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Abstract: This paper presents the design procedure and analysis of a radial turbine design for a

mid-scale supercritical CO2 power cycle. Firstly, thermodynamic analysis of a mid-range utility-scale

cycle, similar to that proposed by NET Power, is established while lowering the turbine inlet

temperature to 900 ◦C in order to remove cooling complexities within the radial turbine passages.

The cycle conditions are then considered for the design of a 100 MWth power scale turbine by using

lower and higher fidelity methods. A 510 mm diameter radial turbine, running at 21,409 rpm,

capable of operating within a 5% range of the required cycle conditions, is designed and presented.

Results from computational fluid dynamics simulations indicate the loss mechanisms responsible

for the low-end value of the turbine total-to-total efficiency which is 69.87%. Those include shock

losses at stator outlet, incidence losses at rotor inlet, and various mixing zones within the passage.

Mechanical stress calculations show that the current blade design flow path of the rotor experiences

tolerable stress values, however a more detailed re-visitation of disc design is necessitated to ensure

an adequate safety margin for given materials. A discussion of the enabling technologies needed for

the adoption of a mid-size radial turbine is given based on current advancements in seals, bearings,

and materials for supercritical CO2 cycles.
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1. Introduction

In compliance with the warnings of the Intergovernmental Panel on Climate Change [1] to limit

CO2 discharges and keep the global temperature rise below 1.5 ◦C, techniques for mitigating power

generation emissions are being widely investigated; examples range from using non-conventional

working fluids and increasing the efficiency of power plants to implementing carbon capture and

storage (CCS) [2]. Oxy-combustion appears to be the most favourable CCS route because of the simple

separation of carbon dioxide from the steam present in the flue gases [3]. The basis of this method is

that a fuel is combusted with pure oxygen to produce a stream of exhaust gases consisting mainly of

H2O and CO2 which can be separated downstream through condensation [4].

With respect to unconventional working fluids, supercritical CO2 (sCO2) cycles are attracting

growing interest due to the advantages associated with the fluid. The attractiveness of the use of sCO2

fluid is based on its availability and inertness as well as the consistently cited advantages of such

power cycles [5]:

• The nature of the high density sCO2 fluid means that power conversion systems are very compact

compared to conventional power cycles [6] (≈30 times smaller than steam cycles and ≈6 times

smaller than air cycles)
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• High cycle efficiencies are also obtained, attributed to lower pumping power requirements and

the non-ideal gas properties of sCO2 which translate into lower fuel consumption and lower

capital and operating costs. Targeted efficiencies of large-scale, closed supercritical CO2 Brayton

cycles approach 50%

• The suitability of the cycle for waste heat recovery from a variety of heat sources (e.g., nuclear,

solar, fossil, geothermal, etc.)

• The application of these high-efficiency cycles reduces greenhouse gas effects because a CO2

emission is used as a working fluid or as a recycle stream (i.e., not emitted)

• The suitability of sCO2 cycle systems for use in arid climates because of their ability to use dry

cooling (thus saving water) [7]

• Low purification requirements for fluid leakages because the cycle operates above the critical

pressure of CO2

The NET Power (Allam) cycle combines both originalities of oxy-combustion and supercritical

CO2 fluids in one system which is aimed at high power generation efficiencies coupled with high levels

of CO2 capture [8]. A review of oxy-combustion cycles has been reported by the International Energy

Agency (IEA) identifying the main cycle configurations, requirements, benefits, complications and

future developments by presenting cycle modelling and techno-economic study results [9]. The NET

Power is one of the most attractive of the listed oxy-combustion cycles in terms of efficiency reaching

55% on lower heating value of fuel (LHV). Natural gas fuel or coal and oxygen from an air separation

unit are combusted at high temperatures reaching 1200 ◦C at high pressures (≈30 MPa) with the

recirculated CO2; due to the absence of N2 in the combustion process, the flue gases are mostly

composed of CO2 and H2O with no formation of NOx (for a natural gas based cycle). The combustion

products are then expanded in the CO2 turbine with a pressure ratio between 6 and 12 before entering

a multi-flow economizer heat exchanger where the turbine cooling flow and the recycled CO2 and O2

streams to the combustor are pre-heated using the residual flue gas heat [10]. The exhaust stream is also

cooled for condensation and separation of water from the mixture. A fraction of the remaining (mostly

pure) CO2 stream is sent for carbon capture and storage while the rest is re-compressed and used as

a temperature moderator in the combustor through mixing with the O2 coming from the ASU [11].

Cooling of the combustor and turbine components to allow operation at the relatively high turbine

inlet temperature of 1200 ◦C is more complex than in a conventional combined cycle gas turbine where

cooling air can be bled directly from the compressor section. For the Allam cycle, the available cooling

fluid is the CO2 stream, unless a closed loop system is implemented using a different fluid, e.g., steam,

although this would add cost as there is no steam available in the cycle. This constraint could limit the

cycle from further efficiency improvements through increased turbine entry temperature due to the

counterbalancing cooling penalty.

One of the most critical barriers that inhibits the full-scale development of the novel NET Power

cycle is the design of the high-pressure, high temperature turbine which dictates cooling requirements,

material considerations and number of stages to name a few. The turbine operates at an unorthodox

combination of high temperatures, comparable to those of gas turbines, and high pressures, analogous

to steam plants, in the presence of unconventional working fluids. The design of a proposed and

undisclosed axial turbine, developed by Toshiba [12], requires intricate cooling passages within the

small-sized blades, hence poses significant constraints on the design thereby limiting aerodynamic

performance and manufacturability. A radial turbine, which generally has a simpler construction and

fewer stages when compared to its axial contestant, is suggested as a superior candidate arrangement

for such cycles of high fluid density. For these reasons, the NET Power theme is taken as the

basis of a paradigm cycle configuration around which restrictions of a radial turbine design can

be applied. A thermodynamic analysis of a mid-range cycle is established while lowering the turbine

inlet temperature to remove cooling complications within the radial turbine passages. The cycle

conditions are then considered for the design of a multi-MW scale turbine by using lower-order

preliminary and higher fidelity methods.
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The focus of this paper is the analysis of the results from a single satisfactory radial turbine

design which is obtained based on the identified cycle requirements. It aims at highlighting the

flow behaviour within the blade passages as opposed to solely trying to optimise a turbine design.

Eventually, the methods are used to provide the necessary understanding of the loss mechanisms

specific to sCO2 radial turbines at such power scales, which in turn allow the identification of possible

areas for re-design.

2. Modelling Methodology

The overall methodology followed throughout this piece of work is summarised in the flowchart of

Figure 1. The main steps of the adopted modelling sequence are explained in the following Subsections.

Initially, an uncooled cycle model is developed to obtain the turbine operating conditions required

for the turbine design. The design procedure begins by performing initial calculations employing

a meanline design code, and it is followed by generating a wide range of turbine geometries via

preliminary design tools. The following stage involves the analysis of a set of the preliminary designs

using 2D throughflow calculations where only a select few are taken further down the performance

investigation using more advanced computational fluid dynamics (CFD) modelling. This is an iterative

process until a suitable design that meets defined aerodynamic performance criteria is identified.

Structural assessment is then performed for the chosen design to investigate the mechanical integrity

of the rotor in operation.

Cycle Model
Turbine operating conditions

Aspen Plus

Initial Calculations
Dimensions and speeds

Meanline tool

Preliminary Design
Geometry generation

AxSTREAM

Turbine Analysis
Performance parameters

AxSTREAM

CFD Simulations
Flow characterisation

AxCFD

Stress Analysis
Structural assessment

AxSTRESS

Figure 1. Overall methodology flowchart.

2.1. Cycle Modelling

The licensed software Aspen Plus V9 [13] is used for simulating the cycle, which is based on the

initial model of the work of Scaccabarozzi et al. [10], to obtain the necessary data for turbine design

which include working fluid ratios, power output, flow rates, as well as temperatures and pressures.

Cycle modelling and analysis are performed before detailed geometrical information or structural

aspects of components are defined.

The cycle considered in this work is a modification of the NET Power cycle introduced in Section 1.

The changes include a reduced turbine inlet temperature and a lower pressure ratio; the uncooled

turbine case is considered as a datum configuration for the following reasons:

• One of the benefits of a supercritical CO2 cycle is small turbomachinery components which implies

small blades that require intricate passages if cooling is employed. The design complexities

associated with cooling are eliminated by the use of a smaller-scale radial turbine design

• Smaller power output scale so that a radial turbine can still be within acceptable efficiency ranges

(power limit shown in Section 3.1.2)
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• There is a lack of experience in radial turbine cooling for such high temperatures

The layout of the modified cycle under study is very similar to that in the work of

Scaccabarozzi et al. [10]. Alterations to the original NET Power cycle model include the absence of

cooling flows in the turbine (thus only one turbine component) and regenerator, plus the use of two

flow compressors instead of four.

2.2. Meanline Design

The turbine operating conditions obtained from the cycle model are used in this intermediate step

to give an insight on the possible performance range and geometric dimensions of the radial expander.

A meanline design tool is developed using MATLAB by coding established turbomachinery equations.

The programme NIST REFPROP has been cited widely throughout the literature for defining the

thermodynamic and transport properties in sCO2 turbomachinery design tools [14–17]. It provides

thermophysical properties of pure and compound fluids over a broad range of states for liquids, gases

and supercritical phases based on validated data and calculation methods.

The initial design procedure is carried out using a meanline approach, which assumes

one-dimensional passage conditions at mean radius of the turbomachine. The meanline aerodynamic

design procedure of this work follows the approach introduced by Aungier [18] that can encompass

the full operating range of a radial turbine. This method is used to determine the outline geometry

of the turbine, given specific inputs, and to investigate the dependency of overall performance (size,

efficiency, power) on key design parameters and assumptions such as specific speed and operating

conditions [19]. Within the MATLAB tool, the estimate of the turbomachinery efficiency is obtained

without the integration of loss models as these get incorporated in later stages of design. The main

goal of this step is to obtain a range of turbine size parameters for use in the preliminary design tool of

AxSTREAM in Section 2.3.

2.3. Preliminary Design

The proceeding design methodology tasks employ the integrated suite of turbomachinery design

tools, AXSTREAMTM, licensed by SoftInWay.

The preliminary design (PD) tool from AxSTREAM enables the fast computation to generate

several possible turbine flow path designs for a set of given boundary conditions (pressure ratio,

mass flow rate, range of rotational speed, flow coefficient) taking into account specified geometric

constraints. The model follows a similar procedure to the meanline preliminary design process cited in

Section 2.2, relying on the assignment of stage pressure drop and degree of reaction as independent

variables of energy, continuity, state and process one-dimensional, steady, equilibrium and adiabatic

equations. Firstly, velocity coefficients are refined to meet the criteria of the selected empirical design

model, then losses are computed after obtaining a possible flow path, followed by the re-iteration

of cascade angles for supersonic flows, and finally the definition of blade profiles is performed after

obtaining flow angles.

The inverse task calculation of the preliminary design solves a set of equations, with the

implementation of inlet and outlet boundary conditions, to search for the criteria of unknown flow

angles as a function of generated design variables—flow coefficient and stage loading (both which

relate to turbomachinery losses)—that are based on existing correlations. Details about the theoretical

and mathematical background of the preliminary design tool can be found in [20]. Although there

is a major three-dimensional aspect to the flow in a radial turbine, an approximate verification of 1D

formulation is used in the PD step to provide an estimation of sizing data that depend heavily on the

selected empirical loss methods [21].

The initial estimates obtained from the MATLAB meanline code (without loss models) are used

as input data to AxSTREAM. The preliminary design tool generates a large pool of design solutions

based on the given boundary data and geometric constraints. The particular license of the software
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employed does not provide the capability of having a fluid mixture (such as that present in the cycle)

so the working fluid is taken as pure supercritical CO2 assigned by the AxS Carbon Dioxide property

method which is a modified Redlich-Kwong equation of state that covers a wide range of pressures

and enthalpies [22]. Default empirical methods and loss models for radial turbines embedded in

AxSTREAM are used in the design tasks.

All the generated turbine solutions can be explored in depth in the counterpart of the PD tool of

AxSTREAM, the design space explorer, where designs are filtered through by applying constraints

and limitations to allow trade-offs between power, efficiency, geometric design and velocities. Table 1

shows the filters applied to the design space to narrow the results selection process. The turbine

solutions that do not meet the pre-defined constraints are automatically discarded and the selected

designs can be examined in terms of flow path geometry. This option also allows for a quick study of

the influence of crucial parameters on performance and size at the early stages of preliminary design.

Table 1. Design space explorer constraints.

Parameter Unit Constraint

Power MW ≥Ẇ from cycle Section 3.1
Efficiency % ≥80
Flow coefficient - <1
Rotor inlet blade speed m/s ≈450
Rotor outlet absolute flow angle ◦ ≈0

2.4. Turbine Throughflow Analysis

The selected turbines from the preliminary design step are then analysed using the throughflow

tool of AxSTREAM. Meanline analysis can be performed by using only the mean curvature section of

the blade. Whereas a more refined streamline benchmarking calculation is done using the direct solver

that considers the cascade geometry at hub, mid-span and tip for both stator and rotor. Kinematic and

thermodynamic parameters are obtained along the blade height at three sections (hub, mid-span and

tip). The aim is to get more precise performance parameters of the turbine before proceeding to blade

profiling and design if needed.

Once a number of results are obtained for a select number of turbines, the user can start the

post-design process of reviewing and editing the turbine flow path if needed; turbines that have not

shown good performance or have not achieved solution convergence are discarded at this step instead

of trying to optimise and edit the design. The outcome of the streamline calculations include loss and

velocity charts, updated velocity triangles, meridional flow path and the enthalpy- entropy diagram,

all which can be saved to the main project database to override performance results from the PD

step. The project database will hold all relevant turbine information for each section (hub, mean,

tip) as well as details on geometric and loss values for the design. Another check on the required

constraints is performed in case any design fails to meet the criteria so as not carry it further to higher

fidelity simulations.

2.5. Computational Fluid Dynamics

AxSTREAM provides tools that generate geometries based on 1D meanline design and allows

analysis using higher fidelity models ranging from streamline analysis, axi-symmetric 2D and 3D

computational fluid dynamics (CFD). AxCFD is the tool used for pre-processing, mesh generation,

calculation and results post-processing. This step allows for the evaluation of the designed flow path,

the comparison of results between the different calculation models (meanline, streamline, 3D CFD),

and the understanding of flow mechanisms within the turbine.

The turbine domain employing a mixing plane halfway between stator trailing edge and rotor

leading edge is simulated using AxCFD. Boundary conditions, of P0in
= 297 bar, T0in

= 1173 K and

Pout = 54.0 bar, and working parameters are taken directly from the AxSTREAM project case saved
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after the 2D analysis with values taken as spanwise averages of quantities at hub, mean and tip

sections. Rotational speed and mass flow rate are also automatically inherited from the project

database but are altered for off-design simulations. Like other CFD tools, AxCFD solves decomposed

Reynolds-Stress-Averaged Navier Stokes (RANS) equations with time-averaged density, pressure and

energy conservation, and mass-averaged velocity equations in discretised fluid domains.

Passage mesh creation is required before any aerodynamic assessment of the turbine. The way of

defining the size and number of the mesh elements in AxCFD is through mesh quality, a value ranging

between 1 (coarsest) and 10 (finest). A mesh sensitivity study is performed, with results discussed

in Section 3.3.1, to allow for a compromise between accuracy (mesh refinement) and computational

time. Structured HO-type mesh elements with the same quality in hub-to-shroud and blade-to-blade

directions are used in all cases with additional parameters for mesh adjustment; values are taken based

on recommendations by SoftInWay.

The meshing zones defined by points on leading edge (LE) and trailing edge (TE) are modified

manually over the blade profile contour for hub and tip sections. A mesh quality check is performed;

good quality elements are described as those with no Jacobian determinant less than 0.3 and no (or

minimal) angle parameter less than 12◦.

The k-ω SST turbulence model is used for its suitability in viscous turbomachinery simulations

based on previous experience [23–25], with a medium turbulence intensity of 5%. The first order

upwind scheme is employed due to convergence difficulties when using second-order. Slightly

fluctuating trends and considerably high value criteria for some residuals in the range of 10−5 are

accepted for simulations of similar applications shown in [26,27], but convergence is also checked

against inlet/outlet mass imbalance of within 0.2%. AxCFD also allows calculations over 2D

spanwise fluid domain sections via axi-symmetric modelling which is used of off-design performance

map generation.

3. Results

3.1. Cycle Modelling

Before proceeding to process modelling of the fully modified cycle and using it as a basis for

turbine design, it is reasonable to try and understand if there are any cycle benefits which can be

credited to the removal of turbine cooling beyond that of reducing design complexities. From a

practical point, a comparison between thermodynamically-identical cycles is conducted where cooling

is the only limiting distinction.

3.1.1. Cooled Cycle Comparison

In an attempt to compare the performance of an uncooled cycle (the target cycle of this work) to a

cooled one, like-for-like working conditions are applied. Conditions of the optimised cycle model from

the work of Scaccabarozzi et al. are adopted [10] which are compared against the data from IEA GHG

report [9]. Optimisation work, to achieve maximum cycle efficiency target, was carried out by the

authors of [10] after performing a sensitivity analysis on the most relevant cycle-affecting parameters.

The thermal energy of the feedstock is kept the same as in the cited works by setting the natural gas

inlet flow rate to 16.52 kg/s. For the sake of comparison, the uncooled turbine is assumed to be capable

of operating at a full-size (≈700–800 MW) power scale.

The comparison between a number of cycle performance results is viewed in Table 2. Generally

there is good agreement in the results with some discrepancies that can be attributed to the differences

in minor quantitative assumptions, and because of using two compression stages instead of four [10]

which lowers the power required to drive the compressors. The absence of turbine cooling gives

a higher turbine outlet temperature which implies a lower temperature drop across the turbine

contributing to a lower turbine specific work. However, the higher combustion flow rate, required to

reach the desired temperature of the cycle, balances the drop in turbine specific work. Overall, the cycle



Appl. Sci. 2020, 10, 4168 7 of 26

with the uncooled turbine gives a superior cycle efficiency compared to the cooled case, a 1.54%

efficiency point gain. The heat transfer associated to preheating the turbine cooling flow within the

regenerator (which also contributes to expansion losses) is removed and thus the detrimental efficiency

penalty affiliated with this process is eliminated causing a beneficial impact on the cycle efficiency.

In fact it is suggested that while turbine cooling allows an increase in turbine inlet temperature

(TIT) which enhances cycle performance, it also increases energy losses in turbines and thus leads to a

lower aerodynamic efficiency [28] that in turn would have a great negative impact on the net cycle

efficiency [29]. Scaccabarozzi et al. [10] noted that the maximum net cycle efficiency is achieved at a

relatively low turbine inlet temperature (lower than the maximum simulated TIT value) because of the

substantial cooling mass flows required if a high combustor outlet temperature is implemented.

Table 2. Comparison of optimised cycle between [10] and uncooled turbine model.

Unit Results of This Work Results of [10] Optimised Cycle

Thermal energy of feedstock (LHV) MWth 768.21 768.31
Turbine power output MWe 610.55 609.74
Recycle flow compressors MWe 88.00 97.81
Natural gas compressor MWe 3.97 -
Air separation unit MWe 85.51 -
Storage compressor MWe 0.25 -
Net electric power output MWe 432.82 421.06
Turbine outlet temperature ◦C 830.53 783.81
Turbine inlet flow rate kg/s 1567.7 1513.7
Net electric efficiency (LHV) % 56.34 54.80

3.1.2. Modified Cycle

As discussed in Section 1, supercritical CO2 cycles, regardless of whether they employ cooling

or not, have the beneficial characteristics of small turbomachinery components due to the high

fluid density. Suggestions from literature limit the applicability of radial turbines to cycles of up to

30 MWe [30]. The criteria for that power level was proposed on the basis of closed sCO2 cycles with

lower operating pressures and temperature compared to conditions witnessed in cycles similar to the

Allam cycle.

The numerical value of a turbine specific speed is used as an index of power output and passage

size [31]; the dimensionless parameter is used by designers to determine turbine type and efficiency.

Dixon shows that for a specific speed

(

ns =
ω
√

Q̇5

(∆hid)0.75

)

in the narrow range of 0.3–1.0, where this

span corresponds to small turbine passage areas, a 90◦ inward-flow radial (IFR) turbine can reach high

efficiencies in contrast with the conventional axial turbines which have a much broader spectrum of

peak performance [31].

A larger-scale turbine—higher volumetric (Q̇) or mass flow rate (ṁ)—corresponds to a higher

specific speed value for fixed ideal heat drops (∆hid) and rotational speeds (ω). Thus, taking a

within-the-range recommended value of ns = 0.7 [18,31] and knowing the ideal enthalpy drop from

the cycle model (∆hid = 284,370 J/kg), plus having performed some calculations on possible rotational

speeds being in the range of 25,000 rpm, through initial turbine sizing (i.e., ω = 2618 rad/s) the

corresponding maximum allowable mass flow rate is:

ṁmax = Q̇max · ρout =

(

0.7∆h0.75
id

ω

)2

· ρout ≈ 354 kg/s (1)

where ρout is the density of the flow at turbine outlet and is around 33.2 kg/m3 from the cycle model.

The limit obtained for the largest size of a radial turbine operating under the conditions of a

dense working environment, at TIT = 900 ◦C, turbine inlet pressure (TIP) = 297 bar and pressure ratio
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(Π) = 4.95, is used to assign the scale of the cycle and assess the applicability of such a size. The cycle

model is altered with the selection of ṁmax and an assumed medium-value turbine isentropic efficiency

of 85%, and the final modified cycle performance parameters are listed in Table 3. Although the net

electric power output of 67.33 MWe is not within the scale range of the suggested 700 MW NET Power

plans, the net work of this cycle is in the scale of gas turbines used in small industrial and commercial

applications by major OEMs. The market for turbines in the range of less than or equal to 70 MWe is

believed to grow considerably in the near future [32].

To summarise, Table 4 offers the turbine boundary conditions which are used to design, size and

assess a radial expander that could be fit for use. The obtained turbine fluid components is comparable

to the NET Power working environment reported in literature [9] with a slightly higher CO2 mole

fraction. This is because in the original NET Power cycle the combustion products are mixed with

the turbine cooling stream which has a high CO2 component. Although the major fluid component

entering the turbine is CO2 with 94.06% mole fraction, there are other fluid contaminants that could

affect turbine design and performance. However, the assumption of a pure CO2 fluid is employed

throughout the design process.

Table 3. Modified cycle performance parameters.

Data Unit Value

HTHE heat duty MW 242.92
LTHE heat duty MW 43.42
Thermal energy of feedstock (LHV) MWth 137.18
Turbine power output MWe 99.31
Vapor phase compressors MWe 3.96
Dense phase compressors MWe 8.86
Oxidant compressor MWe 3.09
Total flow compressors MWe 15.91
Natural gas compressor MWe 0.74
Air separation unit MWe 15.29
Storage compressor MWe 0.045
Net electric power output MWe 67.33
Net electric efficiency (LHV) % 49.08

Table 4. Radial turbine boundary conditions from cycle model.

Data Unit Value

Inlet temperature (T) ◦C 900
Inlet pressure (P) bar 297
Mass flow rate kg/s 354.2
Outlet pressure bar 60
Thermal power output (Ẇ) MWth 100.7

Fluid Component Mole Fractions

CO2 % 94.06
H2O % 4.13
N2 % 1.14
Ar % 0.55
O2 % 0.12

3.2. Preliminary Design

The design phase that builds on the results of the cycle analysis and the meanline code consists of

the definition of three-dimensional geometries which are then further investigated using higher fidelity

tools. The tool employed in this phase is the preliminary design solution generator, which is part of

the AxSTREAM design suite, is initiated with defined settings (working fluid, loss models, number of

stages), boundary conditions and geometry constraints. The boundary conditions required to obtain
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the preliminary design solutions are based on design specifications from the cycle requirements that

are fixed, whereas all other parameters obtained from an initial meanline calculation are specified

as a range of values. The particular range employed is defined based on the survey of literature

together with outcomes of the sensitivity analysis from the initial calculations step. The inlet total

temperature and outlet total pressure are used as boundary conditions and the criterion against which

output designs are selected is based on the total-to-static efficiency. A vaned nozzle is used and based

on results not shown in this paper, cases without volutes are selected which means that an annular

collector would be required to gather the inlet flow to the turbine. The rotor inlet metal angle is set to

90◦ (i.e., straight radial blades at inlet) for manufacturability and structural reasons. Full input data

generated from the meanline design code is found in Table 5.

Table 5. Input data for preliminary turbine design.

Variable Unit Value

Boundary Conditions

Inlet total pressure bar 297
Inlet total temperature K 1173
Outlet total pressure bar 60
Mass flow rate kg/s 354.2
Inlet rotor metal angle ◦ 90
Shaft rotational speed rpm 17,000–24,000

Geometric Parameters and Constraints

Stator outlet mean diameter m 0.4–0.6
Rotor blade height ratio - 2–3
Rotor diameter ratio - 1.5–3
Rotor inlet height m 0.01–0.04
Hub reaction - 0.3–0.5
Stator inlet diameter m 0.4–0.8
Inlet flow angle ◦ 1–179
Rotor outlet hub diameter m 0.05–0.3

The preliminary design space allows the visualisation of the estimated set of turbine solutions for

the given input data. An example of a generated design space with 130 possible solutions is shown in

Figure 2 with each point corresponding to a particular turbine design. The total-to-static efficiency

is represented by the colour of each point for both plots. Higher efficiency values coincide with the

lower range of flow coefficients and higher velocity ratios (faster rotational speeds). In some cases,

a qualification between efficiency and velocity ratio is needed to limit the induced rotor tip speed from

high rotational speeds because of permissible material limits. Greater power is produced from the

designs with higher efficiencies as expected.

From the preliminary design space, designs are filtered through firstly by imposing general

constraints within the design space explorer that automatically discards points, followed by manually

selecting the turbines and assessing geometries and velocity triangles. The design space explorer is

used to set constraints to narrow down the selection process, and to compare designs that meet the

turbine requirements. Filter limits are specified to automatically and rapidly remove unsatisfactory

points; the imposed criteria is to discard any turbines that have Ẇ < 100 MW and efficiencies < 80%.

78 out of the 130 solutions do not meet the imposed criteria and are removed from the selection process.

The remaining solutions are individually selected for further assessment of the general geometric

features and velocity triangles in order to ensure that the restrictions on tip speeds and flow angles

are applied.
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φ [-]

νs [-]

Ẇ [MW]

νs [-]

ηts [-]

(a) (b)

Figure 2. Preliminary design space: (a) Flow coefficient vs velocity ratio, (b) Power vs velocity ratio.

From the few selected designs, some are discarded because they either exhibit high circumferential

rotor blade tip speed, or did not meet performance metrics, or the exit absolute flow angle was far

from zero, or they had narrow passages which would incur high blockage. One particular design that

meets the defined criteria, and which is characterised by a smooth rotor turning from the radial to the

axial direction is presented in Figure 3, with the meridional dimensions given in Figure 4. Additional

geometric parameters of the radial turbine are found in Table 6; the blade metal angle (θ) is defined as

the angle between the tangential reference plane and the blade camberline extension at leading edge

for inlet, and trailing edge for outlet. In the case of no volute, the flow at vane inlet is assumed almost

purely radial with straight radial blades at rotor inlet as well (θin ≈ 90◦). The shaft rotational speed is

21,409 rpm and the rotor tip clearance is 0.782 mm.

(a) (b)

Figure 3. 3D model of selected turbine: (a) Front view, (b) Perspective view.

Table 6. Geometric parameters of turbine stator (S) and rotor (R) blades.

Stator Rotor

Variable Unit Value Data Unit Value

Blade count (NS) - 19 NR - 16
Chord (cS) mm 99.90 cR mm 176.0
Pitch (qS) mm 70.24 qRm

mm 47.81
Inlet thickness (t2) mm 9.150 t4 mm 3.520
Outlet thickness (t3) mm 1.830 t5 mm 3.520
Throat (oS) mm 16.82 oR mm 28.35
Inlet angle (θ2) ◦ 112.42 θ4

◦ 90
Outlet angle (θ3) ◦ 13.86 θ5m

◦ 36.37
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Figure 4. Meridional dimensions of selected turbine.

The performance parameters obtained upon completion of 2D throughflow analysis for the

turbine case are listed in Table 7. These results are obtained assuming inviscid flow.

Table 7. Anticipated performance results.

Variable Unit Value

ṁ kg/s 354.6
Ẇ MW 101.6
Total-to-total efficiency (ηtt) % 88.25
Total-to-static efficiency (ηts) % 83.40
νs - 0.344
Stage loading (ψ) - 1.42
φ - 0.433
Degree of reaction (R) - 0.282
Πts - 5.52

3.3. Computational Fluid Dynamics Analyses

Three-dimensional simulations are carried out for a single blade passage of the turbine to form

a basis of obtaining performance results to be contrasted against lower-fidelity analysis techniques,

and acquiring an insight into the turbine flow which can be used for comparison purposes with other

designs (not presented in this paper), given that there is no available validation data for designs similar

to the radial turbine under examination.

3.3.1. Mesh Sensitivity

A mesh sensitivity study is performed to examine the relationship between computational time,

which is related to total nodal count, and convergence of results. Two sets of boundary conditions

definition are imposed to check discrepancies between mesh densities with results listed in Table 8.

The largest observed changes refer to the efficiency values which can be imputed to improved wall

boundary layer resolutions as number of elements increase.
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Table 8. Performance results for 3D CFD mesh sensitivity study using two different boundary

condition definitions.

Boundary Condition: ṁin & Pout

Number of Elements [-] P0in
[bar] Ẇ [MW] ηtt [%] ηts [%]

51,110 224 83.97 72.66 67.50
209,308 281 93.16 73.48 67.98
971,613 282 102.2 69.77 63.17

Boundary Condition: P0in
& Pout

Number of Elements [-] ṁ [kg/s] Ẇ [MW] ηtt [%] ηts [%]

51,110 377.3 81.48 76.28 70.42
209,308 375.2 101.3 73.01 67.21
971,613 372.5 108.5 69.87 63.05

The finest mesh of 971,613 elements is used for flow visualisation. The y+ on the rotor surfaces

is ≤2; it is harder to obtain low values of the non-dimensional distance on the stator and rotor

shroud because of the high Reynolds number (Re ≈1.7 × 107, given that the fluid has a high density).

The range of y+ values on all surfaces is between 0.14–200 (200 being the highest acceptable limit of

y+ as referred to SoftInWay manual recommendations). Cerdoun et al. [33] also noted high values of

y+ in specific regions of the CFD mesh (0.3–92.2). Lower y+ can be obtained by further increasing

mesh element count but owing to the licensing restrictions of AxCFD and the limited computational

resources available to run the simulations, the mentioned values are accepted. H-O grid topologies are

used in both the stator and rotor domains for smooth alignment with the flow direction, and refinement

made in regions near blade walls and leading/trailing edges to account for high normal gradients [34].

Inlet/outlet mass imbalance, monitoring of total-to-total efficiency stabilisation, and root mean

square residuals of mass, density, pressure and turbulence equations (k and ω) are used as criteria

to assess solution convergence. For lower mesh densities, the residual values are set at ≤10−6 but

for finer meshes, residuals require more iterations to reach steady higher values. This is observed in

similar works by Wei [26] where increased residual values are accepted for off-design conditions and

for finer mesh simulations.

3.3.2. Design Point Turbine Analysis

Performance data obtained from the numerical 3D turbulent simulations is listed in Table 9 which

can be compared to the 2D analysis results found in Table 7. Global variables of mass flow, power,

and non-dimensional parameters all show good agreement; the small difference in thermodynamic

properties between the analyses outcomes (enthalpies and temperatures) lead to a greater difference

in power output. The total pressure at turbine outlet is 62.9 bar with a total temperature of 975 K

which are both slightly higher than the values initially anticipated. The most pronounced discrepancy

can be observed in the values of efficiencies that can reach 20%. This change is not fully uncommon

with comparisons of 15% efficiency difference between meanline design and CFD results noted by

Sauret et al. [35] in their design of a R134A radial turbine, and almost 24% efficiency difference

reported by Meijboom [23] between 1D design and 3D CFD modelling for a supercritical CO2

radial turbine. The source of this variance can be attributed to a number of factors, the turbine

3D blade geometries not being fully optimised, and the effects of three-dimensional viscous losses

and tip clearance not accounted for in earlier analysis stages. The current design corresponds to an

intermediate development stage and requires further adjustment based on the following observations

made hereafter.
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Table 9. 3D CFD performance results.

Variable Unit Value

ṁ kg/s 372.5
Ẇ MW 108.5
ηtt % 69.87
ηts % 63.05
ψ - 1.34
φ - 0.511
R - 0.355
Πts - 5.51

Figure 5 shows relative Mach number (Mrel) distribution (absolute for stator) at three locations

across the span. At the throat of the stator, the flow reaches its supersonic conditions with the onset of

the trailing edge shock; high losses are associated with shockwaves which are mitigated by changing

airfoil shape to lower Mach number values. Low Mach number values near the rotor pressure side (PS)

leading edge is caused by incorrect incidence and the propagating suction side acceleration interacting

with the presence of the rotor tip clearance; the area of incidence loss near the pressure side lessens

from 10% to 90% span with the mean relative flow angle at rotor inlet β4 = 28.22◦ which is lower than

the calculated flow angle from throughflow analysis (β4 = 45.50◦). The low Mrel values on the suction

side indicate a region of flow separation that begins at SS leading edge and grows along the flow as

end-span is approached (also reported in Dong et al.’s work [24]).

(a) 10% span (b) 50% span

(c) 90% span

Mrel [-] 

PS

SS

Tip

Hub

Leading edge 

separation

Figure 5. Relative Mach number distribution at three spanwise turbine passage locations: (a) 10% span,

(b) 50% span, (c) 90% span.
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Figures 6 and 7 can be viewed in conjunction to further investigate loss zones in the radial turbine

rotor passage. This blade-to-blade view shows more detail regarding the flow characteristics on the

suction and pressure surface of the rotor blade and omits details of stator and rotor leading edge flows.

Boundary layer separation is observed towards the end of the span just after the rotor blade angle

experiences a major deflection on the suction side; the separation zone in Figure 6 corresponds to the

high entropy generation area in Figure 7. Smaller regions of entropy rise are noticed near the leading

edge because of the reattachment of the leading edge separation (because of incorrect incidence) on

the pressure side with the higher velocity flow on the suction side. Rotor wakes, produced by the

velocity differential between the viscous layers at trailing edge from the suction and pressure sides,

also correspond to higher irreversibility especially at mid-span. The severity of the loss locations

and their expanse help explain the low efficiency obtained for the turbine design. The entropy rise

across the passage is more than double the initially predicted value (88.92 J/kg K vs 41.07 J/kg K).

The flow deceleration in some parts of the passage indicate separation or flow reversal. Similar flow

behaviour patterns have been remarked in works on radial turbines and turbochargers performed by

other researchers. Wei [26] reported separation on the blade suction side for a supercritical CO2 radial

turbine and Rahbar et al. [19] outlined leading edge separation on the pressure side depending on

rotor blade design and turning.

W [m/s] 

Separation/ 

reversal zone

a) 10% span b) 50% span

c) 90% span

PS

SS

Tip

Hub

SS LE 

acceleration

Figure 6. Relative velocity contour at three spansiwse rotor passage locations: (a) 10% span, (b) 50%

span, (c) 90% span.
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s [J/kg K] 

a) 10% span b) 50% span

c) 90% span

PS

SS

Tip

Hub

Rotor wake

SS LE acceleration

Figure 7. Entropy contours at three spanwise rotor passage locations: (a) 10% span, (b) 50% span,

(c) 90% span.

Total pressure losses occur in the rotor passage as indicated in Figure 8. At sections after rotor

entry, the most pronounced total pressure loss (blue colour) happens on the suction side from hub

to tip because the pressure side still maintains the high pressure characteristic. As the flow moves

downstream, the total pressure loss vortex loses its magnitude compared to the bulk flow (green colour

with no gradient), shifts towards the shroud region, and extends to reach the pressure side near rotor

exit because of the formation of tip leakage.

(a) Section R1 (b) Section R2

(c) Section R3 (d) Section R4

P0,rel [bar] 

Tip

Hub

SS PS

10% 

span

50% 

span

90% 

span

Rotor exit

R1

R2

R3

R4

(A) R Domain sections (B) P0,rel contours

Figure 8. (A) Domain stream definition, (B) Relative rotor pressure distribution in rotor stream-sections,

flowing downstream: (a) R1, (b) R2, (c) R3, (c) R4.
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An additional plane at rotor exit with contours of total pressure in the rotating frame of reference

is plotted in Figure 9. The warm-coloured patches (regions tending to red) are areas with the highest

total pressure, whilst cooler-coloured tones (tending to blue) are zones where total pressure is lost.

The large tip clearance leakage area, visible at the rotor exit stream-section, adds to the amount of

entropy/loss generation which leads to low efficiency values.

P0,rel [bar] 

Tip clearance 

leakage

Minimum 

pressure loss 

region

Tip

Hub

SS PS

Rotor wake

Figure 9. Relative total pressure contours at rotor exit stream section.

3.3.3. Off-Design Turbine Analysis

The turbine performance maps are generated using 2D CFD simulations rather than the full 3D

ones, on account of the computational resources available as well as the long time required for the 3D

simulations. The conditions extend over the range of total-to-static pressure ratio between 2 and 7 at

three rotational speeds of 19,268 rpm, 21,409 rpm and 23,550 rpm. The variation of mass flow rate and

stator outlet Mach number with the off-design conditions is shown in Figure 10. In general, the mass

flow is expected to increase with higher pressure ratios but have lower values at higher rotational

speeds, until choking occurs whereby the mass flow rate reaches its maximum asymptote. The radial

turbine becomes choked at around Πts = 3, thus for the operating range of the design, the turbine will

almost always experience supersonic flows.

330

335

340

345

350

355

360

365

370

375

2 3 4 5 6 7

ṁ [kg/s]

Πts [-]

19268 rpm

21409 rpm

23550 rpm

(a)

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

2 3 4 5 6 7

M4 [-]

Πts  [-]

19268 rpm

21409 rpm

23550 rpm

Operating range

Non-choked 

region

DP
DP

(b)

Figure 10. Variation of parameters with total-to-static pressure ratio at three rotational speeds: (a) Mass

flow, (b) Stator outlet Mach number.

Both total-to-total and total-to-static efficiency maps are plotted in Figure 11. The difference

between the efficiency values is solely attributed to the loss in the available kinetic energy at rotor

outlet, i.e., related to the exit swirl (α5), because the axial velocity is not a function of rotational speed

(but is related to pressure ratio). The trend for both efficiencies are broadly similar except for the value

difference due to the mentioned loss. The highest efficiency value occurs with a pressure ratio of about
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3 at 23,550 rpm and the lowest with Πts = 7 at 29,268 rpm. The maximum Mach number at stator

outlet is lower for higher ω (as deduced from Figure 10) meaning that the entropy rise in the stator

exit channel is also lower, hence the higher efficiencies.
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23550 rpm
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Πts  [-]

19268 rpm

21409 rpm

23550 rpm

DP

DP

Ẇ [MW]

Π

(a) (b)

Figure 11. Variation of efficiencies with total-to-static pressure ratio at three rotational speeds:

(a) Total-to-total efficiency, (b) Total-to-static efficiency.

Table 10 shows the change in relative flow angle at rotor inlet and absolute flow angle at rotor

outlet at the off-design conditions. The flow angle at rotor inlet (β4) plays a role in determining

incidence losses. The recommended values of rotor incidence angles for a radial turbine are in the

range of −40◦–−20◦ [36]; incidence angles around the suggested values are only obtained in two cases

(−37.01◦ & −44.19◦), all which correspond to pressure ratios below choking conditions and those cases

correspond to relatively high efficiencies. Ideally, the closer the absolute flow angle at rotor outlet is to

zero, the lower the kinetic energy loss will be; therefore the lower the difference between ηtt and ηts is.

Values of α5 ≈ 0◦ are attained at higher rpms because of the lower Mach number at stator outlet/rotor

inlet which in turn leads to a lower relative Mach at rotor outlet and thus can have lower absolute flow

angles for similar pressure ratios at different speeds.

Table 10. Variation of relative flow angle at rotor inlet and absolute flow angle at rotor outlet at

off-design conditions.

Πts 2 3 4 5 6 7

β4 [◦]

19,268 rpm −1.07 43.97 49.88 51.10 51.28 51.25
21,409 rpm −37.01 −44.19 40.92 44.21 45.29 45.65
23,550 rpm −58.45 0.47 26.21 33.57 36.22 37.29

α5 [◦]

19,268 rpm 56.5 36.8 15.95 0.02 −10.64 −17.22
21,409 rpm 63.06 -27.85 26.09 9.56 −2.35 −10.27
23,550 rpm 69.81 48.48 34.49 18.65 5.87 −3.04

The total-to-static pressure ratio and rotational speed of the most and least efficient points are

used in 3D CFD to visualise the flow behaviour for each case. Figure 12 shows the relative Mach

number distribution for both cases at mid-span. One can note the absence of the shockwave and

supersonic flows at the stator outlet channel for the conditions with high rpm which leads to much

improved efficiency values (ηtt = 82.40% ηts = 72.39%). The right-hand-side figure (b) also shows that

the inefficient turbine (ηtt = 65.19% ηts = 57.22%) exhibits loss features that include the presence of

a vortex, incidence losses (β4 = 35.44◦) and suction side separation or flow reversal as explained in

Section 3.3.2. Whereas, the left-hand-side figure (a) shows smooth flow acceleration and deceleration

as would be ideal in a radial turbine case with proper rotor incidence of β4 = −12.93◦. The aim

would be to design a turbine that coincides with such flow behaviour, however, operating conditions
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imposed by the cycle might not allow the elimination of supersonic flows. Investigation of the total

pressure losses at the rotor exit hub-to-tip surface also emphasises the efficiencies at each off-design

condition. A small fraction of tip leakage losses with a pressure loss region near the hub (25% P0

loss near hub) corresponding to the better operating condition; whereas for the inefficient conditions,

more pronounced shroud leakages with a proportionate value of 48% with respect to the areas of least

pressure drop.

a) 23,550 rpm/ Πts= 3 b) 19,268 rpm/ Πts= 7 Mrel [-] 

PS

SS

Tip

Hub

Figure 12. Off-design relative Mach number distribution at mid-span from 3D CFD simulations:

(a) 23,550 rpm & Πts = 3, (b) 19,268 rpm & Πts = 7.

3.3.4. Isolated Rotor Analysis

An isolated rotor model is primarily developed for use in stress calculations but is also utilised

for examination of the rotor performance without the inclusion of the stator effects. The boundary

conditions are taken as dictated by the main project database of AxSTREAM with P0in
= 270 bar,

T0in
= 1173 K at an absolute flow angle of 73.93◦ and Pout = 54.0 bar. Performance results of the rotor

only model at design point are listed in Table 11. The computed total-to-static pressure drop is lower

than the defined value of with the CFD value of P0in
being 256 bar. The mass flow rate is very close to

the design 354.6 kg/s rate along with much better efficiencies compared to the full turbine cascade.

The power output is around 14% lower than the 100 MW because of the lower pressure ratio (absence

of stator means no static pressure drop there). The solution indicates that a large portion of losses arise

in the stator-rotor passage and the incorrect flow conditions supplied by the nozzle.

Table 11. 3D CFD performance results for the isolated rotor.

Variable Unit Value

ṁ kg/s 356.3
Ẇ MW 86.38
ηtt % 87.80
ηts % 80.46
ψ - 1.21
φ - 0.423
R - 0.406
Πts - 4.75
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The visualisation of several parameters is seen in Figure 13 where two blade passages are set side

by side at mid-span. At the rotor leading edge, the flow experiences, as expected, an acceleration on

the suction side and a slowing down on the pressure side with the corresponding pressure changes.

There still exists a rise in entropy on the blade suction surface with the diffusion of the flow. However,

relative velocity and total pressure distributions do not indicate full flow separation or reversal.

In addition to that, the absence of the incidence loss region and the excessive nozzle acceleration allow

for a more uniform flow distribution on the rotor blade.

The isolated rotor model gives better performance characteristics than the full turbine passage

(stator and rotor). However, the power output is 86.38 MW which is lower than the target 100 MW

range meaning that either a greater pressure drop is required, or a new design of an integrated

nozzle is needed. In the former case, the higher pressure ratio can be obtained via higher velocities

(increasing rpm or changing blade angles) however, it is important to maintain the speeds imposed by

material limits.

P0,rel [bar] 

W [m/s] P [bar] 

s [J/kg K] 

SS

PS

(a) W (b) P

(c) P0,rel (d) s

Figure 13. Mid-span parameters distribution for isolated rotor 3D CFD model.

A generic Nickel-based alloy (IN 718), typically employed in gas turbine applications is used in

the stress simulations of the rotor disk. Although the known materials are not used for sufficient yield

strengths at temperatures exceeding 760 ◦C [37], assumed properties are employed to investigate the

range and areas of stress concentrations on a non-optimised rotor wheel design.

The static stress analysis performed signals a concern for the insufficient material strength at

certain areas of the radial turbine. The aerodynamic part of the turbine itself (the designed rotor), even

at higher loading than design point conditions, is mostly limited to stresses that are lower than the

defined allowable von-Mises stress (400 MPa); the distribution of von Mises stresses is displayed using

Figure 14. For better visualisation of the areas of high stress concentration, the contour limits of the

displayed von Mises stress is set to the maximum 400 MPa; the grey regions are areas with stress over

the permissible ceiling. The areas of stress concentration are defined as the disc root and the blade root

both of which belong to the mechanical design aspect of the turbine. Regions of high stress reflect the

need to revisit the mechanical design as part of the updated and optimised final design stage.
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σ'all [MPa] a) Pressure surface b) Suction surface

Figure 14. von-Mises stress distribution on rotor blade surfaces: (a) Pressure surface, (b) Suction surface.

4. Discussion on Enabling Technologies

Several technological barriers associated to the development of turbomachinery components

for sCO2 cycles have been identified in open literature [38]; a number of remarks can be made upon

the outcomes presented in the paper based on the design of the radial turbine. The discussion to

follow is rooted on information found in literature and on conversations with researchers working on

related topics.

4.1. Materials Consideration

Material selection needs to be put at the forefront of the design considerations for the uncooled

radial turbine for different reasons; firstly due to the creep and fatigue life, defined by material

properties associated to the thermal and mechanical stresses and to the operating environment,

and secondly for the synergistic effect of environment chemistry and parameters (temperature and

pressure) on the material degradation. Materials have continuously evolved throughout the years

to meet the high temperature operation market [39]. The proposed temperature of 900 ◦C sits on the

limit of operating temperatures that do not require cooling for turbomachinery blades; nonetheless,

temperature is not the only critical limitation for the proposed work.

The required strength of material at peak temperature with the mechanical stress resulting from

the loads and rotational speed, and the high thermo-physical heat transfer properties of the fluid,

might dictate the use of complex single-crystal superalloys if no cooling is employed; thermal barrier

coatings can be explored to enable the use of less costly materials. Wright et al. [40] show that for the

temperature limit of 900 ◦C the use of cast-alloy IN738 for turbine vanes and blades can be considered.

There is a wide availability of materials, namely a range of steels, for the application in heat exchangers

of state-of-the-art steam plants [41]. These cast alloys are more suitable for the turbomachinery casings,

due to their high pressure capability, but not for use in the turbine blades where aero-mechanical

stresses are significant.

The high inlet temperature of the turbine would dictate the use of superalloys usually employed

in land based or aeroderivative gas turbines. Developments in metallurgy to reach single-crystal

superalloys and coatings allow for a better creep deformation resistance in comparison to equiaxed

crystal materials. Thus the extensive material database available for conventional gas and steam

cycles is not appropriate for sCO2 applications as where a narrow selection of the high pressure- high

temperature materials is limited to expensive Ni-based alloys [42].

Erosion is reported in turbines using pure supercritical CO2 so special attention needs to be given

for erosion-resistant materials or coatings for the case of this cycle especially that the turbine operates

with other contaminants coming from oxy-combustion [43]. Although short-term corrosion testing has
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been conducted by CSIRO for pure sCO2 with temperatures and pressure scales up to 1000 ◦C and

250 bar respectively [41], results are limited because of the need to obtain more adequate long-term

testing with actual conditions of impurities especially when H2O is present in the working fluid.

Within the same framework, increased corrosion has been reported with temperature rise; whereas

the consequence of pressure change was found to be negligible. To mitigate the detrimental effect

of internal oxidation and surface carburisation, the more expensive alloys with a high Chromium

and Nickel content are necessitated; Austenitic steels have reduced corrosion resistance at high

temperatures. Most oxidation and carburisation laboratory tests are also limited to ambient pressure

environments with pure CO2 fluids [40].

From the information stated above, one can deduce that the current array of materials still has

major testing gaps, and is not suitable for the proposed operating conditions of the turbine (900 ◦C and

297 bar), unless cooling is incorporated. Collaborative efforts for all the material aspects is required for

the actual adoption of the designed radial turbine.

4.2. Bearings

Bearings are of great design importance for the actual adaptation of the proposed radial turbine to

provide support for the relative motion between the rotating parts. As the density of the fluid

lowers from supercritical high density to subcritical conditions at the extreme pressure of the

Allam cycle, a large axial force is generated on the turbine component; the axial thrust load issue

is resolved using suitable thrust bearings [44]. Mechanical contact-type bearings such as rolling,

sliding or flexing elements are not considered by researchers for sCO2 applications. Non contacting,

fluid-film hydrodynamic bearings are suggested by some [45,46] for their prevalence in high load/high

speed industrial applications. A conclusion was obtained that oil-film bearings are not suitable

for supercritical CO2 utilisation because of the solvent-like characteristics of the sCO2 fluid [47].

Recommendations include a specific hybrid hydrostatically-assisted hydrodynamic gas-foil bearing

design, developed by Mechanical Solutions Inc. [48], that provides both radial and thrust support in

a single combination component. The maximum temperature cited is up to 650 ◦C with a material

coating which limits its applicability to the design in hand if no cooling is provided. Shaft size and

weight will also limit the suitability since the inner diameter of the bearing geometry is 2 inches

(≈51 mm) which is smaller than the expected shaft diameter of 120 mm (calculated for mechanical

design). Another possibility is rare earth element magnetic bearings which could levitate for 100 MW

shaft scales and are developed by Electron Energy Corporation [49]. In any case, because of the

operating temperature and pressure ranges of the designed turbine, bearings, and other components

like gears, need to be isolated from the turbine itself via shaft end seals (as discussed in the next

heading). Turbomachinery design manufacturers can provide answers regarding bearing design for

the configuration of the designed turbine based on shaft sizes, but it seems that commercially-ready

solutions are not yet available.

4.3. Shaft End Seals

Suitable shaft end seals for sCO2 cycles can limit the leakage of the supercritical CO2 fluid

to minimise cycle efficiency penalties. They are required to separate the high pressure turbine

from the rest of the ancillary components. Knowing that the temperature at turbine inlet is 900 ◦C,

the seal at the end of the high-temperature/high-pressure side needs to be placed as far as possibly

permissible from the turbine inlet without affecting rotordynamics. General Electric and the Southwest

Research Institute [50] concluded that labyrinth seals are insufficient for providing the required

low-leakage characteristics for the high-pressure fluid because the physical clearance is optimised

for a single operating condition, and thus with the change of clearance gaps during different

operation modes, leakage losses are aggravated. Non-contacting, dry gas lift-off face seals are

suggested for high-temperature operation, with experimental testing by Sandia National Laboratories

in collaboration with Flowserve Corporation at conditions of 700 ◦C, 4400 psi (≈303 bar) and a
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shaft speed of 40,000 rpm [51]. In the case of the operating temperature of the modified NET

Power cycle, Joule-Thomson or throttle cooling will need to be provided at that shaft end from

compressor discharge to decrease the temperature to around 700 ◦C and allow safe and effective seal

operation. Commercially-ready dry gas seals are limited to shaft sizes in the range of 37.5 mm for

high rotational speeds (near 50,000 rpm) and for slower speeds, they can reach up to 10 times bigger

shaft diameters [45]. Looking back at the conditions of the designed turbine in terms of temperature

(900 ◦C), pressure (297 bar), rotational speed (≈20,000 rpm) and shaft diameter (≈120 mm), dry gas lift

off seals are not a far measure from use for a 60–70 MWe supercritical CO2 radial turbine.

4.4. Electrical Configuration

The turbine shaft rotational speed is in the range of 20,000 rpm which would require an

appropriate choice of a step-down gearbox to speeds of 1800 rpm or 3600 rpm for coupling the

turbine to a synchronous generator or for the requirement of separating the unknown speed of the

compressor which is not designed yet. Not only is the selection of the gearing configuration dependant

on shaft speed but also on the power scale; McClung et al. [45] report that General Electric (GE) has

gearing configuration for power ratings reaching 60 MW. The availability of a gearbox providing

a speed reduction from 12,000 rpm to 3600 rpm for a 50 MW turbine scale is also disclosed by

Bidkar et al. [52]. Geared turbine generator sets are widely available for steam turbines with power

output up to 40 MWe as reported by GE and Mitsubishi Hitachi [53,54]. Gearbox manufacturers can

provide information on the applicability of having a speed reduction ratio of around 6 from near

20,000 rpm for a 60–70 MWe turbine.

Besides the mentioned technologies which need to be developed for successful use of the radial

turbine, there are some operational design considerations reported for sCO2 turbines which require

careful attention. Transient operation of the turbine might induce an overspeed risk and loss of

electrical load due to the small size of the rotor. The necessitated temperature reduction near the

turbine inlet, to safe margins tolerated by seals and bearings, incurs high thermal stresses in that region

that needs addressing via further stress analysis.

5. Conclusions

This paper outlines the design procedure of a radial turbine for a cycle size of ≈100 MW starting

with cycle modelling and moving towards preliminary design, performance analysis, CFD simulations,

and mechanical assessment. Key findings include the identification of the areas within the turbine

passage that require careful readjustment due to the presence of losses that diminish the performance.

The final observation is that a radial turbine configuration is suitable for use in a utility-scale

(100 MW) supercritical CO2 power cycle at the pressure and temperature levels of 297 bar and 900 ◦C.

The advantage of using a radial turbine is its compactness and its ability to endure a high pressure

ratio in a single stage, about 5 for the designed turbine. The flow behaviour in the turbine design

aligns well with results from other works on high fluid density radial turbines. However, the current

design requires re-visitation to improve the overall turbine efficiency especially through optimising

the design of the nozzle vanes through different stacking, or changing the number of blades to deliver

better incidence to the rotor, and to reduce the exit Mach number, and thus the associated losses.

The approach towards achieving the goal of employing a radial turbine in a mid-scale power plant

requires further work. Future research should include, but is not limited to:

• Incorporation of the fluid mixture in the design processes to account for the influence on performance

• Optimisation of the blade profiles

• Additional stress analyses including modal, harmonic, and hot-to-cold simulations

• Experimental testing and validation

• Investigation of the relevant technologies such as seals, bearings, gearing

• Research on suitable material advancements
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Abbreviations

The following abbreviations are used in this manuscript:

Roman Symbols:

b Passage width [mm]

c Chord [mm]

M Mach number [-]

ṁ Mass flow rate [kg/s]

N Number of blades [-]

ns Specific speed [-]

o Throat [mm–m]

P Pressure [bar]

q Pitch [mm]

Q̇ Volumetric flow rate [m3/s]

R Degree of reaction [-]

r Radius [mm]

s Entropy [J/kg K]

T Temperature [K– ◦C]

t Thickness [mm]

W Relative velocity [m/s]

Ẇ Power [MW]

Z Axial length [mm]

Greek Symbols:

α Absolute flow angle [◦]

β Relative flow angle [◦]

∆ Difference [-]

η Efficiency [%]

νs Velocity ratio [-]

ω Rotational speed [rad/s]

φ Flow coefficient [-]

Π Pressure ratio [-]

ψ Stage loading coefficient [-]

ρ Density [kg/m3]

θ Metal angle [◦]

Subscripts:

0 Total value

2 Stator inlet station

3 Stator outlet station

4 Rotor inlet station

5 Rotor outlet station

e Electric

id Ideal
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m Meanline

max Maximum

out Outlet

R Rotor

rel Relative reference frame

S Stator

th Thermal

ts Total-to-static

tt Total-to-total

Acronyms/Abbreviations:

ASU Air Separation Unit

CCS Carbon Capture and Storage

CFD Computational Fluid Dynamics

GE General Electric

HTHE High Temperature Heat Exchanger

IEA GHG International Energy Agency GreenHouse Gas

LHV Lower Heating Value

LTHE Low Temperature Heat Exchanger

PS Pressure Side

SS Suction Side

TIP Turbine Inlet Pressure

TIT Turbine Inlet Temperature
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