Backstepping sliding-mode control of stratospheric airships using disturbance-observer

Shi Qian Liua,b,*, James F. Whidbornec, Lei Hec,b

a School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai 200240, China
b School of Aerospace, Transport and Manufacturing, Cranfield University, Cranfield MK43 0AL, UK
c School of Aerospace, College of Aeronautics, Northwestern Polytechnical University, Xi’an, China

Abstract In the presence of unknown disturbances and model parameter uncertainties, this paper develop a nonlinear backstepping sliding-mode controller (BSMC) for trajectory tracking control of a stratospheric airship using a disturbance-observer (DO). Compared with the conventional sliding mode surface (SMS) constructed by a linear combination of the errors, the new SMS manifold is selected as the last back-step error to improve independence of the adjustment of the controller gains. Furthermore, a nonlinear disturbance-observer is designed to process unknown disturbance inputs and improve the BSMC performances. The closed-loop system of trajectory tracking control plant is proved to be globally asymptotically stable by using Lyapunov theory. By comparing with traditional backstepping control and SMC design, the results obtained demonstrate the capacity of the airship to execute a realistic trajectory tracking mission, even in the presence of unknown disturbances, and aerodynamic coefficient uncertainties.

Keywords: stratospheric airship system; sliding mode control; nonlinear disturbance observer; backstepping control; trajectory tracking

1. Introduction

The stratospheric airship has been receiving a growing interest from both industry and academia due to their potential cost including high altitude, long endurance UAVs with vertical take-off and landing, low
power, and hovering advantages. They have growing applications in earth observation, climatological monitoring, environmental surveillance and communication relay. The core feature of the airship is autonomous capability during the mission.

The trajectory tracking is one of fundamental functions of the airship control system, but it is an uneasy task. The highly nonlinear dynamics together with unpredictable complex environment, which make model uncertainties such as varying apparent mass and inertia of the airship, and the authority of control surfaces reduced by low airs speeds (Azinheira et al., 2006). There are many studies on trajectory tracking problem of the airship in the literatures. Gain scheduling and PID are often preferred because they are easy realized (Moutinho and Azinheira, 2006; Valle, et al., 2015). However, linear control design approaches are hard to accomplish when nonlinear of the airship motion is emphasized under environment disturbances and low airspeed flight. Therefore nonlinear control methods are often applied to trajectory tracking control of the airship (Moutinho and Azinheira, 2004). To apply some ‘good’ nonlinearities, the Lyapunov based backstepping approach is proposed, the attractive qualities of backstepping are the asymptotic global stability against parametric uncertainty, whether matched or mismatched, and the systematic recursive construction of the Lyapunov functions (Slotine and Li, 1991). Azinheira et al.(2006, 2009) proposed backstepping control designs for hover stabilization and path-tracking of a nonlinear underactuated airship model. Liesk et al. (2013) proposed a waypoint tracking controller for an unmanned finless airship. Liu and Sang (2018) developed a vectorial backstepping method with active set control allocation to deal with saturation. However, these methods depend on the accurate model and are hard to deal with highly nonlinear airship dynamics with aerodynamic model uncertainties.

The other mainstream nonlinear method of trajectory tracking control is sliding mode control (SMC). SMC is widely used due to its attractive features like insensitivity to matched uncertainties, robustness to external perturbations, simplicity and ease of implementation, and finite-time convergence (Edwards and Spurgeon, 1998; Yang and Yan, 2016; Zheng and Sun, 2018; Lou et al, 2019; Chen and Edwards, 2020).
Yang and Yan (2016) proposed a neural network approximation-based sliding-mode approach for positioning control of an autonomous airship. After that, Yang (2018) proposed nonsingular terminal sliding mode control for trajectory tracking control of a robotic airship. In order to take advantage of the benefits of both SMC and backstepping control approaches, Bolivar et al. (1997) combined them and developed a backstepping sliding mode controller (BSMC1). Another type, BSMC2 has been developed whose SMS manifold is selected as the last back step error to improve independence of the adjustment of the controller gains (Bolivar and Zinober, 1994). Adhikary and Mahanta (2013) proposed an integral backstepping sliding mode control for the cart–pendulum system. For the airship control, Chen (2017) proposed a BSMC for three-degree-of-freedom trajectory tracking of the stratospheric airship. Parsa et al. (2018) presented an integral BSMC for station keeping of the stratospheric airship. Vieira (2019) compared three methods of BS, SMC, BSMC and applied them to control a NOAMAY airship. To improve system adaptiveness, Liu et al. (2020) proposed an adaptive sliding-mode-backstepping trajectory tracking control for underactuated airships.

Since airships working in the stratosphere often meet unknown disturbances such as winds, coupling effects from other subsystems, and environmental and sun radiation noise, a nonlinear disturbance observer-based control (DOBC) approach is introduced in this paper to enhance the disturbance attenuation ability and performance robustness of the BSMC. The disturbance observer-based technique has been applied to the control of nonlinear systems and systems with unknown disturbances for decades (Chen et al., 2016), where an observer is designed to estimate external disturbances or ignore nonlinear dynamics and then compensate for them (Hu et al., 2018). Chen (2003) proposed a composite controller based on DO for the autopilot of a missile. Guo and Chen (2005) proposed a DOBC for disturbance attenuation and rejection for systems with nonlinearity. Li et al. (2014) gave detailed design methods of DOBC and applied them to control a hypersonic vehicle.

Motivated by the work of Verira (2019) and Chen (2003), this paper mainly concerns trajectory tracking
control for the stratospheric airship, and the main contributions are listed as follows: a novel disturbance-observer based backstepping sliding-mode control (DO-BSMC) is proposed for a stratospheric airship. A new SMS manifold is selected as the last back-step error to achieve additional degree of freedom. The composite controller of the DO-BSMC consists of a BSMC and a nonlinear disturbance observer, thus effect of large unknown disturbance inputs and model parameter uncertainties can be effectively reduced. The DO-BSM composite controller has a two-level control structure including a trajectory guider and an attitude and velocity controller, and its properties such as stability are established. Simulation results show the proposed DO-BSMC control has better performances in the trajectory tracking control for a stratospheric airship compared with BSMC methods.

This paper is organized as follows. Section 2 gives the nonlinear dynamics model of the stratospheric airship and presents the trajectory tracking problem. Section 3 proposes the DO-BSMC control design, and stability is analyzed for the associated closed-loop tracking system. Simulations and performances of two scenarios with the DO-BSMC control are demonstrated in Section 4. The final section gives some conclusions.

2. Dynamics modeling and problem formulation

![Fig. 1. Structure of the stratospheric airship](image)

The considered model is a 250m length, 75m diameter airship (Mueller et al., 2004), the structure
parameters and aerodynamic coefficients of the stratospheric airship are listed in Table 1.

Table 1 Parameters and coefficients for the studied airship

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Coefficient</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>5.3×10^4 (kg)</td>
<td>k_1</td>
<td>0.1054</td>
</tr>
<tr>
<td>ρ</td>
<td>0.072 (kg/m3)</td>
<td>k_2</td>
<td>0.8259</td>
</tr>
<tr>
<td>v_0</td>
<td>7.4×10^5 (m3)</td>
<td>k_3</td>
<td>0.1247</td>
</tr>
<tr>
<td>L</td>
<td>250 (m)</td>
<td>C_ζ</td>
<td>−657</td>
</tr>
<tr>
<td>x_G, z_G</td>
<td>0, 20 (m)</td>
<td>C_1</td>
<td>2.4×10^4</td>
</tr>
<tr>
<td>d_x, d_z</td>
<td>5, 5 (m)</td>
<td>C_m</td>
<td>$−7.7 \times 10^4$</td>
</tr>
<tr>
<td>I_x</td>
<td>4×10^7 (kg·m2)</td>
<td>C_n</td>
<td>$−7.7 \times 10^4$</td>
</tr>
<tr>
<td>I_y</td>
<td>2.3×10^6 (kg·m2)</td>
<td>δ_ζ</td>
<td>(−25, 25) °</td>
</tr>
<tr>
<td>I_z</td>
<td>2.2×10^8 (kg·m2)</td>
<td>δ_ζ</td>
<td>(−25, 25) °</td>
</tr>
<tr>
<td>I_{xz}</td>
<td>$−4.8 \times 10^6$ (kg·m2)</td>
<td>T_x, T_z</td>
<td>3×10^5 (N)</td>
</tr>
</tbody>
</table>

2.1 Airship Kinematics Model

The studied stratospheric airship is shown in Fig.1. The kinematics model of the airship’s position and attitude is given by (Moutinho et al. 2016; Liu and Sang, 2018):

$$\dot{x}_1(t) = Tx_2(t)$$

where $x_1 = [\xi^T \eta^T]^T$, $x_2 = [u^T \omega^T]^T$, $\xi = [x \ y \ z]^T$ represents the airship position in the inertial frame, $\eta = [\phi \ \theta \ \psi]^T$ is the attitude vector, $u_a = [u \ v \ w]^T$ and $\omega = [p \ q \ r]^T$ are the speed and angular rate in the body frame respectively, and

$$T = \begin{bmatrix} R(\eta) & 0 \\ 0 & J(\eta) \end{bmatrix}$$

where the direction cosine matrix R is

$$R(\eta) = \begin{bmatrix} c(\theta)c(\psi) & -c(\phi)s(\psi) + s(\phi)s(\theta)c(\psi) & s(\psi)s(\phi) + c(\phi)s(\theta)c(\psi) \\ c(\theta)s(\psi) & c(\phi)c(\psi) + s(\phi)s(\theta)s(\psi) & -s(\theta)s(\phi) + c(\phi)s(\theta)c(\psi) \\ s(\theta) & -c(\phi)c(\psi) & c(\theta)c(\phi) \end{bmatrix}$$

and the transformation matrix J is
where $|\theta| < \pi/2$ is assumed to avoid the singularity of matrix because $\theta = \pm \pi/2$ is not likely to be encountered during practical operation of the airship, $s(.)$ and $c(.)$ denote sine and cosine functions respectively.

2.2 Airship Dynamics Model

The airship dynamics is represented by (Gomes, 1990; Moutinho et al., 2016; Liu et al., 2020):

$$M_a \begin{bmatrix} \dot{\mathbf{v}}_\omega(t) \\ \dot{\mathbf{\omega}}(t) \end{bmatrix} = \begin{bmatrix} \mathbf{f}_k + \mathbf{f}_w + \mathbf{f}_{GB} + \mathbf{f}_A \\ \mathbf{n}_k + \mathbf{n}_w + \mathbf{n}_{GB} + \mathbf{n}_A \end{bmatrix} + \begin{bmatrix} \mathbf{f}_{CP} \\ \mathbf{n}_{CP} \end{bmatrix},$$

(5)

where M_a denotes the generalized mass matrix as in Liu and Sang (2018). \mathbf{f}_k denotes the kinetic force vector, \mathbf{f}_w denotes the wind-induced force vector, \mathbf{f}_{GB} denotes sum of the gravity and buoyancy vector, \mathbf{f}_A denotes the aerodynamic force vector, \mathbf{f}_{CP} denotes the control input and thrust vector, \mathbf{n}_k, \mathbf{n}_w, \mathbf{n}_{GB}, \mathbf{n}_A, and \mathbf{n}_{CP} are associated moments generated by \mathbf{f}_k, \mathbf{f}_w, \mathbf{f}_{GB}, \mathbf{f}_A and \mathbf{f}_{CP}, respectively.

Let $U = \begin{bmatrix} \mathbf{f}_{CP} \\ \mathbf{n}_{CP} \end{bmatrix}$, then (5) can be rewritten as

$$\mathbf{\dot{x}}_2(t) = \mathbf{f}_2 + \mathbf{g}_2 U(t),$$

(6)

where

$$\mathbf{f}_2 = M_a^{-1} \begin{bmatrix} \mathbf{f}_k + \mathbf{f}_w + \mathbf{f}_{GB} + \mathbf{f}_A \\ \mathbf{n}_k + \mathbf{n}_w + \mathbf{n}_{GB} + \mathbf{n}_A \end{bmatrix} = \begin{bmatrix} (\mathbf{f}_{2V})_{3\times 1} \\ (\mathbf{f}_{2\omega})_{3\times 1} \end{bmatrix},$$

(7)

$$\mathbf{g}_2(x) = M_a^{-1} \begin{bmatrix} (\mathbf{g}_{2V})_{3\times 3} & (\mathbf{g}_{2\omega V})_{3\times 3} \\ (\mathbf{g}_{2V\omega})_{3\times 3} & (\mathbf{g}_{2\omega})_{3\times 3} \end{bmatrix}.$$
of rudders on the side force is also ignored. The virtual control force in (5) is described as

$$U(t) = \begin{bmatrix} f_{cp} \\ n_{cp} \end{bmatrix} = Bu(t),$$

(9)

where B is the control effectiveness matrix, u represents thrusts and control surface deflections. If the airship is underactuated in the y-direction, or lacks lateral force effector to oppose aerodynamic side forces (Azinheira et al., 2006), then (9) can be rewritten as follows

$$\begin{bmatrix} f_{cp} \\ f_{cps} \\ n_{cp} \\ n_{cp} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & \overline{q}C_{lb} & \overline{q}C_{lb} & 0 & 0 \\ 0 & 0 & \overline{q}C_{lb} & \overline{q}C_{lb} & -\overline{q}C_{lb} & -\overline{q}C_{lb} \\ d_x & d_z & \overline{q}C_{lb} & \overline{q}C_{lb} & 0 & 0 \end{bmatrix} \begin{bmatrix} T_x \\ T_z \\ \delta_{ax} \\ \delta_{az} \end{bmatrix},$$

(10)

where C_{lb}, C_{lb}, C_{lb}, C_{lb}, C_{lb} are aerodynamic coefficients of the control surfaces, T_x and T_z are thrust components in x_b axis and z_b axis, respectively. d_x and d_z denote distances from the CV to the propeller in the x_b- and z_b- axis. The thrusts in (10) can be linearized by the following transformation:

$$\begin{cases} T_x = (T_p + T_s) \cos \mu \\ T_z = -(T_p + T_s) \sin \mu \end{cases}$$

(11)

where T_p and T_s denote thrusts of the port side and starboard side respectively. And then the tilting angle can be obtained by $\mu = \text{atan}(\frac{T_z}{T_x})$, the maximum and minimum values of the tilting angle are 90° and -90°.

Since there exist winds, environmental and sun-radiation noise for the stratospheric airship, then the model disturbance f is introduced and the system of (6) is modified to

$$\dot{x}_2(t) = f_2(x) + g_2(x)U(t) + g_3(x)f(t)$$

(12)

where $f \in \mathbb{R}^6$ denote model uncertainties and external disturbances, and it is assumed that f is bounded with $|f| < f_{(1), f_{(2)}}$ is a real value, $g_3(x) = \text{diag}([1 \ 1 \ 1 \ 1 \ 1 \ 1])$.

2.3 The Trajectory Tracking Control Problem

Consider the airship models of (1) and (12). Let $\xi(t):[0, \infty) \rightarrow \mathbb{R}^3$ be a given sufficiently smooth
time-varying reference trajectory with its time-derivatives $(\dot{\xi}(t), \ddot{\xi}(t))$ bounded. The control task is to design a trajectory tracking controller such that the closed-loop system is globally asymptotically stable and the output trajectory ξ is steered towards a given reference trajectory ξ_r with $\lim_{t \to \infty} \|e(t)\|_2 < \varepsilon_0$, even in specified model uncertainty and external disturbance environment, where tracking error $e(t) = \xi(t) - \xi_r(t)$, ε_0 is a prescribed constant, 2-norm $\|e(t)\|_2 = \sqrt{e^T e}$.

3 DO-BSMC trajectory tracking control design

This section gives an overview of the DO-BSMC control for the airship. The structure of the DO-BSMC control design includes a backstepping sliding mode based attitude controller, a nonlinear disturbance observer, a CLF based velocity controller, a virtual control calculation part and an active set control allocation module. The controller design is presented in detail in the next section.

3.1 Nonlinear Disturbance Observer Design

Since the tracking system of (12) has the unknown bounded disturbance f, to improve the tracking precision, a nonlinear disturbance observer (NDO) is designed as follows (Chen et al., 2016),

$$
\begin{aligned}
\dot{\hat{w}}(t) &= -l(x)g_3(x)\hat{w}(t) - l(x)(g_3(x)p(x) + f_2(x) + g_2(x)U) \\
\hat{f}(t) &= \hat{w}(t) + p(x)
\end{aligned}
$$

(13)

where $\hat{w} \in \mathbb{R}^q$ is the internal state of the nonlinear observer, and $p(x)$ is the nonlinear function to be designed.

The NDO gain $l(x)$ is determined by

$$
l(x) = \frac{\hat{p}(x)}{\hat{c}x}
$$

(14)

It has been shown in Chen et al. (2016) that the NDO of Eq.(13) asymptotically estimates the disturbance if the observer gain $l(x)$ is chosen such that Eq.(15) is global exponentially stable for all $x \in \mathbb{R}^n$,

$$
\dot{d}(t) = \hat{f}(t) - \tilde{f}(t) = -\hat{f}(t) - \dot{\hat{w}}(t) - \frac{dp(x)}{dt}
$$
where \(d \) denotes the unobservable part of the overall disturbance \(f \). The observable disturbances is usually can be measured and estimated by the observer, such as 1-cosine winds. The unobservable disturbance cannot be measured and hard to be observed by the observer, such as white noises. It has been shown that the estimation \(\hat{f}(t) \) of the NDO approaches the disturbance \(f(t) \) exponentially if the error dynamics of Eq.(15) is global exponentially stable (Chen et al., 2016).

Hence the disturbance compensator can be designed as

\[
u_f(t) = -g_3^{-1}(x)\left(g_3(x)\hat{f}(t) \right)
\]

Remark 1 The design of a disturbance observer (13) essentially is to choose an appropriate gain \(l(x) \) and associated \(p(x) \) such that the convergence of estimation error \(d(t) \) is guaranteed. It is possible to choose \(l(x) \) as a constant matrix such that all the eigenvalues of matrix \(-l(x)g_3 \) have negative real part. Integrating \(l(x) \) with respect to the airship state \(x \) yields \(p(x) = l x \).

By using the proposed disturbance compensator (16), the effect of disturbances acting on the airship has been reduced. Therefore, a composite controller combined a backstepping SMC controller with the disturbance compensator is proposed as \(U(t) = U_{BSMC}(t) + u_f(t) \). By using Eqs (16), then the system (12) can be transformed as follows,

\[
\dot{x}_2(t) = f_2(x) + g_2(x)U(t) + g_3(x)f(t)
\]

\[
= f_2(x) + g_2(x)\left(U_{BSMC}(t) + u_f(t) \right) + g_3(x)f(t)
\]

\[
= f_2(x) + g_2(x)U_{BSMC}(t) - g_2(x)g_3^{-1}(x)\left(g_3(x)\hat{f}(t) \right) + g_3(x)d(t)
\]

\[
= f_2(x) + g_2(x)U_{BSMC}(t) + g_3(x)\left(f(t) - \hat{f}(t) \right)
\]
\[f_2(x) + g_2(x)U_{BSMC}(t) + g_3(x)d(t) \]

(17)

3.2 Backstepping Sliding-mode Control Based Attitude Controller

This section is to design the backstepping sliding mode controller, and the objective is to make the attitude output \(\eta \) converge to the desired value vector \(\eta_d \). Now consider the kinematics model (1) and the dynamics model (17). The attitude controller is derived in two steps.

Step 1 (Backstepping for the variant of \(z_1 \)).

The tracking error vector of attitudes is defined as

\[z_1 \triangleq \eta - \eta_d, \]

(18)

and its derivative is

\[\dot{z}_1 \triangleq \dot{\eta} - \dot{\eta}_d = J\omega - \dot{\eta}_d. \]

(19)

Since the desired behavior for \(\dot{\eta} \) can still be chosen, it can be considered as the “virtual” control input. In the backstepping design this desired dynamic behavior is called the stabilizing function. Define the stabilizing function \(\alpha \), as the virtual angular rate vector of \(\dot{\eta}_v \),

\[\alpha \triangleq \dot{\eta}_v - K_1 z_1, \]

(20)

where \(\dot{\eta}_v \) represents the reference or virtual angular rate vector, \(K_1 > 0 \) is often chosen as a diagonal matrix to simplify the design, i.e., \(K_1 = \text{diag}(k_{11}, k_{12}, k_{13}) \), \(k_{1i} (i = 1, 2, 3) \) is constant value.

Now let us consider the Lyapunov function \(V_1 \), which is required positive definite around the desired position as follows:

\[V_1 = \frac{1}{2} z_1^T z_1. \]

(21)

Step 2 (Backstepping for the variant of \(z_2 \)). Because there exists a dynamic error between the angular rate \(\dot{\eta} \) and its desired behavior of \(\dot{\eta}_v \), the speed tracking error vector for the attitude dynamics is defined as

\[z_2 \triangleq \dot{\eta} - \dot{\eta}_v = J\omega - \alpha. \]

(22)
and its derivative is
\[\dot{z}_2 = \dot{\eta} - \dot{\eta}_d + K_1 \dot{z}_1. \]
(23)

Substituting (20) and (22) into (19) yields
\[\dot{z}_1 = z_2 + \alpha - \dot{\eta}_d = z_2 - K_1 z_1. \]
(24)

that is,
\[z_2 = \dot{z}_1 + K_1 z_1. \]
(25)

Differentiating (25) and substituting (18) yields
\[\dot{z}_2 = \dot{\eta} - \dot{\eta}_d + K_1 \dot{z}_1. \]
(26)

From (20) and (24), the derivative of the stabilizing function \(\alpha \) is
\[\dot{\alpha} = \dot{\eta}_d - K_1 (z_2 - K_1 z_1) = \dot{\eta}_d - K_1 z_2 + K_1^2 z_1. \]
(27)

The derivative of the first CLF of (21) can be rewritten as follows by substituting (24)
\[\dot{V}_1 = z_i^T \dot{z}_i = z_i^T (z_2 - K_1 z_1) = -z_i^T K_1 z_1 + z_i^T z_2. \]
(28)

Now a SMC control is introduced to improve system adaptiveness; the sliding surface \(s \) is defined first. The conventional linear sliding surface is designed as (Bolivar et al., 1997)
\[s_{B1} = \lambda_1 z_1 + \lambda_2 z_2 + \cdots + z_n, \]
(29)

where \(z_i = \eta_i^{(o)} - \eta_i \) is the attitude error vector, \(\eta_i = \frac{d^{(o)}}{dt^{(o)}} \eta, \) \(i = 1,2,\ldots,n \), the virtual angular vector of \(\eta \), meeting \(\alpha = \dot{\eta}, \lambda_1, \lambda_2, \ldots \) are the control gains to be determined. By using this sliding surface, the associated Backstepping control law can be developed and called BSMC1 (Liu et al., 2020).

In this paper a new sliding surface is designed as (Bolivar and Zinober, 1994)
\[s_{B2} = z_n \]
(30)

the associated Backstepping design is called BSMC2. The sliding surface (30) is a simple relation comparing with \(s_{B1} \), but the sliding manifold function \(s_{B2} \) is a combination of the primary error \(z_1 \) and its \((n - 1)\) order
derivatives, such as Eq.(25). Therefore, for the 2nd and 3rd order systems, the sliding mode surfaces are designed as

\[s_{B2} = z_2 = \dot{z}_1 + K_1 z_1, \]

(31.a)

By using the recursive construction form of the error variables in the backstepping procedure, \(\dot{z}_i = -z_{i-1} - K_i z_i + z_{i+1} \), we get \(\dot{z}_2 = -z_1 - K_2 z_2 + z_3 \) and

\[s_{B3} = z_3 = \dot{z}_2 + K_2 z_2 + z_1 = (\dot{z}_1 + K_1 \dot{z}_1) + K_2 (\dot{z}_1 + K_1 z_1) + z_1 = \dot{z}_1 + (K_1 + K_2) z_1 + K_2 K_1 z_1 + z_1, \]

(31.b)

from (31) it can be seen that the sliding manifold function for BSMC2 is indeed a linear combination of the primary error \(z_1 \) and its \(n-1 \) derivatives. The essential difference of BSMC1 and BSMC2 is that the cross-coupling terms of all the \(z_i \) are canceled and the independence of the adjustment of the controller gains is improved for BSMC2 like in the pure backstepping case (Fossen and Strand, 1999). Although BSMC2 cannot directly support additional degree of freedom in the manifold parameter design as BSMC1, it can get good performances by using backstepping procedure and linear combination of the error and its \(n-1 \) derivatives.

The well known characteristics of SMC are attraction and invariance (Edwards and Spurgeon, 1998), that means the condition for the state to reach the sliding mode surface \(s \) in finite time \(t_r \) and remain it is

\[ss < 0, \quad t < t_r \]

(32)

\[s = \dot{s} = 0, \quad t \geq t_r \]

(33)

For the sliding mode surfaces of Eqs.(31), there are different reachability conditions, that are designed as (Bolivar and Zinober, 1994; Bolivar et al., 1997)

\[\dot{s}_{B2} = -h_{B2} z_1 - h_{B2} s_{B2} - \varsigma_{B2} \text{sgn}(s_{B2}), \]

(34)

so their corresponding attraction and invariance for the SMC are as follows,

\[s_{B2} \dot{s}_{B2} = -h_{B2} z_2 z_1 - h_{B2} z_2^2 - \varsigma_{B2} |z_2| \]

(35)

where \(h_{B2} \), \(h_{B2} \), and \(\varsigma_{B2} \) are sliding mode surface parameters with \(h_{B1} > 0 \), \(h_{B2} > 0 \), and \(\varsigma_{B2} > 0 \). Note that \(\varsigma_{B1} \)
can be chosen as small as possible to reduce the amplitude of the switching and \(h_{Bl} \) can be chosen to determine the time taken to attain sliding (Edwards C. and Spurgeon S.K., 1998).

Consider the unobservable disturbance \(d = [d^T_v \quad d^T_\omega]^T \), \(d_\omega \) is the associated attitude disturbance.

Assumption A1. Suppose that the unobservable disturbance \(d_\omega \) varies slowly relative to the observer dynamics, i.e. \(\dot{d}_\omega \approx 0 \).

Remark 2. Literature shows that the method is also feasible for fast time-varying disturbances (Chen et al., 2000). In the presence of uncertainties, the unobservable disturbances would be a function of the states, which can be reasonably estimated if the disturbance observer dynamics are faster than that of the closed-loop system. The same argument for the state observer based control methods is available.

According to **Assumption A1** \(\dot{d}_\omega = 0 \), the derivative of the estimated parameter error is

\[
\dot{\hat{d}}_\omega = \hat{\dot{d}}_\omega - \ddot{d}_\omega = \hat{d}_\omega.
\]

where \(\hat{d}_\omega \) and \(\hat{d}_\omega \) are the estimated parameter vector of \(d_\omega \) and the associated estimated parameter error vector.

For the sliding mode surface \(s_{B2} \), to meet the reachability (32) and (33), that is, denote \(V_s = \frac{1}{2} s^T s \), substituting (26) into the derivative \(V_s \) yields

\[
\dot{V}_s = z_2^T \dot{z}_2 = z_2^T (\dot{\tilde{\eta}} - \dot{\tilde{\eta}}_d + K_t \dot{\tilde{z}}_i),
\]

If the disturbance \(d \) is neglected, select \(\dot{\tilde{\eta}} = -K_t \dot{\tilde{z}}_i - h_{B2} z_2 - \zeta_{B2} sgn(z_2) + \ddot{\tilde{\eta}}_d \), then

\[
\dot{V}_s = z_2^T \left(-K_t \dot{\tilde{z}}_i - h_{B2} z_2 - \zeta_{B2} sgn(z_2) + \ddot{\tilde{\eta}}_d - \ddot{\tilde{\eta}}_d + K_t \dot{\tilde{z}}_i \right) = -z_2^T h_{B2} z_2 - z_2^T \zeta_{B2} sgn(z_2) < 0,
\]

From kinematics equation (1), we get the desired angular acceleration

\[
\ddot{\omega} \approx J^{-1} (\ddot{\eta} - \dot{J}\omega)
\]

\[
= J^{-1} \left(-K_t \dot{\tilde{z}}_i - h_{B2} z_2 - \zeta_{B2} sgn(z_2) + \ddot{\tilde{\eta}}_d - \dot{J}\omega \right)
\]
and according to dynamics equation of (12), we get
\[\ddot{\omega} \approx f_{2\omega} + g_{2\omega} n_{CP} + g_{3\omega} d_{\omega} \]
(40)

Therefore, the associated control \(n_{CP} \) can be designed as
\[n_{CP} = \frac{1}{g_{2\omega}} \left(-f_{2\omega} - g_{3\omega} \dot{d}_{\omega} + J^{-1} \left(-K_{1} \dot{z}_2 - h_{Bz} z_2 - \zeta_{Bz} \text{sgn}(z_2) + \dot{\eta}_{d} - \dot{J}\omega \right) \right) \]
(41)

where \(\hat{d}_{\omega} \) is estimation of the attitude disturbance \(d_{\omega} \).

Since \(\hat{d}_{\omega} \neq d_{\omega} \), \(\dot{\eta} \) needs to be redefined to meet \(\dot{V}_{s} < 0 \). Now selecting reachability condition as shown in (34) with consideration of disturbance estimation errors, we get
\[\dot{z}_{2} = - \left(h_{Bz} z_1 + h_{Bz} z_2 + \zeta_{Bz} \text{sgn}(z_2) + Jg_{3\omega} \hat{d}_{\omega} \right), \]
(42)

Substitute (42) into (26) yields
\[\dot{\eta} = - K_{1} \dot{z}_1 + \dot{\eta}_{d} - \left(h_{Bz} z_1 + h_{Bz} z_2 + \zeta_{Bz} \text{sgn}(z_2) + Jg_{3\omega} \hat{d}_{\omega} \right) \]
(43)

By using (26), (43) we obtain
\[\dot{V}_{s} = s^{T} \dot{s} = z_{2}^{T} \left(-K_{1} \dot{z}_1 + \dot{\eta}_{d} - \left(h_{Bz} z_1 + h_{Bz} z_2 + \zeta_{Bz} \text{sgn}(z_2) + Jg_{3\omega} \hat{d}_{\omega} \right) - \dot{\eta}_{d} + K_{1} \dot{z}_1 \right) \]
\[= - z_{2}^{T} \left(h_{Bz} z_1 + h_{Bz} z_2 + \zeta_{Bz} \text{sgn}(z_2) + Jg_{3\omega} \hat{d}_{\omega} \right) \]
\[= - s^{T} h_{Bz} s - s^{T} \left(h_{Bz} z_1 + Jg_{3\omega} \hat{d}_{\omega} + \zeta_{Bz} \text{sgn}(s) \right) \]
(44)

The second term of the above equation can be rewritten as a function of the individual elements of the respective vectors (Vieira, 2019), denote \(\vec{\zeta}(z)I = \zeta_{Bz} \), then (44) can be rewritten as
\[s^{T} \dot{s} = - s^{T} h_{Bz} s - \left[\sum_{i=1}^{n} \left(h_{Bz} z_1 + Jg_{3\omega} \hat{d}_{\omega} + \zeta_{Bz} \text{sgn}(s) \right) \right] \]

To ensure that \(\dot{V}_{s} < 0 \), it is necessary to select a time varying switch gain \(\vec{\zeta}(z) \), so define a critical gain
\[\vec{\zeta} = \max(|z_{1} - Jg_{3\omega} \hat{d}_{\omega}|) = \max(|z_{1} - Jg_{3\omega} \hat{d}_{\omega}|) \]
(45)
\[s^T s = -s^T s - \left[s_i \left(h_{\beta i} z_i^T \right) + (\varphi + \xi_0) s_i \right] < 0 \]

(46)

Hence the SMC invariance property can be guaranteed even under unknown disturbances.

From Eqs. (24) and (42), we obtain

\[
\begin{bmatrix}
 h_{\beta_{31}} & 0 \\
 0 & I
\end{bmatrix}
\begin{bmatrix}
 \dot{z}_1 \\
 \dot{z}_2
\end{bmatrix} = -\begin{bmatrix}
 h_{\beta_{31}} K_i & 0 \\
 0 & h_{\beta_{32}}
\end{bmatrix}
\begin{bmatrix}
 z_1 \\
 z_2
\end{bmatrix} + \begin{bmatrix}
 0 & h_{\beta_{31}} \\
 -h_{\beta_{32}} & 0
\end{bmatrix}
\begin{bmatrix}
 z_1 \\
 z_2
\end{bmatrix} - \begin{bmatrix}
 0 \\
 \varphi_{\beta_1} \text{sgn}(z_2) + Jg_{3\omega} d_{3\omega}
\end{bmatrix}
\]

(47)

Now the second augmented CLF is constructed as follows for BSMC2

\[V_2 = \frac{1}{2} \begin{bmatrix}
 z_1 \\
 z_2
\end{bmatrix}^T \begin{bmatrix}
 h_{\beta_{31}} & 0 \\
 0 & I
\end{bmatrix}
\begin{bmatrix}
 z_1 \\
 z_2
\end{bmatrix} + \frac{1}{2 \gamma_d} \tilde{d}_d^T \tilde{d}_d, \]

(48)

where \(\gamma_d \) is a positive constant that determines the convergence speed of the unobservable disturbance estimation. Substituting (47) into the derivative of (48) yields

\[
\dot{V}_2 = \begin{bmatrix}
 z_1 \\
 z_2
\end{bmatrix}^T \begin{bmatrix}
 h_{\beta_{31}} & 0 \\
 0 & I
\end{bmatrix}
\begin{bmatrix}
 \dot{z}_1 \\
 \dot{z}_2
\end{bmatrix} + \frac{1}{\gamma_d} \tilde{d}_d^T \dot{\tilde{d}}_d
\]

\[
= -\begin{bmatrix}
 z_1 \\
 z_2
\end{bmatrix} \begin{bmatrix}
 h_{\beta_{31}} K_i & 0 \\
 0 & h_{\beta_{32}}
\end{bmatrix}
\begin{bmatrix}
 z_1 \\
 z_2
\end{bmatrix} - \varphi_{\beta_1} \| z_2 \|_1 - z_2^T Jg_{3\omega} d_{3\omega} + \frac{1}{\gamma_d} \tilde{d}_d^T \dot{\tilde{d}}_d
\]

(49)

where \(\| x \| = \sum_{i=1}^{n} | x_i | \). By using (36) and \(s^T \tilde{d}_d = \tilde{d}_d^T s \), we obtain

\[-z_2^T Jg_{3\omega} \dot{d}_d + \frac{1}{\gamma_d} \tilde{d}_d^T \dot{\tilde{d}}_d = -\dot{\tilde{d}}_d^T \left(Jg_{3\omega} \right)^T z_2 + \frac{1}{\gamma_d} \tilde{d}_d^T \dot{\tilde{d}}_d \]

(50)

Choose the update law as:

\[\dot{\tilde{d}}_d = \gamma_d g_{3\omega}^T z_2, \]

(51)

substitute (51) into (49) yields

\[
\dot{V}_2 = -\begin{bmatrix}
 z_1 \\
 z_2
\end{bmatrix} \begin{bmatrix}
 h_{\beta_{31}} K_i & 0 \\
 0 & h_{\beta_{32}}
\end{bmatrix}
\begin{bmatrix}
 z_1 \\
 z_2
\end{bmatrix} - \varphi_{\beta_1} \| z_2 \|_1 < 0.
\]

(52)

Therefore, robust stability of the closed-loop system can be guaranteed by using the DO-BSMC controller
according to Lyapunov theory. The associated $\dot{\omega}_i$ can be obtained from (40) and (41).

From the above analysis, the structure of the adaptive integral backstepping controller for attitude control can be designed as Fig.2, which includes attitude dynamics of the airship and adaptive sliding mode backstepping control with an adaptive disturbance estimator.

3.3 Velocity Control Based on CLF

This section is to design a backstepping velocity controller, and the objective is to make the airspeed ν_a of the airship converge to the desired values $\nu_{a,d}$. The velocity can be controlled directly via the acceleration of the airship. Now the velocity tracking error vector is defined as

$$z_3 \triangleq \nu_a - \nu_d$$

(53)

where $\nu_a = [u \ v \ w]^T$. The associated CLF is chosen as

$$V_3 = \frac{1}{2} z_3^T z_3$$

(54)

According to Lyapunov theory, \dot{V}_3 is required to be semi-negative definite (that is, $\dot{V}_3 = -K_3 z_3^T z_3$). To ensure

Fig.2 Block diagram of the adaptive sliding mode backstepping controller
the closed-loop system stability, the desired linear acceleration vector is set using (54):

\[\dot{\mathbf{a}}_{d, d} = \dot{\mathbf{a}}_d - K_3 \mathbf{z}_d = \dot{\mathbf{a}}_d + K_3 \mathbf{\omega}_d - K_3 \mathbf{\omega}_d \]

(55)

where control gain matrices \(K_3 = \text{diag}(k_{31}, k_{32}, k_{33}) > 0 \). \(k_{31} \), \(k_{32} \) and \(k_{33} \) are constant, and \(\dot{\mathbf{a}}_{d, d} \) denotes desired linear acceleration vector in \(\mathbf{F}_b \).

Once all of the control laws of the desired linear accelerations and angular accelerations are obtained, the associated control forces and moments can be achieved by the following equation:

\[\mathbf{U} = \mathbf{M}_d \dot{\mathbf{V}} - \mathbf{F}_k - \mathbf{F}_w - \mathbf{F}_{GB} - \mathbf{F}_d. \]

(56)

To obtain the practical control surfaces and thruster inputs, a control allocation problem is presented to solve (9) with actuator saturation constraints, the control allocation problem can be solved as in Liu and Sang (2018). When the optimal solution \(\mathbf{u}^* \) is found, the practical control input signals, including thrust, tilt angle and control surface deflections, are obtained.

3.4 The trajectory guider controller

The objective of the trajectory guider is to generate the desired attitude and velocity commands. It is described in this section. The trajectory guider controller has to calculate the desired attitudes and speeds in the \(x \)– and \(z \)-directions such that the airship follows the desired path despite the inability to exert direct control over the speed in the \(y \)-direction. According to the virtual spring damping principle, the desired or commanded velocity \(\mathbf{v}_c \) in \(\mathbf{F}_g \) is first obtained by the following differential equation as in Liu and Sang (2018).

It can be seen that perfect tracking without wind requires that \(\mathbf{r}_g = \mathbf{u}_g = \mathbf{v}_c = \mathbf{\xi} \), and the desired attitude \(\eta_d \) and velocity \(\mathbf{v}_d \) in the body-fixed frame are generated by using kinematics relation and the command velocity of \(\mathbf{v}_c \), the detailed design procedure of the high-level controller is in Liu and Sang (2018), so is not described here.
3.5 Stability Analysis

Lemma 1. (Fossen, 1994) Consider the nonlinear system \(\dot{x}(t) = f(x) \) with the equilibrium point \(x^* \). Let \(V(x) : \mathbb{C} \rightarrow \mathbb{R} \) be a continuously differentiable function such that for \(x \in \mathbb{C} \) \((\mathbb{C} \subset \mathbb{R}^n)\)

1) \(V(x) > 0 \) (positive definite) with \(\dot{V}(x) < 0 \) (negative definite),

2) \(V(x) \rightarrow \infty \) as \(\|x\|^2 \rightarrow \infty \) (radially unbounded),

then the equilibrium point \(x = 0 \) satisfying \(f(x^*) = 0 \) is globally asymptotically stable.

Assumption A2. The reference trajectory \(\xi_r(t) : [0, \infty) \rightarrow \mathbb{R}^3 \) is sufficiently smooth with its time-derivatives \(\dot{\xi}_r(t) = \ddot{\xi}_r(t) \) bounded.

Because the trajectory tracking control is based on guidance, the control objective of the speed loop is that the guidance-based command signal \(\nu_c(t) \) can be tracked by the system output of velocity \(\dot{\xi}(t) \).

Assumption A3. The output signal \(\dot{\xi}(t) \) or \(\dot{r}_g(t) \) tracks the commanded signal \(\nu_c(t) \) in (58) without steady tracking error, i.e., \(\lim_{t \to \infty} \dot{\xi}(t) = \lim_{t \to \infty} \nu_c(t) \) with \(\dot{\xi}(t) = R(\eta)\nu_c \).

Theorem 1. Consider the system of (1) and (12) with Assumption A2 and A3 being satisfied. If there exist \(K_1 > 0, K_3 > 0, H_{h_1}, H_{h_2}, \zeta_{h_1}, \gamma_d \) and sufficiently small scalar parameter \(\epsilon \), such that \(K_1 > 0, K_3 > 0, H_{h_1} > 0, H_{h_2} > 0 \), and \(\zeta_{h_1} > 0, \gamma_d \) meeting with (48), \(\epsilon \leq \min\{\sqrt{\sigma_1}, 4\sigma_1, \sigma_2/(4\sigma_1 + \sigma_2)\} \), then the DO-BSMC control, given by (16), (41) and (56), can guarantee the requirements of 1) and 2) in section 2.3.

Proof.

Define the tracking error of position and velocity for the trajectory guider controller as \(z_4 \equiv \begin{pmatrix} \xi - \xi_r \\ \nu_c - \nu_c \end{pmatrix} \). A Lyapunov function for the entire system is established in accordance with (48) and (54):

\[
V = V_I + V_h = \left(\frac{1}{2} z_1^T \right) \begin{pmatrix} H_{h_1} & 0 \\ 0 & I \end{pmatrix} z_1 + \frac{1}{2\gamma_d} \tilde{d}_d \tilde{d}_d + \frac{1}{2} z_1^T \zeta_1 z_1 + \frac{1}{2} z_1^T P z_4 ,
\]

(57)
where \(z_i (i = 1, 2, 3, 4) \) are the tracking error vectors defined in Section 3.1 and 3.2, \(P \) is positive definite for sufficiently small values of \(\varepsilon \), and the Lyapunov function in (57) is chosen for the high-level controller as:

\[
V_h = \frac{1}{2} z_i^T P z_i ,
\]

where

\[
P = \begin{pmatrix}
1 & \frac{\varepsilon}{\sigma_1} \\
\frac{\varepsilon}{\sigma_2} & 1
\end{pmatrix} ,
\]

(59)

Then the derivative with respect to time of (58) can be obtained by using (59)

\[
\dot{V}_h = \frac{1}{2} z_i^T \left[\begin{pmatrix} 0 & -\sigma_1 \sigma_2 \\ \frac{\varepsilon}{\sigma_1} & -\sigma_2 \end{pmatrix} P + P \begin{pmatrix} 0 & 1 \\ -\sigma_1 \sigma_2 & -\sigma_2 \end{pmatrix} \right] z_i \triangleq -z_i^T \mathcal{Q} z_i \leq 0 ,
\]

(60)

where \(\mathcal{Q} = \begin{pmatrix} \varepsilon & \varepsilon \\ \varepsilon & \sigma_2 - \varepsilon \\ \frac{\varepsilon}{2\sigma_1} & \frac{\varepsilon}{\sigma_1 \sigma_2} \end{pmatrix} \). Substituting (52), and (54) into the derivative of (57) yields

\[
\dot{\mathbf{z}} = \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} \begin{pmatrix} h_{\theta_1} K_1 \\ 0 \\ h_{\theta_2} \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} - \varsigma_{\theta_1} \| z_2 \| + z_2^T (\dot{\omega} - \dot{\nu}_d) - z_i^T \mathcal{Q} z_i
\]

\[
\triangleq -z_i^T \Lambda_2 z - \varsigma_{\theta_1} \| z_2 \|
\]

\[
\leq -z_i^T \Lambda_2 z
\]

\[
\leq -\lambda_{\text{min}} (\Lambda_2) z_i^T z ,
\]

(61)

where \(\Lambda_2 = \text{diag} \left(h_{\theta_1} K_1, h_{\theta_2}, K_3, \mathcal{Q} \right) \), and \(\lambda_{\text{min}} (\Lambda_2) \) is the minimum eigenvalue of \(\Lambda_2 \).

For sufficiently small value of \(\varepsilon \) less than \(\min \{ \sqrt{\sigma_1 \sigma_2}, 4\sigma_1 \sigma_2 / (4\sigma_1 + \sigma_2) \} \), then \(\mathcal{Q} > 0 \), \(K_1 > 0, K_3 > 0, h_{\theta_1} > 0, h_{\theta_2} > 0 \), and \(\varsigma_{\theta_1} > 0 \), so \(\Lambda_2 \) is positive definite, and \(\dot{\mathbf{z}} \) is negative definite. According to Lemma 1, the system is globally asymptotically stable at \(z = 0 \). Thus, the reference trajectory \(\xi_r \) is precisely
4. Simulation and Analysis

The considered model is a 250m length, 75m diameter airship, and the structure parameters and aerodynamic coefficients of the stratospheric airship are listed in Table 1.

Scenario I: Trajectory tracking control under unknown external disturbance.

In this case suppose that there is the unknown disturbance vector f acting on the airship, given by

$$f(t) = [0.4, -0.5, 0.4, 0.05, 0.1, 0.1]^T$$

where the units are m/s2 for linear acceleration and rad/s2 for angular acceleration respectively.

The gains of the disturbance observer (13) are designed as

$$l(x) = \text{diag}(2.6, 0.0088, 1.8, 0.5, 0.198, 1)$$

(BSMC1) (63.a)

$$l(x) = \text{diag}(7.8, 0.008, 2.4, 1.8, 0.275, 0.45)$$

(BSMC2) (63.b)

To illustrate our method in attitude control, a control design, the controller parameters are designed as follows

$$\sigma_1 = 0.1 \begin{bmatrix} 1 \\ s \end{bmatrix}, \sigma_2 = 0.2 \begin{bmatrix} 1 \\ s \end{bmatrix}, c_\psi = 12 \begin{bmatrix} \text{deg} \cdot \text{s} \\ \text{m} \end{bmatrix},$$

$$K_1 = 0.5I_3, K_3 = 4I_3, W_v = I_6,$$

$$W_u = I_6, \gamma_d = 0.2, h_{\beta_z} = \frac{\text{deg}}{\text{s}}, = 1, \zeta = 0.4, \epsilon_0 \to 0$$

(BSMC2) (64)

To analyze the DO-BSMC2 control performance, the BSMC1 (Liu et al., 2020) with disturbance observer is used to compare, where the parameters of DO-BSMC1 are designed as follows,

$$\sigma_1 = 0.1 \begin{bmatrix} 1 \\ s \end{bmatrix}, \sigma_2 = 0.2 \begin{bmatrix} 1 \\ s \end{bmatrix}, c_\psi = 1 \begin{bmatrix} \text{deg} \cdot \text{s} \\ \text{m} \end{bmatrix}, c_\theta = 12 \begin{bmatrix} \text{deg} \cdot \text{s} \\ \text{m} \end{bmatrix},$$

$$K_1 = 0.5I_3, K_3 = 0.5I_3, K_3 = 4I_3, W_v = I_6, W_u = I_6,$$

$$\gamma_d = 0.2, h_{\beta_z} = 1, h_{\gamma_z} = 1, \zeta = 0.4, \epsilon_0 \to 0$$

(BSMC1) (65)

where K_1 and K_3 are chosen to meet the requirements 1) and 2) in Section 2 through iterative design. I_i denotes the $i \times i$ unit matrix, $i = 3, 6$.
The position range for the actuators are $[-25, 25]$°, and their rate is confined in $[-80, 80]$°/s. The initial position $\xi_0 = [0, 0, -20000]^T$ (m), and initial body velocity $\nu_0 = [18,0,0]^T$ (m/s), initial attitude $\eta_0 = [0, 0, 0]^T$, and initial angular velocity $\omega_0 = [0, 0, 0]^T$.

To validate the trajectory tracking control performance of the DO-BSMC design, a helix reference trajectory function is defined as

$$\xi_r(t) = [x_r, y_r, z_r]^T = \int_0^t \dot{\xi}_r(t) dt + \xi_{r0},$$

(66)

where the reference velocity $\dot{\xi}(t) = \nu_r = [V_h \sin(\frac{2\pi}{T}t), V_h \cos(\frac{2\pi}{T}t), -V_z]^T$ and its initial reference position $\xi_{r0} = [40, -50, -19960]^T$ (m). The horizontal tracking speed $V_h = 20$ m/s, the ascending speed is $V_z = 1$ (m/s), and the motion period $T = 300$ (s).

The simulation results are shown in Fig.3-Fig.8.
Fig. 4. Attitude angles tracking responses with disturbance inputs

Fig. 5. Angular rate tracking responses with unknown disturbance inputs
Fig. 6. Estimation of the observable position disturbances

Fig. 7. Estimation of the observable attitude disturbances
From Fig.3-4, it is clear that the reference trajectory and attitudes have been accurately tracked using the DO-BSMC2 method and the tracking errors converge to the desired position and attitude within 60 seconds, even in the presence of unknown disturbances. For the roll motion response there are some oscillations because of weak roll damping of the airship, so the convergence time is longer. Comparing with the BSMC, the proposed DO-BSMC control has lower tracking errors in attitude and position responses, which shows DO-BSMC control has more capability to deal with unknown disturbances for the airship. Comparison with BSMC1, responses of BSMC2 have more tracking errors and larger fluctuating in roll motion, so the linear sliding surface (29) applies position feedback and improves the output tracking performances. From Fig.5 the tracking roll rate and yaw rate responses have small oscillations, and amplitudes of oscillations of the BSMC1 and BSMC2 tracking responses are more than those of the DO-BSMC1 and DO-BSMC2, meanwhile attenuation speeds of the BSMC1 tracking responses are fast than those of the BSMC2 tracking responses. Figures 6 and 7 show the observable disturbance vector can be accurately estimated by
the NDO of (13) although there are some errors in the transition phase. Fig.8 shows the unobservable attitude disturbances have been adaptively estimated by the observer (51), and the responses of DO-BSMC have smaller overshoots and are faster converging than those of the BSMC design, which show DO can improve the tracking performances and disturbance rejection levels.

Scenario II: Trajectory tracking control under parameter uncertainty and unknown disturbances

This scenario considers model parameter uncertainty due to aerodynamic derivatives varying accordingly with angle of attack (AOA). So aerodynamic coefficients are set as follows

\[
\begin{bmatrix}
\Delta f_x \\
\Delta f_y \\
\Delta f_z \\
\Delta f_{mx} \\
\Delta f_{my} \\
\Delta f_{mz}
\end{bmatrix} =
\begin{bmatrix}
(1.3 + 0.5\alpha) C_x \\
(1.3 + 0.5\alpha) C_y \\
(1.3 - 0.5\alpha) C_z \\
(0.7 - 0.5\alpha) C_{mx} \\
(0.7 - 0.5\alpha) C_{my} \\
(0.7 - 0.5\alpha) C_{mz}
\end{bmatrix},
\tag{67}
\]

where \(\Delta\) denotes perturbation value. In this scenario the parameter uncertainty and external disturbances are considered simultaneously.

The reference trajectory function is the same as Scenario I. To compare control performances, Scenario II is simulated by using the BSMC2 with the same parameters as (64) ~ (65) in the three channels of roll, pitch and yaw. Meanwhile the parameters in the guidance loop are chosen as (64) ~ (65). The trajectory tracking responses are shown in Fig.9 and Fig.10. From Fig.10, it can be seen that responses of attitude angles for BSMC without the NDO estimation have more overshoot and bigger steady tracking errors than those for the DO-BSMC method, which shows the DO-BSMC design has more adaptive capability for aerodynamic coefficient uncertainty and unknown disturbances environment. Meanwhile, the roll responses are fluctuating with small amplitude, see Fig.10, the reason is low damping in the roll motion.
Fig. 9. Position tracking responses with model uncertainty and unknown disturbances.

Fig. 10. Euler angle tracking responses with model uncertainty and unknown disturbances.
Fig. 11 Angular rate tracking responses with model uncertainty and unknown disturbances

Fig. 12 Flight speed responses with model uncertainty and unknown disturbances
From Fig.11 the tracking roll rate and yaw rate responses have small oscillations due to small damping, and amplitudes of oscillations of the BSMC1 and BSMC2 tracking responses are more than those of the DO-BSMC1 and DO-BSMC2, meanwhile attenuation speeds of the BSMC1 tracking responses are fast than those of the BSMC2 tracking responses. From Fig.12, it can be seen that speed responses of the DO-BSMC have less overshoot than those of the BSMC design due to the disturbance estimation effect. Figures 13 and 14 show the observable disturbance vector can be accurately estimated by the NDO of (13) although there are some errors in the transition phase. Fig.15 shows the unobservable attitude disturbances have been adaptively estimated, and the responses of DO-BSMC have smaller overshoots and are faster converging than those of the BSMC design, which show DO can improve the tracking performances and disturbance rejection levels.

Fig. 13. Estimation of the observable position disturbances
Fig. 14. Estimation of the observable attitude disturbances

Fig. 15. Estimation of the unobservable attitude disturbances
Fig. 16. Control inputs with model uncertainty and external disturbances.

Fig. 16 shows the control inputs by using the DO-BSMC design are bigger than those by using the BSMC method due to disturbance observer based compensation, and the inputs of the BSMC2 approach are bigger than those by using the BSMC1 method.

Scenario III: Trajectory tracking control under parameter uncertainty and unknown disturbances and winds

In this scenario, a 1- cosine wind is introduced to the system with above model uncertainties and constant disturbances. The shape of the wind is set as (Valente C. and Jones D., 2015)

\[
V_w(x_d) = \begin{cases}
\frac{U_d}{2} \left(1 - \cos \left(\frac{\pi x_d}{H}\right)\right), & \text{for } 0 \leq x_d \leq 2H \\
0, & \text{otherwise}
\end{cases}
\]

(68)
where \(x_d \) is the distance penetrated into the wind, \(H \) is the distance parallel to the flight path of the airship for the wind to reach its peak velocity meeting \(H = 0.5 \, L_w \). \(L_w \) is wavelength of the wind, \(U_{ds} \) is the design wind velocity in equivalent air speed as follows

\[
U_{ds} = U_{ref} F_w \left(\frac{H}{106.68} \right)^{1/6}
\]

(69)

where \(U_{ref} \) is the reference gust velocity, \(F_w \) is the flight profile alleviation factor, \(U_{ref} = 6.3 \) m/s at the altitude of 20000m, \(F_w = 1 \), and set \(V_{ws} \) for \(0 \leq x_d \leq 2H \), \(V_{wy} \) for \(2H \leq x_d \leq 4H \), \(V_{wz} \) for \(4 \leq x_d \leq 6H \).

Choose a wind observer with the states

\[
\begin{bmatrix}
\dot{\xi} \\
\dot{\nu}_w
\end{bmatrix} = \begin{bmatrix}
R(\eta) \nu_w \\
0
\end{bmatrix} + \begin{bmatrix}
L_\xi & I_3 \\
L_w & 0
\end{bmatrix} \begin{bmatrix}
\xi - \hat{\xi} \\
\nu_w - \hat{\nu}_w
\end{bmatrix}
\]

(70)

The estimation error can be obtained as

\[
\dot{e}_\nu = \begin{bmatrix}
\xi - \hat{\xi} \\
\nu_w - \hat{\nu}_w
\end{bmatrix} = \begin{bmatrix}
-L_\xi & I_3 \\
-L_w & 0
\end{bmatrix} e_\nu = \tilde{A}_e e_\nu
\]

(71)

where \(L_\xi \), \(L_w \) are gain matrices subject to \(\tilde{A}_e \) be Hurwitz, they are chosen as \(L_\xi = diag(1,1,1) \), \(L_w = diag(0.75,0.75,0.75) \).

By using the proposed BSMC and DO-BSMC design, the simulation results are shown in Figs 17-21.
Fig. 17. Position tracking responses with disturbances, model uncertainties and winds

Fig. 18. Attitude tracking responses with disturbances, model uncertainties and winds
Fig. 19. Flight speed tracking responses with disturbances, model uncertainties and winds

Fig. 20. Angular rate tracking responses with disturbances, model uncertainties and winds
From Fig.17-Fig.20, winds will affect the flight speed and position tracking responses, and generate some tracking errors, but the time of winds acting on the airship is bounded, so the tracking responses will approximate the desired values when the airship pass the wind field. From Fig.21, it can be seen that the wind speeds have been precisely estimated by the proposed wind estimator. The estimation responses of winds have some time delay due to bandwidth limitation of the wind observer.

5. Conclusion

In this paper we propose two DO-BSMC control approaches for a stratospheric airship. Based on a full 6-DOF nonlinear model, the trajectory tracking controller is designed. The developed controller stabilizes the attitude and velocity of the airship via a backstepping sliding mode control method. Furthermore, a nonlinear disturbance observer is designed to reduce effect of the external unknown disturbances and model uncertainties for the trajectory tracking control. Stability analysis shows that the closed-loop trajectory
tracking error dynamics are globally asymptotically stable. Two cases of the unknown disturbances and model parameter uncertainties were simulated and show the proposed robustness. Compared with the BSMC controller, the DO-BSMC design achieve better trajectory tracking performances even though the airship is affected by parametric uncertainties and external bounded disturbances. Therefore, the effectiveness and availability of the DO-BSMC design are demonstrated.

Acknowledgements

This work has been funded by the National Natural Science Fund under the Grant 10577012. The work of Shiqian Liu was supported by the China Scholarship Council under the grant number 201806235014.

References

Backstepping sliding-mode control of stratospheric airships using disturbance-observer

Liu, Shi Qian

Elsevier

https://doi.org/10.1016/j.asr.2020.10.047

Downloaded from Cranfield Library Services E-Repository