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Abstract: This study is aimed at addressing how to furnish the catalysts with 

cascade/non-cascade switching catalytic ability. Inspired from the “soft” properties and 

divisional isolation function in natural biological systems, this objective was 

accomplished by developing a new class of hydrogel made of two unique functional 

layers with different temperature responses where each may self-govern coupled 

process at a specific temperature condition. This hydrogel polymer catalyst showed 

almost no catalytic activity at relatively low temperatures (< 37℃) as both channels of 

bilayer hydrogel polymer catalyst were closed. At modest temperatures (between 37℃ 

and 50℃), the first step of the tandem reaction (the hydrolysis of p-nitrophenyl acetate 

(NPA)) showed significant reactivity that arises from the relaxing of the weak polymer 

complexes hydrogel layer. This allowed NPA to gain entrance to the acidic catalytic 

active center of the hydrogel. At relatively high temperatures (> 50℃), this hydrogel 

polymer catalyst further showed significant reactivity towards the hydrolysis reaction 

of NPA and reduction reaction of intermediate product p-nitrophenol (NP). It   mainly 

results from the opening of both weak polymer complexes hydrogel layer and stronger 

polymer complexes hydrogel layer, allowing entrance to both acidic catalytic active 

center and metal nanoparticles active center. In this way, this hydrogel polymer catalyst 

demonstrated a controllable cascade/ non-cascade catalytic ability. This suggested 

protocol provides the inspiration with struggling tandem catalysts, which allows 

opportunities to finely switchable tandem processes. 
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Introduction 

 

Tandem reactions, which involve the sequential chemical reactions to proceed in a 

concurrent style, have attracted lots of researchers’ attention owing to their high atom 

economy, step-saving and biomimetic nature to name a few [1-3]. Further self-

modulation of the tandem reactions would enable the complicated reactions into a more 

controllable and programmable way and thus achieving one-pot catalytic processes [4, 

5]. To hit this point, a lot of recent researches are being focused on studying about the 

control of configurations-activity relationship at the novel catalysts like functional 

microspheres and hierarchical structure, making possible either regulated channel for 

substrate or micro phase separation from the catalytic systems [6-10]. In this way, the 

self-controlled tandem catalysts are able to achieve the self-modulated sequential 

reactions [11-15]. Despite the progress [16, 17], there are not too many practical 

applications of the self-controlled tandem catalysts in recent days. One significant 

problem comes from the complicated process of the practical tandem processes, which 

contains a series of different catalytic processes, sometimes incorporating both cascade 

and non-cascade processes. At present, it is difficult to prepare such self-controlled 

catalysts by simply combining and copying the switchable catalysts in simple reactions. 

Therefore, the development of a novel catalyst to realize efficient switchable control is 

a great challenge in complicated tandem catalysis and is need of the hour.   

For centuries, scientists have learned to resolve complicated problems based on 

inspiration sought from nature [18, 19]. Nature is able to shuttle reactants and products 

through individual compartments allowing for cascade or tandem reaction pathways 

combining (incompatible) transformations for complex molecule synthesis [20]. 

Sometimes it is essential for biological systems’ survival to achieve self-controlled 

ability in the multi-pathway reaction processes (typically catalytic hydrolysis and redox 

reactions) [21, 22]. The answer behind this lies in the “soft” morphology and “arbitrary” 

piling-up structures, showing a fine modulation of the substrate channels to the internal 

active species, enabling self-control from simple reactions to complicated tandem 

processes [23, 24]. Owing to their reversible switching properties in response to 

different external stimuli [25-27], these systems are capable of improving the mass 

transports of reactants/products in aqueous solution, switching the sequential catalytic 

process on and off [28-30]. As a result, natural biological systems show us perfect 



examples on how to cater to complicated reactions by finely self-controlled ability [31-

34]. 

Enlightened by this principle, herein, a bilayer polymer reactor that was capable of 

controlling cascade reaction processes by its own deformations upon changing 

temperature was prepared. One of the layers in this hydrogel was made by weak 

polymer complexes between Poly (2-acrylamide)-2-methylpropanesulfonic acid 

(PAMPS) and polyacrylamide (PAM). This layer can conduct the hydrolysis of NPA 

by controlling the opening or not of the channel according to external temperature. 

When the temperature is higher than 37℃, the electrostatic force between the 

copolymers is destroyed and the reaction channel is open, resulting in the hydrolysis of 

NPA. The other layer was fabricated with stronger polymer complexes poly (1-vinyl 

imidazole) (PVI) and poly (2-trifluoromethylacrylic acid) (PTFMA) with silver 

nanoparticles encapsulated, which can control the exposure of silver nanoparticles for 

reactions of intermediate. When the temperature is above 53℃, the silver nanoparticles 

are exposed as the channel opens, resulting in the reduction of intermediate NP. In this 

way, the novel polymer catalyst was furnished with hierarchical access capable of 

modulating tandem catalytic ability. This double temperature-responsive polymer 

reactor (named ‘‘DTR”) with responsive abilities to two different temperatures, was 

constructed from two different interactions. One of them is a relatively stronger 

polymer complex [35] (between PVI and PTFMA) with Ag nanoparticles encapsulated, 

and another is a weak hydrogen bond (between PAMPS and PAM) [36]. The self-

assembly hierarchical pathways of different polymer hydrogel layer molecules act as 

molecular switches to provide ordered access to different catalytic active centres. As 

proposed in Scheme 1, at relatively low temperatures, the closed access in this polymer 

catalyst would block substrate from the catalytic active centres, resulting in poor 

catalytic reactivity (Status A). The access for NPA, however, allowed with increasing 

temperature, arising from the dissociation of the PAMPS-PAM complexes interactions 

(Status B). At relatively high temperatures, NP can be reduced to AP by encapsulated 

metal nanoparticles, resulting from the dissociation of the PVI–PTFMA complexes 

(Status C). In this way, the hierarchical access allows for the occurrence of the catalysts 

with self-controlled cascade catalytic-ability. The objective of this study is to 

demonstrate that polymer catalysts with self-controlled catalytic ability can be prepared 

by this novel protocol, opening up new opportunities to develop smart catalysts for 

controlled cascade chemical processes.  



 

Scheme 1. Proposed mechanism for the novel polymer catalyst 

 

2. Experiment 

2.1. Preparation of polymer catalysts 

Unless otherwise noted, the chemicals used were of analytic grade and used as 

received from Sigma–Aldrich. The novel polymer catalyst, as discussed, was prepared 

in the form of a bilayer of switchable layer hydrogels layer with different response 

temperatures (cf. Scheme 1). To connect both layers, the switchable layer with a higher 

temperature response was first prepared by polymerization and then exposed by one 

side of the layer to a solution with a relatively low temperature response, intended for 

preparing the coupled second layer, which allowed the formation of an interpenetrating 

network structure between the two layers. In this way, both layers were connected (as 

Scheme 2 showed). Firstly, the functional monomers 2-acrylamido-2-

methylpropanesulfonic acid (AMPS) and acrylamide (AAM), 2-trifluoromethylacrylic 

acid (TFMA) and 1-vinyl imidazole (VI) were used in a stoichiometric molar ratio to 

ensure the entire complexation between amino groups and sulfonic groups, hydroxyl 

and imidazole moieties, which would be further discussed afterward in 3.1. In detail, 



stoichiometric VI/TFMA complexes (VI: 0.285g; 3.0mmol) (TFMA: 0.372g; 

2.61mmol) were dissolved in dimethylsulfoxide (10.0 mL). After being dispersed and 

deoxygenated with sonication and nitrogen, the initiator AIBN (0.092 g) and crosslinker 

N, N’-methylene bisacrylamide (MBA) (0.177 g; 1.15mmol), along with AgNO3 (0.51 

g; 3mmol) were added. The solution was rapidly injected into a glass cell for 

polymerization. The mixture system was conducted at 70℃ for 1h to produce the 

VI/TFMA hydrogel and encapsulated ionic Ag was then reduced by an excess of sodium 

borohydride (tenfold, with regard to ionic Ag). It is then immersed in deionized water 

for a period of time to remove unreacted monomer. 

The second layer of the PAMPS/AM hydrogel was synthesized on the first layer 

in a way similar to that previously mentioned. In detail, AM (0.4g; 5.63mmol), AMPS 

(0.941g；4.54mmol) and MBA (0.0375g; 0.24mmol) was dissolved in deionized water 

(4ml); potassium persulfate (0.0532g) and potassium bisulfite (0.0247g) was dissolved 

in deionized water (2ml). Then the two solutions were mixed and poured into the glass 

cell. The curing of the second layer was conducted at 25℃ for 10 min, accompanying 

with the reactive solution penetrated into the surface of the first layer to create a strong 

interpenetrating network structure between the two layers. After complete 

polymerization, the bilayer hydrogel (DTR) was prepared. In this way, the novel 

catalyst was synthesized.  

For a contrastive study, two controls named “LTR”, “HTR” respectively were also 

prepared under comparable conditions. “LTR” was a hydrogel polymer catalytic reactor 

with relatively low-temperature responsive ability (with the only acidic site), in which 

the hydrogel was made entirely of (AMPS and AM). “HTR” was the switchable Ag 

catalyst made of TFMA, VI and AgNO3, with high response temperature (catalytic of 

metal nanoparticles, only). In this way, these controls, along with DTR were prepared. 

The objective of this study was to demonstrate that the self-controlled tandem catalytic-

ability can be realized by this bilayer smart polymer reactor with different temperature-

responsive ability, which may provide new inspirations for controlled tandem catalytic 

reactors.  

 

 



 

Scheme 2. Bilayer structural scheme of the polymer reactor 

 

2.2 Characterization  

The TEM images of the prepared catalysts were obtained using a JEM-2100 

transmission electron microscope (TEM) (Japan). The surface morphology was 

observed using a JSM-7800F scanning electron microscope (SEM) (Japan). The FTIR 

spectra were obtained using a Nicolet MX-1E apparatus (USA). The absorption bands 

of the surface plasma resonance (SPR) were obtained using a Lambda 25 UV 

spectrophotometer (USA). The energy-dispersive spectra (EDS) were obtained using a 

MIRA3-XMU apparatus (USA). X-ray diffraction (XRD) data were measured on the 

X'Pert PRO MPD powder X-ray diffractometer. The change of shape upon temperature 

was recorded with a digital camera in which the slice of the prepared catalysts was 

immersed in water. 

 

2.3 Self-switchable interactions 

The self-switchable interactions between PAM and PAMPS as well as between 

PVI and PTFMA were studied as a function of temperature using dynamic light 

scattering (DLS) (NanoZS-ZEN3600, UK). For equilibrium, all the concerned samples 

were kept at the specified temperatures for at least 10 min before acquiring 

hydrodynamic radii (Rh). For a comparison between the smart reactors DTR, we have 

also conducted DLS tests on HTR, LTR. 



2.4 Catalysis test 

The catalytic properties of the prepared polymer reactors were evaluated in the 

batch format in PBS buffer solution (pH=7; containing 10vol% methanol). The initial 

concentration of NPA was 0.02μmol mL-1 (10 mL PBS, pH 7.0) (NaBH4: if present, 

tenfold in contrast to NPA). The solid content of the polymer reactors was 0.1 mg mL-

1 in each test. The catalytic behavior was spectrophotometrically monitored and the 

catalytic activities were determined from the average of triple runs. Given the potential 

effect of spontaneous reactions on the catalytic process, the reactions of NPA in the 

absence of catalysts were also run under the comparable conditions and accordingly the 

effects had been deducted from the reported overall activities of these catalysts. 

 

2.5 Electrochemical tests 

Electrochemical tests were further performed to investigate the catalytic 

mechanism between the prepared polymer catalysts and substrate [12]. Using an 

electrochemical workstation furnished with a three-electrode configuration (Au-plate 

working electrode, Pt-wire counter electrode and Ag/AgCl reference electrode) 

(CHI760E, China), polymer catalysts (20.0 mg) that pre-absorbed ca. 4µmol substrate 

(i.e., NP) were placed into a cuvette encircled by a diffusion-eliminating sonication 

apparatus (supporting electrolyte: PBS buffer solution; 15 mL, KCl 0.1g). The substrate 

desorbed transiently was cyclic-voltammetrically scanned by using the workstation 

until a stable desorption/reduction profile was achieved (scanning range, -0.45 to 0.1V; 

rate, 0.05V/ s).  

 

3 Results and discussion 

3.1 Optimized interactions within the prepared catalysts 

As explained, the switchable ability at the DTR catalyst mainly results from the 

complementary interactions between the two different temperature-responsive layers. 

The association/dissociation process at different layers endows self-controlled access 

to the acidic/reductive active centers. It is known that excess of either monomer would 

lead to the steric mismatch between PTFMA and PVI as well as between PAM and 

PAMPS moieties. It results in unsaturated interactions and defective responsiveness. 



Only the stoichiometric PVI-PTFMA and PAM-PAMPS interactions would exhibit 

complete association/dissociation, therefore showing the best switching responsiveness 

[37]. Given that the complementary interactions between different functional groups 

can induce an alterable electronic-transition at electronic clouds (valent electrons) and 

accordingly a change in the electronic transition, the specific study about the 

interactions could be studied with UV titration [35]. By using titration, Fig 1 and 2 

exhibited the UV spectra shifting as a function of the TFMA/VI and AMPS/ AM. As 

shown in Fig. 1, the titration of TFMA to VI led to a shift in the UV spectra (marked 

with broken lines). The shift achieved a maximal value when the titrated TFMA reached 

a critical amount (corresponding to the TFMA/VI ratio 1mol/1.12mol). Beyond this 

specific amount, there was no more shift except for increasing absorbance. This result 

indicated that the TFMA-VI interaction was saturated by the stoichiometric titration 

and reached the optimization state [35]. The outcome was similar in titrating AMPS to 

AM, as shown in Fig. 2. The maximal value was achieved when the AMPS / AM ratio 

reached 1 mol/1.24mol. As such, 2.6 mmol of TFMA (0.3722 g) and 3.0 mmol of VI 

(0.28 g) ；4.54 mmol of AMPS (0.941g) and 5.63mmol of AM（0.4g）were adopted 

to prepare DTR.  

        

Fig 1. UV spectra shifting as a function of the TFMA/VI ratio by using UV titrations 

(in which, TFMA (2.5 µmol mL-1; 0.32 mL; 20µL per titration) was titrated into VI 

(0.3µmol mL-1; 3mL).       



 

Fig 2. UV spectra shifting as a function of the AMPS/AM ratio by using UV titrations 

(in which, AM (2 µmol mL-1; 0.3 mL; 10µL per titration) was titrated into AMPS 

(0.25µmol mL-1; 3mL). 

 

3.2 Analysis of composition and structure 

The prepared bilayer hydrogels have been observed by scanning electron microscope 

(SEM) to investigate the surface morphologies and the boundary between the first and 

second layers, as shown in Fig 3. It has been observed that the surface of the PTFMA-

PVI-Ag layer is slightly rougher than that of PAM-PAMPS because of the existence of 

Ag. The boundary of two layers has been found to be distinct but with tight conjunction. 

Even the components in two layers are different from each other. The chain 

entanglement and hydrogen bond existing among two different layers have been able 

to connect each other as well as increase the adhesion at the interface.  



 

Fig 3. SEM images of two individual layers: PTFMA-PVI-Ag/ HTR (a) and PAM-

PAMPS/LTR (b), and the cross-section of the bilayer hydrogel /DTR(c) 

 

FT-IR was first used to study the polymeric composition in the prepared DTR, as shown 

in Fig 4. Three major bands (i.e., 3000–3750, 1750 and 1000–1500 cm-1) appeared in 

the spectrum of the reactor, which is connected with the vibrating zones of O-H (N-H), 

C=O and C-N (C-C), respectively [21]. As the components PTFMA, PVI, AM and 

AMPS separately contain these vibrational groups, it is therefore difficult to clarify one 

specific constituent from DTR. As a result, we have also compared the FT-IR spectra 

of two other controls (i.e., HTR: made of PVI-PTFMA and LTR: made of PAM-PAMPS) 

(Fig. 4). As is shown, the DTR contains the major absorption bands of HTR and LTR 

controls. The spectrum of the major bands of other controls indicates the multi-

component copolymer compounded by PTFMA, PVI, PAM and PAMPS in DTR. 

Therefore, it has been clarified that the prepared DTR was prepared to contain the 

components as expected. Fig 5 shows the TEM images of polymer catalyst. Silver 



nanoparticles with a size of ca.8nm were encapsulated in the polymer reactor DTR and 

HTR while there were no metal nanoparticles in LTR. Hence, these polymers were 

prepared in the desired form. 

 

Fig 4. FTIR spectra of the prepared polymer catalysts 



 

 

Fig 5. TEM images of the metal nanoparticles contained in the prepared polymer 

catalysts (a: DTR; b: HTR; c: LTR) 

 

The presence of the encapsulated Ag nanoparticles in the prepared polymers has been 

further confirmed by the SPR spectra (Fig 6) where the Ag nanoparticles exhibit the 

typical SPR peaks at ~415 nm [38-40]. There is no Ag in LTR, so there is no peak in 

415nm. It is proved that the prepared polymer reactor is embedded with metal Ag 

nanoparticles. The silver nanoparticles in polymer catalytic reactors were also 



characterized by XRD. According to the test results (Figure 7), four characteristic peaks, 

{111}, {200}, {220} and {311}, {322} appeared in the DTR. The standard spectral 

index shows that the four characteristic peaks are produced by the face-centered cubic 

silver particles [41], indicating that there are metallic silver particles in them. In contrast, 

there is the same face-centered cubic silver characteristic peak (HTR). However, in LTR, 

there was only a polymer peak, indicating that there was no silver in the sample. The 

results are consistent with the designed DTR and HTR containing silver particles, while 

the LTR contains no silver structure. It is proved that the structure of the three polymeric 

reactors is in accordance with the expected structure. 

 

 

Fig 6. SPR spectra of the prepared polymer catalysts 



 

Fig 7. XRD spectra of the prepared polymer catalysts 

 

The EDS data of DTR and HTR along with LTR are presented in Figure 8. It was found 

that common elements C, N, and O were contained in all three reactors. The synthesized 

DTR contains the elements of C, N, O, F, S, and Ag; HTR is composed of C, N, O, F, 

Ag, and the elements contained in LTR are C, N, O, S, which are consistent with the 

different components described in sections 3. 2.  



 

Fig 8. EDS spectra of the prepared polymer catalysts 

 

3.3 Evaluation of the self-switchable interactions 

To further address the thermosensitive ability of the bilayer structure, the PTFMA-PVI 

and PAM-PAMPS interactions were studied as a function of temperature, as shown in 

Figure 9a and Figure 9b. The dynamic radius of DTR increased with increasing 

temperature and the dramatic change appeared at ca. 37℃ and 50℃ (marked with 

broken lines), respectively. Below 37℃, DTR showed relatively a smaller dynamic 

radius associating with the complementary interactions between PAM and PAMPS and 

between PVI and PTFMA (i.e., polymeric complexes), which inhibited swelling of the 

polymers. When the temperature was between 37℃ and 50℃, the dynamic radius of 

DTR dramatically increased in response to the dissociation of the self-healing 

interaction of PAM and PAMPS, which is nearly comparable to the dynamic radius 

change of LTR. Above 50℃, the dynamic radius of DTR further increased significantly 

as the dissociation of the PVI and PTFMA, leading to completely open of the bilayer 

hydrogel polymer, which is similar to the changing trend to the dynamic radius change 

of LTR. In conjunction with the development of this polymer catalyst (cf. Scheme 1), 



this polymer reactor exhibited different admitting access to the active sites at a different 

temperature, thus enabling tandem/non-tandem switching ability at different 

temperature.  

 

 

Figure 9. DLS spectra with dynamic-radius changing as a function temperature (a: 

Normal; b: Differential) 



3.4 Change of shape in the switching process 

Figure 10 showed the shape change in the bilayer polymer reactor upon changing 

temperature. From section 3.3, we recognize that the two-layer polymer catalytic 

reactor has a phase transition temperature of 37 °C and 50 °C. In order to facilitate the 

display of its macroscopic topography, we have recorded the topographical changes at 

three different temperatures of 30°C, 45°C and 60 °C using a digital camera (The three 

groups of temperatures are lower than the lowest phase transition (37°C) temperature; 

higher than the lowest phase transition temperature (37°C) and lower than the highest 

phase transition temperature (50°C), and higher than the highest phase transition 

temperature (50°C)). The following electrochemical and catalytic tests were also tested 

at these three different temperatures. Fig 10a displays the slice of this catalyst appeared 

to be flat at 30 °C but to be concave (Fig 10b) at the middle temperature 45 °and at 

60℃, it becomes flat again (Fig 10c). This result can be ascribed to the responsiveness 

of one layer in the middle temperature and responsiveness of both the two layers in the 

high temperature. The change in shape was reversible and this catalyst can be made to 

switch between a flat and a concave shape upon changing temperature.  

 



Figure 10. The shape change of DTR upon changing temperature: a 30°C; b 45°C; c 

60°C. 

 

3.5 Self-controlled tandem catalysis  

The self-controlled catalytic properties of these polymer reactors were also evaluated 

by the hydrolysis and reduction process of NPA. UV spectroscopic analysis was used 

to monitor the catalytic reaction of NPA in the presence of sodium borohydride. As 

shown in Figure 11, three representative temperatures 30°C、45°C、60°C, were 

selected for a comparative study (illustrated in section 3.3). It can be clearly seen from 

Figure 11（a, b, and c） that there is no significant change in NPA (271nm) at 30 °C, 

mainly because of the channels of the catalysts LTR, DTR, and HTR are all closed，

which makes NPA almost impossible to hydrolyze. Thus cascade reaction would not 

happen at this condition. At 45 ℃, there is significant hydrolysis of NPA (Figure 11d) 

at the LTR catalyst, which can be attributed to the opening of the LTR channel and the 

exposure of acidic sites, while there is no obvious reduction reaction as the absence of 

the metal nanoparticles active sites. However, the HTR catalyst cannot cause significant 

changes in NPA (Figure 11e), mainly as the HTR channel switch is closed and the 

catalytic site is not exposed. At 45 ℃, the catalytic effect of the catalyst DTR on NPA 

is almost similar to that of LTR. In Figure 11f, we can only see the hydrolysis of NPA 

to NP (400 nm), and the sequential reduction cannot occur as a result of the close tunnel 

of the reductive sites. The catalytic effect of LTR on NPA at 60 °C is not much different 

from that at 45 °C because of the absence of the reductive sites (Figure 11g). The 

catalytic reaction of NPA in the DTR system at 60 °C has been found to be complicated. 

At this time, as the switch of the active site of both bilayer catalytic sites is open, the 

hydrolysis peak of NPA decreases and the final product peak of 4-aminophenol (295 

nm) increases (Figure 11h). In this process, the intermediate NP formed in the DTR 

system can be further reduced to AP, completing the tandem catalysis. A small part of 

the series reaction can also take place in the HTR system at 60 °C (Figure 11i). The 

reason for this is that the imidazole group in the HTR can hydrolyze the NPA and then 

take place in the series reaction, but its catalytic effect is far less than that of DTR. 

 



 

             

 



 

 



 

 



 

 



 

Figure 11. The changing UV spectrum of NPA in the presence of sodium borohydride 

at the prepared catalysts: a LTR at 30 °C；b HTR at 30 °C; c DTR at 30°C；d LTR at 

45°C; e HTR at 45°C; f DTR at 45°C; g LTR at 60 °C; h HTR at 60 °C; i DTR at 60 °C. 

 

3.6. Dynamic-binding behaviour and switchable substrate channel 

As for the polymer reactors and the controllable mechanism, the basic issues focus on 

the interactions between the switchable moieties and the substrate [12]. Hence, it is of 

great significance to figure out the interactions between the different temperature-

responsive layers and the substrate. As a result, desorption electrochemistry has been 

conducted to gain information in the different switchable layers. It is known that the 

potential to reduce/oxidize a binding molecule depends upon the binding constant. 

Stronger binding needs relatively more energy to overcome the binding. The theory and 

details, as outlined in Scheme 3, have been widely described [13, 14, 42, and 43]. As 

schematically outlined in Scheme 3, the substrate molecules (B) in the system would 

generally involve desorption, diffusion to the surface of electrodes, and the terminal 

redox process. Therefore, the overall reaction rate in the system is determined by the 



slowest step (the rate-determining step). In the process, the diffusion has been 

eliminated with sonication. The overall reaction rate will be directly associated with the 

change of the redox reaction. As such, the desorbing electrochemistry was performed 

in accordance with the paradigm. Given the switchable properties of the novel catalyst, 

30°C、45°C and 60°C were selected again for a comparative study (explained in 3.3 

and 3.4). As shown in Figure 12, NPA which was attached to the first layer of DTR at 

30°C exhibited adsorption/reduction peak at -412 mV (Fig 12a). In contrast, this peak 

at 45 °C shifted to a smaller position (-440 mV) (Fig 12b). There was no obvious shift 

appearing in this peak at 65°C, in contrast to that at 45°C (-440 mV vs -442 mV; Fig. 

12c). The results were similar for NP, where NP that was attached to the second layer 

of DTR at 30°C and 45°C exhibited comparable desorption/reduction potentials (-412 

mV vs -411 mV; Fig. 12d and e). This peak at 65°C shifted to a higher position (i.e., -

432 mV) (Fig 12f). DTR showed strong binding with NPA at relatively higher 

temperatures yet strong binding with NP at relatively higher temperatures. The 

switchable interactions between DTR and substrates clearly suggest the hierarchical 

access in the prepared DTR. 

 

Scheme 3. Schematic presentation of the electrochemical process with the binding 

molecule B.  

To further address this, Table 1 displayed the reduction potentials of both NPA 

and NP desorbing from all the prepared catalysts. The potentials at DTR exhibited an 

initial shift for NPA at 45 °C and then another shift for NP 65°C. There was no 

significant change in the interaction between NPA and the second layer (HTR). NP and 

the first layer (LTR) have similar test results. The potential at LTR showed a maximal 

shift for NPA at 45 °C in comparison to that at 30 and 60 °C. The potential at HTR was 

however, subject to the main shift for NP at 65 °C. In conjunction with the catalytic 

properties (cf. Fig 11), this result indicates again that the alterable tandem catalytic 

abilities lie in the DTR polymer reactor, which induced blocked substrate sequenced 

entrance to the acid catalytic sites and Ag nanoparticles and therefore made possible 

the sortable catalytic ability. 



      

 

 





 

Figure 12. Reduction profiles with substrate desorbing from DTR (a: NPA at 30°C; b: 

NPA at 45°C; c: NPA at 65 °C; d: NP at 30 °C; e: NP at 45 °C; f: NP at 65 °C). 



 

Table 1. Reduction potentials (mV) with substrates desorbing from all the prepared 

polymer catalysts 

 

Polymer catalyst 

30 ºC 45 ºC 60 ºC 

NPA NP NPA NP NPA NP 

DTR -412 -412 -440 -411 -442 -432 

LTR -415 -432 -416 -431 -439 -431 

HTR -398 -405 -405 -406 -415 -430 

 

4 Conclusions 

In the present study, we have reported a novel artificial polymer reactor with a self-

controlled cascade/non-cascade ability. This "smart" catalyst was fabricated with two 

unique functional layers containing respectively acidic and metal catalytic sites, able to 

respond to different temperature ranges. The first layer has consisted of 2-acrylamido-

2-methylpropanesulfonic acid (AMPS) and acrylamide (AAM), which would 

responsive to moderate temperature because of the weak hydrogen bond between them. 

While the second layer is composed of 2-trifluoromethylacrylic acid (TFMA) and 1-

vinyl imidazole (VI) with silver nanoparticles encapsulated, showing the responsive 

ability to high temperature. Owing to the responsive ability towards the different 

temperatures of different layers, this reactor is capable of achieving cascade/non-

cascade reactions in different conditions. Therefore, it has been confirmed that polymer 

catalysts with self-controlled catalytic ability can be realized by this novel protocol. 

Future development in this field will significantly help increase the potential for further 

applications and create novel functional catalysts.  
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