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Abstract

Hyperspectral remote sensing enables establishing semantics from an image by providing
spectral details used for differentiating materials. The airborne/satellite setup for remote
sensing are typically expensive in terms of time and cost-effectiveness. It is therefore im-
portant to predict performance of such systems as a precursor. Hyperspectral scene simu-
lation is a technique which allows the detailed spatial and spectral information of a natural
scene to be reconstructed without the need for expensive and time-consuming airborne/s-
paceborne image acquisition systems. It helps in predicting the potential performance of
airborne/satellite systems, moreover, it enables varying atmospheric conditions, estimat-
ing degradation in sensor performance to provide better uncertainty analysis and traceabil-
ity, performance analysis of data processing algorithms and counter-measures/camouflage
assessment in military applications. Digital Imaging Remote Sensing Image Generation
(DIRSIG) developed by Rochester Institute of Technology and Camoflauge Electro-Optic
Simulator (CameoSim) by Lockheed Martin are the two earliest research and commer-
cial products, respectively, that incorporate hyperspectral rendering for accurate physics-
based radiance estimation. Although CameoSim is a well-established Scene simulator,
however it does not support volumetric scattering and localised adjacency model. DIRSIG
has provided support form these features in newly developed version called DIRSIG5.
Due to export control restriction it is typically not possible to access these simulators,
hence motivates development of inhouse scene simulator. This thesis summarises the re-
search which constitutes part of the deliverable under the DSTL R-Cloud project for the
establishment of an in-house HSI scene simulator, which is known as the Cranfield Hy-
perspectral Image Modelling and Evaluation System (CHIMES). CHIMES is a physics-
based rendering enabled simulator and the main concept follows directly the radiative
transfer (RT) big equation, with some components adopted from DIRSIG and CameoSim
etc. The goal of the present research has been set and the work has been progressed in the
following manner:

• The establishment of CHIMES from scratch;

• Validation of CHIMES through direct comparison with commercial-off-the-shelf
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(COTS) simulator such as CameoSim (CS);

• Enhancement of CHIMES over the COTS simulator (e.g. CS) to include automatic
in-scene atmospheric parametrisation, localised adjacency-effect model and volu-
metric scattering to achieve a more realistic scene simulation particularly for the
rugged terrain;

• To propose methods on how difficult issues such as shadows can be mitigated in
scene simulation.

This thesis summarises the work performed as according to the above 4 objectives
with main results as follows:

• CHIMES has been shown to reproduce the scene simulation performed by a COTS
simulator (e.g. CameoSim) under various atmospheric conditions.

• An automatic atmosphere parameterisation search algorithm has been shown to be
effective to allow the simulation of the scene without the need of repeated trial and
error atmospheric parameter adjustments.

• Two adjacency models: the Background One-Spectra Adjacency Effect Model (BOAEM)
and the Texture-Spectra Incorporated Adjacency Effect Model (TIAEM) have been
developed under this work. The BOAEM is somewhat similar to that adopted in CS
with a distinctive feature of volumetric scattering, however, the TIAEM is a terrain
dependence adjacency which is much more sophisticated. It has been shown that
at high altitude scene, TIAEM performs better than the BOAEM by 6.0% and by
10.0% better than CameoSim particularly in the 2D geometric simulation, in terms
of `1-norm error. In the lower altitude scene, BOAEM performs better than both
TIAEM and CameoSim by 22.0% and 16%. In a 3D scene (i.e. terrain with Digital
Elevation Model (DEM)) with sensor at lower altitude CameoSim error raises by
5 times compared to GT. BOAEM still performs better than TIAEM by a similar
22% `1-norm error.

• A means for assessing the shadowed pixels of the scene has been proposed and the
validation of the model requires more comprehensive ground truth (GT) data which
will be performed in the future research.
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• Most of the above results have been published in three journal papers as part of the
contributions towards the HSI research community.
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researchers Ayan Chatterjee and Murat Guneş who worked together with me on different
research and development project.

I am also particularly thankful to Peter Godfree and Jonathan Piper of DSTL for their
reviews during the course of this research and generally to DSTL for funding the project.

Finally, I am very grateful to my mother Najma Saba, my wife Dr. Qurrat Ul Ain and
my family for their support without which I would not be able to pursue my PhD.

xxi



List of Publications

Journal

• Usman A. Zahidi; Peter W. T. Yuen, Jonathan Piper; Peter Godfree An End-to-
End Hyperspectral Scene Simulator with Alternate Adjacency Effect Models and
Its Comparison with CameoSim. Remote Sens. 2020, 12, 74. https://doi.org/10.
3390/rs12010074.

• Usman A. Zahidi, Ayan Chatterjee, Peter W.T. Yuen, ”A radiative transfer model-
based multi-layered regression learning to estimate shadow map in hyperspectral
images”. MDPI Machine Learning and Knowledge Extraction, Volume 1, Issue 3,
2019, pp. 904-927. https://www.mdpi.com/2504-4990/1/3/52.

• Mengjia Ding; Peter W. T. Yuen; Jonathan Piper; Peter Godfree; Ayan Chatterjee;
Usman A. Zahidi; Senthuran Selvagumar; David James; Mark Richardson ”De-
sign of a Tunable Snapshot Multispectral Imaging System through Ray Tracing
Simulation.” J. Imaging 2019, 5, 9. https://doi.org/10.3390/jimaging5010009.

Conference

• Umair Soori, Peter W. T. Yuen, Usman A. Zahidi, and David James ”Chemical
sensing of washing powder by multispectral imaging”, AIP Conference Proceed-
ings 2146, 020011 (2019); https://doi.org/10.1063/1.5123698.

1

https://doi.org/10.3390/rs12010074
https://doi.org/10.3390/rs12010074
https://www.mdpi.com/2504-4990/1/3/52
https://doi.org/10.3390/jimaging5010009
https://doi.org/10.1063/1.5123698


Chapter 1

Introduction

1.1 Hyperspectral Imaging

Remote sensing technology has developed a diverse set of domain-specific acquisition
instruments and scanning techniques. Hyperspectral Imaging (HSI) is one of them. Re-
mote sensing enables retrieval of material properties by the acquisition of radiated or
reflected electromagnetic radiations from the target of interest. The term Hyperspectral
Imaging was first coined by [13] in 1985 for applications of imaging spectrometry. HSI
has several challenges along in its design, development and deployment procedures, such
as cost-effective sensor design that acquires realistic physical quantities such as radiance
and reflectance from an observed scene. A major source of error is the estimation of at-
mospheric transmission and scattering effect. Selecting the appropriate scanning method
is also a challenging pursuit.

There are several imaging spectrometry missions launched for the Earth-Observation
and defence motivation. One of the early motivations for the development of HSI was
the mineralogical mapping of surface soils and crops [13], a large application domain
of HSI is still within the analysis and observation of vegetation which accounts for up
to 70% of the application [13]. Military and defence applications are also one of early
interest of HSI. The beginnings of imaging spectrometry of the Earth are rooted in the
launch of Landsat-1, at the time called ERTS-1, in 1972. A series of Landsat satellites
are launched since then and the latest ones are Landsat-7 and Landsat-8 multispectral
satellites. AVIRIS development was begun in 1984 and the imager first flew aboard a
NASA ER-2 aircraft at 20 km altitude in 1987. Since then it has gone through major
upgrades as technology changed in detectors, electronics and computing. The European
PROBA/CHRIS mission launched in 2001 provides 18 spectral channels covering the
VNIR region [14]. WorldView-3 (WV 3) is a commercial Earth observation satellite

2
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owned by DigitalGlobe. It was launched on 13 August 2014 to become DigitalGlobe’s
sixth satellite in orbit, joining Ikonos which was launched in 1999, QuickBird in 2001,
WorldView-1 in 2007, GeoEye-1 in 2008, and WorldView-2 in 2009. WorldView-3 pro-
vides commercially available panchromatic imagery of 0.31 m (12 in) resolution, eight-
band multispectral imagery with 1.24 m (4 ft 1 in) resolution, shortwave infrared imagery
at 3.7 m (12 ft 2 in) resolution, and CAVIS (Clouds, Aerosols, Vapors, Ice, and Snow)
data at 30 m (98 ft) resolution.[15]. The Environmental Mapping and Analysis Program
(EnMAP) is a German hyperspectral satellite mission that aims at monitoring and charac-
terising the Earth’s environment on a global scale. EnMAP serves to measure and model
key dynamic processes of the Earth’s ecosystems by extracting geochemical, biochemi-
cal and biophysical parameters, which provide information on the status and evolution of
various terrestrial and aquatic ecosystems [16].

Hyperspectral imagers typically designed as a scanning or snapshot integration time
devices. Snapshot HSI imagers are a recent development in the industry and some prod-
ucts have become commercially available [17]. This technology has enabled HSI ap-
plications in a wide variety of domains. Despite being relatively expensive technology
particularly in the SWIR/LWIR spectrum, HSI is still actively applied technology with
applications in fault tolerance, life-sciences, food processing, quality assurance, aerial
archaeology and monitoring is a vast variety of applications.

1.2 Scene Simulation

Hyperspectral imaging sensors require different materials for detection of particular wave-
length radiation. The VNIR range detectors are typically constructed from Silicon which
is cheaper and relatively easier to fabricate. Detectors for the range of SWIR/MWIR
and LWIR are for example InGaAs and Ge therefore the cost of sensors are drastically
higher. Additionally the cost of planning, pre and post processing and execution of data
acquisition from airborne and satellite based platforms is a time and cost consuming pro-
cess. Therefore correct prediction of sensor performance during operation can prove vital
during the design phase. In this type of simulator emphasis is particularly on the sensor
and atmospheric modelling. When a simulated scene is generated for performance anal-
ysis of data processing algorithms/frameworks. A more physically accurate simulation is
required that incorporates artefacts due to radiometric, geometric, atmospheric and sen-
sor effects to name a few. Typically rendering based solutions are used to develop such
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simulators.
One application of performance analysis of data processing algorithms is for real-

istic assessment of detectability and vulnerability of targets is important in both civil
and military applications. This requires the acquisition of high fidelity hyperspectral re-
mote sensing images (HSI) for both targets and the background materials of the scene,
which is time and cost-ineffective and, in some cases, it is even not possible to achieve
through experimental trials. This drives the motivation of research to simulate remote
sensing HSI data to allow the assessment of target detection capability under a variety
of scene backgrounds, atmospheric conditions, sensor characteristics, ambient tempera-
tures and light sources. Despite the existence of several commercial-off-the-shelf (COTS)
HSI simulators within the remote sensing community, procurement, modification or en-
hancement of existing COTS simulation packages are prohibitive due to the export con-
trol and copyright protection issues. The objective of the present work is to establish a
HSI simulator known as the Cranfield Hyperspectral Image Modelling and Evaluation
System (CHIMES), which features an automatic atmospheric parameterization through
a search algorithm to match the ground radiance of a given scene, and the proposal of
two adjacency models to enhance the quality of the scene simulation. The output of the
CHIMES is validated by a ground truth HSI scene and also compared with a COTS pack-
age CAMoflauge Electro-Optic Simulator (CameoSim) [18].

Several Hyperspectral Scene simulators with customized focus have been developed
by several research and commercial organisations. One of the earliest attempts such as
Forecasting and Analysis of Spectroradiometric System Performance (FASSP) [19] of-
fered statistical modelling of a scene primarily for sensor performance assessment. It
did not offer ray tracing and advanced atmospheric processing in the scene. In its in-
ception, CameoSim was only focussed at Camouflage evaluation, which later evolved
into a comprehensive Hyperspectral simulator. However, till date, CameoSim does not
perform volumetric scattering in the renderer which may limit the capability of realistic
atmospheric modelling of the aerosol interactions with light. Optronic Scene Simulator
(OSSIM) [4] is another simulator which is primarily a thermal modelling tool integrates
external ray-tracer for computation. Rochester Institute of Technology’s DIRSIG 4 [20]
is another comprehensive simulator with image generation capability in Visible to Near
Infrared (VNIR) to Long Wave Infrared (LWIR) spectral range. It also performs polari-
metric, Synthetic Aperture Radar (SAR), Light Detection and Ranging (LIDAR) simula-
tions. However, DIRSIG4 does not possess its component of adjacency modelling, which
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is later implemented in DIRSIG5 through volumetric path tracing in a localised fashion.
ATCOR [21] is an atmospheric compensation algorithm which also implements a local-
ized adjacency model which is based on a physical model but does not perform rendering
based volumetric scattering.

1.3 Motivation of Research

We learned from section 1.2 that although there are several alternate HSI scene simula-
tors available in the market, however, there still exist many important unfilled gaps such as
having a solution that offers a rendering based HSI simulation system which performs vol-
umetric path-tracing and has an adaptive localised physics-based adjacency effect model
which is integrated into the renderer. Therefore, we developed the CHIMES simulator
from scratch, firstly to gain comprehensive understanding and control on HSI modelling
methodologies and secondly to implement a localised physics-based adjacency model.

The motivation behind Hyperspectral scene simulation is driven by following major
factors, that are;

• Time and Cost Efficient Reconfiguration, in terms of;

– Scene

– Atmosphere

– Sensor

– Light sources (active or Passive)

– Temperature map

These factors are actually components of scene simulator, some are mandatory such
as scene, atmosphere, sensor and light sources, therefore these are essential com-
ponents of CHIMES simulator. However thermal modelling (temperature map) is
an optional component which is not an inherent part of many simulators including
CameoSim, which incorporates Taitherm for thermal modelling. This feature is not
included in CHIMES simulator.
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1.3.1 Sponsor’s Motivation

Most COTS HSI simulators are developed in customized fashion which is typically in-
tended for a limited user-base, either associated with a government institute or only to
Defence industry. Therefore, these simulators are export controlled and their source-
codes are strictly inaccessible.

• A major motivation in the development of this project is to gain detailed design
level understanding of an HSI simulator in a rendering based system.

• During this project the Cranfield University has gained access to a code-base which
could be further enhanced and modified.

1.4 Problem Statment

• To construct a software environment that takes the reflectance image of any given
spectral resolution and creates a radiance image by incorporating path-tracing, vol-
umetric scattering, sensor convolution.

• To construct a dynamic and localized physics-based adjacency effect model inte-
grated into a rendering system.

• To develop a methodology for estimating an underlying atmospheric parameters
when some inscene reflectance materials are known.

• To develop a Radiative Transfer model based shadow detection method.

1.5 Scope and New aspect of work

1.5.1 Scope

This project is planned into two phases, during phase one the goal is develop the essen-
tial components of a scene simulator and integrate them together to be able to perform
simulations. In the second phase the focus is on the research and development of the
localised adjacency effect modelling, volumetric scattering and automated searching of
MODTRAN atmospheric parameters.
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Due to lack of resources such as time and number of people working on the devel-
opment of this research project. There are certain limitation defined during the planning
phase. This include simulation within Reflective spectral range i.e. (0.4−−2.5) i.e ther-
mal range is not supported. The scattering model only takes elastic scattering into account
such as Rayleigh and Mie scattering only, ignoring Raman Scattering. The illumination
source is only sun and sensor orientation is nadir only. Illumination data is calculated
only from MODTRAN.

1.5.2 New Simulator and Features

During this research, we developed a new rendering-based end to end Hyperspectral scene
simulator CHIMES (Cranfield Hyperspectral Image Modelling and Evaluation System)
from scratch, which generates nadir images of passively illuminated 3-D outdoor scenes
in Visible, Near Infrared (NIR) and Short-Wave Infrared (SWIR) regions.

1.5.3 Alternate Adjacency Modelling

Adjacency effect is the influence of the most abundant background material within a
scence on a smaller target due to upwelled scattering. As it depends on the degree of
scattering coefficient and height of the sensor it may vary the at-sensor radiance between
10-20% compared to ground measurements.[22] Most existing COTS HSI simulators em-
ploy DISORT for modelling adjacency effect, which uses average reflectance of the whole
scene to estimate adjacency effect on target material. However, Richter et. al. proposed
higher spatial variation in their adjacency effect model by introducing a limited region
of effective adjacency influence, which is incorporated into ATCOR [21]. The effec-
tive region in their work is defined based on the volume of medium between target and
sensor. ATCOR performs adjacency calculation based on a fixed height of terrain for ev-
ery pixel, it does not performs volumetric scattering and estimates contrast reduction by
supplementing a term in existing adjacency models. CHIMES incorporated their adja-
cency model in the renderer, which evaluates upwelled scattered radiance based on vary-
ing heights across the terrain. Futhermore, the contrast term is replaced by volumetric
scattering along the rays. This setup creates a unique combination which is not reported
in the public domain.
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1.5.4 Search Method for approximating underlying atmospheric con-
ditions

The COTS HSI simulators typically require user input for generating atmospheric data.
CHIMES introduce a feature to facilitate searching of MODTRAN’s parameters that are
listed in Table 3.1, therefore it is a characteristic feature which is integrated into CHIMES
simulator. The presence of aerosols or water droplets in the atmosphere is a complicated
phenomenon to model as their properties, such as their sizes, densities and their distribu-
tions are subjected to many atmospheric factors which makes them difficult to predict. We
provide an automated estimation method to guess the underlying atmospheric condition
MODTRAN is run with varying aerosol optical thickness and its total ground reflected
radiance (TGRR) is compared with TGRR of known in-scene material. The Goodness
of fit is evaluated in each iteration, and MODTRAN’s output with the best fit is selected.
Several candidate solutions may produce the best fit, one among the candidate solutions
is picked in our experiments.

1.5.5 Radiative Transfer Model-based Shadow Detection

• Presence of shadows causes significant challenges for both satellite and airborne
data analyses. Shadows are typically not compensated by Atmospheric compen-
sation modules and therefore retrieving reflectance input where shadows are not
accounted for, causes higher error in simulated images. It is therefore important
to compensate shadows for improving the quality of simulation. We provide a
multi-layered regression learning-based recovery of radiance components, i.e., total
ground-reflected radiance and path radiance from QUAC reflectance and radiance
images of the scene. These decomposed components represent terms in the RT
equation and enable us to relate variable illumination in a scene mathematically.
The retrieved components are used to create an intermediate map which is thresh-
olded to construct a shadow map. This approach towards shadow detection is not
reported in literature to our best knowledge.
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1.6 Thesis Organisation

The thesis is as follows; Chapter 1 (this chapter) outlines the motivation and the objec-
tive of the present work; Chapter 2 establishes the fundamental background literature for
hyperspectral scene simulation and radiative transfer Chapter 3 constitutes the main topic
of the thesis which outlines the skeleton of the proposed CHIMES simulator with more
details on the proposed adjacency models, ray tracing and radiometric integrators. Chap-
ter 4 provides theoretical and implementation details about proposed shadow detection al-
gorithm. Chapter 5 gives the background of experimental data and details the acquisition
methods. Chapter 6 provide results for all datasets of simulation and shadow detection.
Chapter 7 comprises of the discussion on the results while Chapter 8 summarizes the main
achievements of the present work and present the potential future work.appendices gives
detailed simulation results achieved by the proposed CHIMES and CameoSim, provide
list of developed software library files and also lists some source-codes.



Chapter 2

Fundamentals of Hyperspectral Scene Sim-
ulation and Radiative Transfer

Remote sensing is a natural extension of the human need to explore and understand its
environment without coming in physical contact with the target. Hyperspectral remote
sensing is one of the powerful tools in the field of remote sensing [23]. It is a blend
of the spectroscopic and spatial information about a scene having high spectroscopic data
fidelity together with spatial one. The spectral resolution is in the magnitude of 10-20 nm,
therefore data is acquired from 100 to 500 or more bands. Figure 2.1 gives an overview
of where hyperspectral remote sensing stands compared to other imaging and sensing
systems in terms of spectroscopic and spatial data fidelity.

Data captured from a Hyperspectral sensor is stored as a cube where two dimen-
sions represent spatial data and the third represents the spectra. The unit information in
a hyperspectral image is a volume pixel which is also referred to as Voxels. Figure 2.2
shows a hyperspectral data cube, reflectance graph of a voxel and potential components
of a reflectance observation. It shows that the reflectance is composed of different types
of vegetation, soil and Kaolinite components [24]. Spectroscopy enables us to observe
characteristics of materials by their unique interaction pattern with electromagnetic ra-
diations (EMR), which is due to their distinctive molecular formation. The exposure of
EMR on material causes the transition of atoms, molecules or ions from one energy level
to another, the reflected light thus represent this particular absorption or emission when
radiated back towards the sensor. The sensor then decomposes the EM radiation by dis-
persion and represents the amount of per wavelength energy in terms of Digital Number
(DN), which is a raw discrete representation of a particular wavelength.

Figure 2.2 shows the scene within 0.4 µm to 2.5 µm range. The number of bands
in a given range forms the width of the band in terms of wavelength; this is referred

10
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Figure 2.1: imaging system’s capacity in terms of spatial and spectroscopic data fidelity.

Figure 2.2: Hyperspectral Scene as cube, a voxel is shown as reflectance. This reflectance
is a composition of different materials such as Green Vegetation, Dry Vegetation, Soli and
Kaolinite.
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Figure 2.3: Electromagnetic Spectrum in Reflective and Emissive spectral regions. The
spectrum is arranged from longer (Radio waves) up to shorter (Gamma waves). The visi-
ble spectrum is a smaller portion of the electromagnetic spectrum, therefore it is enlarged
for elaboration

to as spectral resolution. Figure 2.3 shows the electromagnetic spectrum segregated in
reflective and emission bands. A remote sensing observer can be mounted on an airborne
vehicle or mounted on the satellite when capturing a natural scene, therefore it summates
divergence due to atmosphere in material’s reflectance together with its gains and effects.
This observed measurement is called radiance.

During the day time, due to direct solar illumination, the sensor can measure the
radiance in the visible (0.4 µm -0.7 µm), Near Infra-red (0.7 – 1.1 µm) and SWIR (Short
Wavelength Infrared, 1.1 – 3.0 µm) regions. However during the night due to the lack of
solar illumination, remote sensing is not possible in reflective region, therefore emission
spectra are used instead, such as MWIR (Medium Wavelength Infrared, 3.0 -– 5.5 µm),
LWIR (Long-Wavelength Infrared, 7.7 -– 14 µm). The physical basis of image content in
VNIR is a combination of broadband reflectance differences between objects (shape) and
illumination variation due to the 3D nature of the scene (shading).In MWIR and LWIR
variation in object temperature and emissivity is the source of image structure [12].

2.1 Components of Hyperspectral Remote Sensing

Hyperspectral remote sensing requires understanding its four major components such as
Material Spectroscopy, Radiative Transfer, Imaging and Sensor Systems and Data pro-
cessing, as shown in figure 2.4. Material spectroscopy accounts for reflective/radiative
behaviour of material on interaction with EMR. Radiative transfer is the physical phe-
nomenon of energy transfer in the form of electromagnetic radiation. The propagation of
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Material Reflectance Radiative Transfer Imaging Systems Data Processing

Figure 2.4: Components influencing Hyperspectral Remote Sensing.

radiation through a medium is affected by absorption, emission, and scattering processes.
The design and fabrication and evaluation of Imaging Systems such that it may capture
both spatial and spectral data simultaneously and its constituent materials do not affect
the observation is also an important aspect of Hyperspectral remote sensing. Finally, data
processing includes methods and algorithms that extract useful information from a mix-
ture of signal and noise.

2.2 Hyperspectral Scene Simulation

Hyperspectral scene simulation is a type of inverse problem in which a hyperspectral
radiance is to be reconstructed ideally from RGB or multispectral reflectance image. The
most adopted approach to scene simulation is due to [19], which is shown in figure 2.5.

The first challenge in scene simulation is reconstruction of hyperspectral reflectance
from mutispectral input. The second one is reflectance to at-sensor (observed) radiance
conversion based on the radiative transfer model such that the scene statistical charac-
teristics are recovered in the hyperspectral domain within the physics-based constraints.
Sensor observation adds sensor model as a vital constituent of the reconstruction process.
Atmospheric effects such as transmission, scattering and adjacency effects are typically
added through a radiative transfer code such as MODTRAN, LibradTran, FASSCODE
etc. The diversity of application areas for HSI scene modelling drives different motiva-
tions behind the development of such models and software applications. A detailed list of
existing simulators, their motivation and capacity is covered in subsequent sections with
a brief overview in Table 2.1.

2.2.1 Existing Simulators

In this section we provide details about existing HSI simulators. During this research
results of CHIMES simulators are published in [18] but the details are not covered in this
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Figure 2.5: Basic components for hyperspectral scene simulation [3]

section. However it is covered in detail in chapter 3.

2.2.1.1 Forecasting and Analysis of Spectroradiometric System Performance (FASSP)

FASSP is one of the earliest attempts in this area, which pursued a statistical parametric
modelling approach. FASSP is a statistical model for the analysis of earth observing
data acquired by optical spectral imaging systems. The predominant surface parameters
considered are the spectral reflectance mean vector and spectral covariance matrix [25].

FASSP architecture provides identification of the primary components of the scene for
the simulation [19] which is shown in Figure 2.5, these components are one of the building
blocks for our proposed simulator, however, we extended their components to include
rendering and image reconstruction as supplementary ones. Our revised components of a
scene simulator and data flow is shown in Figure 2.6 [18].
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Figure 2.6: Components of scene simulators.

2.2.1.2 Digital Imaging and Remote Sensing Image Generation (DIRSIG)

DIRSIG adopts an image-chain approach to Remote-Sensing simulation. It is capable
to simulate passive broadband, multi-spectral, hyper-spectral, low-light, polarized, active
laser radar, and synthetic aperture radar datasets. Its components include bi-directional
reflectance distribution function (BRDF) predictions of a surface, time and material-
dependent surface temperature predictions, to the dynamic viewing geometry of scanning
imaging instruments on the agile ground, airborne and space-based platforms [20, 26, 27,
28]. In a recent update called DIRSIG5 [29] Metropolis Light Transport (MLT) based path
tracing has been used. Atmospheric processing can be performed by both MODTRAN5
and MODTRAN6 [30][18].
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2.2.1.3 CAMoflauge Electro-Optic Simulator (CameoSim)

CameoSim is a commercial scene simulator originally developed for the assessment of
camouflage systems, from the far Infra-Red, visible and to the UV with HSI capabili-
ties [31]. It uses raytracing with a Monte-Carlo radiosity light-transport scheme. All the
geometric objects forming the synthetic environment are modelled using textured faceted
structures. Texel values in these textures are mapped to the real materials associated with
them [32, 33]. These materials can have measured properties using one of several BRDF
models, with optional transparency. It supports moving observers and players, with mov-
ing parts. It can handle large complex scenes with billions of pixels and is applicable to
ground, ocean, air and space scenarios. It can model plumes and flares. It predicts sur-
face temperatures, with optional thermal shadowing, using weather measurements. At-
mospherics can be generated using MODTRAN 5, or measured atmospherics imported.
Environmental maps based on High Dynamic Range (HDR) images can be imported for
scene simulation [18].

2.2.1.4 Optronic Scene Simulator (OSSIM)

OSSIM is another HSI scene simulator that creates synthetic images of arbitrary complex
scenes by rendering, the spectral range is in the visual and infrared (IR) bands, cover-
ing the 0.4–20 µm spectral region. These images are radiometrically accurate and based
on theoretical physics models. To allow for the subtleties and full scope of variability
in atmospheric attenuation, the simulation employs all capabilities of the MODTRAN.
The geometrical shape of objects and the terrain topography is described in terms of a
three-dimensional complex hull, consisting of a set of flat, convex facets or polygons.
Each polygon is assigned spectral radiometric properties, temporally variable spatial tex-
ture properties and radiometric properties. Polygons can also be partially transparent to
represent gas clouds, countermeasure flares or aircraft plumes [4, 34, 1, 35] [18].

2.2.1.5 Monte-Carlo Scene (MCScene)

MCScene is also a rendering-based HSI scene simulator. It incorporates all optical ef-
fects important for solar-illuminated and thermal scenes, including molecular and aerosol
scattering, absorption and emission and surface scattering with material-dependent bidi-
rectional reflectance distribution functions (BRDFs), multiple scattering events, surface
adjacency effects, and scattering, emission and shading by clouds, for arbitrary solar il-
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lumination and sensor viewing geometries. The “world” of the simulation is a cube that
encloses a user-definable atmosphere containing molecular species, aerosols, and clouds,
and a terrain representing the ground. The sensor spatial and spectral resolution, its lo-
cation, and the viewing angle are also specified. 3D objects can also be inserted into the
scene. A particular strength of MCScene is that a simulation can be data-driven. Terrain
information can be imported from United States Geological Surveys (USGS) digital el-
evation maps. Surface reflectance or emissivity/temperature maps can be derived from
collected imagery, thus incorporating natural spectral and spatial texturing into a simula-
tion [36, 37, 38, 39, 18].

2.2.1.6 Parameterized Image Chain Analysis & Simulation SOftware (PICASSO)

PICASSO is also one of the end-to-end HSI image simulation or image chain analysis
tools which estimate at-sensor radiance based on MODTRAN. Simulation flow begins
with a description of the remote sensing system to be modelled, in terms of standard
engineering parameters (e.g., primary aperture diameter, effective focal length, focal plane
array detector size, focal plane array operating temperature, etc.). PICASSO also requires
an input earth scene that can serve as ground-truth. The principal output of PICASSO
is a simulated image, having the characteristics that would be produced by the remote
sensing system under simulation. In addition to this simulated image, PICASSO produces
figures of merit commonly used throughout the remote sensing industry to characterize
image quality. These can include such metrics as SNR for given radiance; plots of the
system transfer function (STF) and point-spread function (PSF) or overall image quality
as measured by the National Imagery Interpretability Rating Scale (NIIRS) [40, 41, 18].

2.2.1.7 The Environmental Mapping and Analysis Program (EnMAP)

ENMAP is a German hyperspectral satellite mission that aims at monitoring and char-
acterising the Earth’s environment on a global scale. The hyperspectral imager is a
push-broom type consisting of two prism imaging spectrometers—one for VNIR (Hyspex
VNIR1600) and one for SWIR (Hyspex SWIR320m). As a precursor of the mission, En-
MAP simulator was developed. The EnMAP scene simulator can automatically generate
realistic EnMAP-like data under a set of user-driven instrument and scene parameters.
Radiance and digital numbers data are generated by five sequential processing modules
which can produce data over a range of natural environments, acquisition and illumination
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geometries, cloud covers, and instrument configurations. The latter include the simula-
tion of data nonuniformity in the spatial and spectral domains, spatially coherent and
noncoherent instrumental noise, and instrument’s modulation transfer function (MTF).
Realistic surface patterns for the simulated data are provided by existing remote-sensing
data in different environments, from dry geological sites to green vegetation areas. A flex-
ible radiative transfer simulation scheme enables the generation of different illumination,
observation, and atmospheric conditions [16, 18].

2.3 Drawbacks in existing simulators

Most existing and newly built simulators are based on MODTRAN Radiative Transfer
codes, where MODTRAN is executed in several iterations to encompass whole scene ge-
ometry. In Table 2.1, we particularly classify simulators radiance output into rendering-
based or statistical/MODTRAN based estimation. The effect of DEM in the case of
rugged terrain is captured by rendering-based simulators only, therefore those performing
rendering techniques result in an accurate estimation of radiance. CameoSim however,
does not perform phase function based scattering during the rendering process, therefore
it may not model the volumetric scattering effect in the scene. DIRSIG and MCScene
provide volumetric scattering feature in their simulators, however, their adjacency model
is based on MODTRAN’s DISORT algorithm which unfortunately supports one mate-
rial for estimating the adjacency material for the whole scene. [22] shows that their test
scene shows one adjacency effect near water-front and other near vegetation within a
scene. Therefore it is important to have a localised adjacency model support in an HSI
simulator. Only DIRSIG5 has the support for localised adjacency effect employing ray
tracing, which ignores the dependency on the sensor height and consequently the volume
of air between terrain and the sensor. Moreover, to the best of our knowledge, all COTS
simulators require the user to input the parameters of RT code (MODTRAN) to generate
atmospheric data, which requires trial and error search for the end-users.

2.4 Radiative Transfer

Radiative transfer is the physical phenomenon of energy transfer in the form of electro-
magnetic radiation. The propagation of radiation through a medium is affected by ab-
sorption, emission, and scattering processes. Radiative transfer has application in a wide
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variety of subjects including optics, astrophysics, atmospheric science, and remote sens-
ing [42]. We will investigate three important aspects of radiative transfer in this chapter
that are; Propagation and interactions of EM radiations, Radiometry and Atmospheric
effects.

2.5 Light Material Interaction

2.5.1 Beer-Lambert Law

The Beer-Lambert law or simply Beer’s law is the linear relationship between absorbance
and transmittance of electromagnetic radiation. The general Beer-Lambert law is usually
written as equation (2.1).

A = µλ Rc (2.1)

where A is the measured absorbance, µλ is a wavelength-dependent absorptivity coef-
ficient also called molar absorptivity, R is the path length, and c is the chemical compound
concentration.

A =
n

∑
i=1

εiRci (2.2)

where εi is the wavelength-dependent molar absorptivity coefficient with units of
M−1cm−1. The λ subscript is often dropped with the understanding that a value for ε

is for a specific wavelength. If multiple species that absorb light at a given wavelength are
present in a sample, the total absorbance at that wavelength is the sum due to all absorbers
given by equation 2.2, where n denotes number of absorber.

Transmittance τ is given as the ratio between incident and emitted power, as shown in
Equation (2.3), where I is the intensity of light after it passes through the sample and Io is
the initial light intensity.

τ =
I
Io

(2.3)

Equation 2.4 gives the relation between A and τ , which is found in [43].

A =−log(τ) =−log(
I
Io
) (2.4)
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2.5.2 Limitations of the Beer-Lambert law

The linearity of the Beer-Lambert law is limited by chemical and instrumental factors.
Causes of non-linearity include:

• Deviations in absorptivity coefficients at high concentrations (> 0.01M) due to elec-
trostatic interactions between molecules in close proximity.

• Scattering of light due to particulates in the sample fluorescence or phosphores-
cence of the sample.

• Changes in refractive index at high compound’s concentration shifts in chemical
equilibrium as a function of concentration.

• Non-monochromatic radiation, deviations can be minimized by using a relatively
flat part of the absorption spectrum such as the maximum of an absorption band.

2.5.3 Extinction of Radiation

A beam of radiation is attenuated by absorption and scattering. This reduction of inten-
sity is called extinction. The extinction coefficient is related to absorption and scattering
coefficients.

µe = µa +µs (2.5)

where µe is coefficient of extinction, µa is coefficient of absorptivity and µs is coef-
ficient of scattering. All these coefficients have unit m−1. The Beer-Lambert law is also
applied to describe the attenuation of solar radiation as it travels through the atmosphere.
In this case, there is the scattering of radiation as well as absorption. More details about
different forms of Beer-Lambert law and relevant derivation is provided in [43]. Trans-
mittance of radiation through the atmosphere, and extinction coefficients are related by
Equation (2.6), where τ is transmittance and R is path length of radiation in the medium.

τ = exp−µeR (2.6)

2.5.3.1 Absorptivity (α), Reflectivity (ρ) and Transmissivity (τ)

If the amounts of radiation energy absorbed, reflected, and transmitted when radiation
strikes a surface are measured in percentage of the total energy in the incident electro-
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magnetic waves. The total energy would be divided into three groups; they are called
absorptivity (α), reflectivity (ρ) and transmissivity (τ) [1], as shown in Figure 2.7.

Figure 2.7: Reflectivity, Absorptivity and Transmittivity of incident radiation.

α +ρ + τ = 1 (2.7)

In case of absorptive material, the fraction of irradiation absorbed by a surface is
termed as absorbtivity. Reflectivity is the fraction reflected by the surface. Transmissivity
is the fraction transmitted by the surface.

2.5.3.2 Emissivity

Emissivity ε is the ratio of radiant emittance of a real and black body at temperature T . It
is given by Equation (2.8).

ε = Me/Mo
e (2.8)

where Me is the radiant emittance of real body Me is the radiant emittance of a black
body at the same temperature as that of the real body. The spectral emissivity is given by
Equation (2.9).

ελ = Me,λ/Mo
e,λ (2.9)

Emissivity and reflectivity are related to each other by Equation (2.10).
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ε = 1−ρ (2.10)

2.5.4 Rayleigh scattering

Lord Rayleigh explained why sky looks blue during day time and changes its brightness
from dawn to dusk. He showed that scattering by air molecules was sufficient to produce
the observed effect. Rayleigh scattering has following characteristics;[44]

• The amount of scattered light varies nearly as the inverse fourth power of wave-
length, hence the clear sky is predominantly blue and not colour of sunlight.

• Spatial distribution of scattered light bears a simple relationship to the direction
of observation Equal amount of light are scattered into the forward and backward
hemispheres.

• Light scattered at 90◦is almost completely polarized.

The size of a scattering particle is often parameterized by the ratio as;

x =
2πr
λ

(2.11)

where r is its characteristic length (radius) and λ is the wavelength of the light.
Rayleigh scattering applies to the case when the scattering particle is very small (x < 1,
with a particle size < 1/10 of wavelength) and the whole surface re-radiates with the
same phase. Because the particles are randomly positioned, the scattered light arrives at
a particular point with a random collection of phases; it is incoherent and the resulting
intensity is just the sum of the squares of the amplitudes from each particle and therefore
proportional to the inverse fourth power of the wavelength [44]. The amount of light scat-
tered into the solid angle with scattering angle θv per unit length of the LoS in the medium
is called the Rayleigh angular scattering βr(θ) and is given as;

βr(θ) =
2π2

mλ 4 (n(λ )−1)2 (1+ cos2
θv
)

(2.12)

where n(λ ) is the wavelength dependent refractive index of the medium of scattering,
m is the number density of molecules, defined as the number of molecules per unit volume.
The total Rayleigh Scattering coefficient βr is is computed from angular scattering by
integrating it over the solid angles as given in Equation 2.13.
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βr =

ˆ
βr(θ)dΩ =

ˆ 2π

φ=0

ˆ
π

θ=0

2π2

mλ 4 (n(λ )−1)2 (1+ cos2
θ
)

sinθdθdφ

=
32π3(n(λ )−1)2

3λ 4m
[m−1]

(2.13)

The angular scattering coefficient is retrieved from the total scattering coefficient by
means of scattering phase function p(θ), which described how scattered light is angu-
larly distributed.

p(θ) =

βr(θ)´
βr(θ)dΩ

4π
=

4πβr(θ)

βr
(2.14)

or by re-arranging Equation (2.14) becomes;

βr(θ) =
βr

4π
p(θ) (2.15)

Equation (2.15) describes that the angular scattering coefficient is a product of total
scattering coefficient and the phase function. The phase function of Rayleigh scattering
is;

p(θ) = 3/4
(
1+ cos2

θ
)

(2.16)

Therefore the angular scattering coefficient of Rayleigh scattering becomes;

βr(θ) =
8π2(n(λ )−1)2

3mλ 4

[
3
4
(
1+ cos2

θ
)]

(2.17)

In terms of the intensity I of light scattered by any one of the small spheres of diameter
d and refractive index n from a beam of un-polarized light of wavelength λ and intensity
Io is given by equation 2.18 [45].

I = Io
1+ cos2 θv

2R2

(
2π

λ

)4(n2−1
n2 +2

)2(d
2

)6

(2.18)

where R is the distance to the particle and θv is the scattering angle.
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2.5.5 Mie Scattering

It describes the scattering of an electromagnetic plane wave by a homogeneous sphere.
The solution takes the form of an infinite series of spherical multiple partial waves. The
incident plane wave as well as the scattering field is expanded into radiating spherical
vector wave functions. The internal field is expanded into regular spherical vector wave
functions. By enforcing the boundary condition on the spherical surface, the expansion
coefficients of the scattered field can be computed. For particles much larger or much
smaller than the wavelength of the scattered light there are simple and excellent approx-
imations that suffice to describe the behaviour of the system. But for objects whose size
is similar to the wavelength, e.g., water droplets in the atmosphere, latex particles in
paint, droplets in emulsions including milk, and biological cells and cellular components,
a more exact approach is necessary. The formalism allows the calculation of the electric
and magnetic fields inside and outside a spherical object and is generally used to calcu-
late either how much light is scattered, the total optical cross section, or where it goes, the
form factor. The notable features of these results are the Mie resonances, sizes that scatter
particularly strongly or weakly.

2.5.5.1 Mie-Lorentz Approximation

Unlike Rayleigh scattering, Mie scattering theory does not come with a closed form so-
lution. The effective cross-section and intensity can only be described in the form of a
infinite expansion series [46].An estimation of phase function of aerosol scattering can be
performed by Mie-Lorentz approximation based upon the Henyey Greenstein function,
which is given in Equation (2.19).

p(θ) =
3
(
1−g2)

2(2+g2)
· 1+ cos2(θ)

(1+g2−2g · cos(θ))
3
2

(2.19)

where g is the symmetric factor ranging from -1.0 to 1.0 representing backscattering
to forward scattering respectively.

2.5.6 Atmospheric Absorption

The effect of Rayleigh and Mie scattering in the optical spectrum is shown in Figure
2.8. Absorption of electromagnetic radiation by several gases and water vapours in the
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atmosphere is also individually depicted in Figure 2.8. The combined absorption effect is
also shown in the last row of the same Figure.

The absorption measurement is taken at 27◦C at a humidity of 75%. Mie scattering is
measured at the visibility of 23Km. CO2 measurement is at 394 ppmv.
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Figure 2.8: Atmospheric absorption in the electromagnetic spectrum at 27 ◦C.[1]

2.5.7 Fresnel Equations

When electromagnetic rays travelling in a dielectric medium with refractive index n1 en-
counter the surface of another dielectric medium n2, at an incident angle θi with respect
to the surface normal, part of the ray is reflected at an angle θr and the remaining part is
transmitted at an angle θt . Fresnel Equations help us establish the quantitative measure of
this reflection and transmission.
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n1

n2

Ɵi Ɵr
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n

s

Figure 2.9: Electromagnetic Propagation at material’s boundary

For a shiny reflective surface θi = θr. Transmission is governed by Snell’s law of
refraction is given as ;

n2 sinθt = n1 sinθi (2.20)

2.5.7.1 Dielectric Case

The relative amount of reflected and transmitted energy is determined by the requirement
that the tangential electric and magnetic fields are continuous at the interface, bound-
ary conditions that vary depending on the polarization of the incident radiation [47]. By
decomposing the incident radiation into components for which the electric fields are po-
larized orthogonal to the plane of incidence (s polarized or transverse electric) and in the
plane of incidence (p-polarized or transverse magnetic), it becomes sufficient to under-
stand the reflectance and transmittance properties in these two cases. Amplitude reflec-
tivity rs and rp for s- and p-polarized cases, respectively, are defined as the ratio of the
reflected-to-incident electric field amplitude [12]. These can be shown to be

rs =
n1 cosθi−n2 cosθt

n1 cosθi +n2 cosθt
(2.21)

or
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rp =
n1 cosθt−n2 cosθi

n1 cosθt +n2 cosθi
(2.22)

Power reflectivity is defined as the ratio of the reflected-to-incident irradiance and can
be determined from Equations (2.23) and (2.24) for both polarization cases as;

Rs(λ ) = |rs|2 (2.23)

and

Rp(λ ) =
∣∣rp
∣∣2 (2.24)

By conservation of energy, the corresponding power transmissivity across the inter-
face for the two polarizations is;

Ts(λ ) = 1−Rs(λ ) (2.25)

and

Tp(λ ) = 1−Rp(λ ) (2.26)

For unpolarized incident radiation not at normal incidence, total surface reflectivity is;

R(λ ) =
Rs +Rp

2
(2.27)

and total surface transmissivity is;

T (λ ) = 1−
Rs +Rp

2
(2.28)

2.5.7.2 Conductor Case

We explicitly define the real and imaginary parts of the complex index of refraction as

Ñ = n+ iκ (2.29)

The real index n affects the phase propagation, and the imaginary index affects the
extinction properties. The materials are conductive by replacing the real indices of refrac-
tion with complex indices of refraction, and by treating the angles as complex quantities
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[43].

Ñ2 sin θ̃t = Ñ1 sin θ̃i (2.30)

rs =
Ñ1 cos θ̃i− Ñ2 cos θ̃t

Ñ1 cos θ̃i + Ñ2 cos θ̃t
(2.31)

rp =
Ñ1 cos θ̃t− Ñ2 cos θ̃i

Ñ1 cos θ̃t + Ñ2 cos θ̃i
(2.32)

Equations (2.23) and (2.24) hold both for dielectric and conductor’s case. The degree
of polarisation (DoP) is given as,

DoP =
Rs−Rp

Rs +Rp
(2.33)

In section 3.3.4 we will show the DoP of sky-radiance due to Rayleigh scattering.

2.6 Radiometry

When materials exhibit rough surfaces or interfaces, or when they contain inhomogeneity
such as distributed volume scatterers, then the directionality of the propagating plane
waves is significantly altered and a scattering analysis is required. To model scattering,
it is necessary first to model the directional power flow of radiation which is also called
radiometry. In subsequent sections, we describe some radiometric quantities with the
geometrical illustration.

2.6.1 Reflectance

The reflectance of a surface is defined as the ratio between reflected radiation or radiant
flux at band λi and the incident radiation or radiant flux at the same band. Formally it is
written as Equation 2.34.

R =
Φr

λ

Φi
λ

(2.34)

Where Φr
λ

is reflected flux and Φi
λ

denotes incident flux. The reflectance spectra of
material is a unique entity as it depends upon the molecular structure of that material,
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therefore it is also called a spectral signature.

2.6.2 Irradiance

Irradiance represents the electromagnetic power per unit area, incident on, reflected from
or flowing through a surface. It is commonly given in units W/m2. It is formally stated as
Equation 2.35.

Ee =
∂Φe

∂A
(2.35)

Where Ee is incident irradiance, ∂Φe is incident flux and ∂A is the area where the flux is
incident upon. In case of power per unit area emitted from a source of radiation, irradiance
is referred to as exitance.

2.6.3 Spectral Irradiance

Irradiance is distributed over spectral range, the distribution of irradiance per unit spectral
bandwidth is termed as spectral irradiance. It is given by equation 4.21. It is commonly
given in units W/m2.um.

Ee,λ =
∂Ee

∂λ
(2.36)

2.6.4 Solid Angle

To compute irradiance from radiance, the solid angle must be integrated into spherical
coordinates as shown in Figure 2.10 where the solid angle is given as;

dΩ =
dA
r2 =

rdθr sinθdθ

r2 = sinθdθdφ (2.37)
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Ɵ

φ 

r

dφ 

rdƟ 

r sinƟ dφ  

dA 

dƟ 

Figure 2.10: Solid Angle

where θ is the zenith and φ is azimuth angle of the spherical coordinate, r is the
distance between two areas.

The solid angle of the sphere Ωsphere is therefore given as;

Ωsphere =

ˆ 2π

0

ˆ
π

0
sinθdθdϕ = 4π (2.38)

2.6.5 Point Sources

The radiant intensity I is the spatially averaged radiance over a surface. This quantity is
often used to quantify the radiometric output of small or very distant point sources, such
as stars. A point source radiates uniformly in all directions; therefore, the intensity is
given by Equation (2.39) which is derived in the subsequent section for both point source
and real objects.

Ie =
Φ

4π
(2.39)

The denominator in Equation 2.39 represents the fact that the solid angle of the sphere
is 4π , Φ is the radiation flux, as derived in Equation (2.38).

2.6.6 Lambertian Sources

Lambert’s cosine law says that the radiant intensity or luminous intensity observed from
an ideal diffusely reflecting surface or ideal diffuse radiator is directly proportional to the
cosine of the angle θ between the direction of the incident light and the surface normal.
Moreover, radiance is independent of angles.
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Φ = LA
ˆ 2π

0

ˆ π

2

0
cosθ sinθdθdφ (2.40)

E = L
ˆ 2π

0

ˆ
π/2

0
cosθ sinθdθdϕ (2.41)

Although the total solid angle of the hemisphere is 2π , due to the cosine factor the
relationship between radiance and irradiance radiated from a lambertian source reduces
to,

E = πL (2.42)

2.6.7 Bi-directional Reflection Distribution Function

Bi-directional Reflection Distribution Function is a characteristic scattering property of
a material. Unlike irradiance, BRDF depends on the spherical coordinate components
of the incident irradiance and reflected radiance. Mathematically it is given in Equation
2.43. The geometric entities are illustrated in Figure 2.43.

f (θi,φi,θr,φr,λ ) =
dLr (θr,φr)

dE (θi,φi)
sr−1 (2.43)

North

Ɵi Ɵr

n

ϕr

ϕi

South

E(Ɵi, ϕi, 𝜆) 
L(Ɵr, ϕr, 𝜆) 

ρBRDF (Ɵi, ϕi,Ɵr, ϕr, 𝜆) 

Figure 2.11: Bi-directional Reflection Distribution Function
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where λ denotes wavelength, E is the incident irradiance and Lr is the reflected ra-
diance. θi is the incident irradiance’s zenith or according to illustration solar zenith, θr

is the reflected radiance zenith with respect to the surface normal. The incident irradi-
ance azimuth with respect to the North is denoted as φi, while φr is azimuth angle of the
reflected radiance. Unit of BRDF is sr−1.

BRDF

BTDF

BRDF

BTDF

Figure 2.12: Bi-directional Reflection/Transmission Distribution Function

Similar to BRDF, Bi-directional Transmission Distribution Function is a characteristic
transmission property of a material. Both BRDF and BTDF are shown in Figure 2.12 for a
Lambertian surface (left), and a generic surface that possess both Lambertian and specular
properties.

There are several BRDF models for the Visual and Near-InfraRed (VNIR) spectrum
such as Phong (fit of cosine), Ward (fit of a Gaussian shape), Ashikhmin, Cook–Torrance
(specular microfacet) and Torrance–Sparrow etc. In the subsequent section we will dis-
cuss the simplistic Phong model which is included in CHIMES simulator. We also show a
comparison of Phong BRDF model for given parameters and a corresponding real-world
BRDF of materials.

2.6.7.1 Phong BRDF

Phong models BRDF by mean of three parameters i.e. ρd which is the Lambertian re-
flection constant, n determines the angular deviation of the lobe, and ρs determines the
peak value or ‘strength’ of the lobe. A more specific version of reflection geometry to
illustrate the factors of Phong BRDF is given in Figure 2.13. Here θi and θr are incident
and reflected ray angle to the surface normal in a perfectly specular surface. The angle
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α is illustrated as BRDF specific reflection angle’s deviation from θr, as shown in Figure
2.13.The model is given in Equation (2.44).

α 

Figure 2.13: Reflection Geometry illustrating parameters of Phong BRDF.

fr, Phong =
ρd

π
+

ρs(n+1)cosn α

2π cosθi
(2.44)

Varying the values of these parameter we may get different fits of cosines as shown in
Figure 2.14. Similar real-world BRDF of various materials are also shown in the bottom
row of the same Figure.
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ρd=0.6

ρs=0

n=0

ρd=0.4

ρs=0.1

n=5

ρd=0.49

ρs=0.05

n=30

ρd=0.3

ρs=0.2

n=50

Pure-rubber Pearl paint Red fabric Fruitwood Wood-stain

Figure 2.14: First row: BRDF model created by Phong equation having variable values
for key paramters [1]. Second row: Measured BRDF of know material recorded in MERL
benchmark dataset [2, 3].

2.6.8 Summary

Radiometric quantities and their relationship with each other are summarized in Table 2.2.

Table 2.2: Radiometric quantities, symbols, their relationship and units [12].

Quantity Symbols Relationship Units
Irradiance E E = ∂Φ

∂A =
´

Eλ dλ W/m2

Spectral irradiance Eλ Eλ = ∂Φ

∂A∂λ
=
´

Lλ dΩ W/m2m
Radiance L L = ∂Φ

∂A∂Ω
=
´

Lλ dλ W/m2sr
Spectral radiance Lλ Lλ = ∂Φ

∂A∂Ω∂λ
=
´

LdA W/sr
Power Φ Φ =

´
EdA =

´
IdΩ W

2.7 At-sensor Radiance Models and Components

The observed radiance by imaging systems are accumulated by several individual radiance
components as labelled in Figure 2.15 from A to I. These components include reflected
sunshine (A), thermal emission from target (D), reflected sky shine (B, E), reflected back-
ground radiance (G, H), path radiance (C, F) and upwelled scattered adjacent radiance
(I). As our focus in this research is on upwelled scattered adjacent radiance therefore
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discussion regarding several models are described separately in section 2.9.

Figure 2.15: DIRSIG big equation components [4, 5]. Yellow rays are emitted by the sun
while orange rays are emitted from various objects in the environment. Ray ”A” represent
direct reflected radiance, ”B” shows diffused reflected radiance, ”C” is scattered into the
sensor’s LoS. Ray ”D” is emitted by the target object. ”E” is emitted from the environment
and reflected from the target object. ”F” is in-scattered from the atmosphere into sensor’s
LoS. ”G” is background reflected. ”H” is emitted by background and reflected off the
target object and I is reflected and scattered into the sensor LoS.

Figure 2.15 shows light rays that are emitted by the primary light source (sun) and
reflected off the target or atmosphere by yellow colour. The thermal radiations due to
the atmosphere, target or background object is shown in orange colour. Rays that are not
reflected off the target such as ”B”, ”F” and ”I” constitute the upwelled scattered addi-
tive radiance. Estimating these components require understanding of aerosol scattering
and the underlying phase function model for the specific scene, which is complicated
phenomena and it is typically estimated by DISORT algorithm. Contrarily, direct and dif-
fuse reflected radiance is relatively easier to estimate and require geometric understanding
about emitter’s positioning. In this research our we focus on the better estimation of up-
welled scattered radiance.

2.7.1 Solar irradiance

The incident (downwelled) solar irradiance Ei is given in Equation (2.45), where ETOA

is exoatmospheric solar irradiance which is sometimes also called as Top of Atmosphere
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irradiance, θi is the incident solar zenith angle with respect to the surface normal (n), as
shown in Figure 2.11.

Ei = ETOA cosθiτ1 (2.45)

τ1 is the transmission along the incident Line Of Sight (LoS) from source to the target
object. Individual components of Ei are shown in Figure 2.16.
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Figure 2.16: ToA solar irradiance, clear-sky atmosphere, solar irradiance at target

The irradiance and transmission quantities in Figure 2.16 are extracted from MOD-
TRAN for a ”No-aerosol” setting which represents a clear-sky atmospheric absorption.
Solar irradiance Er, incident upon a target on the ground is also shown.

The reflected solar irradiance Er (upwelled) is given as;

Er = f (θi,φi,θr,φr,λ )ETOA cosθiτ1τ2ρ (2.46)

where τ2 is the transmission from the target object to the sensor, as shown in Figure
2.11 and f (θi,φi,θr,φr,λ ) is the BRDF of the target object.
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2.7.2 Sky Irradiance

The sky-shine is a consequence of sunlight scattering by the atmosphere. If the volume
of medium confined inside the subtended solid angle cone is assumed as dV , as shown in
Figure 2.17 then the relationship is given as;

dV = dAdr = dΩr2
vdr (2.47)

where dA is the area subtended by the solid angle dΩ at distance r. The incident
irradiance into this volume becomes;

Ev = ETOAτL1 (2.48)

Ev represents the incident irradiance on the volume V. It should be noted that unlike
incident direct solar irradiance, the incident sky irradiance on the target has two trans-
mission components in the downwelling ring i.e. τL1 and τL2. τL1 along the LoS from the
sun to the scattering event point and τL2 from the scattering event point to the target.

n

τL1

τL2

Ω

 

Ɵv 

Figure 2.17: solar downwelled scattered radiance.

The radiant intensity scattered into the volume dV is therefore given as;

dIv = Evβsca(θv)dV (2.49)

Placing value of Ev from Equation (2.48) into Equation (2.49), we get;

dIv = ETOAτL1βsca(θv)dV (2.50)
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Value of dV from (2.48) is placed into Equation (2.50) to get;

dIv = ETOAτL1βsca(θv)dΩr2
vdr (2.51)

If the incident volumetric intensity is perpendicular to the target then Equation (2.51)
becomes;

dEd =
ETOAτL1τL2βsca (θv)dΩr2

vdr
r2

v
(2.52)

The spectral radiance along the downwelled scattered ray at target can be expressed
as;

dLd(θ ,φ) =
ETOAτL1τL2βsca (θv)dΩdr

dΩ
(2.53)

where the downwelling sky radiance is a function of spherical coordinates zenith and
azimuth angles. The total downwelling radiance is computed by integrating dLsky over
the distance r from target to the top of the atmosphere.

Lsky(σ ,φ) = ETOA

ˆ
τL1τL2βsca (θv)dr (2.54)

The total downwelled spectral radiance is computed from angular radiance by inte-
gration over the hemisphere above the target, which is given as;

Esky =

ˆ
Lsky(σ ,φ)cosθdΩ =

ˆ 2π

ϕ=0

ˆ π

2

θ=0
Lsky(θ ,φ)cosθ sinθdθdφ (2.55)

2.7.3 Background Reflected Radiance

Radiance incident on a target that is reflected by the background is an important incident
light constituent. Suppose that a target is placed on an extremely large ground that has
no obstruction, then the sky-view would be unoccluded by background and would ideally
be the entire hemisphere. The sky-view, therefore, help us to quantify the background
objects and their effect on incident flux.

The Sky-view factor quantifies the fraction of visible hemisphere above the target,
it is typically denoted as F . The background is quantified as a complementary factor
of the sky-view i.e. 1−F , as the maximum value of F is 1.0. In our simulations, the
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heightmap is given as an image where height represents intensity. The simulator then
performs interpolation and creates a 3D geometry based on the input map. Therefore we
will follow the roof sky-view model in this section.

1-F

n

σ
F
 

F
p

Figure 2.18: Sky-view factor for a roof slope geometry

If solid angle dΩb is blocked by background objects then the background factor is
normalized with the solid angle of the hemisphere, so Fback is given as;

Fback =

´
dΩb

2π
(2.56)

and Fsky is;

Fsky = 1−Fback (2.57)

The sky-view factor Fsky for the point p on the roof 2.18 is given as;

F ∼= 1−

´
π

φ=0

´ π

2
σ− π

2 σF
sinσdσdφ

2π
= 1− 1

2
cos
(

π

2
−σF

)
(2.58)

After calculating the sky-view factor, we may now proceed to find the irradiance inci-
dent upon target from the reflection of background. The background reflected irradiance
Ebackground is expressed as;
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Ebackground =

¨
Lbackground(σ ,φ)cosσ sinσdσdφ ≈ (1−F)Lbackgroundπ (2.59)

The background irradiance is approximated for a Lambertian surface in the Equation
(2.59).

2.7.4 Path Radiance

In section 2.7.2 we found the incident irradiance and radiance on a target from the sky,
i.e. sunlight scattered by the atmosphere, into targets line of sight. Path radiance is
a similar phenomenon where light is scattered into the sensor’s/camera’s LoS instead
of the target’s LoS. It is illustrated in Figure 2.19. The figure shows that an observer
(sensor/camera) is observing the target and the scattering event happens in the subtended
solid angle volume but its direction is towards the observer. As we are interested in the
observers LoS, therefore, we will compute the path radiance scattered upwelled.

τL1

τL2

Ω 

Ɵ 

Figure 2.19: Solar radiance scattered towards the LoS of the sensor without coming in
contact with the target. (path radiance)

As shown in Figure 2.19, path radiance does not come in contact with ground and
therefore does not bring any information about the target. Analogous to the downwelled
scattered radiance the path radiance is expressed as;
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Lpath(σ ,φ) = ETOA

ˆ
τL1τL2′βsca (θu)dr (2.60)

In comparison with Equation (2.54), the terms τL2′ and r have upwelled direction.
Accumulating all components discussed above the at-sensor radiance can be expressed
as Equation (2.61). Although thermally emitted radiance and thermal scattering are not
considered in the construction of this simulator thermal upwelled scattering is also in-
cluded in the equation to display a comprehensive form of Radiative Transfer equation in
Equation (2.61).

Lsensor =

solar reflected︷ ︸︸ ︷ˆ
Ω

f (θi,φi,θr,φr,λ )ETOA cosθiτ1τ2ρdω +

thermally emitted︷ ︸︸ ︷
εoL(To)τ1 +

sky radiance︷ ︸︸ ︷
ETOA

ˆ
τL1τL2βop (θv)drρ +

background reflected radiance︷ ︸︸ ︷¨
Lbackground(σ ,φ)cosσ sinσdσdφρ +

path radiance︷ ︸︸ ︷
ETOA

ˆ
τL1τL2′βop (θuo)dr+

thermally scattered︷ ︸︸ ︷
εE(T )

ˆ
τL2′βth (θut)dr (2.61)

Where βo p denotes optical scattering coefficient where βth stands for thermal ones.
The phenomena of scattering where light scattered into the volume dV are called in-
scattering, similarly when light is scattered out of the dV then it is out-scattering. The
upwelled scattered adjacent radiance, however, is included in the section 2.9.

2.8 Monte-Carlo Integration

In this section, We will provide background theory for Monte-Carlo Integration to de-
scribe the at-sensor equation using Monte-Carlo Integral. Before going in details about
Monte-Carlo methods we will briefly define relevant probability theory to establish the
necessary background.

The at-sensor radiance equation is a higher dimensional equation having discontinu-
ities, therefore it is difficult to find an analytical solution of the equation. The trapezoidal
integration typically works well with the continuous smooth and lower dimensional func-
tions, therefore it is not suitable to the rendering process.
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2.8.1 Cumulative Distribution Function

The Cumulative Distribution Function of a random variable X is smaller than or equal to
a value x;

P(x) = Pr{X ≤ x} (2.62)

The probability density function (pdf) is defined as;

pdf(x) =
dP(x)

dx
(2.63)

2.8.1.1 Expected Value and Variance

The expected value of a random variable X ∈ D is the average value over the distribution
of values pdf(x):

E{X}=
ˆ

D
xpdf(x)dx (2.64)

Therefore, the expected value of a function f (x) is;

E{ f (X)}=
ˆ

D
f (x)pdf(x)dx (2.65)

Variance of the function f (x) is therefore;

V{ f (X)}= E
{
( f (X)−E{ f (X)})2} (2.66)

which implies;

V{ f (X)}= E
{
( f (X))2}− (E{ f (X)})2 (2.67)

The law of large numbers states when the number of samples become very large then
the cumulative density function approaches the expected value of the function;

Pr

{
1
N

N

∑
j=1

f
(
X j
)
→ E{ f (X)}

}
= 1 for N→ ∞ (2.68)

Monte-Carlo’s approximate of an arbitrary integral by N samples is expressed as;
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F =

ˆ
D

f (x)dx =
ˆ

D

f (x)
pdf(x)

pdf(x)dx = E
{

f (X)

pdf(X)

}
(2.69)

Therefore by applying the law of large numbers the Monte Carlos approximation of
integral becomes;

FN =
1
N

N

∑
j=1

f
(
X j
)

pdf
(
X j
) (2.70)

2.8.2 Monte-Carlo Convergence

Standard deviation of FN is given as;

σFN = (V {FN})1/2 =

(
V

{
1
N

N

∑
j=1

Yj

})1/2

(2.71)

σFN =

(
1

N2

N

∑
j=1

V
{

Yj
})1/2

(2.72)

σFN =

(
1
N

V{Y}
)1/2

=
1√
N

σY (2.73)

Where σFN is the standard deviation of of the estimator and σY is the standard devia-
tion of Y. Monte Carlo integration convergence rate has a time complexity with the bound
of (O(1/

√
N)) with an arbitrary dimension and is independent of smoothness of integrant.

2.8.3 Monte-Carlo Sampling Methods

To compute Monte Carlo integration it is necessary to be able to draw samples from a
given probability distribution. In this section, we will describe some popular sampling
schemes for MC integration.

2.8.3.1 Inversion

The inversion method employs one of the more uniform random variables and maps them
to the random variable of the desired probability distribution. Suppose, for a given prob-
ability distribution the Cumulative Distribution Function (CDF) is P(x) which peak at
the highest probability (1.0) i.e. monotonically non-decreasing. Now a uniform random
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variable η is projected on the CDF function to get the probability from the CDF. For a
continuous CDF, function projection may be computed by inverting the CDF and evaluat-
ing the inverse at η . Therefore, this method is called the inversion method. A pseudo-code
of inversion algorithm is shown in Table 1 [48].

Algorithm 1 Drawing samples from arbitrary PDF by inversion method
1: Compute CDF :

P(x) =
ˆ x

−∞

pdf
(
x′
)

dx′ (2.74)

2: Find inverse CDF :

P−1(x) (2.75)

3: Get a uniformly distributed random number ξ :

ξ ∈ [0,1] (2.76)

4: Compute Sample Xi :

Xi = P−1(ξ ) (2.77)

2.8.3.2 Rejection Sampling

In some cases where it is not possible to integrated f (x) to compute its PDF or it is not
possible to analytically invert their CDF then Rejection Method is employed. Suppose we
draw samples from function f (x) and we have a PDF p(x) that satisfies f (x)< cp(x) for
some constant c and suppose that we can sample from p, then we will select the sampled
X if η < f (X)/cp(X), otherwise it will be rejected.

2.8.3.3 Importance sampling

Importance sampling is a variance reduction technique which states that the Monte Carlo
estimator FN converges quickly if samples are taken from a PDF similar to the function
f (x). Figure 2.20 shows three different PDFs for computing FN . In the middle, we place
a uniform distribution and show that PDF similar to f (x) will produce variance reduction
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over the uniform one. Contrarily, the first pdf will have higher variance compared to other
two PDFs of Figure 2.20.

FN =
1
N

N

∑
j=1

f
(
X j
)

pdf
(
X j
) (2.78)

Figure 2.20: Estimating f (x) by pd f (x): (a) bad pdf (b) uniform pdf (c) similar pdf

The idea is to focus on the part where integrant is relatively high to compute good es-
timate efficiently. For example, in terms of our downwelling at-sensor radiance equation,
the solar irradiance depends heavily on the cosine of solar zenith, therefore, the value
of direct solar irradiance is lower along the horizon where the incident angle approaches
to be perpendicular to the surface normal. Therefore sampling should be given higher
importance to the incident angles where cosθ is higher.

Monte-Carlo method estimates the integral of the function of form
´

f (x)dx. Our at-
sensor radiance Equation has integral of a product of more functions, such as

´
f (x)g(x)dx.

In order to address such integrals the implementer may establish a strategy for both f (x)

and g(x).
consider that the surface on which Lr is incident has a perfectly specular BRDF. Due to
this assumption, the value of integrant will be zero for all directions except the specular
(smooth reflection’s) one. If the light source is large area light such as environment map
large number of directions needs to be sampled, therefore PDF value decreases. In such
a case even if the sampled direction is specular and integrant value is higher it is divided
by a smaller PDF value.

Multiple Importance Sampling (MIS) draws samples from multiple sampling dis-
tribution with the hope that at least one of them will match the shape of the integrand.
MIS provides a strategy for weighing the samples such that it can eliminate large variance
transitions due to difference between integrant value and sampling densities. Suppose if
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two sampling distributions pdf f and pdfg are used to estimate
´

f (x)g(x)dx the estimation
by means of MIS is given as;

1
n f

n f

∑
i=1

f (Xi)g(Xi)w f (Xi)

p f (Xi)
+

1
ng

ng

∑
j=1

f
(
Yj
)

g
(
Yj
)

wg
(
Yj
)

pg
(
Yj
) (2.79)

where n f and ng are number of samples from PDF of function f and g respectively. Simi-
larly, w f and wg are weighing functions for f and g, respectively. A potential alternate of
computing weight function is balanced heuristic which is given as;

ws(x) =
ns ps(x)

∑i ni pi(x)
(2.80)

Suppose sample X is drawn from pdf f at the point where pdf f (x) is low and it is
closer to f (x) then f (x) is also lower. However, if g(x) is a relatively higher value then
the importance sampling in Equation (2.81) will have a very large value, as pdf f (x) is
small and will yield a higher variance.

f (X)g(X)

p f (X)
(2.81)

In terms of MIS together with Balanced heuristic, the contribution of X will be;

f (X)g(X)w f (X)

p f (X)
=

f (X)g(X)n f p f (X)

p f (X)
(
n f p f (X)+ng pg(X)

) = f (X)g(X)n f

n f p f (X)+ng pg(X)
(2.82)

In this case if pdfg is a reasonable match for g(x) then the denominator won’t be too
small due to the term ng pg(X) and would eliminate transients in the variance.

[49] propose that powers in balanced heuristic, also called as power heuristic is in
practice reduces variance more than the balanced one.

ws(x) =
(ns ps(x))β

∑i(ni pi(x))β
(2.83)

[49], also suggests the value of β=2 produce optimal results based on empirical con-
clusions.
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2.8.4 Monte Carlo Estimation of At-Sensor Radiance

In this section, we will express the components of at-sensor radiance Equation (2.61) in
the form of Monte Carlo estimation with multiple importance sampling. We will also
express the distance to scattering event and upwelled scattered radiance terms in Monte
Carlo formulation.

2.8.4.1 Direct Solar

Suppose we have the direct solar term to solve by importance sampling, Equations (2.84),(2.85)
and (2.86) express solar reflected term, it’s Monte Carlo estimation and multiple impor-
tance sampling form of the equation, respectively.

Lr =

solar reflected︷ ︸︸ ︷ˆ
Ω

f (θi,φi,θr,φr,λ )ETOA cosθiτ1τ2ρdω (2.84)

=
1
N

N

∑
j=1

f (θi,φi,θr,φr,λ )Li (x, ~ωi)cosθi

pdf(~ωi)
(2.85)

=
1
n f

n f

∑
i=1

f (θi,φi,θr,φr,λ )Li (θi,φi,θr,φr,λ )w f ((θi,φi,θr,φr,λ )

p f ((θi,φi,θr,φr,λ )
+

1
nLi

nLi

∑
j=1

f (~ωi)Li (~ωi)wLi (~ωi)

pLi (~ωi)

(2.86)
[49] reduced Lr approximation to Equation (2.87), as the second term represent one

of the direction vector of the emitter.

=
1
n f

n f

∑
i=1

f (θi,φi,θr,φr,λ )Li (θi,φi,θr,φr,λ )w f ((θi,φi,θr,φr,λ )

p f ((θi,φi,θr,φr,λ )
(2.87)

To solve the MIS form we need to understand the direction sampling. Direction
sampling in the cosine weighted hemisphere for pdf(ω) is given as;

pdf(~ω) = cosθπ (2.88)

pdf(θ ,φ) = cosθ sinθ/π (2.89)

The marginal and conditional probability function for zenith and azimuth angles there-
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fore expressed in Equations (2.90) and (2.91), respectively.

pdf(θ) =
ˆ 2π

0

cosθ

π
sinθdφ = 2cosθ sinθ (2.90)

pdf(φ |θ) = cosθ sinθ/π

2cosθ sinθ
=

1
2π

(2.91)

The CDF of marginal density function is therefore;

P(θ) = 2
ˆ

θ

0
cosθ

′ sinθ
′dθ
′ = 2

ˆ cosθ

1

(
−cosθ

′)dcosθ
′ = 1− cos2

θ (2.92)

P(φ |θ) = φ/(2π) (2.93)

The direction sampling strategy can be defined as a function of uniform random vari-
able by Equation (2.94).

~ω = (θ ,φ) =
(

cos−1
√

ξ1,2πξ2

)
(2.94)

Radiance transmitting through a homogeneous medium (having a uniform extinction
co-efficient) is influenced by its transmittivity and is expressed as;

Ltr(R) = e−µeRLo (2.95)

where Lo is the radiance at originating point Ro and Ltr(R) is the transmitted radiance
at a distance of R from the Ro.

2.8.4.2 Sky Radiance

Sky radiance has two transmission legs as given in Equation (2.96), transmission of both
legs are combined for a homogeneous medium with extinction coefficient (µe) and is
given in Equation (2.97).

Lsky =

sky radiance︷ ︸︸ ︷
ETOA

ˆ
τL1τL2βop (θv)dr (2.96)
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Lsky =
1
N

N

∑
j=1

Tr(R,Ro)βop(θv)

pdf(R)
(2.97)

Sampling of pdf(R), which is an exponential function is given as;

pdf(R) = βopTr(R,Ro) = βope−µe(R−Ro) , R−Ro =−
ln
(
ξ j
)

µe
(2.98)

Where R−Ro is the distance through the transmission legs and during ray tracing it is
the distance to the next scattering event. Ro is the originating point of the distance and R

is the terminal point. The estimate of Lsky by MIS is expressed in Equation (2.99).

Lsky =
1

N f

N f

∑
j=1

Tr(R,Ro)βop(R,Ro)w f (R,Ro)

pdf(R,Ro)
+

1
Ng

Ng

∑
j=1

Tr(θv)βop(θv)wg(θv)

pdf(θv)
(2.99)

pd f (θv) is computed by Henyey Greenstein function which is regulated by a sym-
metry operator g whose value is between -1.0–1.0. Scattering properties regulated by
parameters are;

g =−1 total backscattering
g = 0 isotropic scattering
g = 1 total forward scattering.

p(θv) =
1

4π

1−g2

(1+g2−2gcosθv)
3/2 (2.100)

A simple way of multiple importance sampling the phase function is given in Equa-
tions (2.101).

cosθk =

 1
2g

[
1+g2−

(
1−g2

1−g+2gζk

)2
]

for g 6= 0

2ξk−1 for g = 0
(2.101)

We have formulated all the components to measure the sky radiance by multiple im-
portance sampling in Equations (2.97–2.101).
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2.8.5 Existing Simulators At-sensor equations

In this section we will discuss details about radiative transfer (RT) equations of light-
transport based models mentioned in previous section. This include (i) DIRSIG, (ii) OS-
SIM, and (iii) CameoSim, that commonly use adjacency-effect model based on DISORT.
Due to the deviation of adjacency effect model of DISORT in ATCOR, we will include
ATCOR’s RT equation for assessment in the subsequent section. The rendering mecha-
nism of these simulators also varies, for example, DIRSIG version 4 employs Whitted-
style ray tracing, CameoSim renders by radiosity and CHIMES follow path-tracing strat-
egy for computing the at-sensor radiance. The diverse nature of methods applied on HSI
simulator require blend of graphics, remote sensing, sampling, reconstruction filtering
knowledge, so a background of computer graphics may not be expected from reader with
background in remote sensing community [18]. We therefore subsequently illustrate the
differences between ray-tracing and path-tracing, in brief.

2.8.5.1 DIRSIG

The DIRSIG RT equation is referred to as the Big Equation [20],[28]. Radiance com-
ponents of Big Equation are shown as different types of photons labelled from A to I,
as illustrated in Figure 2.21. Assuming the BRDF of target object to be Lambertian, the
big equation takes the form of equation 2.102. According to [5] ”I” type photons can be
grouped with C type photons if the average albedo of the scene is slowly varying, which
is common [1]. DIRSIG follows an image-chain differential thermodynamic model to
calculate the temperature of background objects in the scene. It accounts for both opti-
cal and thermal shadow caused by full or partial occlusion due to opaque of transmissive
objects. During rendering interaction of rays with medium and transmittance loss is also
accounted [18].
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Figure 2.21: DIRSIG big equation components [4, 5]

L(λ )= τ2(λ )

{ A︷ ︸︸ ︷
E ′s(λ )

π
τ1(λ )ρ(λ )cosσ︸ ︷︷ ︸

reflected sunshine

+

D︷ ︸︸ ︷
ε(λ )LT (λ )︸ ︷︷ ︸

thermally emitted

+ρd(λ )F

[ B︷ ︸︸ ︷
Eds(λ )

π
+

E︷ ︸︸ ︷
Edε(λ )

π

]
︸ ︷︷ ︸

reflected sky

+

ρd(λ )(1−F)
[ G︷ ︸︸ ︷

Lbs(λ )+

H︷ ︸︸ ︷
Lbε(λ )

]
︸ ︷︷ ︸

reflected background

}
+

C+I︷ ︸︸ ︷
Lus(λ )+

F︷ ︸︸ ︷
Luε(λ )︸ ︷︷ ︸

atmospheric path radiance

. (2.102)

Table 2.3: Symbols in Equation 2.102 and their meaning, λ shows that quantities are
function of wavelength.

Symbol Meaning Symbol Meaning
E’s(λ ) Exoatmospheric irradiance 1-F Fraction of hemisphere above target that is background
cos σ Solar zenith angle w.r.t target normal Eds(λ ) Downwelled solar irradiance
τ1(λ ) Transmittance along sun-target path Edε(λ ) Downwelled self-emitted radiance from the atmosphere
τ2(λ ) Transmittance along target-sensor path rd(λ ) Target diffuse reflectance
r(λ ) Target reflectance Lbs(λ ) Background reflected solar radiance onto target
ε(λ ) Target emissivity Lbε(λ ) Background self emitted irradiance onto target
LT (λ ) Self emitted radiance from target at temperature T Lus(λ ) Upwelled solar irradiance
F Fraction of hemisphere above target that is sky Luε(λ ) Upwelled self-emitted radiance

DIRSIG uses MODTRAN for its atmospheric processing. It also creates a sky-dome
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environment map for illumination which is created by MODTRAN based lookup tables
[50]. The texture applied to geometry are used as material and thermodynamic database
identifier [4].

2.8.5.2 OSSIM

Scene geometry is constructed as a three dimensional complex hull consisting of flat, con-
vex hull of polygons. Each geometric primitive is assigned spatial texture and radiometric
properties. It can be opaque, transparent or heterogeneous medium such as countermea-
sure flare or aircraft plume. OSSIM has a comprehensive RT equation which is given in
Equation (2.103). Symbols and their meanings are listed in Table 2.4. All the terms in
Equation (2.103) are function of λ , denoting the spectral nature of processing for sources
such as, illumination, plumes and atmosphere. Atmospheric processing employs all ca-
pabilities of MODTRAN, which is an integral part of the software. Scene geometric

Figure 2.22: OSSIM’s radiative transfer equation components [4].
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L(∆λ ) =

thermally emitted︷ ︸︸ ︷
∆ε

ˆ
λ

εoL(To)τaSdλ +

atmospheric path radiance︷ ︸︸ ︷ˆ
λ

LpathSdλ +

transmitted background︷ ︸︸ ︷
∆τ

ˆ
λ

εbL(Tb)τaboτoτaSdλ +

∆ρ

[ reflected background︷ ︸︸ ︷ˆ
λ

ˆ
env

εaL(Ta)τaoρoτaSdΩdλ +

︷ ︸︸ ︷
cosθa

ˆ
λ

ˆ
sky

LskyρoτaSdΩdλ

reflected sky

+

αs cosθs

ˆ
λ

εsL(Ts)τsoρoτaSdλ︸ ︷︷ ︸
diffuse reflected sunshine

+

[
ρs(n+1)cosnα

2πcosθi

]ˆ
λ

εsL(Ts)τsoτa(S)dλ︸ ︷︷ ︸
specular reflected sunshine

(2.103)

primitives are also assigned a temperature which is calculated with heat balance equation.
Terrain thematic maps are constructed by photo-interpretation of remote sensing images,
which identify material types used for temperature measurement. OSSIM does not ac-
count for discrepancies that may cause due to presence of optical and thermal shadows.
Although OSSIM has a comprehensive RT equation, however it does not account for sky-
view effect which is an inherent part of DIRSIG equation. Components of OSSIM and
their interaction is shown in Figure 2.22.

Table 2.4: Symbols in Equation 2.102 and their meaning, λ shows that quantities are
function of wavelength.

Symbol Meaning Symbol Meaning
L(∆λ ) Total radiance in wavelength band ∆λ n Specular exponent
L(Ts) Spectral black body radiance, sun temperature Ts τo Object surface spectral transmittance
L(Ta) Spectral black body radiance, environment temperature Ta τa Object to surface spectral atmospheric transmittance
L(Tb) Spectral black body radiance, background temperature Tb τabo Background to object spectral atmospheric transmittance
L(To) Spectral black body radiance, object temperature To τao Ambient to object spectral atmospheric transmittance
Lpath Atmospheric path radiance, emitted and scattered τso Sun to object spectral atmospheric transmittance
Lsky Sky radiance, emitted and scattered ∆r Spatial texture variation in transmittance
εs Solar surface’s spectral emissivity αs Asun/(d2

sunπ) = 2.17×10−5

εa Ambient environment’s spectral emissivity Asun Area of sun
εb Background spectral emissivity dsun Distance to sun
εo Object’s surface spectral emissivity θa Angle between surface normal and vertical
ρo Object surface diffuse reflectance θs Angle between surface normal and solar incidence
ρs Object wideband Fresnel reflection θr Angle between reflected sunlight ray and the viewing direction
∆ρ Spatial texture variation in reflectivity S Camera spectral response
∆ε Spatial texture variation in emissivity
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2.8.5.3 CameoSim

CameoSim is one of the earliest and comprehensively feature-rich commercial HSI simu-
lator. Due to a large number of features, it tend to require effort from the end-user before
all its feature could be exploited. CameoSim is developed in a modular fashion therefore
features are divided into modules’ user interfaces, typically called editors. Figure 2.23
shows components of CameoSim and data flow.
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Figure 2.23: CameoSim data flow.

In the process of generating radiometrically accurate synthetic images of scenes. All
sources in sythetic environment affect the solution of a rendering equation. The render-
ing equation for a general radiosity model is given in Equations (2.104-2.107). The three
main components of the rendering equation are the thermal self-emission, the atmospheric
terms, global illumination accounting for reflected radiance. In CameoSim a general bidi-
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rectional, spectral, recursive solution is sought using importance driven Monte-Carlo sam-
pling. At longer wavelengths such as mid-infrared, the full hemispherical integration of
incident irradiances enable the software to account for the radiative interaction between
different surfaces at varying themodynamical states. BRDF models take account of bi-
directional light reflecting properties of a surface, in CameoSim it is termed as (surface)
scatter models, as shown in Figure 2.23 [18].

a) BRDF/BTDF b) Radiosity Geometry

d) Radiosity in a scenec) Radiosity Hemispherical Geometry

Ω

ft  (ωi → ωt)

ωtωt

Figure 2.24: CameoSim-like recursive ray-tracing.

Figure 2.24 illustrates components of radiosity rendering equation. Bidirection Re-
flection Distribution Function (BRDF) and Bidirectional Transmission Distribution Fun-
tion (BTDF) represent the surface response on interaction with rays. Geometrical defini-
tion of sources is shown in Figure 2.24 (b) and the hemispherical integration is included
in Figure 2.24 (c).Equations 2.104-2.107 shows the rendering equation for CameoSim.
Symbols and their meaning are explained in Table 2.5.

Lo(x,ωo) = Lpath(x1,x2)+Le(x,ωo)+Lr(x,ωo)+Lt(x,ωo) (2.104)
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Lr(x,ωo) =

ˆ
Ω

fr(x,ωi→ ωo)Li(x,ωi)cosθidωi (2.105)

Lt(x,ωo) =

ˆ
Ω

ft(x,ωt → ωo)Li(x,ωt)cosθtdωt (2.106)

Lo(x,ωo) = Lpath(x1,x2)+Le(x,ωo)+

ˆ
Ω

fr(x,ωi→ ωo)Li(x,ωi)cosθidωi+ˆ
Ω

ft(x,ωt → ωo)Li(x,ωt)cosθtdωt (2.107)

Table 2.5: Symbols in Equation (2.104-2.107) and their meaning.

Symbol Meaning Symbol Meaning
ωo Observer or sensor direction or position L(ωo, ωt) Radiance incident on x from direction ωt
x A point on the target surface fr(ωo, x, ωi) Bidirectional reflectivity at point x with respect to directions ωo and ωi.
ωt Incident direction of transmitted radiance w.r.t x ft(ωo, x, ωt) Bidirectional transmissivity at point x with respect to directions ωo and ωi
ωi Incident direction of emitter’s radiance w.r.t. x
Lpath(ωo, x) Radiance along target-sensor path
Lemit(ωo,x) Radiance emitted from point x, towards direction ωo
L(ωo, x) Radiance reflected from x in the direction of ωo
L(ωo, ωi) Radiance incident on x from direction ωi

2.9 Adjacency Effect Models

Adjacency effect is an effect of large background on the observed radiance of a target
due to atmospheric back-scattering. It depends on the contrast between a target pixel and
relatively larger neighborhood reflectance. In a simulation environment it is importance
to model the Adjacency effect to generate realistic HSI images. Due to its dependence
on scattering, the adjacency effect is a function of distance between target object and the
sensor. It is nominal in distances (< 2 m) and gets substantial in case of airborne (> 1
Km) or satellite imaging (> 100 km). Moreover, like scattering its effect also reduces
with increasing wavelength.

To ascertain the true reflectance of a target from a sensor adjacency effect should
be compensated. It is therefore a research interest since late 1970s and there are many
publications related to correct modelling of it [51, 52, 53, 54]. Figure 2.25 shows
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Figure 2.25: Adjacency components shown as dashed lines.

two types of reflected and scattered rays by dashed lines, one is reflected off the back-
ground and then scattered into the LoS of the sensor and the second one is due to earth
atmospheric coupling which is ultimately reflected from the target towards the sensor.
Adjacency model due to [54, 53, 55] are popular and adopted in RT modelling module
such as DISORT, these models are described in details in subsequent sections.

Adjacency effect causes discrepancies in index-based classification metrics such as
Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water Index
(NDWI) etc. Researchers [22, 56] proposed models for adjacency compensation for pixels
near waterfront. [22], based on the localization of adjacency effect assumes that all pixels
in a scene do not possess adjacency due to waterfront and therefore an adjacency effect can
be compensated by comparison of similar reflectance pixels. The one which dominates
the water signature is compensation by the one that has a nominal water effect.

Researchers have proposed new adjacency models for rugged terrains [6, 7]. [6] esti-
mated the adjacency effect for Lambertian surface using ray tracing through layers in the
atmosphere. In the quantification of adjacency effects, molecular/aerosol scattering phase
functions, topographic features and ground heterogeneity are taken into account. This
work considers single scattering only to get a good trade-off between computing time and
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accuracy. Similar approach is used by [7] but they extended this work

Figure 2.26: Adjacency effect in rugged terrains.[6, 7]

to multiple scattering. Figure 2.26 shows multiple earth atmosphere coupling in adjacency
ray before it hits the target and reflected towards the sensor, this phenomena is multiple
scattering. This effect is mathematically described in the subsequent section.

2.9.1 MODTRAN

MODTRAN adopts the DISORT algorithm with a variable number of streams for scat-
tering and adjacency modelling. At-sensor apparent reflectance ρa is given in Equation
(2.108).

ρa =
πLs

E ′scosθ
. (2.108)

The upward surface flux that is reflected by the atmosphere back to the ground and
then reflected by the ground ρ̄b upwards. Since this phenomena occur multiple times
before it is finally scattered into the LoS of the sensor, therefore it takes the form of
power series as given in Equation (2.109).

(τdir
1 +τ

dif
1 )(τdir

2 ρt +τ
dif
2 ρ̄b)

[
1+sρ̄b+(sρ̄b)

2+...
]
=

(τdir
1 + τ

dif
1 )τdir

2 ρt

1− sρ̄b
+
(τdir

1 + τ
dif
1 )τdif

2 ρ̄b

1− sρ̄b
.

(2.109)
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At-sensor apparant reflectance ρa can be redefined in terms of Equation (2.109) as
Equation (2.110) [57].

ρa = ρo +
(τdir

1 + τ
dif
1 )τdir

2 ρt

1− sρ̄b
+

(τdir
1 + τ

dif
1 )τdif

2 ρ̄b

1− sρ̄b
, (2.110)

where ρo is the path reflectance. In order to calculate the total upwelled scattered re-
flectance term, ρt should be set to zero, which is target albedo during MODTRAN run.
Therefore Equation (2.110) takes the form of Equation (2.111).

ρu = ρo +
(τdir

1 + τ
dif
1 )τdif

2 ρ̄b

1− sρ̄b
, (2.111)

where ρu is the upwelled scattered apparant reflectance. It includes both path reflectance
and adjacent reflectance, in the first and the second term, respectively.

Symbols used in Equations (2.108)–(2.111) are explained in Table 2.6.

Table 2.6: Symbols in Equations (2.109) and (2.110) and their meaning.

Symbol Meaning Symbol Meaning

ρo Path reflectance τ
dif
2 Ground to sensor diffuse transmittance

τdir
1 Sun to ground direct transmittance s spherical scattering albedo of the atmosphere

τ
dif
1 Sun to ground diffuse transmittance ρt Target reflectance

τdir
2 Ground to sensor direct transmittance ρ̄b Area averaged background reflectance

2.9.1.1 CameoSim

Although CameoSim provides surface scattering through built-in BRDF models, it does
not include volumetric scattering during the texture rendering. CameoSim treats the ad-
jacency through the DISORT models of the upwelled scattered radiance, which means
the adjacency is dependent only on a single source of spectral albedo, that is, the average
background albedo of the scene [18].

2.9.1.2 DIRSIGs

DIRSIG5 handles adjacency effect by considering all rays that are scattered into the sen-
sor from outside of its Field Of View (FOV) through the path tracing. This volumetric
scattering is driven by the atmospheric phase function of the scene [58], but in this version
of the simulator, the scattering efficiency as a function of the sensor altitude has not been
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taken into account. Older version of DIRSIG, that is, DIRSIG4 incorporated atmospheric
variability [50] and adjacent scattered light can be grouped with the path radiance particu-
larly when the averaged background albedo of the scene is slowly varying [5]. Hence the
adjacency in DIRSIG4 is functioning like that of the CameoSim, which utilizes a single
stream of the background albedo for the DISORT calculation [18].

2.9.1.3 ATCOR

Although ATCOR is not an HSI scene simulator, it features an adjacency model which
does not employ rendering for the estimation of the observed at-sensor radiance in its
atmospheric correction package [59]. Jianwen et. al. [60] conducted a series of mea-
surement to estimate adjacency effect, they reported that the adjacency effect becomes
stronger from visible, near-infrared to shortwave infrared wavelength. In response to this
work, Reference [61] presented Equation (2.115) to include the effect of contrast between
the target and background pixels in at-sensor radiance. Before deriving ATCOR’s model
the RT equation can be rephrased in terms of atmospheric spherical albedo for a ”large
surface” with reflectance ρ , as follows [54, 55],

Ls(ρ) = Lp +
τEg(0)ρ/π

1− sρ
, (2.112)

where τ , Eg(0), and s are the total ground-to-sensor transmittance, global flux on the
ground for ρ = 0, and the spherical albedo of the atmosphere, respectively. τ is the sum
of the direct and diffuse transmittance, that is, τ =τdir+τdiff. Equation (2.112) shows that
the effective global flux is;

Eg(ρ) =
Eg(0)
1 - sρ

(2.113)

and it depends on the ground reflectance and spherical albedo [61]. However, for ”small
target” of reflectance ρt , the at-sensor radiance is calculated as given in reference [55].

Ls(ρ) = Lp +
τdirEg(0)ρt/π

1− sρ̄b
+

τdi f Eg(0)ρ̄b/π

1− sρ̄b
. (2.114)

Furthermore, Richter et. al. [61] rewrote Equation (2.114) to accommodate the con-
trast term;

Ls(ρ) = Lp +
τEg(0)ρt/π

1− sρ̄b
+

τdi f Eg(0)(ρ̄b−ρt)/π

1− sρ̄b
. (2.115)
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Equation (2.115) emphasizes the fact that the adjacency term is directly proportional
to the target background reflectance contrast. ATCOR also includes sensor height based
scattering efficiency calculation based on air density, and volume between the sensor and
the target material [18].

2.10 Path Tracing vs Ray Tracing

In ray tracing, there are three types of rays i.e reflected, refracted, and shadow rays. When
a ray interacts with an obscured surface, a ray continues its specular reflected direction
when it hits a shiny surface.

Refracted rays propagate through the transparent material which may either reflect at
the boundary of the surface due to total internal reflection (caused by a certain incident
angle) or otherwise exit the material. Although it is a recursive process, however, to avoid
tracing all rays in a scene, a shadow ray is used to test if a surface is visible to the light.
If this test is true then a ray is traced between this intersection point and the light.

Shadow rays

Eye ray

Transmitted ray

Reflected ray

Solid Diffuse 
Object

Transparent Object

Mirror

Mirror

shadow

shadow

Figure 2.27: Ray tracing setup, at the diffuse and transparent object intersection the re-
flected rays (green) are spawned into new similar rays. In transparent objects transmitted
rays (orange) pass through the object. When a shadow is cast due to occlusion towards
a background region, shadow rays (red) are cast in the opposite direction of the shadow,
towards the emitter. An eye ray (blue) is cast from the eye or sensor.

In the case of path tracing, a path history of a single point is created when a ray
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interacts with the environment until it is fully absorbed. That is, rather than to spawn new
rays at the intersection point, it simply chooses a direction as according to the BRDF of
the surface and to assign the direction for the ray to follow. A number of random rays per
pixel are then sampled using the Monte-Carlo method and the final at-sensor radiance is
computed through image reconstruction filter, which rasterizes the accumulated radiance.
An important property of path tracing is that the computation is more emphasis on those
low-depth rays, while the Whitted ray tracing concerns more of the high-depth rays.

(a) Path tracing from observer to scene and scene to emit-
ter.

(b) Bidirectional path tracing, from obeserver to scene
and emitter to scene.

Figure 2.28: Path tracing.[8]

There are two popular versions of path tracing, one is unidirectional from the observer
(image plane) to the scene and to the emitter. Another bidirectional approach due to [49]
where a path from emitter and observer are traced towards the scene [18].

2.10.1 Rendering Schemes

In section 2.7 we discussed the individual terms and components of accumulated observed
radiance. Here we will discuss integral of those terms during path tracing.

2.10.1.1 Brute Force Ray Marching

In all the terms we see nested integrals one for computing the transmittance and the other
for computing the incident solar irradiance. One early proposal to address this issue
was raymarching algorithm [62] in which traversing along the ray in fixed steps of ray
length, both transmission and irradiance are computed. However, in order to compute
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the shadowing the ray marching has to be performed recursively, therefore, this type of
brute-force setup takes O(N2) where N is the number of steps of ray lengths.

2.10.1.2 Stochastic

Bi-directional path tracing in which rays are traced from the sensor (camera) and the
light source is a type of stochastic approach. This technique is also known as distance
sampling, as it traces rays randomly and computes the scattered radiance along the path
at every scattering event.

Suppose we select a point along the ray in O(N) then we need another O(N) steps
again to compute shadow rays to the light source, so the algorithm is now linear in the
number of steps, but the resulting rendered image tends to get noisy. Furthermore, more
transmittance and irradiance are still coupled as it is not possible to increase the quality
of one independently.

An acceleration based on data structures such as kd-trees has been proposed to deter-
mine an upper bound on extinction coefficient per ray, allowing optically thin regions to
take fewer steps. Kd-trees divide the scene based on primitives. First partitioning criteria
(dimension) and then partitioning based on the presence of primitives in a particular plane
is performed. The partitioned scene coordinates are then stored in the kd-tree which has
O(logN) where N is the number of scene partitions.

2.10.2 Sampling Methods

• Hammersley sampling

The two-dimensional Hammersley point set of order m is defined by taking all num-
bers in the range from 0 to 2m−1 and interpreting them as binary fractions. Calling
these numbers xi, then the corresponding yi are obtained by reversing the binary
digits of xi. For example, for the Hammersley point set of order 2 are given by 0.00,
0.10, 0.01 and 0.11 or (0, 1/2, 1/4, 3/4). Reversing the bits then gives the second
component, leading to the set of points (0, 0), (1/2, 1/4), (1/4, 1/2), and (3/4, 3/4).
The Hammersley sampler obtains a very high-quality point set that is slightly more
regular, the first few dimensions. An example of low discrepancy Hammersley
sampling is shown in Figure 2.29.
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Figure 2.29: Hammersley sampling in a unit area

• Poisson sampling

In this mode, several rays are fired as clump at random regions within the pixel, and
the average is taken as a sample random point. In choosing the next random points,
the renderer tries to choose an even distribution so points are not too close to each
other. An example of Poisson sampling is shown in Figure 2.30.

Figure 2.30: Poisson sampling in a unit area [9]

2.10.2.1 Image Reconstruction

Once the integration process collects all the rays after path tracing, an image is con-
structed. Texture aliasing is the distortion or artefact that results when a signal recon-
structed from samples is different from the original continuous signal. Secondly, the
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quantification of intensities in pixels from the ray radiance should also be estimated. In
order to have a good visual quality reconstruction both these challenges should be ad-
dressed.

Textures are maintained in the memory during rendered in the form of pyramidal
layers of downsampled bitmaps, which is also referred to as mipmap. One approach to
performing anti-aliasing on texture is called Elliptically Weighted Average. The EWA
filter performs anisotropically filtered lookups on two adjacent mipmap levels and blends
them. This produces the best quality but at the expense of computation time.

In order to reconstruct the pixel intensity a gaussian windowed filter based averaging
is a simple and natural form of reconstruction filter and it is also adopted in the simulator.



Chapter 3

CHIMES Simulator

In this chapter we introduce the features and research on CHIMES simulator. It is how-
ever, important to cover a few basic concepts regarding Hyperspectral Scene Simulation.
These details are discussed in this chapter.

3.1 Proposed CHIMES Simulator

CHIMES is a texture rendering based simulator and an overview of its design and sys-
tem components are shown in Figure 2.6 and Figure 3.1 respectively. As mentioned in
the introduction section, there are two main features in the proposed CHIMES; one is
enhanced adjacency treatment that has been implemented for a better estimation of the
volumetric scattering of upwelled scattered radiance, which is particularly important for
the simulation of rugged scenes. This feature is in the form of a regional background
neighbourhood function, which, embeds an altitude dependence of the optical scattering
characteristics between the ground and the sensor. During the simulation, the averaged
background albedo of the surrounding region of the test pixel, and the total upwelled ra-
diance are evaluated for each pixel in the scene during the rendering process. The use
of this neighbourhood function together with volumetric scattering has not been found in
the open domain, and it is believed that this approach may help to enhance the perfor-
mance of other scene simulators in the community. DIRSIG5 offers volumetric scattering
based adjacency model, however considering effective background neighbourhood based
on sensor height, air volume and density is not reported. Although ATCOR also em-
ploys the neighbourhood based adjacency, however, it performs differencing of target and
background spectra to model the reduced contrast. This is only an approximation be-
cause volumetric scattering is not considered in ATCOR, probably due to its application
domain. Moreover, variable height difference from every pixel to the sensor is not also

67
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considered in ATCOR or any other COTS scene simulation package.
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Figure 3.1: CHIMES Simulator, system level design overview. Sensor, Scene, BRDF,
Renderer and Image Reconstruction modules are shown in different components as
coloured boxes.

The other feature in the CHIMES is the automatic search of the optimal atmospheric
parameters to be used for the simulation of a scene, such that the output will be as realistic
as that of the ground truth data. Many simulators, such as the DIRSIG and the CameoSim,
require the user to define the atmospheric parameters which are unknown. Thus several
trial and error of simulation run using different sets of atmospheric parameters are nor-
mally required for these simulators. This contribution will help to reduce the amount of
guesswork and help to obtain the optimal simulation result without repeatedly trial and
error processing by varying the aerosol optical thickness. Contents of this chapter are
based on [18].

3.1.1 CHIMES Data-Flow

Figure 3.2 shows an overview of the software framework of CHIMES simulator. It is an
evolvable software framework which allows users to add custom modules related to the
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simulation and provide integration of other built-in simulation components such as 3D
geometry, Atmospheric data, Sensor Data, Material signature database, a Graphic User
Interface and a rendering engine. In order to make the software design more modular and
we have divided it into four layers such as;

• Graphic User Interface

• Scripting Language Layer

• Middle Logic Layer

• Database Interface

                                   Scripting Language Layer      
                                  (Python, XML)

Graphic User Interface

Middle Logic Layer

Database Interface

3D Geometry

Atmospheric Data

Sensor Data
Rendering Engine

Material Signature

Simulator 
Scripts

Scripting 
Language Library

Interfaces to 
Other Languages

Simulation 
Developer

End-User

SIMULATOR 
ADD-ON 

MODULES

Simulator 
Built-in 

Modules
(Scripts)

Database

Python

Figure 3.2: CHIMES components, data flow and user interaction methods

The objective of this design is to allow users to develop the simulator with scripts.
Script registration can be written to define the scene parameters and start the rendering
process. Screenshot of CHIMES simple GUI is shown in Figure 3.3.
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Figure 3.3: CHIMES Simulator simple GUI, showing a pre-rendering RBG view of
Modesto Scene, partly showing sky and sun. Scene can be defined as python script or
XML definitions file.

3.2 Components of CHIMES

3.2.1 Scene

The terrain is generated by DEM-based smoothed deformation in the flat polygon, which
is the basic primitive of a scene. The input data is airborne reflectance images with the
high spatial and spectral resolution, which is processed by QUAC atmospheric compen-
sation on radiance image. Classification of reflectance image cube is the first step for ma-
terial mapping, which is performed by K-means clustering algorithm with a user-defined
number of materials (classes) input. Details about classified texture are covered in a sub-
sequent section. The number of specified material and their identifiers are created and
stored in the database. A texture is generated based on materials RGB colours. An iden-
tifier based coded-texture layer is generated to handle the loading of spectral data during
rendering. Corresponding BRDF/BTDF is associated with each material, however, the
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thermal description is out of the scope of this work. This classified texture is mapped
onto the terrain to create static geometry. A potentially roving geometry as shown in Fig-
ure 2.6 might be represented by vehicles, plumes or clouds, however, it is not included in
this version of the simulator.

In terms of rendering system, a scene is an input to the rendering algorithm which
recursively cast rays to test occlusion for casting shadows or perform an interaction with
scene surface to determine the ray response according to reflection or transmission dis-
tribution functions. Another important interaction of the scene is with the sensor, the
orientation, altitude and azimuth of the sensor create a perception of the scene on the sen-
sor. Although the skydome itself is not part of scene geometry, however, it may include
substantial space in an outdoor scene, viewed by the sensor.

3.2.1.1 Classified Texture

CHIMES is capable of simulating and rendering large high resolution HSI images. For
example, one of the scenes rendered has a resolution of (1850× 380) which is approxi-
mately 700,000 pixels in one image. This equivalently implies that this scene has 700,000
materials. Storing information about this large number of materials would be a waste of
memory and would also lag down the rendering process. It is therefore wise to perform
classification of the texture so that the number of materials required to represent an image
would reduce to process the rendering efficient under a decent memory requirement. A
number of classification algorithms such as Support Vector Machines (SVM), K-means
clustering, ISODATA were test in pre-selection phase on various HSI datasets.

In our experiments, K-means clustering is employed for classification due to better
performance among the alternatives, which is performed on an atmospherically compen-
sated (by QUAC [63]) reflectance hyperspectral cube. In this phase of research where the
focus is on RT models, classification from MSI or RGB image like CameoSim/DIRSIG
is out of the scope. K-means clustering requires a user-defined number of classes as in-
put. RGB image of classification from 80 and 120 classes are shown in Figure 3.4 (a)
and (b), respectively. These classification results are performed in Matlab GPU based
implementation using 100 K iterations.
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(a) 80 classes, orange perspex appears to have white colour

(b) 120 classes, orange perspex appears to have orange colour.

Figure 3.4: Reflectance cube retrieved by QUAC, K-means clustering is utilized for clas-
sifying the reflectance. Classified textures with 80, 120 K-means classes are shown in
(a,b).

A flat polygon is transformed into the terrain by introducing DEM driven realistic
bumps onto it. DEM is measured in Absolute Ground Level (AGL) for the test scene and
it is shown in Figure 3.5 (a). The classified image from Figure 3.4 (b) is mapped on the
terrain to construct a classified texture, as shown in Figure 3.5 (b).

3.2.2 Sensor

Radiance generated by MODTRAN has a very high spectral resolution ranging from
wavenumbers (ν̃) between 3800 to 28000 (cm−1). To simulate a real sensor the output
is spectrally degraded to represent the instrument characteristic spectral channels. This is
achieved through convolution with sensor response functions. The normalised convolved
radiance values in band i are calculated as;

Lsi =

ˆ
λ

Lmi(λ )ri(λ )dλ

ˆ
λ

ri(λ )dλ

, (3.1)
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(a) Digital Elevation Model (AGL) of the experiment scene. Height is given in meters, the highest
point is tree top that is 31.3 m with respect to the trough which is 0.0 m.

(b) Classified texture

Figure 3.5: Terrain created from DEM and background skydome in CHIMES software
(an RGB view).

where Lsi is convolved radiance of ith band, Lmi is MODTRAN high spectral resolu-
tion radiance and ri is the response function in ith band [64].The sensor module also takes
part in the rendering system by accepting the samples and returning rays distributed on
the detector’s view grid, whose count is defined by the user as rays per pixel. A scene is
visible to the view grid by depth-sensitive perspective projections.

3.3 Atmosphere and Emitter Construction

In this section we will discuss the implementation aspect of how the atmosphere is gen-
erated in a simulation environment from the output of MODTRAN, which gets a number
of specific geometric and altitude parameters to produce output radiance. In order to cre-
ate a hemispherical atmospheric effect into a simulator, MODTRAN is run several times
to cover the directions of the spherical coordinates. Components of at-sensor radiance
are generated by means MODTRAN-based atmosphere. Each component is illustrated in
subsequent sections.
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3.3.1 Direct Solar

The solar incident light is shown to be incident on the ground and depends on the single
solar zenith incident angle with respect to target surface normal. Figure 3.6 shows data
points for which MODTRAN data is extracted for the solar downwelling radiance.

N
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E

Figure 3.6: Downwelled solar irradiance

Computing the incident flux is, therefore, a straight forward process which is a func-
tion of exoatmospheric solar irradiance, transmittance along the LoS and solar zenith
angle as expressed in Equation (2.45). In the emitter, environment map sun is placed
according to its zenith and azimuth angles.

3.3.2 Sky radiance

In order to construct an environment map in the simulator, the total sky irradiance is
incorporated in the environment map which is constructed by computing sky radiance at
data points all over the hemisphere. Figure 3.7 shows incident solar irradiance onto the
hemisphere, while Figure 3.8 shows data points for which sky irradiance MODTRAN data
is extracted for the given atmospheric configuration. The environment map in CHIMES is
a (1024x512) hyperspectral image, transformed into spherical coordinates. As the image
resolution is higher than the number of time MODTRAN data is acquired therefore there
are coordinate points of the atmosphere where interpolation is performed. The face of the



CHAPTER 3. CHIMES SIMULATOR 75

hemisphere where interpolation is to be performed is shown in Figure 3.8.

N

W

S

E

Figure 3.7: Solar irradiance in it’s first leg is incident at the data points on the hemispher-
ical horizon of the scene. Data point are selected spherical coordinates where MOD-
TRAN’s scattering, transmission etc are computed.
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Figure 3.8: Data points on the hemispherical coordinates that are scattering points for
downwelled radiance. The blue face shows the plane where interpolation is required to
construct the sky environment map.

To construct the database of radiance, transmission and scattering coefficients a com-
posite key is constructed combining zenith and azimuth angles of the data points. MOD-
TRAN is then run based on different altitude and these geometrical angles for a given
configuration as shown in Table 3.1 or other relevant settings for a given scene. All at-
mospheric data is stored in the database and loaded into memory during rendering for
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creating the skydome.

3.3.3 Upwelled Radiance

Once the sky and sun emitters are constructed it creates the incident light rays on the
scene. Light reflected off the target surface is scattered into the LoS of the sensor. Figure
3.9 shows the Field of View (FoV) of the sensor. The upwelled radiance comprises all
components of the at-sensor radiance that are given in Equation (2.61). The sun and sky
radiance are reflected according to the BRDF of the target surface however path radiance
is calculated from MODTRAN for several geometrical data points as shown in Figure 3.9.
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Figure 3.9: Upwelled scattered radiance with spherical and altitude variability. Blue
points show the geometric points where data is acquired from MODTRAN, at heights
h0, h1, h2.

MODTRAN data is also acquired at heights h0,h1,h2 and transmission at these heights
are computed. For each layer, a spectral extinction coefficient is associated which is used
to estimate the path radiance with varying heights using exponential interpolation.
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3.3.4 Skydome Radiance Map

Although MODTRAN has provided irradiance models for the emitters such as the sun,
moon [65], in CHIMES the sun and sky irradiance have been implemented as a sky-
dome which is generated through interpolation of MODTRAN’s look-up table (LUT) for
various zenith and azimuth settings. MODTRAN is typically run with multiple scatter-
ing models (DISORT scaled Isaac) and Mie scattering for the appropriate atmosphere
(aerosols) of the scene given by the atmospheric search algorithm as described in Sec-
tion 3.6. A skydome degree of polarisation (DOP) is achieved by rayleigh scattering
on environment maps pixel position (zenith, azimuth) with respect to solar position, po-
larimetric version of MODTRAN called MODTRAN-P [66] is not used to generate this
skydome. The sensor response is convolved with the MODTRAN radiance as described
in Section 3.2.2. Figure 3.11 (a), plots the variation of radiance for skydome with clouds,
while Figure 3.11 (b) shows the DOP of the sky for depicted (by yellow circle) solar az-
imuth and zenith positions. It is seen from these figures that a strong polarization of solar
irradiance is observed at 90◦ with respect to solar vector and is caused by the Rayleigh
scattering of the air molecules in the atmosphere [67]. It should be noted that clouds are
not added as roving geometry in this version of CHIMES, however, reduced radiance due
to the presence of cloud is calculated from MODTRAN and skydome with lower radiance
is created. A polar plot of skydome radiance in overcast weather is shown in Figure 3.12
(a). A similar plot for clear sky, that is, with no aerosol is shown in Figure 3.12 (b). The
DoP in sky due to Rayleight scattering is given in Equation (3.2) which is due to [67].
The DoP plot is shown in Figure 3.10 [18].

DoP =
1− cos2 θv

1+ cos2 θv
(3.2)

where θv is the scattering angle.
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Figure 3.10: Degree of Polarisation with respect to zenith and azimuth

(a) Skydome radiance variability with respect to zenith and az-
imuth.

(b) Skydome degree of polarisation.

Figure 3.11: CHIMES sky and sun emitters.
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(a) Skydome radiance W/(m2.sr) with cloud of Table 3.1 . (b) Skydome radiance W/(m2.sr) clear sky

Figure 3.12: CHIMES emitters.

3.4 Spectral Rendering

The primary difference between a visible image and HSI image rendering is in the high
spectral resolution rendering. Constructing a classified texture is covered in section 3.2.1.1,
the spectral rendering in CHIMES is constructed by making a material identifier texture
layer which has a one to one mapping with the image texture. When a ray intersects a
scene, texture coordinate of the scene is retrieved for both image and material identifier
texture layers. The identifier is used to query the material mapped to the texture coor-
dinate. A bxdf identifier is also recorded against the spectral identifier which attaches a
particular BXDF with that particular material. When both this information are accessed
bxdf sampling is performed and a vectorized bxdf weight is calculated for that particular
texture coordinate. Figures 3.13 and 3.14 show examples of Selene and Modesto material
identifier textures images.

Each texture image is a 24-bit colour image, therefore, it can handle up to 16 million
materials represented by their material identifiers as shown in Figure 3.15. In CameoSim
this is limited to 256 materials for an image.
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Figure 3.13: Material ID texture of Selene scene.

Figure 3.14: Material ID texture of Modesto scene.

Figure 3.15 elaborates the database structure of CHIMES and shows the texture ma-
terial database table to develop a detailed understanding of how data is handled during
the rendering process. The material identifier textures in Figure 3.13 and 3.14 are pre-
dominantly blue because there are 120 materials used in our simulations. The number of
materials equal to or less than 256 will lie in the blue byte of the texture image therefore
it appears blue.
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Figure 3.15: CHIMES Database structure
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Figure 3.16: Selene texture data.

3.5 Radiometric Integrator

In this section we will discuss the rendering equation employed in CHIMES, flow-chart
for computing radiance in the renderer, partitioning and searching of scene regions during
the rendering and reconstruction and interpolation methods.

3.5.1 CHIMES Rendering Equation

As we have established a localized form of computing upwelled scattered radiance in
the previous section and based on descriptions given in section 2.7 we may now es-
tablish a rendering equation estimate based on MIS Monte Carlo integration. Equation
(3.3) expresses the rendering equation adopted in CHIMES. In comparison with Equation
(2.61), it can be noticed that thermal emission and scattering terms are ignored, as per
scope.Figure 3.17 shows an overview flowchart of rendering based on Equation (3.3).
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Lsensor =

{ direct solar︷ ︸︸ ︷
1

N f

N f

∑
i=1

f (θi,φi,θr,φr,λ )Lsol (θi,φi,θr,φr,λ )w f ((θi,φi,θr,φr,λ )

pdf(θi,φi,θr,φr,λ )
+

+

diffuse sky︷ ︸︸ ︷
1

N f

N f

∑
i=1

f (θi,φi,θr,φr,λ )Lsky (θi,φi,θr,φr,λ )w f ((θi,φi,θr,φr,λ )

pdf(θi,φi,θr,φr,λ )
+

{ path radiance︷ ︸︸ ︷
1

Nβop

Nβop

∑
j=1

Tp(θuo)βop(θuo)wg(θuo)

pdf(θuo)

}
ETOA+

adjacent radiance︷ ︸︸ ︷
1

NLuo

NLuo

∑
j=1

Luo(T,Tdi f )ρ̄b(T,Tdi f )w f (T,Tdi f )

pdf(T,Tdi f )
+

background reflected radiance︷ ︸︸ ︷
1

NLb

NLb

∑
j=1

Lb (~ωb)

pd fLb (~ωb)
(3.3)

Equation (3.3) is a Monte Carlo estimate of at-sensor radiance based on MIS. The
direct solar term is already given in Equations (2.87), similarly (2.99) is a componentized
version of sky radiance for explanation while we utilize radiance from MODTRAN out-
put therefore we reduce it to Lsky. The BRDF term is included as suggested in [49]. The
direct and diffuse sky radiance is denoted as Lsol and Lsky, respectively. The path radi-
ance is incident on to the atmosphere and is scattered into the LoS of the sensor, having
transmission Tp. The angle θuo is upwelled scattering angle, where the subscript o de-
notes that we are dealing with optical scattering (βop). Nβop are the samples of functions
representing transmission and optical scattering, respectively. In adjacent radiance, Luo

is the upwelled scattered radiance which is a function of total downwelling transmission
T and diffuse upwelled transmission Tdi f . According to [53, 61] the adjacency effect is
due to diffuse upwelled transmission and accumulates the background reflectance ρb as a
function of the distance between target position and sensor position . In background radi-
ance term ~ωb is the background’s solid angle and Lb is the background radiance incident
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on the target. Figure 3.17 shows a loop of recursive ray casting and computing of Lsensor

for each ray.

Memory
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Handle other scenarios

Figure 3.17: Flowchart illustrating recursive ray casting and estimating Lsensor during
rendering loop.

Radiometric integrator or renderer runs a recursive loop to compute the integrated
radiance contribution due to direct and diffuse sources. The light-transport scheme em-
ployed in rendering path tracing. A more detailed text about this rendering scheme may be
found in Reference [48] . Multiple importance sampling [49] is applied for a direct light
source with BRDF/BTDF and diffuse light source with phase function. . The Monte-Carlo
samples are passed to the camera/sensor module which converts it to rays. Each pixel in
the sensor plane is sampled by Poisson/Hammersley sampling and a variable number of
rays can be defined in parameters. Increasing the number of rays increases rendering
time but provide higher image quality. Distance sampling is performed to estimate the
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attenuated transmission due to propagation in the given medium. The solar and diffuse
reflected/transmitted radiance contributions are driven by the emitter BxDF and phase
sampling and respective PDFs. MIS weights are calculated based on these PDFs in each
iteration. The emitter contributions are interpolated from the MODTRAN based results
in the database. The phase function employed during rendering is Henyey-Greenstein
function.

Rendering is a recursive operation which is repeated for a user-defined ray bounce
and terminated at the lowest variance condition guided by means of Russian roulette.
The directly reflected radiance does not require more contribution to the recursion than
the scattered one. However, the background reflected radiance is also contributed in the
recursive loop depths, depending on the background geometry. Figure 3.18 shows the
scattering process modelling in a rendering environment.

Figure 3.18: Path tracing based volumetric scattering of monochromatic light rays in
presence of aerosols. Scattering event generates a deviation, hence another branch of
recursive ray.

A scene is usually split into regions based on dimensions and primitives, where each
region is represented by the node in a kd-tree as shown in Figures 3.19 and 3.19. We
generated some random points on the basis of which regions are constructed. The traversal
of regions is searched through the tree where the location of the region is stored in the tree
as a search key. The intersection of rays with the scene is then traced through the search
tree.
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Figure 3.19: Scene geometry is a 3D bounded region, the scene is partitioned into regions
by generated random points or primitives. Labelled points are visual depiction of data
structure nodes that are handled in kd-trees.
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Figure 3.20: kd-tree of partitioned scene area shown in Figure 3.19.

For efficient computing, the scene is also divided into computing blocks where each
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block is rendered in parallel. The eventually accumulated radiance for each pixel is com-
puted which is passed to the image reconstruction component. This components is a
windowed gaussian reconstruction filter as a default in our simulation, which estimates
the pixel intensity based on radiance and applies anti-aliasing filter, together with texture
interpolation.

3.5.2 Proposed Adjacency Models for CHIMES Simulator

The adjacency effect reduces with wavelength [61] as it depends on scattering efficiency.
In CHIMES we maintain most of DIRSIG radiative transfer equation, however, treat-
ment of I type of rays (adjacency) is handled with two different models. Both of our
models adopt DISORT based upwelled scattering, however approach of setting average
background albedo ρ̄b is different in them. Our first and comparably simplistic model is
similar to CameoSim.

Based on Equation (2.111), the upwelled scattered radiance into the sensor is therefore
expressed as in Equation (3.4). This is the path radiance output from MODTRAN when
target albedo is set to zero, during execution.

Lm
us =

ρuE ′scosθ

π
. (3.4)

Replacing upwelled scattered term of Equation (2.102) by Equation (3.4) we get Equa-
tion (3.5), which is the Lambertian BRDF form of CHIMES Background One-Spectra
AEM (BOAEM) model. The final estimation of Lm

us during rendering is driven by volu-
metric scattering. This model is constructed to provide a better comparison of CHIMES
with CameoSim, in terms of overall performance, which include several parameters such
as sensor model, scene, ray tracing, volumetric scattering and background reflected radi-
ance and so forth.

L(λ ) = τ2(λ )

{
E ′s(λ )

π
τ1(λ )ρ(λ )cosσ + ε(λ )LT (λ )+ρd(λ )F

[
Eds(λ )

π
+

Edε(λ )

π

]
+ρd(λ )(1−F)

[
Lbs(λ )+Lbε(λ )

]}
+

ρuE ′scosθ

π
+Luε(λ ). (3.5)

In the second, more comprehensive, adjacency model, CHIMES adopts the methodol-
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ogy similar to that in ATCOR to deduce the upwelling of the adjacency through a sliding
window of regions along the horizontal scale of the terrain. Since the extent of the ad-
jacency scattering depends on the density of air within the field of view of the sensor,
hence the adjacency is a function of the sensor altitude (h1) and the elevation of ground
(h2). Through experimental analysis Richter et al. [21] derived an empirical equation to
quantify the approximate adjacency range R(h1,h2) on the ground as;

R = (h1−h2)0.1. (3.6)

The above empirical equation is the result of the air density differentiation along ele-
vation z. It has been shown that the density of air D(z) is exponentially reduced above zd

elevation;

D(z) = Doexp(
−z
zd

), (3.7)

where D(z) is air density at altitude z, Do represents density at sea-level and zd is the
average scale height for the density of air which is 8 Km [21]. The adjacency effect
for every pixel in a scene is evaluated by forming a region of interest (ROI) of (2R×
2R) pixels having the test pixel (target) in the center. According to Equation (3.6) the
dimension of the ROI is dependent on the difference of elevation of the test pixel (target)
and sensor altitude. Therefore in rugged terrain’s ROI dimension is variable across the
scene. For each pixel in the scene, CHIMES deduces the path reflectance (ρo), adjacent
contribution for unit reflectance (∆ρu) and the ROI background reflectance ( ρ̄bK ) for each
(2R× 2R) ROI. We incorporate ρ̄bK into Equation (2.102) by interpolation, therefore ρu

is calculated for ρ̄b = 0.0 and ρ̄b = 1.0 from Equation (2.111), and it is denoted by ρu0

and ρu1, respectively which is given in Equation (3.8).

ρu0 = ρo (3.8a)

ρu1 = ρo +
(τdir

1 + τ
dif
1 )τdir

2
1− s

(3.8b)

∆ρu = ρu1−ρu0 =
(τdir

1 + τ
dif
1 )τdir

2
1− s

. (3.8c)

ρ̄bK , inside ROI is calculated by Equation (3.9).
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ρ̄bK =
M

∑
s=1

ρs

R2
s
, (3.9)

where ρs is the reflectance of the sample pixel as shown by red pixels depicted in Fig-
ure 3.21 (b) and Rs is the distance between target pixel (green/orange) and sample pixels.
M is the number of samples in the grid. The upwelled scattered reflectance for the ROI re-
gion is therefore computed according to every pixel’s position and height by interpolation
as given in Equation (3.10), where Subscript K denotes the kernel ROI. The approximate
upwelled scattered radiance for the ROI is given in Equation (3.11).

ρuK = ρu0(1− ρ̄bK)+ ρ̄bKρu1 (3.10a)

ρuK = ρ̄bK∆ρu +ρu0 (3.10b)

Lm
usK =

(ρ̄bK∆ρu +ρu0)E ′scosθ

π
. (3.11)

We performed simulations by upwelled scattered radiance interpolation between zero
and one. In order to have finer interpolation , ρu from MODTRAN at more intermediate
points between zero and one are taken. Therefore we constructed a set of Lm

usK at ten
points ranging from 0–1 with an interval of 0.1. This set is denoted as ρuR, which is
given in Equation (3.12), upwelled scattered radiance values of this set are stored in the
database.

ρuR =

{
ρo+

(τdir
1 + τ

dif
1 )τdif

2 ρ̄b0.0

1− sρ̄b0.0
,ρo+

(τdir
1 + τ

dif
1 )τdif

2 ρ̄b0.1

1− sρ̄b0.1
, ....,ρo+

(τdir
1 + τ

dif
1 )τdif

2 ρ̄b1.0

1− sρ̄b1.0

}
(3.12)

Suppose ρw and ρb are given in (3.13).

ρw = min{ρuR < max(ρuK)} (3.13a)

ρb = max{ρuR < min(ρuK)} (3.13b)

The minimum and maximum value of ρuK are calculated and closest bounding upper
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and lower range value of ρuR are retrieved for interpolation. This will ensure a better
approximation than Equation (3.10). Lm

usK′ is therefore given in Equation (3.15).

∆ρu′= ρw−ρb (3.14a)

ρuK′ = ρ̄bK∆ρu′+ρu0 (3.14b)

Lm
usK′ =

(ρ̄bK∆ρu′+ρu0)E ′scosθ

π
. (3.15)

Once ρ̄bK is computed for the intersecting ray, it is backscattered by coupling the phase
function of the atmosphere and the diffuse emitter in ray-tracing by utilizing Monte- Carlo
multiple importance sampling [49] and finally values of Lm

usK and Lm
usK′ are estimated. A

ray-level computation of upwelled scattered radiance is shown in Figure 3.21 (a). More-
over, the actual model in CHIMES also considers BxDF models in calculating the radi-
ance. It should be noted that, unlike ATCOR, TIAEM does not perform any differencing
between target and background reflectance. Contrast reduction is the consequence of
volumetric backscattering of the computed upwelled scattered radiance under the kernel,
which eventually takes the form of Equation (3.11). The final rendering equation for the
TIAEM model (assuming Lambertian BRDF) takes the form of Equation 3.16.

L(λ ) = τ2(λ )

{
E ′s(λ )

π
τ1(λ )ρ(λ )cosσ + ε(λ )LT (λ )+ρd(λ )F

[
Eds(λ )

π
+

Edε(λ )

π

]

+ρd(λ )(1−F)
[
Lbs(λ )+Lbε(λ )

]}

+
(ρ̄bK∆ρu +ρu0)E ′scosθ

π
+Luε(λ ). (3.16)

We reused DIRSIG rendering equation to represent the modified upwelled scattered
term in our presentation, however, this equation assumes Lambertian BRDF. In our sim-
ulator three BRDF models are supported such as Phong, Lambertian and Torrence and
Sparrow. In our experiments, we assume Lambertian BRDF for all simulations due to the
abundant vegetation in the background of the scene.



CHAPTER 3. CHIMES SIMULATOR 91

R

Rsρs 

Memory

LUT

Get Pixel Position

Get Pixel Height

Get Sensor Height 

Create ROI based on height difference

Select sample pixels in ROI

Get ρo,Δρu

While ray_bounce < limit

Is intersected with Texture

Calculate Total               contribution

No

No

Yes

Yes

Cast a ray

Calculate ρbk

Calculate Upwelled scattered ray weight 
from Emitter, PhaseFunction PDFs

Calculate Contribution of  Other 
Radiance Components (Terms)

Add all radiance terms for ray

Cast bounced ray as per BxDF/Scene 
Geometry

Get Integrated Radiance

(a) (b)

ρbK

Output

Handle other scenarios

Figure 3.21: (a) The data flow of the proposed TIAEM model which computes the ad-
jacent upwelling radiance by evaluation of volumetric scattering with an spatial ROI. It
depends on the difference of altitude between sensor and height of terrain at a given point
on texture. (b) shows the evaluation procedure of averaging the background albedo of the
ROI by the adjacency pixels (in red) for the test (target) pixel which is in orange/green.

As we learnt that the TIAEM upwelled scattered term is dependent on the sensor
altitude, we illustrate the outcome of upwelled scattered radiance for low and high altitude
airborne images in shape of Selene and Modesto scenes, respectively.

Selene is an airborne scene with sensor altitude of 0.944 km, due to the less volume of
medium between target and sensor the value of R is smaller. Therefore the textural imprint
on the upwelled scattered radiance is dominant as shown in Figure 3.22. Similarly, when
the sensor is mounted on a sensor with altitude of 20 Km, the value of R is very large and
therefore the textural imprint on the upwelled scattered radiance is partially noticeable at
shown in Figure 3.23. Both images are generated by CHIMES simulation where all other
radiance contributions are discarded except upwelled scattered radiance, during rendering
process.
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(a) RGB image constructed from upwelled scattered term only, for BOAEM adja-
cency model. It has a grey colour without any texture information.

(b) RGB image constructed from upwelled scattered term only, for TIAEM adja-
cency model. A more blurred texture information is visible.

Figure 3.22: Selene Airborne scene; altitude 0.944 Km. Scene simulated with upwelled
scattered term for BOAEM and TIAEM.

(a) Modesto RGB image constructed from upwelled scattered term only, for BOAEM
adjacency model. It has a grey colour without any texture information.

(b) Modesto RGB image constructed from upwelled scattered term only, for TIAEM
adjacency model. A more blurred texture information is visible.

Figure 3.23: Modesto Airborne scene; altitude 20 Km. Scene simulated with upwelled
scattered term for BOAEM and TIAEM.
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3.6 Automatic Atmospheric Search for Atmospheric Pa-
rameters for Scene Simulation

The presence of aerosols or water droplets in the atmosphere is a complicated phenomenon
to model as their properties, such as their sizes, densities and their distributions are sub-
jected to many atmospheric factors which makes them highly in-homogeneous along the
solar zenith and azimuth dimensions. Given the upwelling radiance of a scene, there is
no method to know exactly what are the aerosols and their density distributions over the
measured site because it is an inverse problem and the solution is likely to be non-unique.
To simulate a scene, one will need the knowledge of the material characteristic on the
ground, and more importantly the atmosphere property over the scene. The latter input
is normally ‘guessed’ from the data provided by the weather stations perhaps with the
help from radiosonde and so forth. Among the list of atmosphere parameters which is
outlined in Table 3.1, some relatively more important ones such as the optical thickness
and water droplets dimensions in the cloud can be modelled within certain limits given by
the seasonal model of the test site [18]. Studies [68] have shown that light’s extinction by
the presence of clouds is dominantly affected by the effective radius of droplets (r) and
their densities (Cw) in the cloud.

3.6.1 MODTRAN Parameters Types

MODTRAN provides a list of parameters to generate suitable atmospheric data based on
season, atmospheric medium constituents, clouds, sensor orientation and altitude, obser-
vation parameters, volcanic background type and light source types. We classify param-
eters in two types one is user-defined and the other is searched. User-defined parameters
are those that match the meta-information about a scene that is to be simulated, such as
date, time, location, sensor orientation, season, sensor altitude, average scene temperature
at the time of the acquisition, background adjacency albedo. The other more complicated
parameters that are typically hard to find are aerosol’s thickness, water vapour concen-
tration and aerosol types. The aerosol type is also typically found through a pre-defined
rule-base depending on the sensor’s altitude.
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Table 3.1: MODTRAN parameters and their respective value for the Selene scene.Values
in boldface are the variables that are searched for different values to fit the closest radi-
ance. Other values are fixed for a specific scene according to the acquired scene’s meta
information and date/time.

MODTRAN Parameter Value [Searched Value]

Seasonal model Sub-arctic summer

Water vapour column (gm/m3) Variable (List) [0.223]

CO2 (ppm) 400

Boundary Temperature (K) 283

Background Adjacency Albedo Grass scrub (Spectral)

Aerosol Thickness Variable (List) [0.024 Km]

Spectral Range 0.414 µm–2.51 µm

Scattering DISORT Scaled, 8 streams

Sensor Orientation nadir

Observation Parameters 12/08/2014, 13:04 (GMT), Solar Zenith : 37.5◦ Azimuth : 199.88◦,
Sensor Altitude : 0.944 Km, Target Altitude : 0.001 Km

Cloud base 0.610 Km

Cloud Types Stratus, (Cumulus, Stratocumulus, Altostratus, Cirrus, Rain, User-defined)

Vertical Structure Algorithm None

Volcano Background Normal Volcano Background

Light Source Sun, (Moon)

The optical transmittance τ of a slab of cloud with thickness R, effective radius of
droplets in the cloud r, density of droplets in the cloud Cw and density of water ρ (ρ = 1.0
gm/cm3) has been found analytically in the form of Equation (3.18) [57, 68].

τ = exp(−δ ) (3.17)

δ =
3CwR
2ρr

. (3.18)

Thus, the above equation gives a first-order estimation of the optical transmittance
τ(Cw,R,r) of the cloud. For a scene with known materials on the ground and when it
subjects to solar irradiation, the albedo of the ground or the radiance of some specific ma-
terials in the scene can be evaluated analytically through Equation (3.18) for a given set of
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droplet parameters (Cw,R,r), For low altitude clouds having Stratus profile, MODTRAN
assumes (r = 8.33 µm). A set of the albedo can then be evaluated under systematic varia-
tion of these droplet parameters as according to Equation (3.18). After this set of albedo is
convolved with the sensor characteristics, they can then be monitored through a distance
metric measurement compared to the ground truth radiances of the scene. In a nut shell
the atmospheric search algorithm is a subroutine to obtain the ground or material albedo
under the different configuration of cloud (Cw,R,r) and a subsequent call of MODTRAN
for the radiative transfer evaluation. A flowchart of the atmospheric search is given in
Figure 3.24. The experimental setup during GT data acquisition and the results of the
search algorithm are presented in Section 6.2.1.

Water Vapour Concentration List 
Cw [0.01:increment(0.01):0.25]

Aerosol Thickness List
R [0.001:increment(0.005):0.040]

MODTRAN Fixed Parameters
MOD_PARAMS (Season Model, 

Solar Zenith, Sensor Zenith, Sensor 
Altitude, Cloud_base, etc)

Known 
Inscene 
material 

Reflectance

Fetch next Cw from list

Fetch next R from list

Call MODTRAN with [Cwi,Ri and 
MOD_PARAMS]

Get TGRR and Path_Rad

Calculate Radiance for known 
Material from TGRR/Path_Rad

Get Radiance for known 
Material from scene

Calculate GoodnessOfFit for 
MODTRAN and Reference 

Radiance

Is EndOfList

Is EndOfList

GoodnessOfFit Data, 
MOD_PARAMS,

Cwi,Ri

End Loop

End Loop

Get MOD_PARAMS,Cwi,Ri for 
the best GoodnessOfFit 

No

No

Yes

Yes

Figure 3.24: Flowchart of searching underlying atmospheric conditions parameters.

In this section, we discussed adjacency models included in CHIMES. Concisely, the
BOAEM is a simplistic adjacency model which evaluates the upwelling by using one
spectral reflectance. Other simulators such as the CameoSim has also employed a similar
model for adjacency modelling. However, the TIAEM may represent a more compre-
hensive adjacency model in which it evaluates the local adjacency in upwelling radiance
within several small ROIs across the entire scene.
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3.6.2 Automatic Search for Atmospheric Parameters

During the search process, MODTRAN is input with several parameters, few of them
are shown in Table 3.1. In our experimental data, sensor altitude is higher than cloud
base and presence of thin cloud below the sensor is also reported [10], therefore we will
vary the aerosol optical thickness below the sensor to search the approximate underlying
atmospheric condition in the scene.

In each iteration MODTRAN’s Lw that is, accumulated total ground reflected radiance
and path radiance is calculated and goodness of fit is recorded. Estimate of searched white
panel radiance Lw and black panel radiance Lb is shown in Figure 3.25, that possesses the
highest goodness of fit, that is 90.4% of match in terms of NRMSE for Lw and 55.26%
for Lb, respectively. These results manifest good atmospheric search in terms of total
ground reflected radiance, however, estimation of path radiance is relatively worse. If
path radiance estimated in the search process is lower than the GT panel then it may result
in higher contrast than the GT. As the search method only employs MODTRAN at-sensor
radiance estimate, the effect of volumetric scattering is not accounted for. At rendering
time, volumetric scattering may either reduce the error in the estimate of Lb or increase
it depending on the choice of phase function and backscattering parameter, such as the
variable g in Henyey-Greenstein function [48]. However, due to good estimation of the
TGRR, we have selected searched parameters (Cw = 0.22 gm/m3 and R = 0.024 Km) and
fixed parameters given in Table 3.1 for our overcast condition simulations. In the case
of atmospheric search by using white and black panel, it is easier to segregate the path
radiance and TGRR, therefore these targets were employed. A similar search based on
orange perspex yielded (Cw = 0.22 gm/m3 and R = 0.023 Km), which is very close to
white and black panel’s parameters.

3.6.2.1 Drawbacks of Atmospheric Parameters Searching

The atmospheric parameters of MODTRAN listed in Table 3.1 are searched to best fit
the radiance of known reflectance material by iterating MODTRAN runs. Unfortunately,
MODTRAN does not provide the facility to incorporate DEM data for a terrain. Therefore
the parameter a searched for an absolute flat terrain, therefore the searched parameters
based atmospheric data is expected to yield more error in CHIMES environment when
rendering is performed on a DEM terrain. It would accumulate higher intensity at each
pixel due to the capture of ray bouncing in a path-tracing environment. To keep the search
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computationally efficient higher priority is given to Direct and Diffuse reflected radiance
which matching the reduced NRMSE error than the Path radiance. This is apparent in
the results of Figure 3.25, where Lw has a higher match (90%) with the in-scene radiance
and Lb has lower match (55%), only. The rationale behind taking only Lw into account
in our empirical experience with the output of MODTRAN’s path radiance which con-
tributes between 10%–15% in at-sensor radiance output. Details about material’s used for
calibration panel and their respective reflectivity is given in Tables 5.2 and 5.3.

(a) White Panel Estimation

(b) Black Panel Estimation

Figure 3.25: Atmospheric search based White and black panel estimates.



Chapter 4

Shadow Detection

4.1 Shadow Detection in an Hyperspectral image

High-Fidelity hyperspectral imagery contains crucial spatial and spectral information of a
given scene. Presence of shadows causes significant challenges for both satellite and air-
borne data analyses. Shadows cast by scene geometry or clouds cause hurdles in remote-
sensing data analyses, including inaccurate atmospheric compensation, biased estimation
of Normalized Difference Vegetation Index (NDVI), confusion in land cover classifica-
tion, and anomalous detection of landcover variation. Therefore, shadows are a signif-
icant source of noise in Hyperspectral Image (HSI) data, and their detection is a vital
pre-processing step in most analyses [69, 70].

Over the years, various methods of shadow detection proposed are object-based shadow
detection methods which classify clouds, their shadows, and non-shadowed regions by ap-
plying image segmentation at different bandwidth images of HSI imagery, e.g., [71, 72],
and color invariance-based shadow detection methods create RGB in invariant colour
space and exploit it for classification as in [73]. Some algorithms use band indices to
detect shadows in an HSI image [74, 75]. Another class of algorithms require an a priori
Digital Surface Model (DSM) [76] or Terrestrial Laser Scanning data together with the
HSI image to find shadows cast from scene geometry [77].

[78] categorised shadow detection algorithm into four classes; a) Chromacity-based
methods b) Physical methods c) Geometry-based methods and d) Texture-based meth-
ods. They listed almost thirty algorithms in all these categories. None of these categories
is model-based and following Radiative Transfer methods. Therefore, the proposed al-
gorithm brings RT-based model-based approach which is not attempted to the extent in
the existing literature. Most shadow detection algorithms are following chromaticity and
texture-based approaches. We are particularly interested in algorithms that are processed

98
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on the multi-spectral image. There are several research proposals with this attribute such
as Beril et al. [79] proposed a colour-invariant function for detecting buildings. Once
buildings are detected, then they used the grayscale histogram of the image to detect
shadows around the building using the Otsu algorithm [80], their algorithm is referred to
as Beril’s algorithm in the results. In another contribution, Teke et al. [81] proposed a
false colour space consisting of red, green and near-infrared (NIR) bands. They dropped
the blue colour because it contains scattered light and removing it will increase the con-
trast between shadowed and non-shadowed regions and will facilitate detection. They
have named their algorithm the Land Use Land Cover classification method, or LULC
in their code. Therefore, we will refer to their work as LULC algorithm in our analy-
sis. Sevim et al. [82] modified the C1,C2,C3 color space [83] to accommodate the NIR
band, and supplemented it to become the C′1,C′2,C′3,C′4 color space. We refer to their work
as RGBN algorithm. Gevers et al. [84] proposed colour-invariance functions to separate
shadow and non-shadow regions; their algorithm is referred to as Gevers’ algorithm [85].

The approaches mentioned above are limited to use in particular bands and does not
use the complete hyperspectral data. Our algorithm may ideally use HSI data and can
be down-scaled to multispectral imagery only in cases where data-acquisition sensor re-
sponse is known. Spectral response is typically available for most Earth-observation satel-
lites. Our algorithm does not address RGB images because QUAC[63] may not be ap-
plied to retrieve reflectance from RGB images. More importantly, our algorithm provides
a mathematical foundation for shadow detection based on the RT model and highlights
the sources of errors.

The application of Empirical Line Method (ELM) for hyperspectral Atmospheric
Compensation (AC) premises the underlying linear relationship between a material’s re-
flectance and appearance. ELM solves the Radiative Transfer (RT) equation under spe-
cialized constraint by in-scene white and black calibration panels. The reflectance of
material is invariant to illumination. Exploiting this property, we articulated a math-
ematical formulation based on the RT model to create cost functions relating variably
illuminated regions within a scene. In this research, we propose multi-layered regres-
sion learning-based recovery of radiance components, i.e., total ground-reflected radiance
and path radiance from reflectance and radiance images of the scene. These decomposed
components represent terms in the RT equation and enable us to relate variable illumina-
tion. Therefore, we assume that the Hyperspectral Image (HSI) radiance of the scene is
provided and AC can be processed on it, preferably with QUick Atmospheric Correction
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(QUAC) algorithm. QUAC is preferred because it does not account for surface models.
The output from the proposed algorithm is an intermediate map of the scene on which
our mathematically derived binary and multi-label threshold is applied to classify shad-
owed and non-shadowed regions. Results from a high and low altitude airborne NADIR
imagery are shown in this report. Ground truth (GT) is generated by ray-tracing on a
LIDAR-based surface model in the form of contour data, of the scene. Comparison of our
results with GT implies that our algorithm’s binary classification shadow maps outper-
form other existing shadow detection algorithms in true-positive, which is the detection
of shadows when it is in the ground truth. It also has the lowest false-positive i.e., detect-
ing the non-shadowed region as shadowed, compared to existing algorithms. Contents of
this chapter are based on Reference [18].

4.2 Radiative Transfer Model-Based Relationship between
Shadowed and Non-Shadowed Regions

The scope of this research is within optical shadowing, and therefore, the subsequent
discussion does not consider thermal radiance and shadowing and their relative terms
in Radiative Transfer (RT) equations. This section is divided into two parts—the first
presents a general description of the RT equation highlighting relevant parameters and
elaborating the sources of errors and their impact on this work, and the second establishes
the proposed general relationship between variably illuminated regions based on the RT
equation [18].

4.2.1 Proposed Radiative Transfer Model-Based General Relation-
ship between Variably Illuminated Regions

ELM represents the at-sensor radiance from in-scene white and black calibration panels.
Radiance reflected from the white panel Lw and black panel Lb is deduced from Equation
(2.112) and shown in Equations (4.1) and (4.2), respectively.

Lw = Lp +
τEg(0)/π

1− sρ
(4.1)

Lb = Lp (4.2)
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In Equation (4.1), Lw radiance includes both path radiance and total ground-reflected
radiance, which are the first and second terms, respectively. We introduce two parameters
α and β in Equation (4.3) that represent the total ground-reflected radiance and path
radiance, respectively, and brings the convention to Equation (4.3), which is called the
ELM equation.

ρ = αLs+β (4.3)

where α and β are,
α = 1/(Lw−Lb) (4.4)

β = Lb/(Lw−Lb) (4.5)

Reflectance ρ is independent of illumination conditions, and enables us to rephrase
Equation (4.3) as Equation (4.6), emphasizing only parameters α and β .

f (α,β ) = Ls =
ρ−β

α
(4.6)

We rewrite Equation (4.3) for shadowed (sub-scripted S) and non-shadowed (sub-
scripted NS) regions of the scene as Equations (4.7) and (4.8), respectively.

ρ = αNSLsNS(ρ)+βNS (4.7)

ρ = αSLsS(ρ)+βS (4.8)

Equating Equations (4.7) and (4.8) we get Equation (4.9).

LsNS =
αSLsS(ρ)+βS−βNS

αNS
(4.9a)

LsNS =
αSLsS(ρ)+∆β

αNS
(4.9b)

where ∆β = βS−βNS. Equation (4.9) is rephrased as Equation (4.10).

LsNS = γLsS(ρ)+δ (4.10)
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where

γ = αS/αNS (4.11a)

δ = ∆β/αNS (4.11b)

Equation (4.10) shows γ and δ that are two unknown parameters responsible for il-
lumination variability between shaded and non-shaded regions. Ideally, if γ=1 and δ=0,
there is no variability in illumination across the scene.

4.3 Proposed Multi-Layered Regression Learning Algo-
rithm

In the previous section, a general relationship between illumination under shadowed and
non-shadowed region within an HSI image is established. Estimation of discriminant
parameters αNS, βNS, αS, and βS is vital for good detection. We divide our learning
algorithm into three phases: (i) regression learning; (ii) feature learning; and (iii) classifi-
cation, as shown in Figure 4.1.
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Figure 4.1: Components of multi-layered regression learning algorithm has three phases:
(i) regression learning; (ii) feature learning; and (iii) classification. Inputs are radiance
and reflectance cubes that are randomly sampled to find neutral parameter estimates for
αG and βG. A kernel of size 3 used for kernel-based linear regression parameters are
αK and βK , representing a more localized and homogeneous (either shadowed or non-
shadowed regions) estimate. In Phase II, more discriminating parameters are found in the
second layer of regression learning, which rectifies parameters estimated by the previous
phase. Two non-linear filter layers are shown. Eventually, the classifier layer segregates
shadowed and non-shadowed regions.

During learning, Equation (4.3) becomes Equation (4.12), where ρ̃ is the approximate
reflectance at any given search iteration, while reflectance computed from QUAC is the
reference reflectance, referred in Equation (4.13). Therefore, the cost function J(α,β ),
to minimize is given in Equation (4.14), which is illustrated in Figure 4.2.

ρ̃ = αLs+β (4.12)

ρQUAC = ρ (4.13)

J(α, β ) =
min
α, β

{ρ− ρ̃} (4.14)
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Figure 4.2: Regression learning reduces error ê to find parameters α (total ground-
reflected radiance) and β (path radiance).

A complete flowchart of multi-layered learning is shown in Figure 4.6.

4.3.1 Regression Learning Phase

This phase is denoted as Phase I in Figure 4.1 and is further sub-divided into two steps:

• Global Search: Search for αG and βG estimates of Equation (4.15) on random sam-
ples drawn from the whole image giving a global search across the scene, as shown
in Figure 4.1.

• Local Search: Create a 3 × 3 kernel and search for parameters αK and βK in the
kernel only i.e., localized search.

4.3.1.1 Global Search

Satellite/airborne images cover a larger landscape where the number of bands is more
contiguous in HSI images. Higher-resolution images have immediate implications of an
increase in both computing and memory requirements. To reduce these requirements, we
introduce random sampling on the whole image. A random sampler selects several sam-
ples from the whole image and regression learning is performed on these samples to esti-
mate the Empirical Line Method (ELM) parameters. As the input image and the samples
(pixels) contain both shadowed and non-shadowed region’s pixels therefore parameters
αG and βG are estimated also represent both shadow and non-shadow pixels TGRR es-
timates. As we rationally assume that an image has more non-shadow than the shadow
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pixel, therefore αG and βG are biased towards non-shadow regions and their TGRR. .
Equation (4.3) for global search case is reformulated in Equation (4.15).

ρG = αGLsG +βG (4.15)

An estimate of Lw and Lb found in this phase is shown in Figure 4.3. It is shown
that the recovery of Lw employing regression deviates by 20% NRMSE. The panels are
place on a large concrete hard target therefore it’s does not show large adjacency effect
at 1100 nm where vegetation have peak reflectance. As regression samples are selected
randomly and the scene is vegetation abundant therefore large error is observed at 1100
nm. The recovered radiance for Lb shows very large deviation i.e. up to 76%. The
radiance looks similar to vegetation’s radiance, a careful analysis concluded that even the
radiance magnitude of black calibration panel was higher than some vegetation under the
shadow. This led to the wrong estimation of Lb during regression phase.

(a) White Panel Estimation

(b) Black Panel Estimation

Figure 4.3: White and black panel estimates from global search.
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4.3.1.2 Local Search

In this part of regression learning, a 3 × 3 kernel is used. A smaller kernel provides a
rationale for the assumption that pixels under the kernel are homogeneously illuminated.
The correctness of this assumption is further reinforced for higher-resolution images that
possess lower ground-sampling distance (GSD). Due to learning on a sliding kernel, this
search is more time-consuming than the global one. Outputs from this step are parameter
(αK ,βK) maps. An estimate of LwK and LbK for 465.611 nm is shown in Figure 4.4.
In this case, we reformulate Equation (4.3) as Equation (4.16).

ρK = αKLsK +βK (4.16)

(a) 10×10 Kernel Sliding Window

(b) 3×3 Kernel Sliding Window

Figure 4.4: Intermediate Map extracted by proposed method on coarse (10×10) and fine
(3×3) sliding window kernel. To highlight the shadow region 1/t̃ is computed from
Equation 4.17, whose values are shown in the bar. The magnitude above 1.0 is classified
as shadowed region. As t̃ is a ratio of same quantity therefore it has no units.
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Input reflectance (ρQUAC) image Input radiance (Ls) image

αK, βK

3x3 kernel

 (homogenously illuminated)

ρK
LsK

Figure 4.5: Kernel-based regression performs search for localized parameters αK and βK
by pixels that are only within kernel.

4.3.2 Feature-Learning Phase

In the previous phase, we found both global and local parameters, although we assume
that since a smaller kernel has homogeneous illumination it is yet to be ascertained
whether it is shadowed or non-shadowed. This phase will establish the discriminant func-
tion, first for tentative and then for the final classification. Components of feature-learning
phase in Figure 4.1 are described in the subsequent sections.

In this phase, a ratio between f (αK ,βK) and f (αG,βG) is calculated by Equation (4.17),
which yields approximate threshold t̃.

g(αG,βG,αK,βK) =
f (αK,βK)

f (αG,βG)
= t̃ (4.17)

t̃ =

{
> 1 , f (αK,βK) = f (αNS,βNS), (Non-shadowed)
< 1 , f (αK,βK) = f (αS,βS), (Shadowed)

(4.18)
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The kernel region is assigned a shadow or non-shadow label based on Equation (4.18).
If the value of t is greater than one, then the region under the kernel is more likely to be
non-shadowed than otherwise. The above-mentioned threshold t̃ holds under the intuitive
assumption that the scene has more non-shadowed regions than shadowed ones. This
provides a preliminary classification as shown in Figures 4.1 and 4.6, and leads us to
either (LsNS,αNS,βNS) or (LsS,αS,βS) of Equation (4.9a), as per our assumption. The
selection of either of these parameter sets is shown as two potential flows in Figure 4.6.

In practice, t̃ is noisy data across the optical spectrum. Therefore, non-linear filtering
is applied to it for smoothing and creating an intermediate map. As filtering is applied
to both global and kernel thresholds t̃ and tK , respectively, it is further discussed in Sec-
tion 4.3.3.

4.3.2.1 Preliminary Classification

Global radiance LsG is estimated by inclusion of both shadowed and non-shadowed re-
gions. LsK is however assumed to be either of them. A global and local version of
Equation (4.6) is given as

f (αK,βK) = LsK =
ρK−βK

αK
(4.19a)

f (αG,βG) = LsG =
ρG−βG

αG
(4.19b)



CHAPTER 4. SHADOW DETECTION 109

START

ReflectanceRadiance Get Radiance/ Reflectance Images

Find Global (Total Ground Reflected Radiance)αG, (Path Radiance) βG

(Regression Learning Layer 1) 

Find Kernel’s (Total Ground Reflected Radiance)αK, (Path Radiance) βK

(Regression Learning Layer 1)  

Find threshold t = f(αK, βK )/f(αG, βG )

{Preliminary Classification Threshold}

If ImG(i,j) > 1

f(αK, βK )=f(αNS, βNS )

{Preliminary Classification Decision}

f(αK, βK )=f(αS, βS )
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Figure 4.6: Flowchart of the proposed multi-layered regression learning algorithm. Pa-
rameters α,β with subscript “G” denote global, and “K” denotes local (under the kernel).
Moreover, the parameter subscript “NS” denotes non-shadowed and “S” denotes shadowed
regions. ρ stands for reflectance, and t denotes threshold. In global search several pix-
els are randomly selected for regression learning and retrieval of TGRR. In local search
a kernel is slided over the image where pixel observations are selected from the active
kernel position.
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4.3.2.2 Regression Learning for Parameter Rectification

To create a more reliable discriminant threshold function than that of Equation (4.18), we
need to establish a relationship between our processed parameters to bring it in the shape
of Equation (4.9). Global and local processing has provided us with a mathematical basis
for tentative classification, which is plausible under the laws of physics. We suppose that
preliminary classification labels the kernel region as non-shadowed which implies that we
found (LsNS,αNS,βNS); however (LsS,αS,βS) of Equation (4.9)a are yet to be determined
for the region under the kernel. We rewrite Equation (4.9)a, for convenience.

LsNS =
αSLsS(ρ)+βS−βNS

αNS
(4.20)

LsS,αS,βS are determined by another layer of regression learning. The cost function
Q(LsS,αS,βS), to minimize is given in Equation (4.14), which is illustrated in Figure 4.7.

ρ̃ = αLsS +βS (4.21)

ρ = αNSLsNS +βNS (4.22)

Q(LsS, αS, βS) =
min

LsS, αS, βS
{ρ− ρ̃} (4.23)

(ρ , estimated from 

preliminary classification)

Figure 4.7: Regression learning reduces error ê to find parameters αS (total ground-
reflected radiance in the shadow region) and βS (path radiance in shadow region) and
LS (total radiance under shadow region).

This learning is performed by Algorithm 2. After this learning phase, we estimated
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all unknown parameters of Equation (4.20), therefore we may rewrite Equation (4.17) as
Equations (4.24) and (4.25). Please note that this equation is only for the kernel region,
which has the same reflectance ρ and has shadow and non-shadow parameters instead of
global and local.

Algorithm 2 Gradient-descent algorithm for global/kernel-based search.
1: Let HSI Radiance Image be “L” with “s” samples and “b” bands, and its reflectance

estimated by Run QUAC to find reflectance R

2: Assign outputs Lw and Lb as two zeros vector of “b”

3: Let stepSize be 0.01 with a decay of 0.995

4: while (∆Lw ≤ 1 ×10−10 and ∆Lb ≤ 1 ×10−10) do

5: Select 2 pixels at random

6: Estimate δLw and δLb for selected pixels by ELM equation

7: Lw = (1 − stepSize) ×Lw + stepSize ×δLw

8: Lb = (1 − stepSize) ×Lb + stepSize ×δLb

9: stepSize = stepSize × decay

It is extremely important to note that if preliminary classification finds (αK ,βK) =
(αNS,βNS) then t takes the form of Equation (4.24). If it finds (αK ,βK) = (αS,βS) then t

takes the form of Equation (4.25).

g(αNS,βNS,αS,βS) =
f (αNS,βNS)

f (αS,βS)
= t (4.24)

g(αS,βS,αNS,βNS) =
f (αS,βS)

f (αNS,βNS)
= t (4.25)

Replacing both numerator and denominator of Equation (4.24) and 4.25 by right-
hand side of Equation (4.6) in their respective form, we get Equation (4.26) and Equa-
tion (4.27).

t =
αNS(ρ−βS)

αS(ρ−βNS)
(4.26)

t =
αS(ρ−βNS)

αNS(ρ−βS)
(4.27)
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Threshold t is a better estimate than t̃, because both parameters are computed for the
region under the kernel. This process is termed as rectification in Figures 4.1 and 4.6.
When the kernel slides through the image, it estimates t at each iteration. On completion,
it creates an intermediate map for the whole image. As we discussed in Section 4.3.2.1,
both t̃ and t are computed for all bands of HSI image and tend to get very noisy in some
spectral bands. This problem is tackled by filtering, which is covered in Section 4.3.3.

4.3.3 Filtering

Filtering is a supplementary but vital step for the performance of detection. This is the
third and final layer of regression learning. Here we estimate an activation function for
a non-linear filter based on Equation (4.28a). The cost function J(x, t) finds the value of
threshold scalar x which maximizes h(x, t). The subscript k shows the band number of the
HSI image with B bands. It is empirically observed that the noise is higher in the VNIR
region and therefore a bias towards lower band is created. Maximizing h(x, t) captures
the floor of the noise in VNIR which is consistent with most SWIR bands. This test
is performed on different datasets and an empirical formula is established based on our
observation.

Threshold t̃ is found from (4.17), respectively. We applied this filter on our test dataset
which reduces noise, as shown in Figure 4.8.

h(x, t) =
B

∑
k=1

e−(x−tk) (4.28a)

J(x, t) =
max

x
{h(x, t)} (4.28b)

The gradient-descent algorithm finds x . Figure 4.8 shows output after filtering. Inter-
mediate maps are created after the filtering process.
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Figure 4.8: Effect of filtering on a given pixel.

4.3.4 Classification

The threshold map generated by Feature learning and filtering represents multiple levels
of illumination. Therefore, we may generate a binary or multi-label classification from
this intermediate map.

4.3.4.1 Binary Map

To create a binary map, our approach is similar to Equation (4.18) threshold function,
shown in Equation (4.29) as:

t =

{
> 1 , (Non-shadowed)
< 1 , (Shadowed)

(4.29)



Chapter 5

Experimental Data and Assessment Method-
ology

5.1 Experimental Data

For experimental validation, we have used two real images. Our algorithm is tested on
the Selene SCIH23 dataset [10] which was acquired by the Defence Science and Tech-
nology Laboratory (DSTL) covering 0.4 to 2.5µm. It is a registered image which is sep-
arately taken from HySpex VNIR-1600 (160 bands) and SWIR-384 (288 bands) sensors
mounted on the same airborne platform. This scene was acquired near Salisbury, UK, on
12 August 2014 BST 13:00:04. The registered image has a GSD of 70 × 70 cm, QUAC
was applied using ENVI software for atmospheric compensation. The second image is
taken from Airborne Visible Infrared Imaging Spectrometer (AVIRIS) (224 bands), cov-
ering Modesto, California (Long 121◦17′45.9′′ N Lat 37◦56′44.37′′ W to 121◦4′50.31′′

N 37◦51′55.67′′ W) on 10 February 2015 BST 22:00:04. The latter is publicly available
from https://aviris.jpl.nasa.gov/. RGB images of Selene and Modesto scenes are shown
in Figure 5.1.
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(a) Selene SCI H23 (0.4 µm–2.51 µm, 448 bands), UK. The RGB im-
age shows ROI marks used in experiments. ROI5 shows ”Grass” patch
in the field.

(b)

(c) AVIRIS Modesto (0.36 µm–2.49 µm, 224 bands),
California, USA. The RGB image shows ROI marks used
in experiments. ROI1 shows ”Farm Soil” patch in the
field.

(d)

Figure 5.1: RGB color images of Selene and Modesto test scenes, respectively.

Figure 5.1 shows ROI selected in the Selene and Modesto scene to compute mean
radiance of these selected regions.

5.1.1 Input Reflectance data

The input data for creating the classified texture is the reflectance (atmospherically com-
pensated) image of the ground truth. Classification of the reflectance is performed on the
whole cube containing all bands. A construction of simulated image from multi-spectral
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or RGB image is out of the scope of this research. Some noisy bands in the reflectance
data are removed to have realistic simulated radiance.

5.2 Experimental Setup for Atmospheric Parameters Search

The Selene scene is a vegetation biased scene, however, several fabric calibration panels
with known reflectance are planted across the scene as shown in Figure 5.2. A white
calibration panel with an average reflectivity of 99.0% and a black panel with average
reflectivity of 2.0% are selected as reference materials. Moreover, there are seven large
fabric panels with particular spectral properties were placed to act as calibration targets
and deployed across the centre of the Hard Target (concrete) [10]. Figure 5.2 shows both
ground (first row) and aerial (second row) image of the scene. Aerial image marks regions
where some panels and tiles are planted.

Figure 5.2: Commercially available fabric based calibration panels and tiles were planted
in Selene scene [10]. Average reflectivity for calibration panels varies from 99.0% to
2.0%.
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Figure 5.3: Location and reflectivity of calibration panels planted within the Ground Truth
Selene scene [10].

Reflectivity of seven calibration panels planted on the hard target is given in Figure
5.3. The primary purpose of planting these panels is to facilitate atmospheric compen-
sation. ELM, for example, requires to have in-scene calibration panels for estimating
reflectance. In Selene test, high reflectance Acrylic sheet also known as perspex are used.
It is available in white, green and orange colours. These sheets are planted to analyse the
performance of detection for several different sizes. More details about the calibration
panels and intended experiments are provided in [10].

5.3 Validation Data for Shadow Detection

The Selene SCIH23 scene’s terrain was mapped with a high-resolution LIDAR to create a
contour-based DSM of the scene. This DSM is used in a ray-tracer to generate a shadow
map, which creates ground truth for Selene results. Modesto does not have DSM data
available. Therefore, classification performance is tested on visual perception only.
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5.4 Validation of Simulated Images

There are several approaches to validate a simulated image in literature. [86],[87] em-
ployed computing eigenvectors of the covariance matrices of simulated and real scenes
to establish a similarity metric between the scenes. Moreover, [86] applied K-means
classification with fewer (<= 5) classes to generate a classified pattern in the real and
simulated scene to compute a confusion matrix for quantifying similarity. [88] compared
CameoSim/ Radtherm generated images with their respective ground truths by linear dis-
criminant analysis using Bhattacharya distance as metrics [89, 90]. Selex Galileo’s sim-
ulation image was validated by clay soil mapping at airborne scale and its down-scaling
(lower resolution) at satellite level [91]. DIRSIG 3 validation by [92] used the band to
band histogram comparison of reference and simulated images and by detection perfor-
mance (ROC curves) of the two images computed by ACE. For validation of DIRSIG 4,
Gaussian Maximum Likelihood and target detection by RX anomaly detector were em-
ployed [93]

5.4.1 Our Validation Approach

On the basis of the reported validation approaches we have selected following metrics
measures for validation.

• Eigenvectors of covariance matrix of the whole scene

• `1-norm error

• Normalized Root Mean Square Error (NRMSE)

• ROC curve for targets with and without classification

5.4.1.1 Eigenvectors of covariance matrix of the whole scene

Several target detection algorithms such as Adaptive Cosine Estimator (ACE), Signature
Matched Filter (SMF), Generalized Likelihood Ratio Test (GLRT), RX Anomaly detector
depends on in-scene covariance. To achieve detection performance of these algorithms
similar to ground truth, it is important that band to band covariance of a simulated scene
matches the ground truth covariance. This similarity measure is quantified by computing
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the first four Eigenvectors of the GT and simulated scenes and computing NRMSE error
of the simulation with respect to GT.

We have compared the first four Eigenvectors to evaluate the similarity of covariance
statistics. A similar approach is also used by [86] in their experiments with DIRSIG4.
In their experiments the first two eigenvectors show significant matching while further
vectors are shown to capture noise.

Band to band covariance of the whole scene of dimension b× b is computed, where b
is the number of bands. First four Eigenvectors are calculated for the simulated scene of
CHIMES and CameoSim and a comparison of vectors is performed by means of NRMSE
error.

5.4.1.2 `1-norm Error

Generally, `p-norm of a vector is given as;

||x||p = (∑
i
|xi|p)

1
p . (5.1)

`1-norm error, therefore, is the absolute difference between the two entities. `1-norm
is used in literature for HSI scene simulation where sensor characteristics are varied such
as [94], [95]. In the former the magnitude variability between test and reference radiance
is of the same order, in the latter, a template-based matching is performed for the reference
signature in the scene.

In at-sensor radiance estimation problems, large variations between GT and simula-
tions are typically due to mismatch in atmospheric data generated by user input and the
GT. As CHIMES incorporate automation of this search, therefore the magnitude of dif-
ference between GT and the simulated scene is assumed to be lower. This motivated us to
employ `1-norm error as it inherently reports the performance of our atmospheric search
module.

`1-norm error is calculated for the whole scene to show the extent of error and error
pattern. `1-norm error is calculated by Equation (5.2), where B is the number of spectral
bands.

`1-norm(GT Radiance,SimulatedRadiance) =
B

∑
n=1
|GT Radiance−SimulatedRadiance|

(5.2)
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5.4.1.3 Normalized Root Mean Square Error

Goodness of Fit is calculated by means of NRMSE in atmospheric search algorithm.
Moreover NRMSE is also calculated for mean radiance of different material ROIs. NRMSE
is calculated by Equation (5.3) for a pixel and Equation (5.4) for an ROI. In Equation (5.3)
only one pixel is compared between simulated and ground truth images. Mean GT Radi-
ance of the whole scene is calculated which is biased towards most abundant material. In
the case of NRMSE of ROIs mean radiance of ROI is calculated instead of a single-pixel
as in the previous case.

NRMSEPixel = 1− (`2-norm(GT RadiancePixel,SimulatedRadiancePixel)
`2-norm(GT RadiancePixel,MeanGT RadianceWholeScene))

(5.3)

NRMSEROI = 1− (`2-norm(MeanGT RadianceROI,MeanSimulatedRadianceROI)
`2-norm(MeanGT RadianceROI,MeanGT RadianceWholeScene))

(5.4)
We mentioned a potential issue with the comparison of radiance in the previous sec-

tion. In order to overcome the magnitude difference of radiance in `1-norm error, NRMSE
error is also employed in the result validation process.

5.4.1.4 Alternative Methods

A number of performance evaluation alternatives exist for evaluating simulated images.
These include the unsupervised classification of both GT and Simulated images and com-
paring the similarity between the results [86]. Although classification based approaches
typically create a pattern shown by colours and provide a visually apparent similarity,
however quantification may require some user interaction. Therefore, this approach was
not chosen for our analysis. Another approach is to perform atmospheric compensation on
the radiance image and detecting an in-scene target. ROC curves comparison with ground
truth is a performance metric in this case. Such techniques are used in [86],[91]. This
method incorporates artefact of atmospheric compensation algorithms. Moreover, classi-
fied textures typically reduce the performance of detection due to classification required
for efficient rendering. Therefore, validation of simulated images by detection was not
taken into account. The second-order statistical metric, Kurtosis is also applied in liter-
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ature [96],[97] for comparison between reconstructed HSI and atmospherically compen-
sated GT reflectance data. It is however not reported for evaluation of simulated radiance
in the literature.



Chapter 6

Results and Validation

6.1 Results and Validation

In this section, we will present results of the Selene and Modesto scenes. Construc-
tion of GT for the Selene scene enables us to provide a more quantitative validation by
means of confusion matrix, while for Modesto, it is more qualitative and evaluated visu-
ally. For comparative analysis, we have considered exploiting descriptor-based shadow
detection from RGB input, as in Gevers [84], and Beril [79] (see [98] for source code),
and methods that take in multispectral radiance input, as in RGBN [82] requiring RGB
and a single NIR band, and false-color shadow detection method, LULC [81] (see [99]
for source code), requiring five input bands within 0.3 µm to 2.5 µm.

6.2 Simulation Results

Simulation results are assessed based on variable terrain types, atmosphere types and
adjacency models as discussed in Section 3.5.2. Summarized results for each of these
parameters are included subsequently, however, more detailed material-wise statistical
analysis is included in Appendix A. Error metrics used for evaluation are defined in Ap-
pendix 5.4.1.2.

We report the results of the search algorithm for atmospheric parameterization in the
subsequent section, followed by results of simulations. In atmosphere search we observe
a closer match between white panel’s radiance and MODTRAN’s Lw, however relatively
larger error for MODTRAN’s path radiance Lb and black panel’s radiance. In simula-
tion results, we observe a closer match between CHIMES BOAEM and CameoSim under
cloudy atmosphere and flat terrain, in terms of radiance error ranges and patterns. More-
over, the material wise results in Appendix A also shows a closer agreement between
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CHIMES (BOAEM) and CameoSim. It is shown in the appendix that TIAEM produces
better spectral reflectance shapes (colours) for the man-made target materials, particularly
in the VNIR region. In the case of a clear sky, all models produce similar results.

6.2.1 Automatic Search for Atmospheric Parameters

During the search process, MODTRAN is input with several parameters, few of them
are shown in Table 3.1. In our experimental data, sensor altitude is higher than cloud
base and presence of thin cloud below the sensor is also reported [10], therefore we will
vary the aerosol optical thickness below the sensor to search the approximate underlying
atmospheric condition in the scene.

In each iteration MODTRAN’s Lw that is, accumulated total ground reflected radiance
and path radiance is calculated and goodness of fit is recorded. Estimate of searched white
panel radiance Lw and black panel radiance Lb is shown in Figure 6.1, that possesses the
highest goodness of fit, that is 90.4% of match in terms of NRMSE for Lw and 55.26%
for Lb, respectively. These results manifest good atmospheric search in terms of total
ground reflected radiance, however, estimation of path radiance is relatively worse. If
path radiance estimated in the search process is lower than the GT panel then it may result
in higher contrast than the GT. As the search method only employs MODTRAN at-sensor
radiance estimate, the effect of volumetric scattering is not accounted for. At rendering
time, volumetric scattering may either reduce the error in the estimate of Lb or increase
it depending on the choice of phase function and backscattering parameter, such as the
variable g in Henyey-Greenstein function [48]. However, due to good estimation of the
TGRR, we have selected searched parameters (Cw = 0.22 gm/m3 and R = 0.024 Km) and
fixed parameters given in Table 3.1 for our overcast condition simulations. In the case
of atmospheric search by using white and black panel, it is easier to segregate the path
radiance and TGRR, therefore these targets were employed. A similar search based on
orange perspex yielded (Cw = 0.22 gm/m3 and R = 0.023 Km), which is very close to
white and black panel’s parameters.
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(a) White Panel Estimation

(b) Black Panel Estimation

Figure 6.1: White and black panel estimates from atmospheric search.

6.2.2 CHIMES and CameoSim Simulation Results with Flat Terrain

RGB images of Selene scene rendered by CHIMES and CameoSim are shown in Fig-
ure 6.2. Inputs and parameters to both simulators are the same, particularly the atmo-
spheric condition is cloudy with parameters shown in Table 3.1 and the scene geometry
is flat terrain. We observe illumination differences in the RGB images, particularly at the
region having trees, closer to the farm. It should be noted that the region with trees and
buildings on the concrete hard target show a higher error. The scene possess both trough
and crest bumps which cause a higher error. Another contributing factor that accumu-
lates the error, is the presence of shadows [85]. As shown in Figure 6.3 (b,c), CHIMES
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BOAEM and CameoSim, apparently have closer `1-norm error, the error map also shows
a closer error range and mean error, compared to TIAEM. The error range of BOAEM is
between 0–3.16 with a mean error of 1.05. CameoSim error lies in the range of 0–3.74
with a mean error of 1.25. The visual pattern of the error map does look similar to discrep-
ancies in the tree region in CHIMES BOAEM which has high error relative to CameoSim.
On the other hand CHIMES TIAEM error map has a higher range, lying between 0–3.99
with a mean error of 1.33.

All three error maps have higher error in tree, building and low reflectance target re-
gions.When a region of an HSI image has low intensity it is either due to low reflectance
target or shadow. Low intensity implies low radiance, therefore atmospheric compensa-
tion typically yields noisy reflectance for that region. It is also noticed that some material
reflectance does not provide the information required for good detection, experimental
data about the error in low radiance region can be found in [100]. The region of Selene
scene with forest/tree have fragmented regions between adjacent trees, therefore this re-
gion has a larger contribution for shadows. Similarly, building on hard target also cast
shadows. This explains the cause of higher error in these regions.
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(a) CHIMES TIAEM simulated Imagery

(b) CHIMES BOAEM simulated Imagery

(c) CameoSim simulated Imagery

(d) Ground Truth Imagery

Figure 6.2: RGB color image for simulated and Ground Truth Selene scene. Atmospheric
condition listed in Table 3.1.
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(a) CHIMES TIAEM `1-norm error range [0 3.99 ], Mean error [1.33 ]

(b) CHIMES BOAEM `1-norm error range [0 3.16 ], Mean error [1.05
]

(c) CameoSim `1-norm error range [0 3.74 ], Mean error [1.25 ]

Figure 6.3: `1 Norm error of simulated scenes with respect to Ground Truth in atmo-
spheric condition of Table 3.1.

Several ROIs are considered for evaluating the mean of radiance across the scene,
these ROIs are shown in Figure 5.1. Selection of these ROIs is biased towards vegetation
which constitutes more than 80% of the scene. As mentioned in Section 6.2.2, the ratio-
nale behind this ROI selection is in the evaluation of background statistic of models. Out
of this eight, seven are grass, while one is from the concrete hard target. Mean spectral
radiance of these ROIs is shown in Figure 6.4. NRMSE and `1-norm errors are tabulated
in Table 6.1, which shows that CHIMES BOAEM has consistently lower errors compared
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to TIAEM and CameoSim.

Figure 6.4: Mean radiance of ROIs shown in Figure 5.1.
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Table 6.1: NRMSE, `1-norm error of radiance in Figure 6.4. Material of ROI 2 is concrete,
other ROIs are grass across the scene. Least errors are shown in bold text.

ROI Error CHIMES TIAEM CHIMES BOAEM CameoSim
ROI 1 NRMSE 29.92% 17.60% 24.82%

`1-norm 1.37 0.92 1.21
ROI 2 NRMSE 30.18% 19.45% 22.87%

`1-norm 1.63 1.10 1.270
ROI 3 NRMSE 25.97% 17.25% 22.05%

`1-norm 1.38 1.01 1.234
ROI 4 NRMSE 29.43% 16.73% 26.69%

`1-norm 1.25 0.77 1.163
ROI 5 NRMSE 25.47% 16.90% 21.67%

`1-norm 1.32 0.95 1.172
ROI 6 NRMSE 29.90% 17.57% 24.41%

`1-norm 1.25 0.93 1.25
ROI 7 NRMSE 27.54% 17.48% 23.10%

`1-norm 1.42 1.01 1.26
ROI 8 NRMSE 31.91% 20.77% 22.313%

`1-norm 1.67 1.21 1.27

Similarly, man made material radiance shown in Appendix A also show closer match
between BOAEM and CameoSim in terms of NRMSE error of mean radiance.

Eigenanalysis is also performed for evaluation of results. Eigenvectors of band to
band covariance matrix are calculated. A NRMSE error between first four eigenvectors
with respect to GT is shown in Figure 6.5. As the trend developed in a previous error
metric, both BOAEM and CameoSim have similar NRMSE error magnitude. It should be
noted that TIAEM has substantially lower error magnitude in first eigenvector. This trend
also apparent in material wise eigenanalysis shown in Appendix A.
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Figure 6.5: Eigenvectors of covariance of whole simulated and GT scenes. NRMSE of
simulated scene Eigenvectors with respect to GT’s.

For example, TIAEM has 18.3% NRMSE compare to 79.4% and 73.4% of BOAEM
and CameoSim, respectively, for first eigenvector. In the next two eigenvectors BOAEM
has the lowest error magnitude, while CameoSim has the lowest error in the last one. In
case of material wise radiance analysis presented in Appendix A, CHIMES TIAEM and
BOAEM have the lower NRMSE error with respect to GT compared to CameoSim. For
example in orange perspex near grass TIAEM has an error of 13.2%, while CHIMES
BOAEM has an error of 8.8%, compared to CameoSim’s 89.9%.For concrete, TIAEM
has the error magnitude of 28.0% compared to BOAEM’s 26.8% and CameoSim’s 25.5%.
Therefore CameoSim performs slightly better for concrete, in terms of eigenvector match-
ing with GT.

Figures A.2 and A.4 clearly show influence of albedo material that is, grass scrub in
VNIR region in BOAEM and CS results. However, TIAEM does not depict this over
influence of the average background albedo material used in MODTRAN calculations.
Even though TIAEM still cause increase in radiance at high albedo bands. Similarly this
trend is visible in the DEM based results as well.
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6.2.3 CHIMES and CameoSim Simulation Results with DEM

Rugged terrain causes a non unity sky-view factor, which attributes to inclusion of back-
ground reflection and reduced diffuse radiance. It is therefore important to validate the
differences in radiance with and without terrain. RGB images of simulated scene with
DEM surface is shown in Figure 6.6. In case of RGB channels, we observe that in con-
trary to results of flat terrain, the contrast in both models of CHIMES images has sub-
stantially reduced, particularly in the region where terrain is higher. This manifests the
background contribution due to reflection. In CameoSim image we observe reduced spa-
tial reconstruction quality leading to apparent pixelation. However, the visual contrast
appears to increase in CameoSim compared to the flat terrain simulation. A more clearer
picture about error is found in `1-norm error map in Figure 6.7, subsequently.
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(a) CHIMES TIAEM simulated Imagery

(b) CHIMES BOAEM simulated Imagery

(c) CameoSim simulated Imagery

Figure 6.6: RGB color image for simulated and Ground Truth Selene scene. Atmospheric
condition is given in Table 3.1.

Figure 6.7 shows that CHIMES TIAEM has an error range of 0–4.13, with the mean
error of 1.38 compared to 0–3.99, with the mean error of 1.33, in case of flat terrain. The
increase in mean error is therefore 3.6 %. Simlarly, CHIMES BOAEM has an error range
of 0-3.28, with the mean error of 1.09 compared to 0–3.16, with the mean error of 1.05, in
case of flat terrain. The increase in mean error in this case is 3.7%. For CameoSim result,
the error range is 0–18.33, with the mean error of 6.11 compared to 0–3.74, with the mean
error of 1.25 for flat terrain. The increase in error is 388.8%. The relative pattern of error
as shown Figure 6.7 is similar to that in flat terrain case.
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(a) CHIMES TIAEM `1-norm error range [0 4.13], Mean error [1.38 ]

(b) CHIMES BOAEM `1-norm error range [0 3.28], Mean error [1.09]

(c) CameoSim `1-norm error range [0 18.33], Mean error [6.11]

Figure 6.7: `1 Norm error of simulated scenes with respect to Ground Truth.

When a realistic and LIDAR based DEM map is used to construct a terrain, a natural
expectation was to see a reduction in the mean error. However, it is instead noticed that
both simulators have shown an increase in the mean error compared to the flat terrain. The
extent of increased error in CameoSim may not be explained as we do not have access to
their underlying model and source code. However, in the case of CHIMES, the primary
cause lies in the drawback of automated atmospheric search process which is described in
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section 3.6.2.1. The search process runs MODTRAN in a number of iterations where the
geometry/terrain is only allowed to be flat, due to the limitation in MODTRAN. Therefore
the best match of reference material radiance and in-scene radiance of that material does
not incorporate the DEM effect. Contrarily, it works better in the case of flat terrain due
to its support and utilization in MODTRAN’s iterations.

We present the ROI based mean radiance magnitude like presented in flat terrain case.
The radiance is increased in all simulations due to background reflected contributions.
Figure 6.8 and Table 6.2 show that CHIMES BOAEM has the least NRMSE and `1 Norm
error in almost all ROIs. It is encouraging to note that CHIMES BOAEM’s error reduced
for all eight ROIs when DEM is introduced. CHIMES TIAEM however maintains similar
error as in flat terrain case. The CameoSim result for ROIs shows an enormous increase
in errors.

Similar to flat terrain, eigenvectors for the DEM are also calculated. Eigenvectors’
plot is shown in Figure 6.9.The NRMSE error in this case observe an increase in simu-
lated results. For example, TIAEM has 44.2% NRMSE compared to 72.6% and 53.4% of
BOAEM and CameoSim, respectively, for the first eigenvector. Similar to flat terrain, in
the second two eigenvectors BOAEM has the lowest error magnitude. The error magni-
tude of all simulation results exceed 100% in third and fourth eigenvector cases.
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Figure 6.8: Mean radiance of ROIs shown in Figure 5.1

Table 6.2: NRMSE, `1-norm error of radiance in Figure 6.8. Material of ROI 2 is concrete,
other ROIs are grass across the scene. Least errors are shown in bold text.

ROI Error CHIMES TIAEM CHIMES BOAEM CameoSim
ROI 1 NRMSE 27.51% 16.98% 118.30%

`1-norm 1.33 0.91 6.16
ROI 2 NRMSE 29.79% 17.80% 112.32%

`1-norm 1.65 0.97 5.99
ROI 3 NRMSE 25.04% 16.95% 96.66%

`1-norm 1.36 1.01 5.90
ROI 4 NRMSE 28.45% 17.23% 134.02%

`1-norm 1.24 0.81 6.34
ROI 5 NRMSE 24.89% 16.62% 99.94%

`1-norm 1.31 0.94 5.95
ROI 6 NRMSE 28.25% 18.35% 116.07%

`1-norm 1.43 1.06 6.09
ROI 7 NRMSE 26.09% 17.25% 101.74%

`1-norm 1.42 1.01 5.91
ROI 8 NRMSE 30.92% 19.87% 91.24%

`1-norm 1.66 1.18 5.72
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Figure 6.9: Eigenvectors of covariance of whole simulated and GT scenes. NRMSE of
simulated scene Eigenvectors with respect to GTs.

6.2.4 CHIMES and CameoSim Simulation Results with Clearsky

We have briefly included the results of a simulation in a clearsky atmosphere. There
are no aerosols and clouds in these simulations. This is a scenario where scattering has
little affect therefore adjacency effect should not be observed. Lack of aerosol increases
transmission and therefore the at-sensor radiance magnitude is higher. We include `1-
norm error map and radiance of white panel to show a comparison of simulations.

Due to the lack of adjacency effect, a closer match between CHIMES TIAEM and
BOAEM models is expected. It is premised by the `1-norm error map shown in Fig-
ure 6.10. Although we calculate `1-norm error with respect to ground truth, however as
the atmosphere is far from the true scene’s atmosphere, therefore error magnitude have
no significance. GT is only used as a reference radiance to show similarity between the
simulation models. In `1-norm error CHIMES TIAEM has an error range of 0–12.79,
with the mean error of 4.28. CHIMES BOAEM has an error range of 0–12.70, with the
mean error of 4.23. CameoSim’s error is in range 0–14.71, with the mean error of 4.90,
as shown Figure 6.10. We observe a close match in error ranges, mean error and error
pattern across the scene.
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Radiance from ROI of white panel is shown in Figure 6.11. Both magnitude and
signature of output radiance for all simulation models look in close agreement with each
other.

(a) CHIMES TIAEM `1-norm error range [0 12.79], Mean error [4.28]

(b) CHIMES BOAEM `1-norm error range [0 12.70], Mean error [4.23]

(c) CameoSim `1-norm error range [0 14.71], Mean error [4.90]

Figure 6.10: `1-norm error of simulated scenes with respect to Ground Truth in clear sky
atmosphere. GT radiance is only used as reference for calculating error.
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Figure 6.11: Radiance of white calibration panel in a (5×5) ROI. Simulated radiance are
for clearsky while ground truth (GT) is under cloudy condition. GT is only used as a
reference in this comparison.

6.3 Modesto Simulation

A distinctive feature of Modesto scene is the sensor altitude, which is a key factor in our
localized adjacency model. Moreover the scene image is partly covered with clouds and
the shadow casted by the cloud is apparant. It has vegetation, soil and urban region across
the swath. The `1-norm error map of TIAEM, BOAEM and CameoSim image shows that
TIAEM has the lowest mean error of 0.81, compared to BOAEM’s 0.86 and CameoSim’s
0.9.
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(a) Modesto scene TIAEM RGB image. (b) Modesto scene BOAEM RGB image.

(c) Modesto scene CameoSim RGB image. (d) Modesto scene Ground Truth RGB image.

Figure 6.12: RGB image from Simulation of Modesto scene with CHIMES, CameoSim
with Ground Truth.
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(a) CHIMES TIAEM `1-norm error range [0
2.42], Mean error [0.81 ]

(b) CHIMES BOAEM `1-norm error range [0
2.59], Mean error [0.86]

(c) CameoSim `1-norm error range [0 2.71], Mean
error [0.90]

Figure 6.13: `1 Norm error of simulated scenes with respect to Ground Truth.
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Figure 6.14: Mean radiance of ROIs shown in Figure 5.1

Table 6.3: NRMSE, `1-norm error of radiance in Figure 6.8. Material of ROI 2 is concrete,
other ROIs are grass across the scene. Least errors are shown in bold text.

ROI Error CHIMES TIAEM CHIMES BOAEM CameoSim
ROI 1 NRMSE 61.66% 73.498% 75.50%

`1-norm 29.87 30.587 14.76
ROI 2 NRMSE 31.41% 31.716% 37.21%

`1-norm 13.01 15.829 16.34
ROI 3 NRMSE 31.45% 33.054% 37.45%

`1-norm 13.14 16.880 15.57
ROI 4 NRMSE 69.66% 73.557% 76.21%

`1-norm 40.00 31.582 32.38
ROI 5 NRMSE 44.69% 45.035% 47.15%

`1-norm 15.72 20.595 17.42

In Modesto scene, we observe higher NRMSE error for all ROIs, which persists in
both BOAEM and TIAEM models of CHIMES and also in CameoSim. All three models
show a larger deviation in the visible range. This shows classification and material alloca-
tion error in the process of constructing the classified texture. The number of classes for
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K-mean clustering was set to 120 as in Selene scene. Modesto scene is captured at high
altitude (20Km) with larger GSD and potential of having several materials in one pixel,
which may lead to classification error and hence artefacts in material allocation. Table 6.3
shows that CHIMES TIAEM reports lower error NRMSE error with respect to GT in all
five ROIs shown in Figure 5.1. Also in ROIs 2–4 TIAEM has lowest `1-norm error.

Despite observing errors in material allocation, the Eigenvectors’ plots show relative
similarity in first two Eigenvectors with a mean NRMSE of 28% and 48.3%. The third
eigenvector has a mean NRMSE of 163.7% despite significant eigenvalue which is also
reflected in higher NRMSE of ROIs. We selected the first four Eigenvectors because of
the relatively higher magnitude of the corresponding eigenvalues in the first three which
is also reported in [86] . The fourth one is selected despite lower eigenvalues to present
the deviation in simulation data to GT, which typically appear due to noise [101]. The
first Eigenvector plots of covariance matrix TIAEM reports higher NRMSE error that is,
29.7% compared to 26% of BOAEM and 28.3% of CameoSim, respectively. The same
trend of error magnitude repeats in second to fourth eigenvector plot,as well.

Figure 6.15: Eigenvectors of covariance of whole simulated and GT scenes. NRMSE of
simulated scene Eigenvectors with respect to GT’s
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6.4 Shadow Detection Results

6.4.1 Selene Scene

Firstly, the algorithm is executed on the Selene SCI H23 scene for both global and local
search sub-phases of the regression learning. This scene has several white and black
calibration panels planted, providing us with a GT for comparison of estimated global Lw

and Lb.

6.4.1.1 Result of Regression Learning on Whole Image (Global Search)

The comparative result for global search sub-phase is shown in Figure 4.3. The Normal-
ized Root Mean Square Error (NRMSE) for Lw is 20.62%, which shows that the algorithm
can reconstruct the white panel with substantial accuracy. The deviation in the blue region
shows under-estimation of scattering/sky radiance, while lower magnitude in NIR is due
to over-estimation of the adjacency effect, which is primarily caused by the abundance
of vegetation in the background scene. The NRMSE for Lb is 76.66%, which is higher
than Lw, it shows that the adjacency effect is over-estimated, hence the estimated black
panel looks similar to the vegetating signature. These errors were incurred due to QUAC
reflectance, which is the reference for calculating the Lw and Lb in our algorithm.

6.4.1.2 Results of Kernel-Based Regression Learning (Local Search)

Figure 4.4a shows the GT shadow map generated from ray-tracer on DSM. Figure 4.4b,
c show results of local search sub-phase. In the case of former, the algorithm was run
with a coarse kernel (10 × 10) and the latter with a fine (3×3) kernel. Better separa-
tion of shadowed and non-shadowed regions is visible with 3×3 kernel compared to its
coarse counterpart.

In case of the fine kernel, shadows due to bumps on the terrain are also captured which
seems to be missing from the coarser one.

6.4.1.3 Results of Classification

• Intermediate and Binary maps

Algorithms adopted for comparative analysis create an intermediate map and apply
manual threshold as suggested by respective authors. We propose a cut-off value
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of 1 due to the ratio between shadow and non-shadow radiance. Intermediate maps
of all algorithms for the Selene scene are shown in Figure 6.16. After applying
respective threshold values, we get binary classification maps for the Selene scene
as shown in Figure 6.17. The Selene scene has shadowed regions near trees and
concrete fields. Concrete field has some buildings that are casting shadows on it.
The grass field has a few bumps and has some stand-alone tree distribution along
the track.

Binary map for the Selene scene GT is constructed by applying a threshold on the
DSM contour data. Similarly, the binary map of all competitive algorithms is also
constructed. As, the area of the non-shadowed region is significantly larger, cover-
ing 92.6377% of the scene, compared to the shadowed region, covering 7.3623%
as estimated from the DSM binary map, we divide by the cardinality in the table to
minimize bias in overall percentage accuracy.
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(a) Ground truth (mean of all bands in shadow map created by ray-tracing on DSM geometry)

(b) Gevers’ Algorithm [84]

(c) RGBN Algorithm [82]

(d) Beril’s Algorithm [79]

(e) LULC Algorithm [81]

(f) Proposed Algorithm

Figure 6.16: SELENE: Intermediate maps extracted by shadow detection methods before
thresholding for a binary classification map.
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(a) Ground Truth: (Thresholding the Ground Truth map of Figure 6.16 (a) creates a binary map.)

(b) Gevers: It detects roads and concrete field as shadows because they have lower reflectance.

(c) RGBN: Similar to Gevers, it detects roads and concrete field as shadows.

(d) Beril: It only detects some building shadows on the concrete field.

(e) LULC: It detects shadows on both vegetation and concrete field regions, as expected. A portion of road
is also detected as shadow.

(f) Proposed: Similar to LULC, it also detects shadows on both vegetation and concrete field regions.
Similarly, a portion of road is also detected as shadow, but it is slightly thinner.

Figure 6.17: SELENE: Binary classification map separating shadow and non-shadow re-
gions.
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6.4.2 Modesto Scene

The Modesto scene does not have DSM data, therefore, ground truth for this scene is not
available. Moreover, it has cloud shadows which may not be addressed by DSM. So,
the evaluation, in this case, is rather qualitative, based on visual perception. Intermedi-
ate maps of all algorithms of interest for the Modesto scene are shown in Figure 6.18.
Their binary counterparts are in Figure 6.19. The proposed algorithm appears to classify
the scene into three regions: (i) with clouds, (ii) with shadows, and (iii) the lit ground
region. After the threshold is applied to the intermediate map, the scene is classified into
shadowed and non-shadowed regions, as shown in Figure 6.19.
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(a) Ground Truth RGB (b) Gevers [84] (c) RGBN [82]

(d) Beril [79] (e) LULC [81] (f) Proposed

Figure 6.18: MODESTO: Intermediate maps extracted by shadow detection methods be-
fore thresholding for a binary classification map.

(a) Ground Truth RGB (b) Gevers (c) RGBN

(d) Beril (e) LULC (f) Proposed

Figure 6.19: MODESTO: Binary classification map (shadow and non-shadow regions.)
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Discussion and Drawbacks

7.1 Scene Simulation

7.1.1 Variable Atmospheric Condition

In a clear-sky atmosphere, MODTRAN’s predefined ”no-aerosol” setting is used. Clearsky
simulation results show that both models of CHIMES produce similar results compared
to CameoSim. The `1-norm error range for the whole scene simulated with TIAEM and
BOAEM the error ranges are between 0–12.79 and 0–12.70 with the mean error of 4.28
and 4.23, respectively. In the case of CameoSim simulation the range of `1-norm error
is between 0 and 14.71 with a mean error of 4.90. In terms of rendering the coupling of
ray tracer with phase-function is relatively insignificant because of lower scattering co-
efficients in this atmosphere. On the other hand coupling of the ray-tracer direct emitter
with target reflectance, BRDF is more dominant which manifests the fact that all models
are working similarly when direct light is dominant and atmosphere has lower scattering
efficiency. In clear-sky simulations, flat terrain was used. Results of overcast condition
are covered in subsequent sections, for flat and DEM terrains.

7.1.2 Flat Terrain

When simulations were performed with flat terrain, CHIMES TIAEM simulated image
has `1-norm error for the whole scene in the range of 0–3.99 with the mean error of
1.33, compared to CHIMES BOAEMs 0–3.16 with the mean error of 1.05. CameoSim’s
`1-norm error range lies between 0–3.74 with a mean error of 1.25. Therefore CHIMES
BOAEM model is the best performer, while TIAEM is the worst in terms of `1-norm error,
which might be a consequence of higher textural variation during volumetric scattering.
On the other hand, if we compare the eigenvectors of the covariance matrix of the simu-

149
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lated scenes, TIAEM’s first vectors have minimum 18% NRMSE compared to BOAEMs
79.4% and CameoSims 73.4%, with respect to the ground truth. Better estimation of co-
variance statistics of a scene signifies better estimation of detector performance through
a simulated scene. These target detectors include Adaptive Cosine Estimator (ACE) and
Match Filter and so forth, that depends upon HSI image’s band to the band covariance
matrix. If a simulator generates good statistics of the scene for variable conditions then
target vulnerability can be better assessed.

7.1.3 DEM–Based Realistic Terrains

When simulations were performed with DEM–based realistic terrain, all three models
show an increase in the mean `1-norm error for the whole image. CHIMES BOAEM still
possesses the least mean error of 1.09 with a range of 0–3.28. The TIAEM model’s `1-
norm error lies within 0–4.13 with the mean error of 1.38. CameoSim, on the other hand,
shows an unexpected many-fold increase in `1-norm error compared to both models of
CHIMES. As CameoSim is a closed software system, it is not possible to verify the cause
of increase error in CameoSim. However, as mentioned in the text the sky-view factor, in
this case, becomes less than 1.0, causing non-zero contribution of background reflected
radiance.

7.1.4 Variable Altitudes

Another air-borne dataset was used to verify the difference in simulation at varying alti-
tude. The Modesto dataset was acquired by the platform at 20 Km altitude. Due to the
increase in altitude, the R value of TIAEM model increased and the upwelled scattered
radiance did not show a textured imprint as shown in Figure 3.23 (b). The TIAEM model
has the least `1-norm error for the whole image with a mean error of 0.81 and the error
range of 0–2.42. The BOAEM mode has the mean `1-norm error of 0.86 in the range of
0–2.59. The CameoSim results have the highest error with the mean of 0.90 in the range
of 0–2.71. A similar trend is a scene in the NRMSE error of different ROIs across the
scene. Lower error due to higher altitude and larger area of effective adjacency shows
that localised adjacency model is not an realistic fit for the given scene, for low altitudes.
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7.1.5 Drawbacks in Scene Simulation

CHIMES simulator has a number of limitations some of them are also defined in the scope
of this research.

• Thermal radiance and scattering are not supported.

• Orientation of the sensor can only be the nadir.

• Only sun and moon are supported emitter types.

• Atmospheric generation is not part of the simulator and it is generated through
scripts.

7.2 Shadow Detection

The Selene scene GT shadow map enables us to quantify the results of comparative al-
gorithms in context. The proposed algorithm is shown to have 40.46% true positive,
i.e., correct detection of a shadow region compared to other counterparts. In this case,
the LULC algorithm is marginally inferior to our algorithm, yielding 39.52%. Beril,
RGBN, and Gevers reach 0%, 27.14%, and 28.90%, respectively. In terms of false pos-
itive, i.e., detecting non-shadow as a shadow, our algorithm continues to perform better
than other algorithms, reaching 64% compared to 72.64% of LULC, 112.14% of Gevers,
and 108.94% of RGBN. Although Beril shows a lower value of 0.24%, it should be noted
that it is the most biased performer, detecting 98% of the region as non-shadowed. Ignor-
ing the Beril algorithm due to bias, our algorithm tops the true-negative detection as well,
i.e., detecting non-shadowed region correctly. Our result is 93.49% compared to 92.8%,
89.9%, and 89.7% of LULC, RGBN, and Gevers algorithms, respectively. Finally, our
algorithm is also the best performer in a false-negative, i.e., detecting non-shadow as a
shadow, yielding only 4.62% compared 4.69%, 5.68%, and 5.54% of LULC, RGBN, and
Gevers algorithms, respectively. We conclude that LULC is marginally inferior to our
algorithm while others are completely outperformed.

For the Modesto scene, a qualitative evaluation was performed, and it looks like our
algorithm performed reasonably well in this dataset.
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7.2.1 Drawbacks in Shadow Detection

The pre-requisite of shadow detection algorithm to have QUAC based AC reflectance
image incurs errors due to QUAC algorithm. For example, QUAC does not compensate
contributions due to adjacency effect. When QUAC reflectance and radiance are used
to compute TGRR and path radiance, then this error will be accumulated in them and
cause discrepancies. It is also observed that the reconstructed radiance also possess noise
in some pixels, particularly in the VNIR region. Although it is overcome by non-linear
filtering, however a more physics-based method for reducing this noise should be found.
Moreover, the final shadow-map is dependent on a user-defined threshold, which may
vary algorithms performance from user to user.

Evaluation of shadow detection on a large outdoor scene is always a challenge because
typically the Ground Truth is unknown. As an alternate, we employed the DEM data and
ran a ray-tracing algorithm to cast the shadow. This shadow-map is used as the GT which
may not be a good representation of realistic shadows in the scene. This is why the
comparative results of shadow detection are included in the Appendix instead.



Chapter 8

Conclusion And Future Work

In this project, a great deal of effort is placed in establishing an HSI scene simulator code-
base. In this chapter, we will revisit the problem statement where well-defined goals were
set to evaluate the degree of achievement. Performance of the simulator is also discussed
with regards to important metrics such as variable atmospheric conditions, adjacency ef-
fect models, terrain types and sensor altitudes.

8.1 Achievements

The primary objective of this research was to develop a software which will enable Cran-
field University access to comprehensive code-base and detailed understanding of the
significant factors involved in hyperspectral scene simulation. The software development
activities of this work were solely performed by the author of this report. Having this
immense resource constrain, several open-source libraries were reused to accelerate the
development process such that more time and focus is given to the research content and
development of new features that are lacking in the COTS simulators.

We are successful in the development of a new scene simulation software package
whose radiance results are comparable with CameoSim and even perform better when
DEM map based terrain is generated. Moreover, CHIMES generates rendering based
image where volumetric scattering is also employed.

One of the most challenging factors in generating simulation images comparable to
ground truth is the ability to reconstruct realistic atmospheric data. A more difficult part in
the reconstruction is to capture the scene’s textural and altitude dependent heterogeneity.
Existing COTS simulators discussed in section 2.2.1 leave atmospheric data generation to
the users. This is an immense challenge to find parameters that match the ground truth
scene.

153
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The need to automate such an atmospheric parameter search was realized during the
inception phase when we used CameoSim to generate atmospheric data. Therefore such
automation is a novel and integrated part of CHIMES simulator.

DISORT is a well-established algorithm for generating scattering data along with
background surface albedo based adjacency effect incorporation. It is used by MOD-
TRAN, however, a serious limitation is in the support for a single albedo reflectance-based
adjacency effect. A typical use-case of DISORT in MODTRAN is to apply the average
reflectance of a scene as the background albedo. However, this approach fails to capture
the localisation factor of adjacency effect, which is reported in [22].

An emphasis is given to the localised adjacency effect model in CHIMES. Due to
localisation, our adjacency model is integrated into the renderer, which is also unprece-
dented in comparison with COTS. It is particularly observed that the covariance data gen-
erated with localised adjacency model is much closer to GT compared to one reflectance-
based MODTRAN/DISORT’s calculations.

During the coarse of the data analysis in the project, we realised that a larger error is
in the regions of images where shadows are persistent. The aim, therefore, was to able to
compensate those shadows, however, we could not proceed further due to time limitations.

Shadow detection is a tentative phase of shadow compensation. After research, we
found that existing shadow algorithms lack radiative transfer background and so we de-
veloped a shadow detection algorithm based on RT theory.

8.2 CHIMES Simulator

CHIMES is a rendering-based HSI scene simulator with unique features of renderer in-
tegrated localised adjacency effect model and automated atmospheric search. It also in-
cludes volumetric scattering, rugged terrain generation based on DEM data and shadow
detection support.

We implemented a new end-to-end Hyperspectral Image generation system, which gen-
erates HSI image in the visible to SWIR region of the electromagnetic spectrum. The im-
age simulated in this work was taken by Hyspex dual VNIR1600 and SWIR384 cameras.
Our simulator creates a skydome from MODTRAN radiance and employs path tracing
based light transport for calculating the at-sensor radiance. It also incorporates Digital
Elevation Models to generate the relatively rugged surface. We also presented a method
to search for atmospheric parameters, given a known reflectance material in the scene.



CHAPTER 8. CONCLUSION AND FUTURE WORK 155

We proposed two adjacency effect models one which uses an average background re-
flectance for the whole scene (BOAEM), we also proposed localized background spectra
retrieved from neighbouring texture pixels (TIAEM). Both of our models employ volu-
metric backscattering builtin the renderer. We compared results of both these models with
CameoSim and Ground Truth.

8.2.1 Methodologies

A radiative transfer model-based approach for scene simulation is the most popular and
adopted in the research community. There are several components of radiations that ac-
cumulate to construct an image. A comprehensive Big equation by Rochester Institute of
Technology attempts to capture all these components as additive terms of the equation in
an image chain approach. We have modified their RT equation to incorporate our localized
adjacency model which is an integral part of the renderer. Moreover, volumetric scatter-
ing is performed with an integrated phase function with the renderer for diffuse radiance
computation. The rendering process is, therefore, volumetric path tracing, spectral ren-
dering is captured by providing all relevant data such as reflectance, BRDF, MODTRAN
radiance etc. as vectors. Therefore the renderer is completely vectorized and acceler-
ated according to computer architecture for improved time performance. Other aspects of
CHIMES performance are described in the subsequent section.

8.2.2 Performance of Simulator

Imagery generated by CHIMES using BOAEM model shows close agreement with CameoSim.
The CHIMES TIAEM model shows deviation from both BOAEM and CameoSim results
and yields a higher error in flat scene geometry, however, it consistently performed better
in eigenanalysis of the whole imagery, particularly in first eigenvectors of both flat and
DEM terrains. Moreover, analysis of target material in Appendix A shows that the shape
of radiance generated by CHIMES TIAEM matches closely in VNIR region. It is noted
during the analysis that CHIMES-BOAEM came out to have the least error as shown in
Table 6.1, it even showed a slump in error when rugged terrain is used, as shown in Ta-
ble 6.2. This DEM data represent the real height-map of the scene when it was captured.

CameoSim generated imagery in flat terrain stands second in terms of least error with
respect to ground truth, as shown in Table 6.1. However, when DEM is introduced in
terrain, the error leapt up by several times as shown in Figure 6.7 and Table 6.2. Selene
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scene has some regions consisting tall tree, however, it is essentially a flat scene otherwise.
An increase in error to this extent was therefore not expected.

In the case of Modesto scene TIAEM turns out to be the best model with minimum `1-
norm error, it is potentially because the R is larger and the texture imprint in the upwelled
radiance is not significant.

8.2.3 Future Work

CHIMES simulator can be improved in several ways, some of the features should be
added and a more comprehensive testing should be performed.

• Support for arbitrary sensor orientation should be implemented.

• Thermal radiance and scattering model should included.

• Only Lambertian and Phong BRDF models well tested. Cook and Torrence should
be tested and new models should be added.

• A more functional GUI should be implemented. Loading of parameters from XML
file should be through GUI based control for ease of use.

• BRDF models should be tested against MERL benchmark datasets.

• Scene simulation performance should be tested by standardizing RAMI [102] datasets.

• Simulator should be tested against more existing simulators for better intercompar-
ison and validation.

8.3 Shadow Detection

Presence of white and black calibration panel in the Selene scene enables us to evaluate
the results of the regression learning phase. The recovery of TGRR approaches 79% ac-
curacy. Conversely, path radiance recovery proved to be more error-prone due to smaller
magnitude and contribution in at-sensor radiance. It is observed that radiance in the SWIR
region for TGRR is notably higher than ground truth. Presence of abundant vegetation
in the scene shows a potential adjacency effect, which is causing the raised magnitude
because pixels from many points across the scene are employed for the recovery. The
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goodness of fit of MODTRAN based TGRR with respect to regression’s shows higher
errors during multiple runs of MODTRAN. The best fit has NRMSE error of 25% which
is comparable with the GT white panel, whereas the MODTRAN white panel has only
9% of error compared to GT white panel.

8.3.1 Future Work

The following potential improvements in our existing work are recommended.

• Establishing a controlled environment for creating realistic GT measurements of
the shadows to improve the performance analysis of the algorithm.

• Dependence of the shadow-map creation on a user-defined threshold must be trans-
formed into a more adaptive approach to have consistency in the shadow detection
in varying user experience.

• Due to errors in the input to algorithm due to QUAC AC processing the estimated
entities could have discrepancies. A post-processing method to QUAC, particularly
for adjacency effect compensation, could increase the detection performance.

• The shadow detection algorithm in localized mode requires long computations. The
algorithm should be made more efficient from timing and memory requirements.

8.3.2 Project Management

The total research grant and the time allocated for this work was 3.5 years. The first-
year of this project was served in the literature review, understanding of scene simulation
by CameoSim, feature and parameters of MODTRAN etc. Three months were spent on
controlled full and sub-pixel planting of a target in CameoSim environment as a project
deliverable to the sponsor.

One year and nine months were spent on the development of complete Simulator
with localised adjacency, rendering, volumetric scattering, automated atmospheric search
features. Furthermore, two months were spent on the shadow detection work which was
done in collaboration with a colleague.

One month of effort at the beginning of the PhD was also spent in a project funded by
P&G for Washing powder ingredients analysis by multi-spectral imaging, together with
relevant literature studies.
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Appendix A

Material Wise Simulation Results

In Figures 6.4 and 6.8 we presented mean radiance of ROIs given in Figure 5.1. The prime
focus in selecting these ROIs is firstly in capturing the background that is, vegetation for
most of the targets and secondly concrete on which a number of other target are planted.
It is however important to highlight some man made materials such as orange perspex and
other patch of concrete, radiance of these targets are shown in this appendix. Radiance
of each target is plotted and statistical analysis is presented next to them, along with
eigenanalysis. In Figures A.1–A.4 results of radiance with a flat terrain of Selene scene
are presented.

Figures A.9–A.11 show material wise ROI simulated radiance plots of Modesto scene
with flat terrain. It includes farm soil, mixture of soil and grass and an ROI covering the
urban region of Modesto town.
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Appendix B

Source Files List

We provide a list of components developed during this project. Some generic third party
tool components are also listed along with the newly developed ones. The third party
tools are part of generic C++ libraries, image handling libraries and from the component
in the toolkits [103],[104], [105] and [48] etc.
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Appendix C

Source Codes

C.1 Getting Modtran Data

Once tape5 is created it is input into the MODTRAN and it is executed. After MODTRAN
execution is completed a tape7 file is created. Data is read from the tape7 file using the
following code snippet.

1 function tp7_interp = get_tape71_data(fnTape7 , lambda ,sen_resp ,fwhm

,isDual ,include_totrad ,qe,altitude ,interpolate)

2

3 %%

4 %Started by Usman Zahidi 16 Nov 2017

5

6 % Required:

7

8 %Parameter explanation

9

10 %fnTape7 = tape7 filename

11 %lambda = wavelengths of sensor

12 %sen_resp = inband sensor response data

13 %fwhm = FWHM

14 %isDual = dataset type in Selene context

15 %include_totrad = bool to indicate to include flux

16 %qe = Quantum Efficiency of sensor

17 %altitude = altitude of sensor

18 %interpolate = bool: to indicate interpolation

19

20 % use case:

21 % usually called from other function

22 %%

23
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24

25 fileID = fopen(strcat(fnTape7 ,’.tp7’));

26 txtTape7 = textscan(fileID , ’%s’, ’Delimiter ’, ’\n’);

27 fclose(fileID);

28

29 txtTape7=table2array(txtTape7);

30

31 fileID = fopen(strcat(fnTape7 ,’7.txt’),’w’);

32 fprintf(fileID ,’%s\n’,txtTape7 {12:end -1});

33 fclose(fileID);

34

35 fileID = fopen(strcat(fnTape7 ,’7.txt’));

36 txtTape7 = textscan(fileID ,’%f %f %f %f %f %f %f %f %f %f %f %f %f

%f %f %f’, ’Delimiter ’, ’\n’);

37 numTape7 = [txtTape7 {1,1}, txtTape7 {1,2}, txtTape7 {1,3}, txtTape7

{1,4}, txtTape7 {1,5}, txtTape7 {1,6},...

38 txtTape7 {1,7}, txtTape7 {1,8}, txtTape7 {1,9}, txtTape7 {1,10},

txtTape7 {1,11}, txtTape7 {1 ,12} ,...

39 txtTape7 {1,13}, txtTape7 {1,14}, txtTape7 {1,15}, txtTape7 {1 ,16}];

40 fclose(fileID);

41

42 n=1+0.000293* exp(altitude /8);

43

44 tp7rad (:,1)=1e7./( numTape7 (:,1)*n); %wavelength

45 tp7rad (:,2)=numTape7 (:,2); %trans1

46 tp7rad (:,3)=0; %trans2

47 tp7rad (:,4)=( numTape7 (:,1) .^2) .*( numTape7 (:,6))./1000; %MS

48 tp7rad (:,5)=( numTape7 (:,1) .^2) .*( numTape7 (:,7))./1000; %SS

49 tp7rad (:,6)=( numTape7 (:,1) .^2) .*(( numTape7 (:,8) ./1000));%ground ref

rad

50 if (include_totrad)

51 tp7rad (:,7)=( numTape7 (:,1) .^2) .*(( numTape7 (:,10) ./1000));%total rad

52 else

53 tp7rad (:,7)=( numTape7 (:,1) .^2) .*( numTape7 (:,15))./1000; %toa

54 end

55 tp7rad (:,8)=( numTape7 (:,1) .^2) .*(( numTape7 (:,9) ./1000));%direct ref

rad

56 tp7rad=flipud(tp7rad);

57 tp7rad(any(isnan(tp7rad) ,2) ,:)=[];

58 mod_wvl=tp7rad (:,1);

59 isSkyPath =0;
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60

61 if(interpolate)

62 tp7_interp = getintepolated(mod_wvl ,tp7rad ,lambda ,sen_resp ,fwhm

,isDual ,isSkyPath ,include_totrad ,qe);

63 tp7_interp(isinf(tp7_interp))=0;

64 tp7_interp(isnan(tp7_interp))=0;

65 else

66 tp7rad(isinf(tp7rad))=0;

67 tp7rad(isnan(tp7rad))=0;

68 tp7_interp=tp7rad;

69 end

70

71 end

C.2 Convolving with sensor response

1

2 Convolution of sensor response with MODTRAN is a key step in

creating the atmospheric data. Following code is used to

calculate the convolution.

3 \begin{lstlisting}

4 function interpolated = getintepolated(mod_wvl ,mod_data ,

sensor_lambda ,sen_resp ,fwhm ,isDual ,isSkyPath ,isCloud ,qe)

5

6 %%

7 %Started by Usman Zahidi 2 Dec 2017

8

9 % Required:

10

11 %Parameter explanation

12

13 %mod_wvl = MODTRAN high resolution wavelengths

14 %mod_data = MODTRAN radiances

15 %sensor_lambda = Sensor wavelengths

16 %sen_resp = Sensor inband response

17 %fwhm = FWHM

18 %isDual = dataset type in Selene context

19 %isSkyPath = Clearsky path varaible for testing

20 %isCloud = Clearsky path varaible for testing
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21 %qe = Quantum Efficiency of sensor

22

23 % use case:

24 % usually called from other function

25 %%

26

27 mod_data=mod_data(find(unique(mod_wvl)) ,:);

28 mod_data=mod_data (:,2:end);

29 sz=size(sen_resp ,1);

30 szc=size(mod_data ,2);

31 bands=size(fwhm ,1);

32 nobands=double(uint16(sz/bands));

33 bw=sensor_lambda (2: end)-sensor_lambda (1:end -1);

34 bw=[bw;bw(end)];

35

36

37 mod_data=interp1(mod_wvl ,mod_data ,sen_resp (:,1),’linear ’);

38 k=1;

39 for i=1: nobands:sz

40 %i

41 if (k==255)

42 nobands=nobands -1;

43 end

44 val=sz -i;

45 if (val <nobands)

46 nobands=val;

47 x=sen_resp(i:(i-1)+nobands ,1);

48

49 xo=sensor_lambda(k);

50 sigma=fwhm(k,3) /(2* sqrt (2*log(2)));

51 fx =(1/( sigma*sqrt (2*pi)))*exp(-(x-xo).^2./(2* sigma

^2));

52 modval=mod_data(i:(i-1)+nobands ,1: end);

53 interpolated(k,:)=(qe.dual(k)*trapz(( modval).* repmat

(fx ,1,szc))./ trapz(fx));

54 else

55 x=sen_resp(i:(i-1)+nobands ,1);

56 xo=sensor_lambda(k);

57

58 sigma =(fwhm(k,3))/(2* sqrt (2*log(2)));

59 fx =(1/( sigma*sqrt (2*pi)))*exp(-(x-xo).^2./(2* sigma
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^2));

60 modval=mod_data(i:(i-1)+nobands ,1: end);

61 interpolated(k,:)=(qe.dual(k)*trapz(( modval).*

repmat(fx ,1,szc))./ trapz(fx));

62 end

63 if (k==1)

64 sen_resp_all =[x,fx];

65 else

66 sen_resp_all =[ sen_resp_all ;[x,fx]];

67 end

68 k=k+1;

69 end

70 if (size(interpolated ,1)<size(sensor_lambda ,1))

71 count=size(sensor_lambda ,1)-size(interpolated ,1);

72 interpolated(end +1: end+count ,:) =0;

73 end

74 interpolated =[ sensor_lambda ,interpolated ];

75 end

C.3 Sub-pixel / Full-pixel target planting in CameoSim
Environment

Sub-pixel target planting is not supported in CameoSim environment. The following
script automatically create material in CameoSim format and plants it in a sub-pixel/full-
pixel fashion, in its synthetic environment.

1

2 function plant_targets(unique_name ,image ,cluster ,lambda ,

target_types ,linux_user_name ,target_reflectance ,image_offset ,

lambda_offset ,rotation_factor ,do_flip ,gsd_x ,gsd_y ,

separation_distance_px ,target_weights ,target_per_weight ,dim_x ,

dim_y ,DEMImage ,terrain_type ,first_loc ,afgFileName ,objFileName ,

targets)

3 %%

4 %Started by Usman Zahidi 16 February 2017

5

6 % Required:

7 %This code should be run in linux

8 %Add a text file ’cameosim ’ to /etc/profile.d folder , with one line

text PATH=$PATH :~/ opt/insys/bin
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9 %if providing DEM , make sure that it is same in rotation and

flipping as

10 %the input image

11

12 %Parameter explanation

13

14 %unique_name = unique name to prefix material ,ctx ,png ,sh

files and for foldername

15 %image = hsi image cube

16 %cluster = classification map , required to make main

ctx

17 %lambda = list of wavelengths

18 %target_types = 4 if (orange perspex 30x30 , green 40x40 ,

green 20x20 , orange 10x10)

19 %linux_user_name = your linux user name same as in home

directory

20 %target_reflectance = structure that contains signature of

targets

21 % image_offset = ie in example 10000

22 %lambda_offset = 1000 if lambda is in nm

23 % rotation_factor = 3 or other accordingly

24 % do_flip = 1 or other accordingly

25 %gsd_x = gsd horizontal

26 %gsd_y = gsd vertical

27 %separation_distance_px = separation distance between targets in

pixels

28 %target_weights = set more than one if weight should reduce

by 20%

29 %target_per_weight = no of targets of one weight (abundancy)

30 %dim_x = horizontal subpixel target dimension in

cm. For full pixel planting the size would be overwritten by

gsdx *100.

31 %dim_y = vertical subpixel target dimension in cm.

For full pixel planting the size would be overwritten by gsdy

*100.

32 %DEMImage = Digital Elevation Model image. It should

be in %AGL

33 %terrain_type = 1 if flat surface , 2 if height field

surface , 3 %if 3D mesh polygons based surface i.e from objfile

generated by makeObjFromMatrix.m function (ver 2.0).Function

requires DEMImage as input
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34 %first_loc = If user wish to input coordinate by GUI

set it to [-1 -1] else set it to planting location

35 %agfFileName = It requires a agf format file converted

from obj file which is generated by makeObjFromMatrix. obj to

agf conversion is performed by cameosim.

36

37

38 %EXAMPLE about parameter with full pixel planting:

39 %vnir

40 %plant_targets(’H23VNIRSub1_01Mar ’,H23VnirQuacSub1.imag ,

H23VnirQuacSub1.kmeans.allcluster ,H23VnirQuacSub1.lambda ,4,’

usman ’,H23Sub1target ,1 ,1000 ,3 ,1 ,0.17 ,0.34 ,10 ,1 ,25);

41

42 %dual:

43 %plant_targets(’H23Dual_27Mar_1 ’,H23DualQuac.imag ,H23DualQuac.

kmeans.allcluster ,H23DualQuac.lambda ,4,’usman ’,H23Dualtarget

,10000 ,1000 ,3 ,1 ,0.7 ,0.7 ,3 ,1 ,25);

44

45 % EXAMPLE with subpixel planting

46

47 %1. FLAT terrain: with calibration panel

48 %plant_targets(’H23Dual_DEM_Flat ’,H23DualQuac.imag (: ,801:1500 ,:),

H23DualQuac.kmeans.allcluster (: ,801:1500) ,H23DualQuac.lambda ,6,’

usman ’,H23Dualtarget ,10000 ,1000 ,3 ,0 ,0.7 ,0.7 ,5 ,1 ,5 ,30 ,30 ,0 ,1 ,[215

553],’’);

49

50 %2. HEIGHT FIELD:

51 %plant_targets(’H23Dual_DEM_HF ’,H23DualQuac.imag (: ,801:1500 ,:),

H23DualQuac.kmeans.allcluster (: ,801:1500) ,H23DualQuac.lambda ,6,’

usman ’,H23Dualtarget ,10000,1000 ,3 ,0,0.7 ,0.7 ,5 ,1,5,30,30,

H23DEMAGL (1:380 ,801:1500) ,2,[215 553],’’);

52

53 %3. DEM

54 %plant_targets(’H23Dual_Obj1_0 ’,H23DualQuac.imag (: ,801:1500 ,:),

H23DualQuac.kmeans.allcluster (: ,801:1500) ,H23DualQuac.lambda ,6,’

usman ’,H23Dualtarget ,10000,1000 ,3 ,0,0.7 ,0.7 ,5 ,1,5,30,30,

H23DEMAGL (1:380 ,801:1500) ,3,[215 553],’ H23Dual_Obj1 .0.agf ’);

55 %create H23Dual_Obj1 .0.agf file using makeObjFromDEM and then

import it into CS as cgf and then convert it to agf. You can

select different scales in makeObjFromDEM

56
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57

58 %How to use:

59 %It will ask about target size , location and target type

60 %After running the code a folder is generated in working folder

with unique_name given

61 %Create /ctx folder on linux desktop.

62 %Go in generated folder and run .sh in terminal

63 %A cgf would be generated in ctx/generated_folder_name

64 %Open cgf in CS and apply proper orientation as agf orientations

are not converted by CS agf2cgf converter

65 %Save cgf as terrain and simulate

66

67 %A mat file with all targets is also generated with "unique_name ".

mat in the

68 %folder created , to send together or to add with results.

69 %%

70 close all;

71 brightness =2000;

72 image = rot90(image , rotation_factor);

73 if (do_flip == 1)

74 image = fliplr(image);

75 end

76

77 if (DEMImage ~=0)

78 DEMImage=rot90(DEMImage , rotation_factor);

79 if (do_flip == 1)

80 DEMImage = fliplr(DEMImage);

81 end

82 end

83

84

85

86 [image_h ,image_w ,~]= size(image);

87 cluster = rot90(cluster , rotation_factor);

88

89 if (do_flip == 1)

90 cluster = fliplr(cluster);

91 end

92 [im_h ,im_w ,~]= size(image);

93 image = image ./ image_offset;

94 lambda = lambda ./ lambda_offset;
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95

96 rgb_image =makeRGBimage(image ,lambda);

97 all_targets=zeros (1,4);

98 targetsNumber =1;

99 target_details=cell (2,2);

100

101 first_loc_x=first_loc (1,1);

102 first_loc_y=first_loc (1,2);

103 iterations =1;

104 copy_unique_name=unique_name;

105 if (isempty(targets))

106 for i=1: target_types

107 [h,~]= size(all_targets);

108 clear target_signature;

109 isOP = input(’\nEnter Target Type? (1. OrangePespex 2. GreenTile

3. WhitePanel)\n’);

110 enable_subpixel_planting = input(’\nDo you want to do subpixel

planting (enter 1 if yes 2 if no)\n’);

111 if (enable_subpixel_planting ==1)

112 sp_offset_x= input(’\nEnter subpixel x_offset from bottom

left.Should be (target x_dimension in m + offset <= GSD_x) and

>=0: ’);

113 sp_offset_y= input(’\nEnter subpixel y_offset from bottom

left.Should be (target y_dimension in m + offset <= GSD_y) and

>=0: ’);

114 iterations =2;

115 adjacent_planting =5; %plant four adjacent panels and

including itself it becomes 5. Adjacent panels are planted to

enable user to view subpixel location within pixel

116 else

117 sp_offset_x= 0; %subpixel offset in x

118 sp_offset_y= 0; %subpixel offset in y

119 adjacent_planting =1;

120 iterations =1;

121 end

122 if (isOP == 1)

123 target_material =1;

124 target_details{target_material ,1}=’orange_perspex_ ’;

125 target_details{target_material ,2}= num2str(target_material);

126 elseif(isOP == 2)

127 target_material =2;
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128 target_details{target_material ,1}=’green_carpet_ ’;

129 target_details{target_material ,2}= num2str(target_material);

130 elseif(isOP == 3)

131 target_material =3;

132 target_details{target_material ,1}=’white_panels_ ’;

133 target_details{target_material ,2}= num2str(target_material);

134 end

135

136 if (first_loc_x <0 || first_loc_y <0)

137 for i=1: adjacent_planting

138 if (i==1)

139 [targets ,~,~,first_loc_x ,first_loc_y] =

makeAutoPlantTargets(rgb_image ,gsd_x *100, gsd_y *100,

separation_distance_px ,target_weights ,target_per_weight ,

sp_offset_x ,sp_offset_y ,enable_subpixel_planting ,-1,-1,dim_x ,

dim_y);

140 targets (:,5)=target_material;

141

142 %inject additional targets in von -neumann pixel

neighbourhood

143 %to verify the position of subpixel targets

144 elseif (i==2)

145 [ntargets] = makeAutoPlantTargets(rgb_image ,gsd_x *100,

gsd_y *100, separation_distance_px ,target_weights ,

target_per_weight ,sp_offset_x ,sp_offset_y ,0,first_loc_x -1,

first_loc_y ,gsd_x *100, gsd_y *100);

146 ntargets (:,5)=3;

147 targets =[ targets;ntargets ];

148

149 elseif (i==3)

150 [ntargets] = makeAutoPlantTargets(rgb_image ,gsd_x *100,

gsd_y *100, separation_distance_px ,target_weights ,

target_per_weight ,sp_offset_x ,sp_offset_y ,0, first_loc_x +1,

first_loc_y ,gsd_x *100, gsd_y *100);

151 ntargets (:,5)=3;

152 targets =[ targets;ntargets ];

153

154 elseif (i==4)

155 [ntargets] = makeAutoPlantTargets(rgb_image ,gsd_x *100,

gsd_y *100, separation_distance_px ,target_weights ,

target_per_weight ,sp_offset_x ,sp_offset_y ,0,first_loc_x ,
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first_loc_y -1,gsd_x *100, gsd_y *100);

156 ntargets (:,5)=3;

157 targets =[ targets;ntargets ];

158

159 elseif (i==5)

160 [ntargets] = makeAutoPlantTargets(rgb_image ,gsd_x *100,

gsd_y *100, separation_distance_px ,target_weights ,

target_per_weight ,sp_offset_x ,sp_offset_y ,0,first_loc_x ,

first_loc_y +1,gsd_x *100, gsd_y *100);

161 ntargets (:,5)=3;

162 targets =[ targets;ntargets ];

163

164 end

165 end

166 first_loc_y=first_loc_y+separation_distance_px;

167 else

168 % it adds y even to a non -1,-1 coordinates and therefore

starts

169 % from there

170

171 %if (adjacent_planting >1)

172 %first_loc_y=first_loc_y+separation_distance_px;

173 %else

174 % first_loc_x =-1;

175 % first_loc_y =-1;

176 %end

177 for i=1: adjacent_planting

178 if (i==1)

179 [targets] = makeAutoPlantTargets(rgb_image ,gsd_x *100,

gsd_y *100, separation_distance_px ,target_weights ,

target_per_weight ,sp_offset_x ,sp_offset_y ,

enable_subpixel_planting ,first_loc_x ,first_loc_y ,dim_x ,dim_y);

180 targets (:,5)=target_material;

181

182 %inject additional targets in von -neumann pixel

neighbourhood

183 %to verify the position of subpixel targets

184 elseif (i==2)

185 [ntargets] = makeAutoPlantTargets(rgb_image ,gsd_x *100,

gsd_y *100, separation_distance_px ,target_weights ,

target_per_weight ,sp_offset_x ,sp_offset_y ,0,first_loc_x -1,



APPENDIX C. SOURCE CODES 195

first_loc_y ,gsd_x *100, gsd_y *100);

186 ntargets (:,5)=3;

187 targets =[ targets;ntargets ];

188

189 elseif (i==3)

190 [ntargets] = makeAutoPlantTargets(rgb_image ,gsd_x *100,

gsd_y *100, separation_distance_px ,target_weights ,

target_per_weight ,sp_offset_x ,sp_offset_y ,0, first_loc_x +1,

first_loc_y ,gsd_x *100, gsd_y *100);

191 ntargets (:,5)=3;

192 targets =[ targets;ntargets ];

193

194 elseif (i==4)

195 [ntargets] = makeAutoPlantTargets(rgb_image ,gsd_x *100,

gsd_y *100, separation_distance_px ,target_weights ,

target_per_weight ,sp_offset_x ,sp_offset_y ,0,first_loc_x ,

first_loc_y -1,gsd_x *100, gsd_y *100);

196 ntargets (:,5)=3;

197 targets =[ targets;ntargets ];

198

199 elseif (i==5)

200 [ntargets] = makeAutoPlantTargets(rgb_image ,gsd_x *100,

gsd_y *100, separation_distance_px ,target_weights ,

target_per_weight ,sp_offset_x ,sp_offset_y ,0,first_loc_x ,

first_loc_y +1,gsd_x *100, gsd_y *100);

201 ntargets (:,5)=3;

202 targets =[ targets;ntargets ];

203 end

204 end

205 first_loc_y=first_loc_y+separation_distance_px;

206 end

207

208 targets (:,1)=targetsNumber:targetsNumber -1+ numel(targets (:,1));

209 targetsNumber=targets(end ,1)+1;

210 if(h==1)

211 all_targets = targets;

212 else

213 all_targets = [all_targets;targets ];

214 end

215 all_targets (:,1)=1: numel(all_targets (:,1));

216 end
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217 else

218 all_targets=targets;

219 if (targets (1 ,10) ==1)

220 iterations =2;

221 adjacent_planting =5;

222 elseif (targets (1,10) ==2)

223 iterations =1;

224 adjacent_planting =1;

225 end

226

227 end

228

229

230 for gen_count =1: iterations

231

232 if (gen_count ==1 && iterations >1)

233 suffix=’’;

234 copy_all_targets=all_targets;

235 unique_name=copy_unique_name;

236 all_targets(find(all_targets (: ,10) ==0) ,:)=[];

237 all_targets(find(all_targets (: ,10) ==2) ,2)=all_targets(find(

all_targets (: ,10) ==2) ,2)+1;

238 all_targets(find(all_targets (: ,10) ==2) ,3)=all_targets(find(

all_targets (: ,10) ==2) ,3)+1;

239 elseif(iterations >1)

240 suffix=’_withRefPanels ’;

241 unique_name=strcat(unique_name ,suffix);

242 all_targets=copy_all_targets;

243 all_targets(find(all_targets (: ,10) ==2) ,2)=all_targets(find(

all_targets (: ,10) ==2) ,2)+1;

244 all_targets(find(all_targets (: ,10) ==2) ,3)=all_targets(find(

all_targets (: ,10) ==2) ,3)+1;

245 end

246 all_targets (:,1)=1: numel(all_targets (:,1));

247 %copy folder to linux

248

249 injectTargets(unique_name ,image , target_reflectance ,all_targets ,

lambda ,linux_user_name);

250 %add commands to copy material files and terrain ctx files

251 linux_path=strcat(’/home/’,linux_user_name ,’/Desktop/ctx/’,

unique_name);
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252 mat_file_search_token = strcat(unique_name , ’_class_mat_ ’);

253 shText = fileread(strcat(unique_name , ’/’, ’1_’,unique_name , ’

_script.sh’));

254 shell_fileID = fopen(strcat(unique_name , ’/’, ’1_’,unique_name , ’

_script.sh’),’w’);

255 ctx_file_name = strcat(unique_name , ’_ctx_file ’);

256 %cp -r /usr/local/fromdownload /usr/local/download

257 copyStr =[’cp ’,’ -r ’,strcat(pwd , ’/’, unique_name),strcat(’ /home/

’,linux_user_name ,’/Desktop/ctx\n’)];

258 %copyStr=strcat(strToken ,);

259 shText= strcat(copyStr ,shText);

260 fprintf(shell_fileID ,shText);

261 fprintf(shell_fileID , ’\ncs -ctxmake -6.5 -o %s/%s.ctx %s/%s.txt\n’,

linux_path ,ctx_file_name ,linux_path ,ctx_file_name);

262 fprintf(shell_fileID , ’sudo cp %s/%s* /opt/insys/share/cameosim

/6.5/ materials\n’,linux_path ,mat_file_search_token);

263 %cs-agf2cgf -o /home/usman/Desktop/ctx/H23Dual_Obj0_4/

H23Dual_Obj0_4.cgf /home/usman/Desktop/ctx/H23Dual_Obj0_4/

H23Dual_Obj0_4.agf

264 fprintf(shell_fileID , ’cs -agf2cgf -o %s.cgf %s.agf\n’,strcat(

linux_path ,’/’,unique_name),strcat(linux_path ,’/’,unique_name));

265 fclose(shell_fileID);

266

267 %create agf files

268 if (terrain_type ==1)

269 create_agf_file_from_targets(unique_name ,strcat(unique_name ,’/’

,unique_name),image_w , image_h , linux_user_name ,all_targets ,

gsd_x ,gsd_y ,0,terrain_type ,’’);

270 elseif (terrain_type ==2)

271 create_agf_file_from_targets(unique_name ,strcat(unique_name ,’/’

,unique_name),image_w , image_h , linux_user_name ,all_targets ,

gsd_x ,gsd_y ,DEMImage ,terrain_type ,afgFileName);

272 elseif (terrain_type ==3)

273 all_targets = create_agf_file_from_targets(unique_name ,strcat(

unique_name ,’/’,unique_name),image_w , image_h , linux_user_name ,

all_targets ,gsd_x ,gsd_y ,DEMImage ,terrain_type ,afgFileName);

274 end

275 %adjust target offsets

276 all_targets(find(all_targets (: ,10) ==2) ,2)=all_targets(find(

all_targets (: ,10) ==2) ,2) -1;
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277 all_targets(find(all_targets (: ,10) ==2) ,3)=all_targets(find(

all_targets (: ,10) ==2) ,3) -1;

278 %create materials for main ctx file

279 create_materials_from_classification(unique_name , cluster , image ,

lambda ,linux_user_name);

280 %save targets in mat file

281 result.targets=all_targets;

282 result.target_map = target_injection_map(all_targets , im_w , im_h ,

brightness) ’;

283 figure (1);imagesc(result.target_map);axis image;

284 %after show set brightness back

285 result.target_map = result.target_map/brightness;

286 result.target_details=target_details;

287 %save mat file

288 save(strcat(unique_name ,’/’,unique_name ,’.mat’),’result ’, ’-v7.3’);

289 end

290 %to verify the rotaion ,flip and target map of image ,see and confirm

.

291 figure (2);imagesc(makeRGBimage(image ,lambda));axis image;

292 figure (3);imagesc(cluster);axis image;

C.4 CHIMES Codes

Here we list some of the CHIMES codes such as sky creation, phase function model,
sun and sky shine calculation and finally upwelled scattered radiance calculation in the
renderer.

1 / / F u n c t i o n i n Sky c l a s s which c r e a t e s a b i tmap from MODTRAN
i n t e r p o l a t e d d a t a f o r each p i x e l o f t h e b i tmap . Width o f b i tmap
r e p r e s e n t s t h e az imu th and h e i g h t i s z e n i t h . Sun i s p o s i t i o n e d
a c c o r d i n g t o u s e r i n p u t o f l o n g i t u d e , l a t i t u d e , d a t e and t ime of day
. Bitmap i s c o n v e r t e d i n t o s p h e r i c a l c o o r d i n a t e t o c r e a t e a skydome
.

2

3 / / Loaded when a p r o j e c t d e f i n i t i o n f i l e i s l o a d e d
4 Spec t rumVec to r Crea t eSky ( F l o a t t h e t a , F l o a t az imuth , F l o a t R , F l o a t

r e s o l u t i o n )
5 {
6 r e f<Bitmap> b i tmap = new Bitmap (PFORMAT, Bitmap : : EFloa t ,
7 V e c t o r 2 i ( r e s o l u t i o n , r e s o l u t i o n / 2 ) ) ;
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8

9 P o i n t 2 f a c t o r ( ( 2 ∗ M PI ) / bi tmap−>ge tWid th ( ) ,
10 M PI / bi tmap−>g e t H e i g h t ( ) ) ;
11

12

13 Spec t rumVec to r ∗ d a t a = ( Spec t rumVec to r ∗ ) bi tmap−>g e t F l o a t D a t a ( ) ;
14

15 Spec t rumVec to r groundAlbedo = Spec t rumVec to r : :
G e t I n t e r p o l a t e d S p e c t r u m V e c t o r ( Spec t rumVec to r : : m pr o j ec t ID , i n t (
Da taAccess : :EMOD: : EDownwell ) ) ;

16

17 f o r ( i n t y = 0 ; y<bi tmap−>g e t H e i g h t ( ) ; ++y )
18 {
19 F l o a t t h e t a = ( y + . 5 f ) ∗ f a c t o r . y ;
20 Spec t rumVec to r ∗ t a r g e t = d a t a + y ∗ bi tmap−>ge tWid th ( ) ;
21

22 f o r ( i n t x = 0 ; x<bi tmap−>ge tWid th ( ) ; ++x )
23 {
24 F l o a t p h i = ( x + . 5 f ) ∗ f a c t o r . x ;
25

26 RayDif f r a y ( P o i n t ( 0 . 0 f , 0 . 0 f , 0 . 0 f ) , t o S p h e r e ( S p h e r i c a l C o o r d ( t h e t a ,
p h i ) ) , 100 .0 f ) ;

27 RayDif f r a y S o l a r ( P o i n t ( 0 . 0 f , 0 . 0 f , 0 . 0 f ) , t o S p h e r e ( S p h e r i c a l C o o r d (
Spec t rumVec to r : : s o l a r Z e n i t h , Spec t rumVec to r : : az imu th ) ) , 100 .0 f ) ;

28 Spec t rumVec to r T1 = Spec t rumVec to r : : G e t I n t e r p o l a t e d S p e c t r u m V e c t o r
(−1 , i n t ( Da taAccess : :EMOD: : ETrans1 ) ) ;

29 Spec t rumVec to r r a y l e i g h t S c a t = g e t R a y l e i g h P h a s e ( r a y S o l a r . d , r a y . d ) ;
30 Spec t rumVec to r skyRad = g e t S u n R a d i a n c e ( f romSphere ( r a y S o l a r . d ) .

e l e v a t i o n , phi , 100 .0 f ) ;
31 Spec t rumVec to r v a l = Spec t rumVec to r ( 0 . 0 ) ;
32 v a l = g e t S k y S h i n e ( t h e t a , phi , Spec t rumVec to r : : a l t i t u d e ) ∗mieSca t ;
33 v a l . c o n d i t i o n ( ) ;
34 ∗ t a r g e t ++ = v a l ;
35 }
36 }
37 }
38 / / Get sun r a d i a n c e from MODTRAN i n t e r p o l a t i o n d a t a b a s e
39 Spec t rumVec to r g e t S u n R a d i a n c e ( F l o a t t h e t a , F l o a t az imuth , F l o a t R)
40 {
41 Spec t rumVec to r TOA = Spec t rumVec to r : : G e t I n t e r p o l a t e d S p e c t r u m V e c t o r (

Spec t rumVec to r : : m pr o j ec t ID , i n t ( Da taAccess : :EMOD: : ETOA, R / s i n (
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t h e t a ) , az imuth , t h e t a ) ) ;
42 Spec t rumVec to r T1 = Spec t rumVec to r : : G e t I n t e r p o l a t e d S p e c t r u m V e c t o r (

Spec t rumVec to r : : m pr o j ec t ID , i n t ( Da taAccess : :EMOD: : ETrans2 ) , R /
s i n ( t h e t a ) , az imuth , t h e t a ) ;

43 Spec t rumVec to r l i g h t S h i n e = TOA ∗ cos ( t h e t a ) ∗T1 ;
44 l i g h t S h i n e . c l ampNega t i ve ( ) ;
45 r e t u r n l i g h t S h i n e ;
46 }
47 / / Get sky r a d i a n c e from MODTRAN i n t e r p o l a t i o n d a t a b a s e
48 Spec t rumVec to r g e t S k y S h i n e ( F l o a t t h e t a , F l o a t az imuth , F l o a t R)
49 {
50 i n t p r o j I D = Spec t rumVec to r : : m p r o j e c t I D ;
51 Spec t rumVec to r s k y S h i n e ( 0 . 0 f ) ;
52 Spec t rumVec to r mulSca t = Spec t rumVec to r : :

G e t I n t e r p o l a t e d S p e c t r u m V e c t o r ( Spec t rumVec to r : : m pr o j ec t ID ,
Da taAccess : :EMOD: : EMultScat , R , az imuth , t h e t a ) ;

53 Spec t rumVec to r downWelledRadiance = Spec t rumVec to r : :
G e t I n t e r p o l a t e d S p e c t r u m V e c t o r ( Spec t rumVec to r : : m pr o j ec t ID ,
Da taAccess : :EMOD: : EDownwell , R , az imuth , t h e t a ) ;

54 i f ( mulSca t . i s Z e r o ( ) )
55 {
56 Spec t rumVec to r TOA = Spec t rumVec to r : : G e t I n t e r p o l a t e d S p e c t r u m V e c t o r (

Spec t rumVec to r : : m pr o j ec t ID , i n t ( Da taAccess : :EMOD: : ETOA) ) ;
57 Spec t rumVec to r t 1 = Spec t rumVec to r : : G e t I n t e r p o l a t e d S p e c t r u m V e c t o r (

Spec t rumVec to r : : m pr o j ec t ID , DataAccess : :EMOD: : ETrans2 , R , az imuth ,
t h e t a ) ;

58 s k y S h in e = (TOA∗ cos ( t h e t a ) ∗ t 1 ) ;
59 }
60 e l s e
61 {
62

63 s k y S h in e = downWelledRadiance ∗ M PI ; %d i f f u s e
64 }
65 s k y S h i n e . c l ampNega t i ve ( ) ;
66 Spec t rumVec to r : : m p r o j e c t I D = p r o j I D ;
67 r e t u r n s k yS h i n e ;
68 }
69

70 / / R a y l e i g h phase f u n c t i o n d e f i n e d i n P h a s e F u n c t i o n c l a s s
71 Spec t rumVec to r g e t R a y l e i g h P h a s e ( Ve c t o r wsol , Ve c to r wsca t )
72 {
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73 F l o a t u = ( d o t ( wsol , wsca t ) / ( magn i tude ( wsol ) ∗magni tude ( wsca t ) ) ) ;
74 F l o a t d e l t a = 0 .0279 f ; / / page 159 MODTRAN r e p o r t , i n c o r p o r a t e s

d e p o l a r i z i n g f a c t o r
75 F l o a t p = ( 3 . 0 f / 4 . 0 f ) ∗ ( ( 1 . 0 f + d e l t a ) + ( 1 . 0 f − d e l t a ) ∗u∗u ) ;
76 r e t u r n Spec t rumVec to r ( p ) ;
77 }

C.5 Adjacency Model Rendering

1 / / F u n c t i o n s i n R e n d e r e r c l a s s f o r comput ing u p w e l l e d s c a t t e r e d r a d i a n c e
c o n t r i b u t i o n f o r a g i v e n r a y

2 i n l i n e s t d : : v e c t o r<i n t > Upwel ledRad iance ( Ray ray , Tex tu reCoord uv , i n t R
, i n t c l a s s e s , s t d : : v e c t o r<f l o a t > e m i t t e r P d f , s t d : : v e c t o r<f l o a t >
phasePdf , I n t e r s e c t i o n i t s , f l o a t l o c a l A d j a c e n c y W e i g h t ) c o n s t

3 / / l o c a l A d j a c e n c y W e i g h t / / i f p a s s e d 0 . 0 t h e n BOAEM e l s e 1 . 0 TIAEM
4 boo l a d j a c e n c y = f a l s e ;
5

6 i f ( l o c a l A d j a c e n c y W e i g h t > 0 . 0 f )
7 {
8 a d j a c e n c y = t r u e ;
9 l o c a l B a c k g r o u n d A l b e d o = g e t A d j a c e n t A l b e d o ( uv , R , c l a s s e s ) ;

10 groundAlbedo = ( ( 1 . 0 f − l o c a l A d j a c e n c y W e i g h t ) ∗ g r a s s A l b e d o +
l o c a l A d j a c e n c y W e i g h t ∗ l o c a l B a c k g r o u n d A l b e d o ) ;

11 }
12 e l s e
13 {
14 a d j a c e n c y = f a l s e ;
15 groundAlbedo = g r a s s A l b e d o ;
16 }
17 /∗

=================================================================================
∗ /

18 /∗ phase f u n c t i o n s a m p l i n g ( d i f f u s e s o u r c e s ) ∗ /
19 /∗

=================================================================================
∗ /

20

21 F l o a t p h a s e P d f ;
22 P h a s e F u n c t i o n S a m p l i n g D a t a phaseDa ta ( mData , −r a y . d ) ;
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23 F l o a t phaseVa l = phase−>sample ( phaseData , phasePdf , rRec . s a m p l e r ) ;
24

25 i f ( phaseVa l == 0)
26 b r e a k ;
27

28 F l o a t d i f f u s e W e i g h t ( 0 . 0 f ) ;
29 Spec t rumVec to r p a t h R a d i a n c e B l a c k = Spec t rumVec to r : :

G e t I n t e r p o l a t e d S p e c t r u m V e c t o r ( Spec t rumVec to r : : m pr o j ec t ID ,
Da taAccess : :EMOD: : EUpwell , Spec t rumVec to r : : m maxAl t i tude ,

30 f romSphere ( r a y . d ) . az imuth , m n a d i r ) / T2∗ t h r o u g h p u t ;
31

32 Spec t rumVec to r p a t h R a d i a n c e W h i t e = Spec t rumVec to r : :
G e t I n t e r p o l a t e d S p e c t r u m V e c t o r ( Spec t rumVec to r : : m pr o j ec t ID ,
Da taAccess : :EMOD: : EDownwell , Spec t rumVec to r : : m maxAl t i tude ,

33 f romSphere ( r a y . d ) . az imuth , m n a d i r ) / T2∗ t h r o u g h p u t ;
34

35 Spec t rumVec to r p a t h R a d i a n c e G r a s s = Spec t rumVec to r : :
G e t I n t e r p o l a t e d S p e c t r u m V e c t o r ( Spec t rumVec to r : : m pr o j ec t ID ,
Da taAccess : :EMOD: : EMultScat , Spec t rumVec to r : : m maxAl t i tude ,

36 f romSphere ( r a y . d ) . az imuth , m n a d i r ) / T2∗ t h r o u g h p u t ;
37

38 F l o a t F = 0 . 0 f ;
39

40 i f ( ! va lueSky . i s Z e r o ( ) && ( rRec . t y p e & Rad ianceDa ta : :
EDirec tMediumRadiance ) )

41 {
42

43 d i f f u s e W e i g h t = misWeight ( phasePdf , e m i t t e r P d f ) ;
44 V ec to r absN = ( V ec to r ) i t s . geoFrame . n ;
45 absN . x = abs ( absN . x ) ;
46 F l o a t s igma = ( acos ( d o t ( absN , Normal ( 1 . 0 , 0 . 0 , 0 . 0 ) ) / ( magn i tude ( (

V ec to r ) absN ) ∗ magni tude ( Ve c to r ( 1 . 0 , 0 . 0 , 0 . 0 ) ) ) ) ) ;
47 F = −0.5 f ∗ cos ( s igma ) ;
48 Lsky = F∗ ( va lueSky ) ∗ bsd fWeigh t ∗ d i r e c t W e i g h t ;
49 Lback = (1 − F ) ∗ ( va lueSky ) ∗ backgroundAlbedo ∗ d i r e c t W e i g h t ;
50 }
51 p a t h R a d i a n c e B l a c k . c o n d i t i o n ( ) ;
52 p a t h R a d i a n c e W h i t e . c o n d i t i o n ( ) ;
53 Spec t rumVec to r p a t h R a d i a n c e ( 0 . 0 ) ;
54 Spec t rumVec to r i n t e r p p a t h R a d i a n c e ( 0 . 0 ) ;
55 Spec t rumVec to r g r a s s p a t h R a d i a n c e ( 0 . 0 ) ;
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56 f l o a t s c a l e F a c t o r ( 1 . 0 ) ;
57

58 i f ( ! g r a s s A l b e d o . i s Z e r o ( ) )
59 {
60 i f ( a d j a c e n c y )
61 {
62 p a t h R a d i a n c e = ( ( Spec t rumVec to r ( 1 . 0 f ) − groundAlbedo ) ∗

p a t h R a d i a n c e B l a c k ) + ( groundAlbedo ∗ p a t h R a d i a n c e W h i t e ) ; / /
v e c t o r i z e d l i n e a r i n t e r p o l a t i o n

63

64 }
65 e l s e
66 {
67 p a t h R a d i a n c e = p a t h R a d i a n c e G r a s s ;
68

69 }
70 }
71

72 Lpath += p a t h R a d i a n c e ∗ d i f f u s e W e i g h t ;
73 Lsky . c o n d i t i o n ( ) ;
74 Lup . c o n d i t i o n ( ) ;
75 Lback . c o n d i t i o n ( ) ;
76

77 Lw += ( Lsky + Lup ) + Lback ;
78 Lw . c l ampNega t i ve ( ) ;
79 Lw . c o n d i t i o n ( ) ;
80 Lb = Lpath ;
81 Lb . c l ampNega t i ve ( ) ;
82 Lb . c o n d i t i o n ( ) ;
83 Li += Lw+Lb ;
84 r e t u r n Li ;
85 }
86 / / F u n c t i o n i n R e n d e r e r f o r c a l c u l a t i n g t h e v a l u e and w e i gh t o f R

E q u a t i o n 3 . 5 and 3 . 8 r e s p e c t i v e l y
87 i n l i n e s t d : : v e c t o r<i n t > g e t R e c t F r o m P i x e l ( P o i n t 2 i& pos , i n t k e r n e l S i z e ,

boo l &i s F u l l S p a n ) c o n s t
88 {
89 s t d : : v e c t o r<i n t > r o i R e c t ;
90 i n t span = k e r n e l S i z e / 2 ;
91 i n t l e f t S p a n = pos . x − span ;
92 i n t r i g h t S p a n = pos . x + span ;
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93 i n t topSpan = pos . y − span ;
94 i n t bot tomSpan = pos . y + span ;
95

96 i f ( l e f t S p a n <= 0)
97 {
98 r o i R e c t . p u s h b a c k ( 0 ) ;
99 i s F u l l S p a n = f a l s e ;

100 }
101 e l s e
102 {
103 r o i R e c t . p u s h b a c k ( l e f t S p a n ) ;
104 }
105

106

107 i f ( topSpan <= 0)
108 {
109 r o i R e c t . p u s h b a c k ( 0 ) ;
110 i s F u l l S p a n = f a l s e ;
111 }
112 e l s e
113 {
114 r o i R e c t . p u s h b a c k ( topSpan ) ;
115 }
116

117

118 i f ( r i g h t S p a n > wid th − 1)
119 {
120 r o i R e c t . p u s h b a c k ( wid th − 1) ;
121 i s F u l l S p a n = f a l s e ;
122 }
123 e l s e
124 {
125 r o i R e c t . p u s h b a c k ( r i g h t S p a n ) ;
126 }
127

128

129 i f ( bot tomSpan > h e i g h t − 1)
130 {
131 r o i R e c t . p u s h b a c k ( h e i g h t − 1) ;
132 i s F u l l S p a n = f a l s e ;
133 }
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134 e l s e
135 {
136 r o i R e c t . p u s h b a c k ( bot tomSpan ) ;
137 }
138

139 r e t u r n r o i R e c t ;
140 }
141

142 i n l i n e s t d : : v e c t o r<i n t > g e t R e c t F r o m P i x e l ( P o i n t 2 i& pos , i n t k e r n e l S i z e )
c o n s t

143 {
144 s t d : : v e c t o r<i n t > r o i R e c t ;
145

146 i n t span = k e r n e l S i z e / 2 ;
147 i n t l e f t S p a n = pos . x − span ;
148 i n t r i g h t S p a n = pos . x + span ;
149 i n t topSpan = pos . y − span ;
150 i n t bot tomSpan = pos . y + span ;
151

152 r o i R e c t . p u s h b a c k ( l e f t S p a n ) ;
153 r o i R e c t . p u s h b a c k ( topSpan ) ;
154 r o i R e c t . p u s h b a c k ( r i g h t S p a n ) ;
155 r o i R e c t . p u s h b a c k ( bot tomSpan ) ;
156

157 r e t u r n r o i R e c t ;
158 }
159

160 i n l i n e Spec t rumVec to r g e t A d j a c e n t A l b e d o ( c o n s t P o i n t 2 uv , c o n s t i n t
k e r n e l S i z e , c o n s t i n t c l a s s e s ) c o n s t {

161

162 i n t x = math : : f l o o r T o I n t ( ( uv . x ) ∗wid th ) ;
163 i n t y = math : : f l o o r T o I n t ( ( uv . y ) ∗ h e i g h t ) ; / / g e t s i z e p r o p e r l y
164

165

166 i n t matID = 0 ;
167 P o i n t 2 i pos ( x , y ) ;
168 P o i n t 2 i l a s t F u l l P o s (−1 , −1) ;
169 i n t o r i g i n a l s u b s e t = 3 2 ;
170 i n t s u b s e t = o r i g i n a l s u b s e t ;
171

172 Spec t rumVec to r a l b e d o S p e c t r u m V e c t o r ( 0 . 0 f ) ;
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173 Spec t rumVec to r t e x t u r e S p e c t r u m V e c t o r ( 0 . 0 f ) ;
174 Spec t rumVec to r p i x e l V a l u e ( 0 . 0 f ) ;
175 boo l i s F u l l S p a n = t r u e ;
176 s t d : : v e c t o r<i n t > r o i R e c t = g e t R e c t F r o m P i x e l ( pos , k e r n e l S i z e ,

i s F u l l S p a n ) ;
177 Spec t rumVec to r backgroundAlbedo ;
178 f l o a t gsd = 0 . 7 f ;
179 P o i n t 2 i a j d P o s ;
180

181

182 f l o a t abundancy = 1 . 0 f ;
183 i n t k = 0 ;
184 f o r ( i n t x = r o i R e c t [ 0 ] ; x < r o i R e c t [ 2 ] ; x = x + s u b s e t )
185 {
186 f o r ( i n t y = r o i R e c t [ 1 ] ; y < r o i R e c t [ 3 ] ; y = y + s u b s e t )
187 {
188

189 a j d P o s = P o i n t 2 i ( x , y ) ;
190 i f ( a j d P o s != pos )
191 {
192 f l o a t d i s t x = gsd ∗ gsd ∗ ( a j d P o s . x − pos . x ) ∗ ( a j d P o s . x − pos . x ) ;
193 f l o a t d i s t y = gsd ∗ gsd ∗ ( a j d P o s . y − pos . y ) ∗ ( a j d P o s . y − pos . y ) ; / /

;
194 f l o a t d i s t = s q r t ( d i s t x + d i s t y ) ;
195

196 i f ( ( a j d P o s . x < wid th ) && ( a j d P o s . y < h e i g h t ) && ( a j d P o s . x >=
0) && ( a j d P o s . y >= 0) )

197 {
198 matID = M a t e r i a l I D f r o m P o s i t i o n ( a j d P o s ) ;
199 t e x t u r e S p e c t r u m V e c t o r . G e t S p e c t r u m V e c t o r B y M a t e r i a l I D (

Spec t rumVec to r : : m pr o j ec t ID , matID ) ;
200 }
201 a l b e d o S p e c t r u m V e c t o r += t e x t u r e S p e c t r u m V e c t o r / ( d i s t ∗ d i s t ) ;
202 k += 1 ;
203 }
204 }
205 }
206 backgroundAlbedo = a l b e d o S p e c t r u m V e c t o r ;
207 r e t u r n backgroundAlbedo ;
208 }
209
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210

211 i n l i n e i n t M a t e r i a l I D f r o m P o s i t i o n ( P o i n t 2 i p i x e l P o s ) c o n s t
212 {
213 Spec t rumVec to r r e s u l t ( 0 . 0 f ) ;
214 / / f e t c h e s r e f l e c t a n c e from db
215

216 Spec t rumVec to r mat = m codedTexBitmap−>g e t P i x e l ( p i x e l P o s , Bitmap : :
E P i x e l F o r m a t : : ERGB) ;

217

218 i n t r I n t = ( i n t ) ( mat [ 0 ] ∗ 255) ;
219 i n t g I n t = ( i n t ) ( mat [ 1 ] ∗ 255) ;
220 i n t b I n t = ( i n t ) ( mat [ 2 ] ∗ 255) ;
221 r e t u r n ( ( r I n t & 0 x 0 f f ) << 16) | ( ( g I n t & 0 x 0 f f ) << 8) | ( b I n t & 0 x 0 f f

) ;
222 }
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