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Abstract: The effect of acetate (HAc) and propionate (HPr) on denitrifying phosphorus removal (DPR) was evaluated in a 

novel two-sludge A2/O - MBBR (anaerobic/anoxic/oxic - moving bed biofilm reactor) system. Results showed that it was the 

carbon source transformation and utilization especially the composition of poly-β-hydroxyalkanoates (PHA) (mainly poly-β-

hydroxybutyrate (PHB) and poly-bhydroxyvalerate (PHV)) decided DPR performance, where the the co-exist of HAc and 

HPr promoted the optimal nitrogen (85.77%) and phosphorus (91.37%) removals. It facilitated the balance of PHB and PHV 

and removing 1mg NO3- (PO43-) consumed 3.04 - 4.25 (6.84 - 9.82) mgPHA, where approximately 40 - 45% carbon source 

was saved. Mass balance revealed the main metabolic pathways of carbon (MAn,C (consumed amount in anaerobic stage) and 

MA-O,C (consumed amount in anoxic and oxic stages): 66.38 - 76.19%), nitrogen (MDPR,N (consumed amount in DPR): 57.01 - 

65.75%), and phosphorus (MWS,P (discharged amount in waste sludge): 81.05 - 85.82%). Furthermore, the relative abundance 
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and microbial distribution were assessed to elucidate DPR mechanism (e.g. Accumulibacter, Acinetobacter, Dechloromonas, 

Competibacter, and Defluviicoccus) in the A2/O reactor and nitrification performance (e.g. Nitrosomonas, 

Nitrosomonadaceae and Nitrospira) in the MBBR. Carbon source was demonstrated as the key point to stimulate the 

biodiversity and bioactivity related to DPR potential, and the operational strategy of carbon source addition was proposed 

based on the utilizing rules of HAc and HPr.  

 

Keywords: A2/O - MBBR; carbon source; denitrifying phosphorus removal; mass balance; Illumina MiSeq sequencing; 

operation optimization 
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Nomenclature 

C/N: the ratio of COD to TN 

HAc, HPr: acetate, propionate 

WWTPs: wastewater treatment plants  

BNR: biological nutrient removal  

DPR: denitrifying phosphorus removal 

PAOs (DPAOs): phosphorus accumulation organisms (denitrifying PAOs) 

GAOs (DGAOs): glycogen accumulating organisms (denitrifying GAOs) 

AOB, NOB, OHOs: ammonia-oxidizing bacteria, nitrite-oxidizing bacteria, ordinary heterotrophic organisms 

A2/O - MBBR: anaerobic/anoxic/oxic - moving bed biofilm reactor 

VFAs: volatile fatty acids; mg/L 

PHA, PHB, PHV: poly-β-hydroxyalkanoates, poly-β-hydroxybutyrate, poly-bhydroxyvalerate; mgCOD/L 

Gly: glycogen; mgCOD/L 

MLSS, VSS: mixed liquor suspended solids, volatile suspended solids; mg/L  

SND: simultaneous nitrification and denitrification  

Minf,C: COD amount in influent; mg/d 

MAn,C: COD consumed amount in anaerobic stage; mg/d 

MA-O,C: COD consumed amount in anoxic and oxic stages; mg/d 

MMBBR,C: COD consumed amount in MBBR; mg/d 

MWS,C: COD discharged amount in waste sludge; mg/d 

Meff,C: COD residual amount in effluent; mg/d 

Minf,N: TN amount in influent; mg/d  

MDPR,N: TN consumed amount in DPR; mg/d 

MAssi,N: TN consumed amount in microbial assimilation; mg/d  

MSND,N: TN consumed amount in SND; mg/d 

Meff,N: TN residual amount in effluent; mg/d 

Minf,P: PO43- amount in influent; mg/d  

MWS,P: PO43- discharged amount in waste sludge; mg/d  

Meff,P: PO43- residual amount in effluent; mg/d 

TPAn: PO43- release amount in anaerobic stage; mg/L 

CODAn: COD amount in anaerobic effluent; mg/L 

CODA2/O: COD amount in A2/O effluent; mg/L 

CODeff: COD amount in final effluent; mg/L 

ΔCOD: COD variation; mg/L 

EBPR: enhanced biological P removal 

OTUs: operational taxonomic units 
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1. Introduction 

Nitrogen (N) and phosphorus (P) mainly responsible for eutrophication have become the focus of increased attention, 

and many regulations have been made to meet the strict nutrient discharge standards (Brown et al., 2011). Carbon (C)/N ratio 

(refers to chemical oxygen demand (COD)/total nitrogen (TN)) as a crucial parameter directly affects denitrification, P 

removal, and microbial growth (Peng & Ge, 2011). Generally, external carbon sources (e.g. acetate (HAc) and propionate 

(HPr)) are added to alleviate the substrate metabolism and microbial competition between N and P removals in wastewater 

treatment plants (WWTPs) especially for low C/N ratio sewage (lower than 4) (Zhang et al., 2019a). Thus, the advanced N 

and P removals without increasing carbon source addition and energy consumption remains a challenge in traditional 

biological nutrient removal (BNR) systems (Wang et al., 2019a).  

Denitrifying phosphorus removal (DPR) has been a research hotspot due to N and P removals simultaneously through 

the same carbon source, and phosphorus accumulation organisms (PAOs) especially denitrifying PAOs (DPAOs) can be 

enriched using nitrate (NO3
-) or nitrite (NO2

-) as electron acceptors instead of oxygen (O2), resulting in considerable aeration 

lowering, carbon sources saving as well as sludge reducing (Ahn et al., 2002; Kuba et al., 1996). Particularly, the shift of 

operation mode from single-sludge to two-sludge was adopted to maximize the utilization of existing carbon sources (Zhang 

et al., 2016c; Zhang et al., 2013; Zhao et al., 2016a). Two-sludge systems could create favorable environment for heterotrophic 

PAOs or DPAOs in anaerobic-anoxic sludge and autotrophic nitrifiers in oxic biofilm (Chen et al., 2011). With the separation 

of sludge retention time (SRT), it successfully solved the adverse conditions of long aeration required for efficient nitrification 

in single-sludge systems (Marcelino et al., 2011), especially for high-strength ammonia sewage treatment under low 

temperature (Zhang et al., 2019b). However, glycogen accumulating organisms (GAOs) and denitrifying GAOs (DGAOs) 

competed with PAOs and DPAOs without contributing to P removal (Oehmen et al., 2007). On the other hand, other groups 

known as ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) also have contradiction with ordinary 

heterotrophic organisms (OHOs) (Wang et al., 2019b) in N removal. To improve nutrient metabolism efficiency, it is 

necessary to understand and control the competition among these microorganisms.  
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Actually, the micro competition can be influenced by many macro factors, such as temperature, pH, hydraulic retention 

time, electron acceptor, C/N ratio, carbon source especially the COD composition of the wastewater (Chen et al., 2015; Filipe 

et al., 2001; Yang et al., 2018; Zhang et al., 2016a). As the most common carbon sources, HAc and HPr accounted for 60 - 

80% and have been widely studied since they are the abundant volatile fatty acid (VFA) compositions in wastewater (Cai et 

al., 2016; Wang et al., 2010). But the effects of HAc and HPr on microbial competition and DPR performance were not always 

consistent, as successful and deteriorative DPR systems in the presence of HAc and HPr have both been reported in the 

literatures (Carvalheira et al., 2014; Oehmen et al., 2006; Pijuan et al., 2009). Due to this limitation, the nutrient metabolism 

has not yet been clarified clearly in most DPR systems, even though it represents a common goal to enrich and maximize 

PAOs and DPAOs (Carvalheira et al., 2014). Moreover, there is limited knowledge about how C, N, and P evolve, mostly 

because of the fact that so many combined factors take part in nutrient metabolism. 

These provided the motivation for the present study, which investigated the single-factor effect of carbon source on 

nutrient metabolism, mass balance, and microbial evolution based on a two-sludge A2/O - MBBR (anaerobic/anoxic/oxic - 

moving bed biofilm reactor) system (Zhang et al., 2019b), in order to 1) describe its impact on the overall performance of C, 

N, and P, particularly with regards to the link between intercellular carbon source (e.g. poly-β-hydroxyalkanoates (PHA) and 

glycogen (Gly)) and nutrient metabolic mechanism, 2) evaluate its impact on the evolutions of C, N, and P, where significant 

differences obtained from mass balance provided a new perspective on the transition from nutrient removal into energy 

conservation and resource recovery in wastewater treatment, and 3) understand its impact on microbial community of 

biological diversity and functional bacteria abundance for high-efficient utilization of carbon source. 

2. Materials and methods 

2.1 Wastewater quality and seed sludge 

The wastewater was artificially synthesized with 250 ± 20 mg/L COD (provided by HAc and HPr), 65 ± 5 mg/L NH4+ 

(provided by NH4Cl), 6 ± 0.50 mg/L PO43- (provided by KH2PO4). Meanwhile, trace element was added to the synthetic 

wastewater (g/L) (Zhang et al., 2019a): MgSO4·7H2O, 0.88; FeCl3·6H2O, 1.50; Na2MoO4, 0.06; ZnSO4·2H2O, 0.12; CuSO4, 
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0.03; CoCl2·6H2O, 0.15; CaCl2·2H2O, 1.40; KI, 0.18; H3BO3, 0.15; and C10H16N2O8, 10. The average influent C/N and C/P 

ratios were 3.85 ± 0.15 and 41.67 ± 1.60, respectively, where pH was controlled at 7 ± 0.50 by adding Na2CO3 (1 M) to 

maintain biological stability.  

A2/O reactor sludge was inoculated from the CAST process in Tangwang WWTPs (Yangzhou, China), and the mixed 

liquor suspended solids (MLSS) and volatile suspended solids (VSS) was around 6000 mg/L and 4500 mg/L with better 

settling properties (sludge volume index (SVI): 140 - 180 mL/gVSS) (Zhang et al., 2020) and stable N and P removal 

performances. Based on the A2/O effluent with a large amount of NH4+, MBBR achieved the quick natural biofilm formation 

within 18 days without additional inoculation sludge (Zhang et al., 2019b).  

2.2 A2/O - MBBR system and experimental operation 

The A2/O - MBBR system was mainly made up of feeding tank, A2/O reactor, middle settler, MBBR reactor (including 

settling zone), and effluent tank (Fig.S1). The feeding tank (working volume: 150 L) was used to provide raw water, and the 

A2/O reactor (working volume: 28 L) was evenly divided into eight chambers including anaerobic zones (An1, An2), anoxic 

zones (A1 - A5) and oxic zone (O) with the volume ratio of 2:5:1. The influent flow rate (Q) was controlled at 67.20 L/d, and 

the hydraulic retention time (HRT) was 10 h to strengthen DPR due to longer anaerobic/anoxic reaction (8.75 h). The dissolved 

oxygen (DO) in the short oxic zone was maintained at 1.50 ± 0.50 mg/L to expel nitrogen gas generated by DPR and absorb 

the remaining PO43-. The A2/O effluent flowed into the middle settler for the sludge and water separation, where partial settled 

sludge was recycled (sludge return ratio: r=100%) to the anaerobic zone of the A2/O reactor (An1) and the supernatant entered 

into the following MBBR (working volume: 10.50 L). Specially, the A2/O reactor was controlled at a shorter SRT (10 + 2 d) 

by discharging wasted sludge.  

The MBBR composed of three identical chambers (N1, N2 and N3) was operated at a longer SRT (80 + 2 d) (Zhang et 

al., 2019b) for nitrification. It was packed with cylinder polypropylene carriers (size: 5 mm × 3 mm; density: 960 - 1000 

kg/m3; effective porosity: 98%; specific surface area: 1500 m2/m3) with the filling ratio of 50 ± 5%. All carriers can move and 

circulate by controlling DO of 3.50 - 4.50 mg/L to enhance the mass transfer and diffusion efficiency (Manser, 2005). The 
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settling zone was set to collect detached biofilm so as to prevent nitrifiers entering the A2/O reactor, and the nitrate acting as 

electron acceptor for DPR was recycled (nitrate recycle ratio: R= 400%) to the anoxic zone of the A2/O reactor (A1).  

The system lasted 120 days divided into three phases by changing carbon source types (Phase 1: HAc; Phase 2: 0.5 HAc 

+ 0.5 HPr; Phase 3: HPr) (COD= 250 ± 20 mg/L) (Table 1). Particularly, each phase kept running for 40 days (> 3SRTs) 

under similar operation parameters to ensure the stable operation and data reliability (Zhang et al., 2016a). The influent 

belonged to typical low C/N ratio (3.85 ± 0.15) wastewater, HRT and average VSS of the A2/O reactor was 10 h, 4000 mg/L 

with the volume ratio of 2:5:1, sludge recycling and nitrate recycling were set as 100% and 400% at ambient temperature of 

22 ± 3℃. At the end of each phase (Day 40, 80, 120), mass balance, nutrient metabolism and microbial community analysis 

were conducted. 

2.3 Analysis methods 

COD was monitored using a COD quick-analysis apparatus (LH-3C, Lanzhou, China), nitrogen (including NH4+, NO3- 

and NO2-), PO43-, MLSS and VSS were analyzed based on the standard methods (AWWA, 2005). TN was measured with a 

TN/TOC analyzer (MultiN/C3100, Analytik Jena, AG). VFA and PHA (including poly-β-hydroxybutyrate (PHB), poly-

bhydroxyvalerate (PHV) and negligible poly-3-hydroxy-2-methylvalerate (PH2MV) (Zhang et al., 2019a)) were detected 

using the gas chromatograph (Agilent 6890N) with Agilent DB - 1 column (Oehmen et al., 2010), while Gly was extracted 

and analyzed using the Anthrone method. Temperature, pH and DO were monitored using a WTW pH/DO meter (WTW Multi 

340i, Germany).  

2.4 Calculation 

2.4.1 Carbon balance analysis 

The total amount of carbon entered into the system (Minf,C) mainly included the following aspects: COD consumed amount 

in anaerobic stage (MAn,C), anoxic and oxic stages (MA-O,C) during the A2/O reactor, oxidation amount in the MBBR (MMBBR,C), 

discharge amount of waste sludge (MWS,C), and residual amount in the effluent (Meff,C), where the carbon balance ratio (RC) can 

be finally analyzed according to the equations below:  

javascript:;
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Minf,C = Qinf ·Cinf                                             (1-1) 

MAn,C= Qinf ·Cinf + r·Qinf ·CRS - (1+r)·Qinf ·CAn                      (1-2) 

MA-O,C= (1+r)Qinf ·CAn +R·Qinf ·Ceff -(1+r+ R)·Qinf ·  CO               (1-3) 

MMBBR,C= (1+R)·Qinf ·CMS - R·Qinf ·Ceff -Qeff ·Ceff                   (1-4) 

 MWS,C = QWS·XWS·fCV ·f                         (1-5) 

 Meff,C = Qeff ·Ceff                            (1-6) 

  RC= (MAn,C + MA-O,C + MMBBR,C + MWS,C + Meff,C)/Minf,C ·100%      (1-7) 

Where Qinf, QWS, Qeff were the flow rates of influent, waste sludge, and effluent (Qinf = Qeff), L/d; Cinf, CRS, CAn, CO, CMS, Ceff 

were the COD concentrations of influent, recycled sludge, anaerobic stage, oxic stage, middle settler (CMS = CRS), and effluent, 

respectively, mg/L; r, sludge return ratio, 100%; R, nitrate recycle ratio, 400%; XWS was VSS concentration in waste sludge, 

mg/L; f was the ratio of VSS/MLSS; fCV was COD stoichiometric coefficient in activated sludge, 1.48 mgCOD/mgVSS 

(Chuang & Ouyang, 2000). 

2.4.2 Nitrogen balance analysis  

The total amount of nitrogen in the system (Minf,N) was mainly composed of four parts: TN removal amount in DPR 

(MDPR,N) and microbial assimilation (MAssi,N), simultaneous nitrification and denitrification (SND) in the MBBR (MSND,N) and 

residual amount in the effluent (Meff,N) (Chen et al., 2014; Lee et al., 2008). 

Minf,N =Qinf ·Ninf                                               (2-1) 

MDPR,N = (NA,inf - NA,eff)(1+R+r)                                  (2-2) 

MAssi,N = QWS·XWS·f··fN/biomass                                    (2-3) 

Meff,N = Qeff ·Neff                                            (2-4) 

MSND,N= Minf,N -MDPR,N -MAssi,N -Meff,N                                             (2-5) 

Where Ninf , Neff, NA,inf , NA,eff were the TN concentrations of influent, effluent, and anoxic influent, effluent, respectively, mg/L; 

fN/biomass was nitrogen content in activated sludge, 12.39% (Henze et al., 1999).  
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2.4.3 Phosphorus balance analysis  

The total amount of phosphorus in the system (Minf,P) was mainly removed through the discharge of waste sludge (MWS,P), 

but the residual amount in the effluent (Meff,P) indirectly determined the phosphorus balance ratio (RP).  

Minf,P =Qinf ·Pinf                                                 (3-1) 

MWS,P = QWS·XWS·fP                                            (3-2) 

Meff,P = Qeff ·Peff                                                  (3-3) 

RP= (MWS,P + Meff,P)/Minf,P ·100%                                        (3-4) 

Where Pinf, Peff, were the PO43- concentrations of influent and effluent, mg/L; fP was phosphorus content in activated sludge, 

1.50 - 2.50% (Henze et al., 1999). 

2.5 Microbial community analysis 

The seed sludge (Day 0), A2/O sludges (Day 40, 80, and 120) and nitrification biofilms of MBBR (N1, N2 and N3, Day 

120) (Table 1) were collected for Illumina MiSeq sequencing analysis (Rollemberg et al., 2019) through Shanghai MEIJI 

Biotechnology (PE300 platform, Personalbio Biotechnology Co., Ltd., Shanghai, China). Genomic DNA was extracted using 

the E.Z.N.A. ® Soil DNA Kit (Omega Bio-tek, Norcross, GA, USA), and the average OD260/280 value of all samples was 

1.96 ± 0.02. 16S rRNA gene polymerase chain reaction (PCR) amplification was performed on the ABI GeneAmp® 9700 

PCR System. The primer sequences of V3-V4 region (∼392 bp) used in this study were as follows: 338F (5′- 

ACTCCTACGGGAGGCAGCA-3′) and 806R (5′-GGACTACHVGGGTWTCTAAT-3′). The pyrosequencing procedure, 

statistical and bioinformatics analysis (Accession number: SRP223205) were conducted following the previous description 

(Zhang et al., 2019a). 

3. Results and discussions 

3.1 Effect of carbon source on the overall performance 

The influent COD varied from 230.20 to 269.30 mg/L and was mainly utilized in the anaerobic zones. In Phase 1, the 

average anaerobic effluent (CODAn) was 98.13 mg/L using HAc as sole carbon source (Fig.1A). According to Eq. (1-2), MAn,C 
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was 157.38 mg/L and the MAn,C efficiency only reached to 68.78%, leading to poor anaerobic P release (TPAn=15.27 mg/L) 

(Fig.1C). Anoxic DPR efficiency achieved to 87.54% with the TN removal of 78.70% (Fig.1B), and the average effluent TN was 

13.58 mg/L. In Phase 2, when the co-existent HAc and HPr was added, CODAn further decreased to 40.60 mg/L, and MAn,C 

efficiency reached to the peak of 94.87% (Fig.1A), which was close to the coupling DPR with simultaneous partial nitrification-

endogenous denitrification (SPNED) system (91%) (He et al., 2017b), but much higher than the post endogenous DPR system 

(71.20%) (Zhao et al., 2018a) and endogenous partial DPR process (60.60 - 80.10%) (Wang et al., 2019a). Specially, TPAn 

was as high as 25.63 mg/L along with the TP effluent of 0.47 mg/L (Fig.1C), revealing the strong relationship between MAn,C 

efficiency and TPAn. Meanwhile, DPR proceeded well (DPR efficiency: 92.35%) and contributed to a higher TN and TP 

removals of 85.77%, 91.37%, respectively (Fig.1B-C). In Phase 3 (Day 80 - 100), the operation of HPr as sole carbon source 

conducted smoothly during the first 20 days, but MAn,C efficiency decreased from 90.32% to 75.17% in the last 20 days (Day 

100 - 120) (Fig.1A), accompanied with the decline of TPAn from 20.53 mg/L to 9.58 mg/L (Fig.1C). Accordingly, TN and TP 

removals dropped from 86.29%, 87.89% to 71.73%, 57.70%, indicating that the types of carbon source especially the 

transformation of intercellular carbon source (mainly MAn,C) closely related to the nutrient performance. It also highlighted 

the benefits of mixed carbon source in improving DPR, which coincided with the previous observations (Zhang et al., 2019a).  

Due to the biodegradability of HAc and HPr, the total COD removal was around 87.32 - 89.41% (Fig.1A), but the 

removal features in the A2/O and MBBR varied significantly. In Phase 2, the A2/O effluent (CODA2/O=40.60 mg/L) was similar 

to the final effluent (CODeff=34.67 mg/L), which provided favorable conditions for the enrichment of AOB and NOB in the 

MBBR (Chen et al., 2011), resulting in outstanding nitrifying performance with the NH4+ effluent of 0.69 mg/L (Fig.1B). 

With respect to other two phases, the variation between CODA2/O and CODeff were 17.10 mg/L (Phase 1) and 24.82 mg/L 

(Phase 3) (Fig.1A), and these easily degradable COD were inevitably wasted and led to much higher NH4+ effluent (1.50 - 

2.93 mg/L) in the MBBR (Fig.1B), which was in accordance with the deteriorative TN and TP removals on Day 100 - 120. 

Comparing with the traditional two-sludge DPR systems (e.g. A2NSBR (Zhao et al., 2016b) and AOA system (Zhao et al., 

2018b)), the mixed carbon source of HAc and HPr was high-efficiently stored and utilized without wasted by oxic oxidation, 
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and the bottleneck of high NH4+ residue in effluent can also be solved, providing an alternative for reducing extra carbon 

addition and operational cost (Bassin et al., 2012; Kapagiannidis et al., 2013).  

3.2 Nutrient metabolism linked with different carbon sources 

The nutrient evolution was compared to show the DPR mechanism, referring to COD, VFA, TN, TP, PHA (=PHB+PHV), 

and Gly (Fig.2A-C). After the raw water entered, COD and VFA declined rapidly to store internal carbon sources, with the 

PHA contents up to 94.33, 100.65, 81.65 mgCOD/L. In the end of anaerobic reaction, the residual COD was 72, 53.20, 85.30 

mg/L and conformed to the variation of MAn,C efficiency (Fig.1A). Meanwhile, the more PHA stored, the higher P released, 

where TP reached to 20.29, 32.40, 7.98 mg/L, indicating the correlation between PHA and TP (Zhang et al., 2019a).  

In the anoxic zones, N denitrification synchronously accompanied with P removal, and PHA was gradually utilized while 

Gly rose steadily. Particularly, PHA utilization efficiency increased from 69.16% (Day 40) to 75.21% (Day 80), but decreased 

to 48.67% (Day 120) (Fig.2D), leading to different increments of Gly (ΔGly: 61.27, 83.30, 30.90 mgCOD/L). On the one 

hand, the residual COD was primarily utilized by OHOs and promoted the extracellular denitrification rather than PHA 

utilization, which can be seen from various COD downward trends in the anoxic zones (ΔCOD: Phase 1, 38.40 mg/L; Phase 

2, 18.65 mg/L; Phase 3, 30.25 mg/L) (Fig.2A-C). It’s worth noting that the COD concentration in A2/O effluent was as high 

as 60.60 mg/L on Day 120, causing the sharp drop of PHA utilization efficiency. On the other hand, the type of carbon source 

directly affected the PHA transformation and utilization (Fig.2D), especially for the distribution of PHB and PHV. The ratios 

of PHB/PHA reduced from 82.86% to 67.63%, 46.53%, where HPr had been proved to be conducive to the PHV synthesis 

(Yagci et al., 2007). It was also reported that PHB was mainly degraded through HAc catabolism while PHV was metabolized 

via HPr (Miao et al., 2016). Generally, the degradation of PHB takes precedence over PHV (Torresi et al., 2019), but PHV 

was more related with TN and TP removals (Zhang et al., 2019a). In Phase 2, the co-existent HAc and HPr facilitated the 

balance of PHB and PHV and achieved superior TN and TP removals.  

Most importantly, with respect to the DPR process, removing 1mg NO3- and 1mg PO43- consumed 3.04 - 4.25, 6.84 - 

9.82 mgPHA, respectively (Fig.2D). It was reported that removing 1mg PO43- needed 7.03 - 9.83 mgPHA (17.22 - 22.89 
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mgCOD) (Zhang et al., 2016a) in the A2/O - BCO system and 26 - 34 mgCOD in traditional enhanced biological P removal 

(EBPR) systems (Grady Jr et al., 2012). By contrast, approximately 40 - 45% carbon source can be saved in Phase 2 although 

it’s lower than the theoretical value (50%) (Kuba et al., 1996), exhibiting the prominent advantages of DPR technology in the 

A2/O - MBBR system.  

3.3 Mass balance during the nutrient mechanism 

Mass balance (Day 40, 80, and 120) linked with C, N, P was further compared to elucidate the impact of carbon sources 

on DPR performance (Fig.3). In terms of carbon balance (RC: 98.63 - 99.02%) (Fig.3A), under the similar proportion of Meff,C 

(5.73 - 7.60%), MAn,C and MA-O,C as the dominant COD removals summed up to 75.32%, 76.19%, 66.38% due to the desired 

environment and sufficient anaerobic/anoxic reaction time (8.75 h) in the two-sludge system, which was higher than the UCT 

process (52.70 - 67%) (Nowak et al., 1999). Thereinto, MAn,C accounted for 49.37%, 60.38%, and 55.80%, corresponding to the 

variations of MAn,C efficiency (Fig.1A) and TPAn (Fig.1C). In Phase 2, the majority COD were preferentially utilized by PAOs 

and then followed by denitrifying bacteria in the A2/O reactor, which greatly reduced the aeration consumption and enhanced the 

enrichment of nitrifiers (Zhang et al., 2016a). Thus, the percentage of MMBBR,C was only 2.12% on Day 80, while it reached up to 

12.95% on Day 120, resulting in the waste of carbon sources (Fig.1A) and higher NH4+ effluent (Fig.1B).  

Apparently, MDPR,N increasing from 57.01% to 65.75% (Fig.3B) presented close correlation with MAn,C and promoted the 

simultaneous TN and TP removals in Phase 1 - 2 (Fig.1A). However, due to the deterioration of DPR on Day 120, MDPR,N declined 

to 48.68% and led to higher Meff,N (27.72% .vs. 13.83%), accompanied with increased TNeff concentrations (17.24 mg/L .vs. 9.49 

mg/L) (Fig.1B). Regarding to the similar SRT, MAssi,N and MWS,C fluctuated at 9.25 - 11.86% and 12.32 - 12.94%. Particularly, 

nitrogen loss demonstrated the presence of MSND,N (9.93 - 14.35%) in the MBBR (Fig.3B) and promoted the deep-level 

nutrient removal. Even so, MSND,N function was indistinctive and much lower than other aerobic sludge systems (Bueno et al., 

2018; He et al., 2017a) for the following reasons. Firstly, it cannot satisfy the energy requirement owing to the limited carbon 

residual proved by MMBBR,C in the MBBR (Seifi & Fazaelipoor, 2012). Secondly, higher MSND,N (81.23%) was obtained at 

lower DO concentration (0.35 mg/L) (Ma et al., 2017) because of the anoxic micro-environment in the inner parts of biofilm 
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under the oxygen-limited condition, however, higher DO range (3.50 - 4.50 mg/L) for better nitrification destroyed the micro-

environment in this study. Finally, the biomass was only 2080 - 2210 mg/L with the biofilm thickness of 185 - 205 μm in the 

MBBR (Table 1), while an optimum biofilm thickness was proved to be 600 - 1200 μm for efficient SND (Matsumoto et al., 

2007).  

Moving on to the P balance (RP: 96.33 - 97.42%) (Fig.3C), the potential of P removal was evaluated, which further 

provided theoretical basis for P recovery from wastewater treatment (Zhu et al., 2018). Approximately 81.05 - 85.82% of P 

in influent was transferred and incorporated into the sludge (MWS,P) on Day 40 and Day 80, regardless of TPAn and DPR 

efficiency varied significantly (Fig.1C). It should be pointed out that the short oxic zone was indispensable to ensure efficient 

P removal (Zhang et al., 2013) although MAn,C, MA-O,C and MDPR,N contributed a lot in the anaerobic/anoxic zones (Fig.3A-B). 

To maintain lower Meff,P (11.60 - 15.28%), wasted sludge was discharged after the majority P was absorbed. However, obvious 

deterioration of P removal was observed on Day 120 (Fig.1C), causing reduced MWS,P (85.82% → 69.30%) along with higher 

Meff,P (11.60% → 27.75%).  

3.4 Effect of carbon source on the microbial structure community 

A total number of 32923 - 57737 effective sequences were retrieved from the A2/O sludge samples (Fig.4A), and 838 - 

1151 operational taxonomic units (OTUs) were obtained at 97% similarity (Fig.4C). Shannon index went up from 4.61 (Day 

0) to 5.30 (Day 40), 5.58 (Day 80) then dropped to 4.59 (Day 120) (Fig.4A), while Simpson index showed the same trend 

(0.008, 0.012, 0.039, 0.032) (Fig.4B), indicating that the species richness was improved by the addition of external carbon 

source. The peaks (5.58, 0.039) occurred with the mixture of HAc and HPr on Day 80, suggesting the highest relative 

abundances of bacterial community (He et al., 2018). However, Shannon (4.59) and Simpson indexes (0.032) unexpectedly 

fell down with more HPr on Day 120, implying that HPr was not a suitable carbon source for DPR in terms of bacterial 

richness, which was in accordance with the poor nutrient metabolism performance (Fig.1, Fig.2, Fig.3).  

Venn diagram further exhibited the difference caused by carbon sources, where only 408 OTUs were shared by four 

sludge samples (Fig.4C).The OTUs in A2/O sludge samples (838 - 995) were lower than seed sludge (1151), implying the 



14 

 

shift of more concentrated microbial community (He et al., 2017b). Specially, the addition of HAc and HPr occupied 92 

unique OTUs on Day 80, but single HAc or HPr only possessed 40, 20 unique OTUs. Combining with the microbial diversity 

(Fig.4A-B), the results showed that more disparate microbial distributions were shared under the mixture of HAc and HPr, 

which had been proved that mixed carbon source decidedly shaped the bacterial community (He et al., 2018).  

The functional bacteria abundances at phylum level were investigated, and the addition of carbon sources significantly 

changed the microbial community structures from the seed sludge (Fig.5A). Proteobacteria (30.67 - 42.62%), Chloroflexi 

(15.95 - 25.93%), and Bacteroidetes (2.12 - 21.97%) were the three dominant phyla, which had been identified to contain 

PAOs and DPAOs (Zhang et al., 2016b; Zhang et al., 2019a). Actinobacteria commonly detected in activated sludge systems 

(Wang et al., 2019b) and Saccharibacteria responsible for organic matter degradation as well as denitrification (Zhou et al., 

2015) decreased from 24.20% (Day 0: 15.10% + 9.10%), 21.00% (Day 40: 9.73% + 11.27%) to 3.96% (Day 80: 1.30% + 

2.66%), 4.20% (Day 120: 1.82% + 2.38%), indicating the adverse impact of HPr on COD removal (Fig.1A). Parcubacteria 

identified in most anaerobic/anoxic metabolism using NO3- instead of O2 (Nelson & Stegen, 2015) occupied a larger 

proportion of 14.96% in Phase 2 (vs. 0.6% in Phase 1 and 3.6% in Phase 3) and enhanced the DPR performance (Fig.1-3). 

Moreover, Chlorobi of the same group with Bacteroidetes was 6.11% in Phase 2, which was much higher than other samples 

(0 - 1%).  

Further comparison of the dominant bacterial at genus level was conducted to reveal the microbial community evolution 

(Table 2). Accumulibacter classified as PAOs (belonging to Proteobacteria) benefited from 0.39% (Day 0), 8.49% (Day 40), 

18.72% (Day 80) to 10.23% (Day 120), and Acinetobacter related to PAOs (Gebremariam et al., 2011) also increased from 

1.06% (Day 0) to 1.35 - 2.98% (Phase 1 - 3). Dechloromonas (1.52 - 4.78%) and Pseudomonas (0.72 - 3.27%) belonging to 

DPAOs (Xu et al., 2019) reached to the peak on Day 80 when HAc and HPr coexisted. Due to the enhancement of DPR, the 

bacteria groups of Accumulibacter, Acinetobacter, Dechloromonas and Pseudomonas occupied 14.34%, 29.13%, and 16.18% 

in the A2/O sludge while they were hardly detected in the seed sludge (1.70 %). However, Competibacter and Defluviicoccus 

known as GAOs (Dai et al., 2007) were the dominant species with the total percentages of 1.85% (Day 0), 5.27% (Day 40), 
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20.28% (Day 80), 27.98% (Day 120), respectively. GAOs showed a more inferior position to HAc than HPr, although they 

were able to metabolize both HAc and HPr (Adrian et al., 2006; Zhang et al., 2019a). According to the metabolic model of 

PAO-GAOs (Lopez-Vazquez et al., 2009), PAOs exhibited an advantage over GAOs when HAc and HPr were simultaneously 

fed as compared to cases when the single carbon source was supplied. Beyond that, the abundance of OHOs in terms of 

Thauera (0.25 - 2.39%), Comamonas (1.39 - 3.03%), Azospira (0.07 - 0.19%), Thermomonas (0.02 - 0.05%) decreased 

comparing with the seed sludge, showing that exogenous denitrification was suppressed. Nevertheless, Anaerolineaceae and 

Zoogloea considered as filamentous microorganism increased from 1.13% and 0.94% to 1.49 - 11.87% and 2.98 - 4.31%, 

respectively, playing the predominant potential in granular sludge without filamentous-type bulking (He et al., 2020; Zhang 

et al., 2016b). Thanks to the shorter SRT in the A2/O reactor, Nitrosomonas and Nitrosomonadaceae identified as AOB 

declined from 4.03% (2.75% + 1.28%) to 0.83% (0.45% + 0.38%), 0.33% (0.16% + 0.17%), 0.25% (0.04% + 0.21%), while 

Nitrospira identified as NOB dropped from 3.01% to 0.10 - 0.48% (Table 2). 

When it comes to the MBBR (Fig.5B), Proteobacteria which was common in a broad range of environments and 

lifestyles accounted for 77.60 - 81.79%, and Planctomycetes and Nitrospira responsible for nitrification (Wang et al., 2014) 

increased from 2.70% (N1: 1.14% + 1.56%) to 11.70% (N2: 4.64% + 7.06%), and 21.91% (N3: 6.48% + 15.43%). 

Actinobacteria belonging to filamentous could decompose many organic matters (Puttaswamygowda et al., 2019), decreasing 

from 4.67% to 2.97%, 2.28% because of the decrescent COD contents from N1 to N3. Chloroflexi (1.61 - 2.78%), Bacteroidetes 

(1.66 - 3.65%), and Chlamydiae (1.25 - 2.31%) were similar in three biofilm samples, implying they were not notably affected 

by DO. At genus level (Table 2), Nitrosomonas and Nitrosomonadaceae as the typical AOB (Chen et al., 2006) increased 

from 2.33% (2.18% + 0.15%) to 16.03% (15.24% + 0.79%), 21.80% (20.75% + 1.05%), while Nitrospira as the typical NOB 

rose from 1.56% to 7.06%, 15.43%. The total abundance of AOB and NOB (3.89%, 23.09%, and 37.23%) gradually enriched 

along the flow direction owing to the special three-stage mode in the MBBR (Zhang et al., 2016b). Theoretically, organic 

matter often prevents or inhibits the O2 utilization in nitrification (Pan et al., 2020), leading to adverse environment for NH4+ 

removal and nitrifiers enrichment (Zhu et al., 2014). On account of lower MMBBR,C (Fig.3A), the percentages of AOB (17.88%) 
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and NOB (21.71%) were similar to the nitrifying SBR but much higher than a pilot nitrifying MBBR with AOB of 6.5 - 7.0% 

and NOB of 2.3 - 3.8% (Young et al., 2017). Nevertheless, OHOs still occupied the majority due to a higher proliferation rate 

(Berg et al., 2009). Thermomonas related to denitrification (Xing et al., 2018) accounted for 40.14% in N1, but reduced to 

12.22% (N2) and 2.65% (N3). Anaerolineaceae and Zoogloea isolated from granular sludge (Yamada et al., 2006) and attached 

for biofilm skeleton (Zhang et al., 2016c) varied between 0.74 - 1.05% and 6.78 - 8.03%. Pseudomonas with certain SND 

abilities during the mass transfer (He et al., 2016) accounted for 0.84 - 2.19%, contributing to MSND,N for improved TN 

removals (Fig.3B).  

3.5 Operation optimization based on the utilizing rules of HAc and HPr 

It was reported that HAc and HPr ranged around 49 - 71% and 24 - 33% of the total influent VFAs in WWTPs (Chen et 

al., 2004), so this study proposed an operation strategy and showed important application value to optimize carbon source 

addition for advanced nutrient removal. Firstly, the types of carbon source especially the transformation and utilization of 

PHA closely related to the nutrient performance, and the co-existent HAc and HPr facilitated the balance of PHB and PHV. 

Secondly, mass balance contributed to the deep comprehension of DPR metabolic pathways with the purpose of economic 

operation, which also provides reference for other BNR systems. Finally, the mixture of HAc and HPr promoted the bacterial 

richness, and certain special genera (e.g. Actinobacteria, Saccharibacteria, Parcubacteria and Chlorobi) played important 

roles in operation stability although PAOs and GAOs were the two main competitive groups. However, the above advantages 

cannot achieve unless the economical operation (e.g. carbon source, aeration consumption and sludge production) (Ji et al., 

2019; Xu et al., 2020) is fully considered, especially in real wastewater with complex and fluctuant water quality. 

 

4. Conclusion 

In the A2/O - MBBR system, high-efficient nutrient removals were obtained at the mixed carbon source condition 

(HAc:HPr =1:1), which not only achieved higher MAn,C efficiency (94.87%), TPAn (25.63 mg/L), and PHA utilization (75.21%), 

but also exhibited obvious operational advantage of saving 40 - 45% carbon source. Mass balance presented the peaks of 
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MDPR,N (65.75%) and MWS,P (85.82%) owing to the contribution of MAn,C and MA-O,C (76.19%), although MSND,N (9.93 - 14.35%) 

also promoted the deep-level nutrient removal. The species richness of Shannon and Simpson was improved with more 

concentrated OTUs (838 - 995), where Accumulibacter, Acinetobacter, Dechloromonas and Pseudomonas conducting DPR 

summed up to 14.34 - 29.13% and exhibited an advantage over Competibacter and Defluviicoccus when HAc and HPr were 

simultaneously fed. Nitrosomonas, Nitrosomonadaceae and Nitrospira dominating nitrification increased form 3.89%, 23.09% 

to 37.23% along the three-stage MBBR.  
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Table 2  Phylogenetic classification of the dominant species involved in A2/O and MBBR at genus level 
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Table 1  Operation conditions of the A2/O - MBBR system 

 

 

a: the 

sampling dates for mass balance, nutrient metabolism and microbial community analysis (Day 40, Day 80, Day 120);  

b: the fluctuant range of carbon source concentration at + 10 mg/L; 

c: the average VSS in the A2/O reactor; 

d: the average VSS of N1, N2, and N3; 

e: the average biofilm thickness of N1, N2, and N3. 

 

 

Phase 
Duration 

(d) 

HAcb 

(mg/L) 

HPrb 

(mg/L) 

VSS1c 

(mg/L) 

VSS2d 

(mg/L) 

Biofilm 

thicknesse 

(μm) 

Other parameters 

1 1 - 40a 250  0 4080 ± 15 2140 ± 18 194 ± 10 
Q= 67.20 L/d 

C/N= 3.85 ± 0.15 

HRT= 10 h 

Temperature=22 ± 3℃ 

volume ratio=2:5:1 

r=100% 

 R=400% 

2 41 - 80a 125  125 3975 ± 20 2210 ± 15 205 ± 12 

3 81 - 120a 0 250  4120 ± 10 2080 ± 20 185 ± 15 
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Table 2  Phylogenetic classification of the dominant species involved in the A2/O and MBBR at genus level 

 

Species percentage 

(%) 

Samples 

Day 0 Day 40 Day 80 Day 120 Day 120-N1 Day 120-N2 Day 120-N3 

PAOs Accumulibacter 0.39 8.49 18.72 10.23 - - - 

Acinetobacter 1.06 1.35 2.36 2.98 - - - 

DPAOs Dechloromonas 0.09 1.52 4.78 2.15 0.01 0 0.03 

Pseudomonas 0.16 2.98 3.27 0.72 1.09 0.84 2.19 

GAOs Competibacter 0.89 2.49 12.72 17.23 - - - 

 Defluviicoccus 0.96 2.78 7.56 10.75 - - - 

OHOs Thauera 5.18 2.39 0.25 0.78 - - - 

Anaerolineaceae 1.13 1.49 10.58 11.87 1.05 0.93 0.74 

Comamonas 10.25 6.15 1.39 3.03 1.29 0.11 0.06 

Zoogloea 0.94 3.45 2.98 4.31 8.03 6.35 6.78 

Azospira 3.63 0.08 0.07 0.19 0.05 0.01 0.03 

Thermomonas 3.05 0.02 0.05 0.05 40.14 12.22 2.65 

Denitratisoma 0.18 1.02 0.12 0.03 0.92 0.45 0 

AOB Nitrosomonas 2.75 0.45 0.16 0.04 2.18 15.24 20.75 

Nitrosomonadaceae 1.28 0.38 0.17 0.21 0.15 0.79 1.05 

NOB Nitrospira 3.01 0.29 0.10 0.48 1.56 7.06 15.43 
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Figure captions 

Fig.1  Profiles of nutrient removal in the A2/O - MBBR system (A: COD; B: TN and NH4+; C: TP) 

Fig.2  Nutrient evolution along the reaction zones (A, B, C) and PHA transformation and utilization (D) in the A2/O reactor 

Fig.3  Mass balance analysis in the A2/O - MBBR system (A: Carbon; B: Nitrogen; C: Phosphorus) 

Fig.4  Bacterial biodiversity based on OTUs (A: Shannon index; B: Simpson index; C: Venn diagram) 

Fig.5  Microbial community structures of sludge (A) and biofilm (B) samples at phylum level 
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Fig.1  Profiles of nutrient removal in the A2/O - MBBR system (A: COD; B: TN and NH4+; C: TP) 
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Fig.2  Nutrient evolution along the reaction zones (A, B, C) and PHA transformation and utilization (D) in the A2/O reactor  
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Fig.3  Mass balance analysis in the A2/O - MBBR system (A: Carbon; B: Nitrogen; C: Phosphorus)  
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Fig.4  Bacterial biodiversity based on OTUs (A: Shannon index; B: Simpson index; C: Venn diagram) 
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Fig.5  Microbial community structures of sludge (A) and biofilm (B) samples at phylum level 
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Highlights: 

 

1. It was feasible to strengthen DPR with the co-exist of acetate and propionate. 

2. Carbon source revealed the strong relation with MAn,C efficiency and PHB/PHA ratio.  

3. 40 - 45% carbon addition can be saved by the efficient utilization of carbon source.  

4. Mass balance provided theoretical reference for the nutrient metabolic pathways.  

5. Carbon source promoted the shift of species diversity and functional bacteria.  
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Fig.S1  Schematic diagram for the A2/O - MBBR system 

 

 


