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ABSTRACT A novel planar design of Gunn diode with a shaped anode contact, utilizing Monte Carlo

simulations, has been shown to have produced 0.3 THz frequency current output when operated in delayed

mode. Two novel anode designs are investigated here, one with two fixed distances, and the other with

three fixed distances between the cathode and anode electrodes. The corresponding waveforms generated,

show two and three current peaks respectively. The work suggests high frequency and novel wave-shaping

applications are possible in such devices.

INDEX TERMS Gallium arsenide, THz frequency, multiple peaks, Monte Carlo simulation, delayed mode,

planar Gunn device.

I. INTRODUCTION

Gunn devices, or transferred electron devices (TED), are two-

terminal negative differential resistance (NDR) devices that

generate RF power which have been popular since the 1970s

as a microwave frequency source [1]–[3]. Most research into

these devices has concentrated on vertical structures and

comparatively few researchers have explored planar archi-

tectures. These structures offer significant advantages over

vertical structures as they are more easily incorporated within

Microwave Monolithic Integrated Circuits (MMIC’s) also the

natural frequency of these devices is controlled by the fab-

rication rather than the material epitaxial growth process.

The development of the planar diode [4]–[13] has shown

many of the expected advantages of these devices, how-

ever the RF power output has remained disappointing low.

Therefore, in recent years, the critical challenge of planar

Gunn devices has been to further improve the RF output

power and the oscillation frequency into the sub-terahertz

region [14]. However, the short transit region required for

high frequency operation will limit the magnitude of the bias

voltage that can be applied before the device breaks down.

Planar Gunn diodes have been proved to function at high

frequencies, as demonstrated for a In0.53Ga0.47As planar

Gunn diode [15]. This device, with a 0.6 µm channel length,

operated at a fundamental frequency above 300 GHz and by

using other material systems showed the potential of operat-

ing into the THz region [16]. Recent work [17] has shown

an alternative approach to obtain higher frequencies without

relying on fabricating very short transit regions, by shap-

ing the anode and cathode contacts. Using this approach

domains incident on a shaped anode, can produce multiple

current peaks as the domain hits the different parts of the

anode at different times. This idea was explored in [17] for

diodes operating in both natural (with constant DC bias) and

in a delayed mode (where an RF feedback bias is sufficient

to lower the potential below the threshold for domain for-

mation). It was found that an elaborate design of the anode

and cathode geometry was required to sustain repeated oscil-

lations. With a constant DC bias there was a tendency for

the domain to become chaotic. However, in delayed mode,

because the domain is extinguished after each transit, there

would be no memory of previous transits and so the tendency

of chaotic oscillations is effectively dealt with.

In this article, an ensemble Monte Carlo simulation has

been performed on three structures of the planar Gunn diode,

one of which is a single transit region structure for compari-

son. We will demonstrate the different designs produce stable

and repeated domains that yield a simple current waveform
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with multiple peaks which correspond to every transit of the

domain.

II. DEVICE STRUCTURE AND SIMULATION METHOD

An ensemble Monte Carlo method was used to simulate

the carrier transport in the studied GaAs devices with an

established 2-D Ensemble Monte Carlo (EMC) transport

model [19], which has been validated against several related

devices performed experimentally [12], [13]. As previously,

in [17], [18], in order to simulate the effect of the cathode

contact, a doping notch was employed to precipitate domain

formation. In this structure, up to 150,000 super particles

were used with a standard mesh of 100 by 100. A field

adjusting time step of 1 fs was utilized and the boundary

conditions adopted were the usual Dirichlet conditions for

the contacts with defined potentials and Neumann conditions

at other boundaries assuming continuity of the electric field.

The simulations were considered as valid provided that the

electric field and domain were normal for the lower bound-

ary, going down along the unstimulated part of the channel.

Due to the noise in a Monte Carlo simulation, it is diffi-

cult to link a Monte Carlo model with the external circuit

model [20], so in the case of devices in a tuned circuit

is assumed that steady-state oscillations have been estab-

lished and the device experiences a RF voltage VRF such

that V = VDC + VRFsin(ωt) [20]–[22].

Figure 1 shows a schematic illustration of the three sim-

ulated devices. In 1b and 1c details of the anode design

showing a crenellated structure where the merlons have

a mushroom form. As in [17], this is to prevent the domain

wrapping around the merlon and so increase the distinctness

of the domain contacting the merlon and next subsequently

the crenel producing an increase in current at each contact.

For ease and accuracy of simulation, we only simulated a unit

cell of 14µm width of the channel length (see Figure 1).

The channel was 1.6µm from anode to cathode, for the con-

ventional planar Gunn structure (Figure 1a), ranging from

1.3 to 1.6µm for the non-uniform active channel (first novel

structure shown in Figure 1b) and 1, 1.3 and 1.6µm for the

second novel structure (Figures 1c). The simulations were

done on the assumption of functional operation in an opti-

mized device with a uniform lattice temperature of 300 K

(room temperature) and at a DC bias of 2V with RF feedback

of 1V.

III. RESULT AND DISCUSSIONS

The current response to the 45 GHz (22ps period) applied

potential for each device is shown in Figure 2. In order

to understand the waveform, it is useful to start with the

conventional design and then observe the embroidering of

the current waveform by the additional structure of the anode

in the other devices.

A. CONVENTIONAL DESIGN

As this is a delayed mode of oscillation, there will be two

peaks of current in each cycle, the first of these will be

FIGURE 1. (a) Schematic of the conventional device with straight contacts
spacing of 1.6µm, (b) Schematic of the straight cathode with non-uniform
anode contacts spacing of 1.6 and 1.3µm, (c) Schematic of the straight
cathode with different non-uniform anode contacts spacing of 1.6, 1.3, and
1.0µm.

FIGURE 2. Total current from Monte Carlo simulation of (a) a conventional
planar Gunn diode, (b) a crenellated design with two different distances
between contacts, and (c) a crenellated design with three different
distances between contacts.

due to the contact of the domain with the anode and ref-

ormation of a new domain at the cathode. However, after

this, as the applied potential falls below the threshold volt-

age for domain formation the current will fall and this new

domain will be extinguished. The second peak is caused by

the increase in voltage and the creation of a fresh domain.

After this, the current falls again with further increases in

voltage as the domain travels to the anode. In terms of our

device then, the current in Figure 2a at 45ps, corresponds to

the domain travelling toward the anode. Here the current is

gradually reducing, going down into a trough at 48ps. The

domain is then incident on the anode contact and a new

domain begins to reform at the cathode; this corresponds

to the current peak at 52 ps. After the domain has passed

through the anode and started to reform at the cathode, the

feedback potential drops below threshold extinguishing the

domain and the current consequently falls. As the voltage

rises again, there is a corresponding rise in the current as we

move towards the 60ps peak (differential resistivity is pos-

itive here). The voltage then becomes sufficient for a new
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domain to form and the current then starts to reduce (differ-

ential resistivity becomes negative again). The process then

repeats with the next transit of the domain and at 65ps the

domain has reformed and is travelling toward the anode.

B. SINGLE MERLON HEIGHT

Figure 2b shows the current form from the device design

shown in Figure 1b. The broad structure of the current can

be seen to be the same as in 2a, however the single peak

is now broken into two peaks 3.3ps apart (0.3THz). As

before the domain at 65ps is making its way toward the

anode. Next, the domain is incident on the anode merlon

causing the first peak at 69.7 ps in the current. The current

falls for the following 3.3ps as the remaining part of the

domain moves toward the crenel. When the domain makes

contact with the crenel at 73ps, the current increases again

(with the merlon component of the domain having already

reformed and progressing through the transit region). Next,

as the applied voltage falls under the threshold voltage all

parts of the domain are extinguished. Subsequently, when

the voltage rises once again, the current raises as before and

a new domain forms and is in transit within the channel

at 85ps.

C. DOUBLE MERLON HEIGHT

The dynamics of the double merlon height design are quite

complicated and Figures 3 (I-VI) presents the simulated elec-

tron densities at 66, 69.3, 72.6, 78, 80, and 82ps respectively.

These time points were chosen to best illustrate the various

stages of the cycle. As in the previous two devices, the

domain has formed and is travelling toward the anode at

64ps until at 66ps it is incident on the high merlon (see

Figure 3.I and the first current peak in Figure 2c). The

current in Figure 2c then decreases as the domain moves

onwards to hit the second low merlon (see Figure 3.II and

the second peak in current in Figure 2c at 69.3ps). Note

that the new domain corresponding to the highest merlon

has reformed at the cathode and is transiting the channel

again. In this way as each part of the domain passes out of

the anode, the new domain forms at the cathode, so that the

new domain will reflect the shape of the anode. At 72.6ps

(Figure 3 III), a number of things are happening which need

explanation. Firstly, subsequent to the old domain passing

through the low merlon, a new domain has formed and is

in transit. Secondly, the old domain is hitting the crenel of

the anode and the new domain from the high merlon is also

hitting the high merlon at the same time causing a peak in

current in Figure 2c at this time.

Note that careful choice of the height of the high mer-

lon has allowed for this coincidental timing, other choices

would split this current peak into a further fine structure.

Figure 3 IV shows a new, continuous but weakened and dis-

torted domain in the channel at 78ps. The potential having

fallen below threshold the domain is extinguished and at

80ps (Figure 3 V) the current is increasing again (due to

an increasing potential and positive differential resistivity).

FIGURE 3. (I-VI), shows the density of the electrons with an 1.5 V bias at
different times. (I) The domain contacts the first merlons at 66ps. (II) 3.3ps
later, the domain reaches the second merlon. (III) The domain reaches the
crenel after another 3.3ps. (IV) At 78 ps, the new and distorted domain is
formed. (v) Because of the falling voltage at 80 ps, the domain is
extinguished. (VI) At 82 ps, the domain reforms.

FIGURE 4. Frequency spectrum of current response of the conventional
device (4a), the single merlon device (4b) and the double merlon device
(4c). The arrow indicates the 3.3ps fine structure.

Finally, the potential becomes sufficient for a new fresh and

straight domain to form at the cathode (shown in transit at

82ps in Figure 3 VI) and the peak in current in Figure 2c.

Figures 4a, b and c show the transformed frequency spec-

trum of the currents in Figures 2a, b and c respectively.

Figure 4a shows the spectrum for the conventional device

and this overall pattern is repeated in Figures 4b and 4c.

It can be seen that the magnitude of the components, for

example at 22ps are hardly affected in the single merlon

device, though they are reduced by about 40% in the double

merlon device. However, in 4b and 4c, the frequency spec-

trum is augmented by strong peaks around the 3.3ps periods

discussed earlier.
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Operating a Gunn diode in its delayed mode allows a series

resonant circuit to be used and vertical Gunn diodes oper-

ating in this mode have achieved good efficiencies at the

extracted harmonic [23]. The planar nature of the planar

Gunn diode will enable it to be fabricated using MMIC tech-

nology and the enhanced harmonic current characteristics of

the diode should enable efficient operation to be achiev-

able into the millimetric and THz frequency bands. Planar

Gunn diodes have the benefit of being able to be fabricate

with different transit lengths and therefore different operat-

ing frequencies on the same substrate, thereby opening up

new applications.

IV. CONCLUSION

Based on the simulation Monte Carlo, we have investigated

fine structure in the output current of GaAs planar Gunn

diodes caused by novel anode contact designs. Our simu-

lated results confirm that shaped contacts can generate stable

cyclic Gunn domain transits that will produce a current with

high frequency components much greater than the nominal

domain transit time The embroidering of the current wave

form of the conventional device, is controlled by the number

of merlons; two peaks in the single merlon device and the

three peaks in the double merlon device. The period was

chosen to be 3.3ps corresponding to the time of transit of

a domain across the 0.3 micron step size between the mer-

lons and crenels. Higher frequencies should be possible by

reducing the step size, though the distinctness of the peaks

is likely to reduce.

As the design of the anode contact becomes more complex,

the domain formation and reformation in different parts of

the device becomes correspondingly convoluted with some

parts of the device supporting several domain transits during

only one transit in another part of the device. This is turn

can lead to evermore elaborate embroidering of the basic

waveform.

In conclusion, a new geometrical structure of contacts

for a planar Gunn diode has been presented, which create

the multiple peaks of the domain, and these designs lead to

well-ordered domain peaks. Embedding the device in a tuned

circuit to extract the enhanced harmonic may lead to low

cost MMIC milli-metric and THz RF sources for a wide

range of applications. As well, the capability of changing

the profile of waveforms by the design of the contacts may

have many different waveform shaping possibilities.
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