 

positions closer to access panels, rather than 

optimizing towards shorter probes. 

A comparison of probe architecture measurement 

accuracy for studies A, B and the baseline, is shown 

in Fig. 16. It confirms that the FQI-GA solution has 

achieved constraint convergence, as the maximum 

error bounds for the three flight cases are within the 

respective requirement area. A difference between 

the resulting re-designed and the A320 architectures, 

is a spike in measurement error around the empty 

and full cases for the extended flight attitude case. 



The fuel-ullage interface surfaces for these cases, 

have no active probes, whereas the A320 achieves 

full coverage for the full tank study case set. RB1 

always requires two probes, one for each redundant 

set, which is also the case for the A320 arrangement. 

The re-designed solutions, however, have probes 

towards the centre of the rib bay, whereas the A320 

locates them close to the root rib. Their position 

indicates that they may be designed to cover cases 

below the assumed 0.1% unusable fuel limit of the 

available tank volume in the nominal case. 

Therefore, it is possible that the A320 design 

requirements were more stringent for the nominal 

tank study cases, as assumed for the re-design study. 

 
Tank fill state (%) 

A320 Study A Study B 

 

Fig. 16. Comparison between A320 Study A and B probe architecture accuracies. 

 

  

Fig. 17. Pareto fronts of four FQI-GA executions for study C. 

Probe mass is modelled as a function of probe length with 0.45 

kg/m and a base mass per probe of 0.8 kg. 

 

Fig. 18. Probe positions of all Pareto optimal FQI architectures 

for study C. 

Study B 

Study A 



Study C has two performance objectives and its 

resulting Pareto fronts are shown in Fig. 17. The four 

independent FQI-GA executions produced similar 

fronts with minor differences in accuracy and 

diversity. Overall an almost linear front, with a ratio 

of approximately -16 to 1 for access distance to 

probe length is estimated. This means that probe 

architectures will decrease 16 times faster for access 

distance than for the increase in probe mass. The 

shape of the Pareto front is mainly driven by the tank 

geometry height distribution, as shown in Fig. 15, 

whereas the gradient depends on the probe mass 

model.  

Fig. 18 shows the probe positions of all Pareto-

optimal FQI architectures, shaded according to their 

objective values. At the extreme ends, the resulting 

probe positions mirror the position trends from study 

A and B, as expected. Architectures which fall in 

between the two objective cases have probes which 

change position in various ways. Probe positions 

remain relatively static for RB1 and RB6 whereas 

other probes shift in the chord direction. 

Even-though the exact probe locations of the 

A320 FQI design could not be regenerated by the 

FQI-GA process, results show good similarity in 

position trends. Factors impacting the FQI-GA 

outcomes have been discussed and range from 

accuracy requirement assumptions to tank geometry 

modelling. In order to select a probe architecture 

from the Pareto front, other requirements need to be 

considered. Effects such as installation interface 

availability on rib, spar or skin structures, proximity 

to water collection areas and other fuel system 

components need to be considered.  

 Rather than producing such a fully validated FQI 

design, the main outcome from the case study is the 

demonstration that the FQI-GA process can 

incorporate industrially representative requirements 

for multiple accuracy constraints, complex tank 

geometries and handle multiple design objectives.  

5. Conclusions 

This paper presents a new, knowledge-based 

engineering compatible solution process to the 

optimal placement of FQI gauging probes under 

redundancy and measurement accuracy constraints. 

It enables fast preliminary design studies, where 

objectives, constraints, requirements, and geometry 

can be explored. 

The FQI NPP is formally defined, based on 

discretized tank geometry and fuel surfaces, 

projected onto a 2D plane. This converts the 

problem into a combinatorial set selection 

optimization problem, which is different to the 

traditional NPP. A genetic algorithm with a 

sequential, two-staged fitness assignment strategy is 

proposed and tested for a range of crossover 

procedures. It is shown that the treatment of probe 

sets according to their accuracy constraint 

convergence is key for any crossover procedure. A 

range of crossover methods for NPPs were tested, 

including subarea-swap, and are shown to only 

provide little performance benefits, compared with a 

baseline of local and global mutation operations 

only. The NSGA-II based fitness assignment 

operation provides a relatively evenly spaced final 

Pareto front for the two-objective problem. However 

as more objectives are considered, newer methods, 

such as MOE/D and NSGA-III need to be 

investigated.  

The algorithm was tested with a real-world 

engineering case study of the re-design of an FQI 

probe architecture for estimated accuracy 

requirements and inboard wing tank geometry of the 

Airbus A320. The resulting Pareto front is linear, 

with an approximate slope of -16 to 1 between 

probe-to-access panel distance and total probe mass. 

It was also found that Pareto-optimal architectures 

have 8 probes, which is a reduction of 4 over the 

baseline. Resulting probe positions are comparable 

to the A320 baseline for an optimization of access 

only. Further work is required to model flap valves 

in the tank study and include varying discretization 

levels of both the geometry and the tank study cases, 

to establish their impact on the optimal probe 

positions. 
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