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Abstract

How well could one predict the growth of a leafy crop from reflectance spectra from the 

soil and how might a grower manage the crop in the light of those predictions? Topsoil 

from two fields was sampled and analysed for various nutrients, particle-size distribution 

and organic carbon concentration. Crop measurements (lettuce diameter) were derived 

from aerial-imagery. Reflectance spectra were obtained in the laboratory from the soil in 

the near- and mid-infrared ranges, and these were used to predict crop performance by par-

tial least squares regression (PLSR). Individual soil properties were also predicted from the 

spectra by PLSR. These estimated soil properties were used to predict lettuce diameter with 

a linear model (LM) and a linear mixed model (LMM): considering differences between 

lettuce varieties and the spatial correlation between data points. The PLSR predictions of 

the soil properties and lettuce diameter were close to observed values. Prediction of lettuce 

diameter from the estimated soil properties with the LMs gave somewhat poorer results 

than PLSR that used the soil spectra as predictor variables. Predictions from LMMs were 

more precise than those from the PLSR using soil spectra. All model predictions improved 

when the effects of variety were considered. Predictions from the reflectance spectra, via 

the estimation of soil properties, can enable growers to decide what treatments to apply to 

grow lettuce and how to vary their treatments within their fields to maximize the net profit 

from the crop.

Keywords IR spectroscopy · Crop growth · Fen soil · Linear mixed model · Partial least 
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Introduction

Leafy crops such as lettuce and brassicas are important commercial crops in the UK. 

The value of these crops depends on quality indicators such as size and weight. Grow-

ers size their crops either by direct observation in the field or from air-borne imagery, 

which has become an established practice to connect crop phenotype with marketability 

and crop management decisions within the growing season (Bauer et al. 2019; Valente 

et  al. 2020). Lettuces are sampled at frequent time-intervals for fresh-weight, head-

weight and head-diameter which determine their market value and time of harvest. Let-

tuces that do not reach a desired size are not harvested; indeed, frequently large parts of 

fields are deemed not worth harvesting.

The growth of the lettuce can be restricted by stresses such as shortage of nutrients 

and water, low temperature, adverse weather, and pests and diseases. Within-field varia-

tion of lettuce growth in the United Kingdom is often a result of the soil’s varied capac-

ity to provide water and nutrients. If growers have dense information on soil variation 

within their fields, they are likely to be sufficiently well informed to make two main 

decisions. First, they should be able to recognize a priori where their crops will not 

reach a saleable quality and so where not to waste time and resources on production. 

Second, they should be equipped to decide how best to vary fertilizer and irrigation 

spatially (precision application) to maximize growth without applying excess of either. 

In both cases production would be more profitable and less harmful to the environment. 

Chemical analysis of soil by conventional wet chemistry is expensive and time-consum-

ing. The densest affordable sampling in commercial conditions is one soil sample per 

ha (Muhammed et al. 2017). That has generally been adequate to estimate mean values 

and average fertilizer requirements. It is too coarse, however, for mapping the variation 

within individual fields in a way that enables growers to vary their applications of fer-

tilizers and water rationally. Recent advances in reflectance spectroscopy could enable 

growers and their advisors to obtain affordable useful information on soil variation at 

resolutions sufficient for precision agriculture. However, estimated soil properties from 

reflectance spectra need to be sufficiently accurate to explain variance in crop perfor-

mance and so inform management decisions.

The utility of near- and mid-infrared reflectance spectra from the soil to predict crop 

performance and aid management was investigated. One route, which avoids any issues 

of poor predictions of soil nutrients, is to examine the direct relation between the spec-

tral data and the crop response. A strong relation could tell the grower where to expect 

good growth and where it is worth planting the lettuce (and where not to plant). It does 

not tell the grower which soil properties might be causing variation, however, and what 

action he or she should take to enhance yield. The second route is to predict soil chemi-

cal properties from the spectral data and identify which of those properties explain the 

variance in growth of the lettuce. This route, though less direct and perhaps less accu-

rate because of the issues related to predicting soil nutrients, has greater potential for 

management; it should enable the grower to vary the management in accordance with 

the variation of individual soil properties that affect growth. To the authors’ knowledge, 

there are no studies that seek to explain variance in crop-yield metrics from soil proper-

ties estimated by reflectance spectra, however, work has been done using soil reflectance 

spectra directly to determine crop characteristics. These include predictions of grain 

yield in rice (Van Groenigen et  al. 2003) and plant N uptake (Börjesson et  al. 1999; 

Stenberg et al. 2005; Terhoeven-Urselmans 2008; Wetterlind et al. 2008).
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This study investigated both methods of predicting crop performance from near- and 

mid-infrared soil reflectance spectra, i.e. directly from the soil spectra and indirectly using 

soil properties estimated by reflectance spectra (Fig. 1).

The following questions were addressed;

1. Can the diameters of lettuce be predicted directly from the soil-spectral data? And if so, 

how well?

2. How accurately can important soil properties be predicted from soil-spectral data?

3. Can values of soil properties predicted from the spectral data be used to model and 

predict lettuce diameter?

The results are used to discuss whether soil spectral measurements could be used in 

practice to help the grower (i) decide where to grow lettuce and/or (ii) manage the nutri-

tion, irrigation or planting density of the crop.

Methods and materials

The fields and their sampling

The case-study is located in the Fenlands of eastern England. The soil there is generally 

fertile and is well suited for their growth, though within individual fields there is sub-

stantial soil variation, mainly in particle-size distribution and organic matter content. 

Fig. 1  Framework for predicting crop data (lettuce diameter in cm) from soil spectra. The diameter of the 

lettuce may be predicted (i) directly from soil spectral measurements (the left have edge of the triangle) 

using partial least squares regression (PLSR) or (ii) by first predicting relevant soil properties from the soil 

spectra and using these in a linear model (LM) or linear mixed model (LMM) to predict lettuce diameter
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The soil on the flat land is rich in organic matter and varies from silty clay to sand on 

somewhat (up to 0.5 m) higher sinuous narrow strips known locally as ‘Rodhams’. It is 

known that the crop differs in its response on the flat land from that on the Rodhams to 

uniform management.

After consulting growers in the Fenland region, two fields were chosen for this study. 

Field 1, covering 10.5 ha, is near the village of Prickwillow (52° 27′ 58.65″ N; 000° 21′ 
51.02″ E). The sampling design was based around a 30-m square grid, with three tran-

sects (on alternate rows) more intensely sampled at 6-m intervals. The sampling strategy 

was designed to provide good coverage of soil conditions and to enable us to assess the 

magnitude and spatial scale(s) of variation in soil properties. Field 2 lies adjacent to 

Field 1 and covers 18.2 ha. The design was computed for 121 sample locations such that 

each point lay in the centre of its Dirichlet tile all of which have the same area. This was 

done using the spcosa package (for more detail, see Walvoort et al.  2010) which led to 

an approximate grid with an interval of 30 m. A further 36 of these points were selected 

with the BalancedSampling package (Grafström and Lisic 2019), balanced on the spa-

tial co-ordinates and elevation. At each sample location another sample point 6 m away 

at a random orientation was added. The random orientation was computed with the 

SpatialEco package in R (Evans 2019). In both fields, additional sample locations were 

added to ensure that the full range of soil conditions and elevation were encompassed 

based on predictions from the LiDAR survey and satellite imagery showing variation in 

soil colour. In all, 256 samples were taken from Field 1 and 161 samples from Field 2. 

Figure 2 shows the fields with the sample locations.

At each sample location, three cores of topsoil (0–0.25 m) were taken within a 0.5 m 

by 0.5 m quadrat. These cores were bulked for laboratory analysis and spectral study.

The crop data were based on aerial imagery from which the diameter of pixel group-

ings that represent an individual lettuce have been calculated. There were three varieties 

of lettuce in each field. Aerial imagery was taken three weeks after the lettuce had been 

transplanted from the greenhouse, which the grower found to correspond well with the 

market value of the crop at harvest. The output from the aerial imagery was a polygonal 

shape file of circles representing lettuce diameter for each lettuce in the fields. ArcMap 

(ESRI 2020) was used to transform a projection for both fields based on geo-referencing 

the co-ordinates of individual lettuces in the polygon shape file. The mean size of let-

tuces within each LiDAR raster cell (0.5 × 0.5  m2) was calculated. Lettuce diameters 

were extracted for each raster cell that contained a soil sampling location giving paired 

soil–crop samples. Crop management in both fields followed standard commercial prac-

tice and included NPK fertilizer applications and pulley irrigation throughout the grow-

ing season.

Laboratory measurements

Sample preparation

The soil samples were dried in air, passed through a 2-mm sieve and milled.

The analyses on these samples are described in detail below. For spectroscopy meas-

urements, samples were placed in a stainless-steel cup together with a disk. The samples 

were then milled for 35 s at 960 rpm in a TEMA Machinery Ltd mill (Northants, UK).
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Chemical analysis

Thirty sub-samples for each field were selected from the sieved samples for chemical 

analysis and particle-size distribution. Chemical properties and particle-size distribution 

of the soil samples were measured as follows.

Total carbon (C) and nitrogen (N) were determined by Dumas combustion in a Tru-

Mac Combustion Analyser from LECO Corporation (Stockport, UK).

Exchangeable potassium  (K+), calcium  (Ca2+), magnesium  (Mg2+) and sodium  (Na+) 

were determined in an ammonium nitrate extract (10  g of 2  mm sieved soil in 1  M 

ammonium nitrate) by an Optima 7300 DV Inductively Coupled Plasma-Optical Emis-

sion Spectrometer (ICP-OES) (Seer Green, UK).

Available phosphorus (P) was measured by the standard Olsen method in a sodium 

bicarbonate extract (5 g of 2 mm sieved soil in 0.5 M  NaCO3 (Olsen et al. 1954) with a 

SANplus continuous colorimetric flow analysis from Skalar analytical BV (Breda, The 

Netherlands).

Sulfur (S) was measured in a potassium phosphate extract from 5  g soil in 25  ml 

solution. From the filtrate 9.5 ml was stabilized with 0.5 ml nitric acid ( ≈ 68%) and ana-

lysed by ICP-OES.

Fig. 2  The two fields sampled. Field 1 includes the three transects sampled at 6-m intervals (Transect). The 

30-m square grid (Grid) and additional sample points capture variation in soil colour and elevation from 

satellite imagery and LiDAR data (Extra). Field 2 includes the central points of Dirichlet tiles that all cover 

an equal area, leading to an approximate grid (Grid). The sub-sample of points that contains a paired sam-

ple within a 6-m radius (Radius) and additional sample points capture variation in soil colour and elevation 

from satellite imagery and LiDAR data (Extra)
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The soil pH was measured in a suspension of 5 g 2-mm sieved soil to 12.5 g deionized 

water and measured with a thin semi-micro sealed combined pH electrode from Fisher sci-

entific (Loughborough, UK).

Particle-size fractions were determined by laser diffraction on a L-960 particle-size ana-

lyser from Horiba scientific Ltd (Northampton, UK) in the AfSIS spectral laboratory at 

Rothamsted Research. The upper limit for clay was set to 9 µm since organic matter had not 

been removed. This is as recommended by Konert and Vandenberghe (1997) and Fisher 

et al. (2017). The intervals were therefore clay: < 9 µm, silt: 9–50 µm, sand: > 50 µm.

Spectroscopy

Each sub-sample of milled soil was pressed into a small well (6 mm across and approxi-

mately 1 mm deep) and placed in a Tensor II spectrometer from Bruker scientific (Ettlin-

gen, Germany) in the AfSIS spectral laboratory at Rothamsted Research. Its reflectance 

spectrum in the range 1000–2500  nm, i.e. the near infrared (NIR), was measured with 

a resolution of 1  nm and converted to wave-number units  (cm−1) by division by  10–7. 

Subsequently, the moisture bands were removed in two regions: (7900–6849  cm−1) and 

(5587–5102 cm−1), respectively. All spectral measurements were replicated three times for 

each sample.

Each sub-sample’s mid infrared (MIR) spectrum in the range 4000–600  cm−1 

(2500–16  666  nm) was recorded on the same instrument with a resolution of 2  cm−1. 

The atmospheric  CO2 bands were removed in the region 2430–2240  cm−1. The reflec-

tance, R , in both regions have been transformed to optical density (i.e. absorbance, A ) as 

A = log
10
(1∕R).

Spectra were smoothed to remove noise using the Savitzky–Golay filter (Savitzky and 

Golay 1964) with a third-order polynomial in a moving window of 11. Subsequently, the 

standard normal variate was calculated (by subtracting the means and dividing the result 

by its standard deviation) after which the 1st derivatives of the spectra were computed. For 

the NIR region, a filter length of 31 wavebands was used (i.e. the spacing between points 

over which the derivative is computed). For the MIR region, a filter length of 11 and a seg-

ments size (i.e. the range over which the points are averaged) of 8 wavebands were used. 

Subsequently, the NIR and MIR spectra were combined into a single matrix used in the 

subsequent modelling. Processing was done using the prospectr package of Stevens and 

Ramiro-Lopez (2013).

Statistical analysis

Partial least squares regression (PLSR)

The first aim was to predict the diameters of the lettuce from the soil spectra—i.e. taking 

the route along the left-hand arm of the triangle in Fig. 1. Initially this was done for each 

field and each variety of lettuce separately. This was because the lettuce crops were grown 

and measured at slightly different times, and it was unknown whether the different varieties 

would respond differently to the soil conditions. The second aim was to predict the proper-

ties of the soil as measured by wet chemistry from the reflectance spectra. For this part of 

the exercise, the data from both fields together were treated as a single set. The combined 
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data provide a wider range across the soil properties than if each field were considered 

separately.

Both cases are, in the general sense, a common problem in statistics: one has a set of 

predictor variables, x ≡ {x1, x2..., x
m
} , and one wishes to use the set to predict a target vari-

able, y . The task might at first seem to be one of straightforward multiple regression. How-

ever, two features make that solution impracticable: (a) the spectral estimates are strongly 

correlated with one another, and (b) there are more of them, i.e. more variates, than there 

are units (lettuces). One feasible solution now popular, in such circumstances, is partial 

least squares regression (PLSR). This method finds a few orthogonal factors that maximize 

the covariance between the predictors and the target variable, or variables if there are more 

than one.

Let � be an n × m matrix of n units (lettuces or quadrats) and m variates (spectral esti-

mates) and let y be the vector of length n of measurements (diameters of the lettuces). Then 

define

In these equations, � is an n × p matrix of factor scores and � is the corresponding 

orthogonal m × p matrix of loadings for the predictors in which p ≪ m . In like manner, � 

is an n × p matrix of factor scores for the target variable and q is the corresponding vector 

of loadings. The matrix � and vector � are error terms, which are assumed to be independ-

ent and identically distributed. These equations are solved in such a way as to maximize the 

covariance between � and �.

In this way, the number of spectral predictors is reduced while maximizing the effective-

ness of those retained. The retained components predict directly the diameters of the let-

tuces. In the indirect route, retained components predict the soil properties as determined 

by wet chemistry. The method is not quite as straightforward as multiple regression, and 

a final selection of the number of components retained was determined by leave-one-out 

cross-validation and calculation of the mean squared error (MSE) of prediction. In general, 

the MSE initially decreases sharply as a function of the number of components retained 

and then increases as a result of over-fitting. The number of components for which the 

MSE was least was kept. In this paper, Lin’s concordance correlation coefficient (Lin 1989) 

was used to get a measure of the distance from the predicted data relative to the 1:1 line. 

A value closer to 1 indicates a higher measure of both accuracy and precision relative to 

observed values.

Multiple regression

Subsequently, linear mixed models were computed with lettuce diameter as a response and 

soil properties derived from the spectra by PLSR as predictor variables. Although lettuce size 

can be directly predicted from soil spectra, as above, those spectra do not tell growers how 

they might manage the land differentially to achieve some desired size of lettuce. For that, 

they would like to know the soil’s nutrient status, carbon content and particle-size distribution. 

This case therefore, takes the route along the right-hand side of the triangle (Fig. 1) to answer 

the questions: are derived soil properties and lettuce diameters (after controlling for different 

lettuce varieties) related? And if so, how strong are those relations, which soil properties are 

(1)
� = ��T

+ �

� = ��T
+ � .
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deemed important for predicting the size of lettuce, and how good is the prediction along that 

route?

The multiple regression accounted for possible different regression coefficients for the dif-

ferent varieties of lettuce:

Here Yji is the diameter of the i th lettuce of variety j , �j represents the intercept for that 

variety, vector �j comprises the regression coefficients of the fixed effects for that variety, 

the soil properties are represented in the vector �
i
 , and �

i
 is an independent residual error 

assumed to be drawn from a normal distribution with zero mean and variance �2 , thus:

Regression equations were set up based on this model and solved with maximum likeli-

hood (ML) estimation. In the event, the residuals (�
i
 ) appeared to be spatially correlated with 

a variogram defined by

in which �(�) is the semivariance of � for points separated by the vector � , with � ≡ {z1, z2} 

representing the co-ordinates in the two spatial dimensions.

Most variograms of crop yields and soil properties have fairly simple forms in which �(�) 

increases from some small value at short separating distances to a constant or asymptote as the 

distance increases. To choose a suitable model, �(�) was estimated by the method of moments, 

thus:

in which �(�
k
) and �(�

k
+ �) are the residuals at places �

k
 and �

k
+ � separated by the vector 

� and for which there are m paired comparisons. The variation appeared isotropic, and so 

the vector � was treated as scalar h in distance only. By varying h an ordered series of �̂(h) 

were obtained and these were graphed. The graphs that contained the ordered series of �̂(h) 

(experimental variograms) were used to assess whether the fitted parameter values were 

sensible. All could be described by the popular exponential model:

In this equation, c
0
 and c

1
 are variances, respectively, the nugget and sill of the correlated 

variance, and a is the distance parameter. The equation describes second-order stationarity 

and so has equivalent covariances, cov(h) = c
0
+ c

1
− �(h) , for incorporation into the pre-

diction model. For convenience, model parameters were designated by � ≡ {c0, c1, a} . To 

account for the spatial correlation of the residuals �
i
 is replaced by �

i
 , which is drawn from 

a variance–covariance matrix Ξ of error variables, i.e.

(2)Yji = �j + �T

j
�i + �i

(3)�
i
∼ N

(

0, �
2
)

(4)�(�) =
1

2
E
[

{�(�) − �(� + �)}
2
]

(5)𝛾̂(�) =
1

2m(�)

m(�)
∑

k=1

{

𝜀
(

�
k

)

− 𝜀
(

�
k
+ �

)}2

(6)

γ(h) = c0 + c1

{

1 − exp
(

−
h

a

)}

for h > 0

= 0

for h = 0
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and depends on the spatial co-ordinates of the lettuce i ; it is now spatially dependent.

The problem now is to estimate both the coefficients of the fixed effects, i.e. the �j 

and �j , and the parameters of the random terms in � . This was done by the method of 

residual maximum likelihood (REML) introduced by Patterson and Thompson (1971) and 

described in the current context by Lark and Cullis (2004). Briefly, the equation that has to 

be solved is

in which the matrix � contains all the data for the predictors plus a column of 1 s and � 

includes the intercepts of equations (Eq. 2), and vector � contains the corresponding meas-

ured diameters of the lettuces. The elements of matrix  are obtained by maximization of 

the likelihood

where c is a constant.

Selection of soil variables

Many soil properties can affect the growth of crop plants. Some of them are typically 

strongly correlated with one another, and to include all in regression equations could 

lead to spurious results from over-fitting. To avoid such an outcome, soil properties were 

selected that are most likely to affect the growth of lettuce. These included first the concen-

trations of the nutrients N, P and K. Total C was omitted as it was directly related to total 

N, having been measured on the same instrument. Particle-size distribution is important 

because it is closely related to the soil’s capacity to hold water, so its measurement can 

serve as a proxy for water-holding capacity. The soil’s pH can be important, and so it was 

added to the list of predictors. Finally, Mg was added because many crops suffer magne-

sium deficiency in the UK. The final list was as follows.

1. Total N, exchangeable  K+, Olsen P.

2. Particle size, pH.

3. Exchangeable  Mg2+,  Ca2+ and  Na+ available S.

These variables were added one at a time in the regression in that specific order (for-

ward selection) as fixed effects using maximum likelihood (ML), since the residual likeli-

hood is a direct function of the number of fixed effects within the model. The log-likeli-

hood of models fitted by REML with different fixed effects are not comparable, because 

REML takes account of the number of parameters estimated, losing one degree of freedom 

for each. As the properties were added in this stepwise fashion, the updated model was 

tested against the previous one by a log-likelihood ratio test (Woolf 1957). A chi-squared 

p-value of 0.05 was taken as threshold and any smaller value (p < 0.05) as evidence that 

an additional coefficient explained sufficiently more of the total variance to justify inclu-

sion of that property. Once a final set of soil properties were selected as coefficients, the 

model was refitted by solving Eq. 8 using REML for unbiased estimates of variance and 

(7)�
i
∼ N(0,Ξ )

(8)�̂ = (�TΞ �)−1�TΞ−1�

(9)L(�, �|�) = c −
1

2
ln|Ξ| − 1

2

(
� − �T�

)
Ξ−1

(
� − �T�

)
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covariance parameters. The modelling procedure described above was computed for each 

field individually. The partial leas squares regression was done using the pls package 

(Mevik et al. 2019). The linear models were computed using the nlme package in R (Pin-

heiro et al. 2019). Linear mixed models and the spatial correlation structures were com-

puted using the geoR package (Ribeiro and Diggle 2018).

Results

Summary statistics and qualitative description of the data

Three sampling locations in Field 1 and two in Field 2 had lettuce diameters less than 

50 mm and were evidently outliers. These individuals seem to have failed to establish after 

transplantation and were therefore removed before analysing the data formally. Tables 1 

and 2 summarise the statistics of the crops with outliers excluded. Most of the measured 

soil properties had near-normal distributions. The pH and P were somewhat skewed, but as 

residuals from the PLSR were approximately normally distributed for pH and P these were 

not transformed. The distribution of available S and that of its residuals, on the other hand, 

were strongly skewed, and its concentrations were transformed to logarithms (Table 3).

The spectral signatures of all soil samples were similar; all had smaller absorbance fea-

tures in the near-infrared (NIR) than in the mid-infrared region. The NIR includes predom-

inantly weak overtones and fundamental vibrational bands for H–N, H–C and O–H bonds. 

Table 1  The summary statistics of observed and predicted lettuce diameters for n lettuce, along with the 

number of components used in the prediction, the mean squared error (MSE) and Lin’s concordance cor-

relation coefficient (CCC) of the leave-one-out (LOO) prediction for that number of components—Field 1

Variety n Observed Predicted Nr comp MSE CCC 

Mean Std dev Range Mean Std dev Range

All varieties 218 14.3 3.49 15.5 14.3 2.45 15.7 7 6.15 0.66

Etude 74 12.9 3.63 15.5 12.9 3.09 15.3 4 3.59 0.84

Challenge 71 13.8 2.67 10.5 13.8 2.06 8.34 5 2.87 0.74

Glassica 73 16.2 3.24 14 16.2 2.29 10.1 4 5.23 0.66

Table 2  The summary statistics of observed and predicted lettuce diameters for n lettuce, along with the 

number of components used in the prediction, the mean squared error (MSE) and Lin’s concordance cor-

relation coefficient (CCC) of the leave-one-out (LOO) prediction for that number of components—Field 2

Variety n Observed Predicted Nr comp MSE CCC 

Mean Std dev Range Mean Std dev Range

All varieties 106 20.6 5.01 27.3 20.6 3.51 15 5 12.6 0.66

Challenge 59 19.1 4.18 18.8 19.1 2.90 10.4 1 8.93 0.65

Glassica 26 19.6 3.47 13.5 19.6 2.39 7.58 1 6.11 0.64

Yucaipa 21 26.1 5.11 18.7 26.1 4.89 18.2 6 2.07 0.96
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Absorption bands within the near infrared (NIR) frequently overlap, which makes it diffi-

cult to interpret the spectra directly. The MIR is characterized by fundamental frequencies 

(no overlap) and directly relates to mineral and organic compounds. For example, kaolinite 

in the Si–O stretching region between 1200 and 1000 cm−1 and carbon functional groups 

in C–H aliphatic bonds (e.g. –CH, –CH2 between 3000 and 2850 cm−1 (Viscarra Rossel 

et al. 2006; Du and Zhou 2009; Viscarra Rossel et al. 2011; Du et al. 2015). Loadings of 

the PLSR decomposition can be used for qualitative interpretation of the NIR and MIR 

spectra. Peaks are caused by the response variable, whereas troughs indicate interference of 

different soil components (Haaland and Thomas 1988).

PLSR diagnostics

The appropriate number of components for predicting lettuce diameter and soil proper-

ties varied substantially according to variety and target property (Fig. S1 in supplementary 

material). For example, the MSEs of  K+ and clay increased with numbers of components 

retained. This result is likely to be caused by over fitting. The MSE for P diminished gradu-

ally to a minimum at 11 components, whereas the MSE for total N diminished rapidly to a 

minimum at four. Tables 1, 2 and 3 report the chosen numbers of components.

As expected, the mean of the predicted lettuce diameters was close to the observed 

diameters; the standard deviations of the predictions were smaller than that of the observa-

tions. The scatter plots of predictions against the measured diameters (top 4 panels Fig. 3) 

show that different varieties relate differently to the soil spectra. The predictions of soil 

properties were generally close to true values (Fig. 4). The log ratio of sand and clay over 

silt were computed to provide two independent variables of particle size. The means of 

the predictions were also close to the observations, with again standard deviations of the 

Table 3  The summary statistics of observed and predicted soil wet chemistry data for the 60 calibration 

samples, along with the number of components used in the prediction, the residual mean squared error 

(RMSE) and Lin’s concordance correlation coefficient (CCC)  of the leave-one-out (LOO) prediction for 

that number of components

Variety Observed Predicted Nr comp RMSE CCC 

Mean Std dev Range Skew Mean Std dev Range

Total C (%) 12.31 3.67 14.2 0.39 12.3 3.64 13.9 6 0.42 0.99

Total N (%) 0.84 0.25 0.96 0.28 0.84 0.25 0.96 6 0.026 0.99

Ca2+ (mg kg−1) 7271 1137 4958 0.16 7271 1063 3786 1 400 0.93

K+ (mg kg−1) 347 112 514 1.09 347 98 487 9 54 0.87

Mg2+ (mg kg−1) 419 117 480 0.50 419 113 485 10 29 0.97

Na+ (mg kg−1) 48.8 21.4 86.6 1.09 48.8 19.5 76.9 6 8.6 0.91

Mn2+ (mg kg−1) 0.51 0.34 1.65 0.82 0.52 0.32 1.18 5 0.12 0.94

P (mg kg−1) 41.5 11 61.4 1.28 41.5 10.5 61.6 11 3.2 0.95

S (mg kg−1) 13.3 13.8 69.1 2.11 12.3 11.4 67 6 6.6 0.86

pH 7.09 0.58 2.26 − 1.37 7.09 0.58 2.31 12 0.038 1

Sand (%) 30.6 5.13 25.1 0.88 30.6 4.83 21.7 4 1.7 0.94

Clay (%) 36 4.06 209.7 − 0.74 36 3.83 17.2 4 1.3 0.94

Silt (%) 33.3 2.19 9.35 − 0.06 33.3 1.81 7.23 3 1.2 0.81
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predictions smaller than those of the observations. The predictions of  Mg2+, P and pH had 

larger ranges than the observed ranges. Nevertheless, these differences are small and fall 

within the range of the residual mean squared error, leading to a slight over-prediction.

Relations between lettuce diameter and predicted soil properties

The diameters of the lettuce were related positively to  Ca2+,  Mg2+,  Na+, total N and total C 

in both fields and for all varieties (Figs. 5, 6). There were consistent negative relations with 

pH in both fields, probably because there are patches of relatively acid peat in the fields. 

The correlation coefficient between pH and total C was − 0.83 based on the wet chemistry 

measurements (not shown). In Field 2, lettuce diameter related positively to  Mn2+, avail-

able S and to log(sand/silt). The relation between lettuce diameter and P was weakly nega-

tive, possibly due to a bias from the PLSR predictions. As expected from the soil-forming 

history in the region, the soil properties appear to co-vary with elevation (see Figs. 5, 6). 

The final fitted LM (Eq. 2) relating the predicted soil variables to lettuce diameter com-

prised total N,  K+(p ≤ 0.0001) , log(clay) (p ≤ 0.0001) and pH (p = 0.003) for Field 1 as 

coefficients; and variety, total N,  K+ (p = 0.0187) and P (p = 0.001) for Field 2.

Further investigation of the LM residuals suggested that the exponential variogram 

model (Eq. 6) would describe their spatial autocorrelation well in both fields. This model 

was therefore included in the regression (Eq. 2). The final model for Field 1 retained vari-

ety, total N,  K+ (p = 0.0114) and log(clay) (p = 0.0004) as coefficients. The final model for 

Field 2 retained variety, total N,  K+ (p = 0.0195) and P (p = 0.0013) as coefficients (See 

Tables S1 and S2 in supplementary material for fixed effects coefficients).

The variograms associated with covariance models for the spatial autocorrelation term 

for Eq. 6 are in Fig. 7. The parameters for Field 1 are c
0
= 2.9 , c

1
= 2.8 and a = 17.2 m. 

Those for Field 2 are c
0
= 4.2 , c

1
= 6.8 and a = 29.2 m. The nugget variance ( c

0
 ) in Field 

1 is approximately half of the total variance (c
0
+ c

1
) . For Field 2, it comprises somewhat 

less than half of the total. The nugget includes both measurement error and very short-

range, unresolved, spatial variation. The effective limit of spatial correlation, i.e. the effec-

tive range (approx 3a) , in Field 2 is almost twice that in Field 1.

The mean-squared errors and Lin’s concordance correlation coefficients for the LM and 

LMM predictions were computed (bottom 4 panels Fig. 3).

PLSR loadings and their interpretation

As previously described, the loadings of the PLSR decomposition can be used for quali-

tative interpretation of the spectra. Peaks are caused by the  soil property  used as the 

response variable, whereas troughs indicate interference of different soil properties 

measured by the spectra. For each property included as a coefficient in the LMM, the 

loadings of the first component were plotted against wave number. The loadings of the 

first component in the final fitted PLSR models to predict lettuce diameter from the soil 

spectra were also plotted. The loadings from the total N PLSR model and to some extent 

Fig. 3  Predicted versus measured lettuce diameter for both fields. The top two rows show predictions from 

partial least squares regression (PLSR) from the soil spectra, where the second row takes lettuce variety 

into account. The bottom two rows show predictions from the multiple regression models (LM) and the lin-

ear mixed models (LMM) from the IR predicted soil properties

▸
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those of the  K+ PLSR model align better than the other soil properties with the loadings 

from the models that predict lettuce diameter from the soil spectra (Fig. 8). Closer load-

ing alignment indicates that the same wave numbers explain an equal amount of vari-

ance from the response variable.

Fig. 4  Leave-one-out predicted against measured soil properties for the 60 calibration samples from both 

fields by partial least squares regression (PLSR) with the soil spectra. Metrics include the root mean 

squared error (RMSE) and Lin’s concordance correlation coefficient (CCC)
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Discussion

The aim of this study was to discover whether soil spectral measurements could be 

used to predict variation in the diameter of lettuce grown in commercial fields, both 

directly from the soil spectra and via predictions of soil properties.

Fig. 5  Measured lettuce diameter coloured by elevation (LiDAR) against partial least squares regression 

(PLSR) predicted soil properties—Field 1. Adj.  R2 is the coefficient of determination from linear regression 

between lettuce diameter and the PLSR predicted soil property, adjusted by the degrees of freedom
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Prediction of lettuce diameter directly from the soil spectra

For both fields, the predictions of lettuce diameter from the soil spectra were close to 

observed values. These predictions were even better when separate models were fitted to 

each variety (top 4 panels Fig.  2). As the varieties were grown in blocks, the observed 

effect of variety could also be an effect of management that is independent of the soil. For 

example, some parts in Field 2 were not covered by the irrigation system. Furthermore, 

varieties associated with parts of the field with larger variation in soil properties were bet-

ter predicted by the soil spectra (see concordance correlation coefficients in Tables 1, 2). 

Fig. 6  Measured lettuce diameter coloured by elevation (LiDAR) against partial least squares regression 

(PLSR) predicted soil properties—Field 2. Adj.  R2 is the coefficient of determination from linear regression 

between lettuce diameter and the PLSR predicted soil property, adjusted by the degrees of freedom
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Wetterlind et al. (2008) found that plant N uptake could only be modelled accurately for 

fields that showed a large range in soil organic matter and texture. The fields in this study 

are characterized by large variation in soil properties and hence can fulfil this requirement 

(Figs. S2 and S3).

Precision of soil property predictions from soil spectra

Overall, the predictions for soil properties were good (Fig.  4). The reported errors 

might be optimistic for some properties because leave-one-out cross validation tends 

to over-estimate the accuracy and precision in PLSR (Viscarra Rossel 2008). The 

errors (expressed as root mean squares, RMSEs) proved to be similar to those found 

by other investigators: see Viscarra Rossel et  al. (2016) for a review of 51 studies in 

which soil organic carbon was predicted from reflectance spectra with RMSEs ranging 

Fig. 7  Fitted exponential model for the spatial autocorrelation term in the linear mixed model (LMM) for 

Fields 1 and 2, where ‘c0’ and ‘c1’ are the nugget and sill of the correlated variance and ‘a’ is the distance 

parameter

Fig. 8  Loading values from the first component plotted as a function of wavenumber for PLSR models rel-

evant in the modelling of lettuce diameter
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from 0.1 to 1.1%. However, the comparisons between results from this study and those 

reported in the literature need to be viewed with caution because the variances depend 

to some extent on the concentration of the target variable: smaller concentrations tend 

to be predicted with smaller errors. For example, Hutengs et al. (2018) reported RMSEs 

of 0.14–0.24% for SOC in the range 0.62–2.70%, whereas those from this study were 

0.54% (from the leave-one-out cross validation) for the range 6.21–20.41%. Soil prop-

erties that had larger RMSE in their predictions are not spectrally active (e.g. S, P and 

 K+). This accords with other studies in which the prediction of non-spectrally active 

properties are functions of their correlation with soil organic matter and particle-size 

distribution. Predictions for these properties are hence less robust than SOC and parti-

cle-size fractions (Du and Zhou 2009 and references therein). See Table S3 for the cor-

relations between laboratory reference values.

The numbers of components included in the PLSRs are akin to those reported in the 

literature (namely from 3 to 9, Yang and Mouazen 2007; Wang et  al. 2015; Hutengs 

et  al. 2018). They rarely exceed 12, and they were fewer for soil properties that have 

a direct relation to molecular bonds in the MIR (e.g. C and clay). More components 

are generally retained for larger sets of spectral data where there are more pronounced 

differences in lithology, climate and other soil forming factors—see for example Dan-

gal et al. (2019) and Lopo et al. (2016). The PLSR loadings from the first component 

indicate that the NIR region explains little of the variance and much less than those in 

the MIR region. This holds true for both the PLSR models to predict lettuce diameter 

and the models to predict soil properties. These findings accord with the literature. The 

loadings depend on the soil properties of interest and are unique for each study; never-

theless, the MIR region generally leads to more robust calibration than does the NIR 

(Viscarra Rossel et al. 2006; Yang and Mouazen 2007).

Can values of soil properties predicted from the spectral data be used to predict 

lettuce diameter?

The LMs that related lettuce diameter from predicted soil properties performed reasona-

bly well (MSE: 4.59 for Field 1 and MSE: 8.99 for Field 2). The prediction performance 

of the LM implies that it captures a large amount of the explanatory power of the IR 

spectra. However, the PLSR from the soil spectra alone predicted the lettuce diameter 

more precisely than did the LMs. It seems that the IR spectra capture more informa-

tion about the soil relevant for crop growth than the soil properties included in the LM. 

This effect aligns with studies that compare crop predictions from IR spectra with crop 

predictions from laboratory reference values, in which the first outperforms the latter 

(Börjesson et al. 1999; Wetterlind et al. 2008).

The predictions from the LMMs (Eq. 6) were more precise than those from the soil 

spectra (by PLSR alone) with a difference in mean squared error (MSE) of 21  mm2 for 

Field 1 and of 51  mm2 for Field 2. This is because the LMMs account for the spatial 

structure in the lettuce diameters through the random term in the model. These results 

are somewhat misleading because the prediction of each lettuce relies on its spatial 

auto-correlation with the other lettuces in the field. In practice, growers would not be 

able to predict lettuce size at the beginning of the season with this model because they 

would not have these other measurements. Therefore, the auto-correlation in the model 

is not of practical use.
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Can soil spectra help growers with management?

This study showed two different ways of using the soil spectra. First, PLSR was used 

to predict lettuce diameter directly from the soil spectra. This does not allow for pre-

cise fertilizer or irrigation management as there is no information in how soil properties 

affect the lettuce response in the model. However, the predictions could be of practical 

use to management when the areas predicted to be high or low-yielding are consistent 

over seasons (which may not always be the case, Milne et al. 2012; Diacono et al. 2013 

and references therein; Kindred and Sylvester-Bradley 2014) or if the grower has prior 

knowledge on why some areas are high or low-yielding. In this case, the management 

can be adapted based on an understanding of the causes of poor yields. For example, 

variable-rate planting or deciding not to crop certain areas if the soil spectra indicate 

likely poor yields that will lead to in-field yield waste. In this particular case, when 

lettuce are predicted to be less than 0.1 m in diameter (a size deemed too small by the 

growers) the grower may choose not to plant there.

The second approach was to predict lettuce diameter from estimated soil properties 

using a LM. Although predictions were poorer than the direct prediction by using the 

reflectance spectra, this approach gives growers more information and so could help 

them decide how to vary the application of fertilizer and irrigation within each field. 

These models are relevant when estimated soil properties are used for precise fertiliza-

tion or irrigation. A remaining question is how to predict the exact amount of each nutri-

ent needed by the crop at each place in the field and when to apply it (Baveye and Laba 

2015; Kindred et al. 2017). The grower therefore needs prior knowledge on which soil 

properties influence crop growth for each specific part of each field. With this under-

standing, potential environmental impacts of farming can be minimised and profits max-

imised. This can be achieved by either not planting in low-yielding areas (and therefore 

no cost of fertilizer, herbicide and irrigation), or by managing inputs more precisely so 

that the economic return in crop response exceeds the amount spent on inputs. The LM 

and LMM reported here showed that total N, P, K and pH were significant predictors of 

lettuce size, indicating that variable rate application based on these properties could be 

used to advantage in lettuce production. Panagapoulos et al. (2006) demonstrated such 

an approach by creating “lettuce production capability” maps from kriged soil proper-

ties and identifying localised areas where the soil could be treated to improve yield. 

This illustrates the potential utility of predicting the variation of soil properties from IR 

spectra for the precision management of lettuce (in particular fertilizer and management 

of soil pH).

Soil spectra offer great promise for the precision management of crops but collect-

ing the soil samples from the field and processing them (i.e. drying and milling) adds 

to the expense for a farmer. Therefore in practice, field-based spectral measurements 

are likely to be more attractive than spectral measurements made in the lab. Currently 

there has been limited exploration of field versus lab-based prediction errors with port-

able MIR spectrometers for soil properties other than soil carbon constituents (Ji et al. 

2016a; Hutengs et al. 2019). Differences between field and lab-based MIR predictions 

range from 0 to 45% whereas the increase in error associated with VNIR techniques 

is reported to be as much as 57% (Ji et  al. 2016a; Hutengs et  al. 2019). Field based 

prediction for pH, organic matter and total nitrogen have been explored using (V)NIR 

with increases in prediction error of 14%, 27% and 22% compared to lab-based spec-

tral measurements, respectively (Ji et  al. 2016b). Most of the few existing studies on 
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macro nutrient prediction using portable (V)NIR/MIR spectroscopy show limited suc-

cess (Wenjun et  al. 2014; Ji et  al. 2016a). Poor prediction performance is commonly 

attributed to the absence of distinct features in the IR spectrum and varying relation-

ships between total and available element content (Kuang et  al. 2012; Pätzoldt  et al. 

2019). Consequently, the prediction models for available major and trace nutrients from 

soil spectra often prove to be less robust than those developed for particle size fractions 

and soil organic carbon. An exception is the study by Mouazen and Kuang (2016) with 

an 18% error increase for field-based soil available phosphorus predictions compared 

to predictions from spectra measured in the laboratory. These accurate predictions can 

probably be attributed to the large number of calibration samples used by the authors. 

Given that the linear models showed K and P to be important predictors of lettuce diam-

eter, and that most studies show poor prediction of these variables from field-based 

measurements, further development of sensor technology is required for field-based 

measurements to be of practical use for this study’s methodology.

In the study reported here, properties of 30 samples from each field were measured by 

wet chemistry and the values were used to calibrate the models. Samples of this size are 

more than a commercial grower could expect to take in fields of 10.5 and 18.2 ha. In prac-

tice, there will be a trade-off between the number of calibration samples, with their associ-

ated costs, and accuracy of the prediction. Optimization of the sampling design, sample 

processing and the number of replicate measurements are examples of other factors that 

affect the accuracy. Optimization of sampling design depends not only on the sizes of sam-

ples to provide reference data but also on good coverage of the conditions within the field 

(Ramirez-Lopez et  al. 2019 and references therein) or parent material (Sila et  al. 2016). 

Once errors in soil predictions have been properly estimated these must be propagated 

through to the predictions of crop response. Only when these are properly accounted for 

could one estimate the true value of measuring the soil spectra for precision application of 

fertilizer and irrigation (Ramirez-Lopez et al. 2019).

Thus, the relevance of using the soil spectra directly or via estimated soil properties will 

depend on the situation. This study showed that under optimal conditions, there is poten-

tial for associating crop response to soil reflectance spectra. This association can be made 

directly from the soil reflectance spectra or by a regression that uses soil property values 

estimated by reflectance spectra.

Conclusion

Reflectance spectra from soil in the near- and mid-infrared range were related to the diam-

eters of lettuce grown in two fields in the Fenland region of England. They led to reason-

ably precise predictions of lettuce diameter and therefore are of value to the grower. The 

partial least squares regression (PLSR) that used soil spectra as response variables showed 

a mean squared error (MSE) of 39  mm2 for Field 1 and 68.7  mm2 for Field 2. Predictions 

of lettuce diameter that used linear models with the PLSR estimated soil properties gave 

somewhat poorer results, with a difference in MSE for Field 1: 6.9  mm2 and Field 2: 21.2 

 mm2). Predictions from the linear mixed models were more precise than those from the 

raw spectra (by PLSR alone) with a difference in MSE of 21.2  mm2 for Field 1 and of 51 

 mm2 for Field 2.

The spectra were related strongly to soil properties that determine crop growth, spe-

cifically, nitrogen (measured as total N), available phosphorus (P), exchangeable potassium 
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 (K+), clay content and pH. Using the values of the soil properties estimated from the reflec-

tance spectra to predict the sizes of the lettuce was somewhat less precise than direct pre-

diction from the spectra. The advantage to the grower of the indirect prediction is the gain 

in knowledge about which soil properties are important. This enables the grower to adapt 

the management to the soil. Precise indirect prediction is only feasible with a suitable cali-

bration dataset that captures the variability of the underlying soil.
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