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ABSTRACT 

Infrastructure networks such as those for energy, transportation and telecommunication perform key 

functions for society. Although such systems have largely been developed and managed in isolation, 

infrastructure now functions as a ‘system of systems’, exhibiting complex interdependencies that can 

leave critical functions vulnerable to cascade failure. Consequently, research efforts and management 

strategies have focused on risks and negative aspects of complexity. This paper explores how 

interdependencies can be seen positively, representing opportunities to increase organisational 

resilience and sustainability. A typology is presented for classifying positive interdependencies, 

drawing on fundamental principles in ecology, and validated using case studies. Understanding 

opportunities from interdependency enables better understanding and management of infrastructure 

complexity, which in turn allows the use of this complexity to the advantage of society. Integrative 

thinking is necessary not only for mitigating risk, but for identifying innovations to make systems and 

organisations more sustainable and resilient. 
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INTRODUCTION 

Infrastructure systems such as those concerned with water, energy and transportation networks 

perform functions critical to the health and well-being of society by facilitating essential flows of 

resources, services, and information (Rinaldi et al. 2001). Historically, such systems have largely been 

developed and managed in isolation from one another, evolving over decades or centuries in many 

cases as either public or private enterprises. Modern technologies and demands, however, have given 

rise to an unprecedented degree of complexity and interlinking between previously disparate 

networks. Infrastructure now functions as a ‘system of systems’, exhibiting complex adaptive 

behaviour and numerous interdependencies that can leave critical functions highly vulnerable to 

disturbances, particularly through exacerbating effects of this complexity such as cascade failure 

(Helbing 2013; Rinaldi et al. 2001; Vespignani 2010). 

As a consequence of this, the majority of research efforts and management strategies addressing 

infrastructure interdependencies have been concerned with risk and vulnerability, placing a primary 

focus on the negative aspects of system complexity. Interdependency is seen predominantly, or in 

some cases solely, as a source of risk and uncertainty; Resource Dependence Theory even suggests 

that the core aim of many organisational decisions is to reduce or eliminate dependencies entirely 

(Hillman et al. 2009). Conversely, other perspectives argue that sustainability is only achievable when 

complexity is understood and harnessed rather than eliminated (Ostrom 2009). Understanding 

interdependency is not a new aim, but it has become increasingly fundamental to infrastructure 

systems if those systems are to be designed, managed and adapted in ways that will be resilient to 

future disturbances (Vespignani 2010). Broad challenges emerging from global climate change and 

population growth are forcing industries, governments and other decision-makers to adapt by 

reaching across conventional boundaries to share ideas and approaches in order to build resilience in 

the face of universal concerns (Bissell 2010; Department for Environment Food and Rural Affairs (UK) 

2011; Jude et al. 2017; Street and Jude 2019). Further, an evidence gap has been identified around 
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the need for new models and methods to understand the interdependencies present in infrastructure 

systems (Committee on Climate Change 2016; Guikema et al. 2015; Pederson et al. 2006). 

Although risk identification and mitigation make up the majority of research and management efforts 

on infrastructure interdependencies, the systematic view that is necessary for such efforts can shed 

light on beneficial elements of these interdependencies as well. Examples exist where 

interdependencies have been exploited or proposed to enhance the delivery of essential services, or 

synergised to create entirely new services (Delucchi and Jacobson 2011; Pandit et al. 2015; Roelich et 

al. 2015), and climate change adaptation efforts frequently state the need for interdisciplinary 

collaboration (Department for Environment Food and Rural Affairs (UK) 2011; Jude et al. 2017; Street 

and Jude 2019). Where this has been done in practise, however, there has rarely been an explicit 

recognition of the positive role played by interdependency; yet in complex natural systems it is 

generally accepted that interdependency and complexity play key roles in enhancing the sustainability 

and resilience of the overall system (Capra 1996). Complexity is unavoidable in modern infrastructure 

systems, but it need not be solely a source of risk and concern. Recognising and adapting to the 

opportunities generated by this complexity represents a largely untapped potential for designing and 

building systems that answer the global challenges of sustainability, resilience and efficiency. 

The aim of this paper is to illustrate and discuss the ways in which interdependencies in complex 

infrastructure systems may be viewed as opportunities for enhancing function, resilience and 

sustainability. To this end, a threefold typology is proposed for considering beneficial 

interdependencies based on their relative level of integration. Key principles of ecological systems are 

then discussed, as these represent systems whose complexity builds resilience rather than impedes 

it, and parallels are explored whereby infrastructure systems might learn from the behaviours and 

structures of natural systems in order to function more effectively. Finally, this framework is applied 

to several case studies to explore its use in practise and act as evidence in support of its validity. The 

perspective and associated typologies described here are presented as a useful tool for managers 
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dealing with complex systems, empowering them to better understand and adapt to the ways in which 

interdependencies can be harnessed for positive results. 

INFRASTRUCTURE INTERDEPENDENCIES 

Many infrastructure systems have historically been developed in relative isolation from one another, 

driven by public interests to provide essential services or by private interests to forward a business 

case. Technological advancements, societal demand changes and evolving external drivers such as 

climate change and geopolitics have converged over time to drive adaptations in the purpose and 

behaviour of critical infrastructures. These systems have now grown interconnected and 

interdependent, forming a global ‘system of systems’ whose functionality is critical to the smooth 

functioning of society. 

Rinaldi et al. (2001) defined dependency as a one-way linkage or flow of causality; whereas 

interdependency was used specifically for bidirectional relationships where two separate systems or 

nodes both exert influence on the other. The authors further proposed a typology for categorising 

infrastructure interdependencies according to their nature, which has subsequently been widely 

adopted by researchers. The framework consists of: physical linkages (where systems share a direct 

material connection), cyber linkages (where system state depends on information flow), geographic 

linkages (where systems are connected by spatial proximity) and logical linkages (where systems are 

interconnected in some other fashion). The existence of this typology has been beneficial in efforts to 

explore infrastructure interdependencies, as it provides a structured framework by which complex 

interconnections can be classified, understood and analysed (Chai et al. 2011; Johansson and Hassel 

2010; Wu et al. 2016). More recent efforts by Carhart and Rosenberg (2016) have sought to expand 

upon the Rinaldi framework, proposing subdivisions to the category of logical linkages such as 
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policy/procedural, societal, and economic interdependencies, as well as describing a framework of 

twelve variables by which interdependencies may be explicitly described and typified. 

Given the critical nature of infrastructure systems, coupled with the uncertainties associated with 

complexity, the focus of most research on infrastructure interdependencies has been on the risks and 

vulnerabilities they represent. Infrastructure systems have largely been developed from a 

deterministic, goal-oriented systems engineering approach (Ottino 2004). The unpredictability of 

complex systems is at odds with this perspective; characteristics of complexity such as nonlinear 

relationships, threshold effects and emergent behaviours are perceived predominantly as threats to 

system stability and service delivery (Helbing 2013). Accordingly, most research conducted on 

infrastructure interdependencies has taken up this stance, viewing interdependency as a threat to be 

mitigated and protected against. 

INTERDEPENDENCY AS OPPORTUNITY 

Interdependencies have thus far been explored primarily as a negative force, especially in the context 

of infrastructure resilience, through the lens of the risks they represent through cascade failures and 

cross-network vulnerability (Bissell 2010; Chang et al. 2014; Chou and Tseng 2010; Helbing 2013; 

Santos et al. 2007; Vespignani 2010). Interdependency can, however, be Janusian in nature; 

representing opportunities as well as risks. In a 2013 workshop bringing together 25 infrastructure 

stakeholders from the energy, ICT, transportation, waste and water sectors and including 

representation from industry, academia and governance, a focus was placed on identifying beneficial 

interdependencies within and across sectors. Of 77 identified interdependencies, 87% intra-sector and 

86% inter-sector linkages were categorised as having beneficial outcomes (Carhart and Rosenberg 

2016). This result strongly suggests that the prevailing focus on interdependency solely as a risk factor 

is disproportionate and incomplete. 
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In order to better identify opportunities from interdependency, these opportunities may be organised 

into a typology depending on the nature and intensity of the interdependency in question. Previous 

typologies have been proposed by which infrastructure interdependencies can be broadly categorised 

and understood (Carhart and Rosenberg 2016; Ouyang 2014; Rinaldi et al. 2001); the aim here is not 

to replace or challenge these efforts, but rather to complement them by presenting a typology 

specifically targeted at the identification of beneficial opportunities arising from these 

interdependencies. 

Simple opportunities 

A ‘positive interdependency opportunity’ is defined here as an interdependent relationship between 

two or more elements in a complex system that benefits the resilience, sustainability, and/or 

efficiency of the system. It is possible that such relationships may also introduce threats to the system, 

but although these are briefly considered, the primary focus of this paper is to explore the positive 

opportunities that may emerge from complexity. On a basic level, the sharing of knowledge across 

network and organisational gaps can inform and improve good practice through exposure to new 

perspectives and procedures. What might represent standard approaches to ensure secure, efficient 

or robust design in one system may be novel and applicable to another where such approaches have 

not previously been explored. Here the opportunity to increase the efficiency and resilience of systems 

is primarily a matter of establishing lines of effective communication and collaboration between 

managers, designers and operators that cross traditional departmental or industry boundaries. While 

a one-time learning event does not itself represent an interdependency, many interdependency-

based opportunities begin with the sharing of ideas (even within a single organisation such as to 

increase productivity or single-plant resilience) and develop from that basis. This knowledge exchange 

can then become a simple interdependency-based opportunity by establishing a transactional 

pathway for the recurring transfer of knowledge and information between system operators. These 
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flows can be intermittent and non-critical to system functioning, thus representing comparatively low 

risk, but also exhibiting a lesser degree of opportunity than more substantial integrations. Simple 

interdependency-based opportunities are therefore defined as those based primarily on knowledge 

exchange between practitioners, representing a transactional flow of information that occurs 

intermittently but repeatedly, that are beneficial but not critical to the operation of the coupled 

systems. 

Geographic/physical opportunities 

The physical co-location of multiple infrastructure systems can present opportunities for cost-saving 

and increasing system efficiency. This represents essentially an expansion of infrastructure sharing 

concepts to specifically consider sharing across multiple networks and sectors. The placement of 

mobile phone network antennae on tall buildings or pre-existing telecommunications masts precludes 

the need to build independent structures. Technologies to store energy at the point of generation, 

especially in remote examples such as offshore wind farms and wave-based power generation 

systems, can use combined structures to reduce building costs and the necessary length of new 

transmission networks (Li and DeCarolis 2015). It should be noted that such geographic co-location, 

like most interdependencies, can introduce threats as well as opportunities in cases of localised 

disturbance or damage; however, it is the opportunities that have a greater tendency to be 

overlooked. Similarly, the establishment of power generation and storage technologies at the point of 

use, such as with residential solar roof panels and home storage batteries currently under 

development, can also represent a reduction in the loading demands of the transmission network. 

Such decentralisation can support a considerable increase in system resilience, freeing end users from 

sole dependence on a centralised system should a failure occur. Geographic/physical 

interdependency-based opportunities represent beneficial couplings based on co-location and/or the 

physical sharing of infrastructure, material or information across systems at a localised scale. 
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Integrative opportunities 

Within the functioning and management of the networks themselves, interdependencies can enable 

new opportunities for increasing resilience by applying the advantages offered by one network to the 

management of another. The concepts of ‘smart’ infrastructure and the ‘internet of things’, are 

fundamental examples of this. Data and information, gathered and distributed by telecommunications 

infrastructure, are used to actively and efficiently manage decisions and flows in networks of 

transport, water and power in real time (as opposed to simple opportunities where information flow 

is used solely to impart knowledge). Integrative interdependency-based opportunities are thus 

defined by a synergy and extensive functional interconnection between multiple infrastructure 

systems at multiple points, representing shared risk as well as significant benefits to the effective 

functioning of all coupled systems, and improving the delivery of existing services and/or making 

entirely new services possible. 

New failure risks emerge if networks become wholly dependent upon the smooth operation of this 

synergy, so system design should seek to incorporate redundancy and ‘fall-back positions’ to allow 

individual systems to continue functioning if some breakdown occurs. Such systems should be 

designed with resilience in mind, and care should be taken to ensure that the transition to smart 

infrastructure does not occur blindly. An interconnected and interdependent network of networks will 

not be resilient if many connections are ‘tight’ and allow failures to cascade freely through the system, 

but designed redundancy and an ability to adapt and compensate for localised failures could greatly 

increase the resilience of such a complex system. Given future uncertainties around global climate 

change and population growth, such systems must be resilient and robust as the exact nature and 

intensity of future risks and pressures remain unknown. With fully integrated complex infrastructure 

systems, the risks are greater and thus must be recognised and managed effectively, but the potential 

opportunities are equally more transformative. The ability to design and manage resilient 
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infrastructure systems depends on the ability to identify those cases where the opportunities 

outweigh the risks. 

ECOLOGY AS AN EXEMPLAR OF RESILIENT INTERDEPENDENCY 

Why nature is resilient 

Natural ecosystems are commonly given as examples of complex, interconnected and resilient 

systems (Holling 1973; Standish et al. 2014), and as such may offer insight into how such systems can 

function effectively. Infrastructure systems are analogous to ecological systems in a number of ways: 

both being highly interconnected, complex and adaptive; both exhibiting characteristic scaling 

properties; and both relying on flows of material, information and energy (Pandit et al. 2015). In 

designing and managing infrastructure systems, there may be lessons to be learned and applied from 

ecosystems, which largely have evolved to be resilient to disturbance and sustainable within their 

environment. Myriad feedbacks and interdependencies between numerous species of organisms as 

well as energy and material flow systems act in nature to increase the resilience of the overall system, 

rather than merely introducing vulnerabilities. Material and energy flows are resilient in part by being 

fundamentally grounded in physical laws and chemical processes, but also by functioning in cyclical 

pathways whereby no material is ultimately wasted. At the system level, resilience is achieved through 

complexity, with the system possessing self-regulating behaviours and feedback relationships that 

maintain the stability of the system even in the face of disturbances (Capra 1996). At finer scales, 

organisms and species are resilient in many cases due to overlap and redundancy among ecological 

niches; rarely is a ‘role’ in the ecosystem filled by only a single species whose loss would destabilise 

the broader system through cascading effects. 
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How infrastructure differs from nature 

By finding ways in which the relationships and principles found in nature can be applied to 

infrastructure systems, it may be possible to use complexity and interdependency to the advantage 

of society by designing in greater resilience and sustainability to global systems. Careful thought and 

translation will be required, however, as human-built and natural systems share fundamental 

differences despite their similarities, and are not perfect analogues to one another. Natural ecological 

systems have largely adapted and evolved to their current stable states through processes of random 

mutation, high attrition, emergent behaviours and incredibly long time scales in a ‘bottom-up’ 

manner. Anthropogenic systems on the other hand, and the societal concerns that drive them, are 

traditionally designed from a ‘top-down’ goal-oriented perspective and are generally unable to 

operate by such methods, being intolerant of such long time scales and resource expenditure. Further, 

many technological systems have necessarily been developed to operate in a highly controlled and 

deterministic manner (Pennock and Wade 2015) which is fundamentally at odds with the seemingly 

haphazard way in which natural systems emerge. Such determinism and reductionist thinking, 

however, encounters difficulty when considering larger systems, and complexity forces a more 

integrative and ecological perspective than that which was used to create the system’s components 

and base functionality (Ottino 2004). This forced shift in perspective, from a system’s creation based 

in reductionism and mechanistic design, to a systems approach that recognises and addresses 

complexity, interdependency and emergent properties, echoes the transition that has been seen in 

many disciplines over the past half-century. Examples of this include Jane Jacobs’ pivotal call for fresh 

perspectives in urban studies (Jacobs 1961) and the steady rise of complexity science in ecology and 

biology (Capra 1996). Individual components and sub-systems are necessarily created with a 

deterministic perspective; however, at the system scale, human-created infrastructures must work to 

replicate by design and planning the efficiency and resilience that nature has developed by long-term 

experimentation. With the growing complexity of modern infrastructure systems, the need for 

building and measuring resilience has become increasingly recognised (Rehak et al. 2019). 
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How infrastructure can learn from nature 

Despite the important differences between human and natural complex systems, commonalities exist 

where the functioning of nature can be applied as lessons for materials engineering (Fratzl 2007) and 

infrastructure design and management (Graedel 1996), enabling interdependencies to be viewed as 

opportunities. In his book ‘The Web of Life,’ Capra (1996) presents five principles of ecology and 

system survival and discusses ways in which these lessons can be applied to human society in the 

pursuit of sustainability. Here, it is considered how these principles can specifically be applied to 

infrastructure design and management (Table 1). 

[INSERT TABLE 1 HERE] 

The importance of Capra’s first principle, interdependence, is already well-known in infrastructure 

contexts, but with focus usually placed on negative aspects as discussed previously. As in nature, there 

are also many ways in which these interdependencies can be exploited in a positive sense. This is 

explored through this paper’s typology by which benefits can be realised through the exchange of 

knowledge and expertise (simple opportunities), infrastructure sharing and co-location 

(geographic/physical opportunities), and more complete interconnection (integrative opportunities). 

Smart metering of residential electricity consumption, for example, is growing in interest and uptake 

in various locations. This ability to provide consumers with detailed and timely feedback has the 

potential to inform purchasing and lifestyle decision-making toward more energy efficient behaviour, 

provided the feedback is adequately clear and informative (Fischer 2008). 

The second principle, cyclical flow, is something that human systems have taken steps to transition 

toward but more progress is required to ensure sustainability and efficiency. The re-use and recycling 

of materials, reduction in avoidable waste, and engineering products for long-term use rather than 

disposability are all actions that will serve to increase sustainability at a society-wide scale. As 
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organisations transition away from a solely competitive perspective and consider circular economies 

and industrial symbiosis, benefits become apparent for both the industrial community and long-term 

global sustainability (Chertow and Ehrenfeld 2012). This principle, in an infrastructure context, 

primarily concerns flows of materials and resources but is closely linked to, and dependent upon, 

partnership and cooperation between organisations and industries. 

Partnership and cooperation are developing in many industries and sectors as interest grows in 

systemic thinking, conducting interdisciplinary research, and bridging gaps between sectors and 

networks that have previously operated independently. The realisation of the need for such 

cooperation has risen in part out of the recognition of the complexity and interdependence that is 

present in global human-created systems, as understanding such complexity requires information 

exchange and a coordination of efforts and approaches. At all three levels of interdependent 

opportunity (simple, geographical/physical and integrative), partnership and cooperation are required 

and, increasingly, becoming present. The exchange of knowledge and expertise between 

organisations has become commonplace in industries facing the broad and unifying goal of adapting 

to climate change, particularly where encouraged to address such long-term considerations by 

government reporting programmes (Jude et al. 2017; Street and Jude 2019). Infrastructure sharing 

approaches (variously referred to in terms such as common carriage, unbundling, track sharing, etc. 

depending upon industry context) represent geographic/physical opportunities already widely 

exploited by numerous industries to mutual economic benefit (Song et al. 2014). Efforts to develop 

smart networks and infrastructure for the efficient use of energy and routing of materials and 

transportation agents again represent a strong integrative opportunity being currently explored, both 

as a cooperative arrangement and as an interdependency as discussed previously. 

Flexibility is a principle whose importance has been highlighted by the need for infrastructures and 

industries to adapt to the uncertain conditions caused by global climate change. Efforts to build 

resilience to future disturbances, the exact nature and intensity of which remain unknown, necessarily 
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require a great deal of flexibility and capability to adapt to changing circumstances. Rigid 

infrastructures and networks that are optimised to remain functional only under a narrow set of 

external conditions will face a high risk of failure when subjected to circumstances outside of the 

conditions they were designed for such as extreme weather events. Systems that are able to adapt to 

these circumstances and focus on maintaining or improving their intended functions, not necessarily 

or solely by returning to their original state, will prove much more resilient to future disturbances. The 

possible ways in which driverless vehicles might transform and optimise the use of transportation 

infrastructure in major cities are an example of this flexibility. When coupled with car sharing and 

short-term rental business models, the resulting shared autonomous vehicles could cause a shift in 

personal transport from an owned asset to a shared service, with benefits to urban congestion, 

emissions-based pollution and manufacturing demand (Fagnant and Kockelman 2014). 

Finally, the principle of diversity is exemplified clearly in nature by the multitude of species, functional 

groups and ecosystems that are observed; however its implementation in human systems can be one 

of the greatest challenges. In large infrastructure networks, it is recognised that redundant linkages 

play an important role in maintaining functionality should a part of the network fail or saturate. This 

redundancy thus offers diversity in the sense of multiple flow pathways through the network. 

However, beyond the mitigation of what is seen as immediate risk, excess redundancy may be viewed 

as wasteful by decision-makers and stakeholders if the benefit to resilience is not internalised. 

Conventional economic and industrial practices have also tended to favour mass production, 

historically providing a financial incentive to populate networks and systems with an overabundance 

of a single design or approach. In many cases this can be efficient, but in some this low diversity may 

represent a vulnerability should a failure prove specific to that design or approach. In recent years this 

has changed with the uptake of ‘lean manufacturing’ and agile production processes seeking to reduce 

waste while maximising efficiency and adaptability (Shah and Ward 2003). In the energy industry 

diversity is more embedded in sources of electrical generation, which provide some resilience to 
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disturbances in the availability of fuel resources. Current research into battery technology and the 

possibility of distributed, mobile and/or residential electricity storage could also represent a diverse 

approach, smoothing temporal discrepancies between supply and demand (Yekini Suberu et al. 2014). 

Such ‘micro-storage’ approaches could provide backup sources of energy to increase resilience across 

the entire network, especially when coupled with distributed generation (e.g. residential photovoltaic 

roof panels) and managed using smart grid technology to optimise timing, costs, and social benefits 

(Kriett and Salani 2012; Vytelingum et al. 2010). 

Understanding and analysing integrated infrastructure networks as holistic ‘systems of systems’, as 

one would an ecosystem, is the first essential step in moving beyond a traditional isolated and sectoral 

approach and enabling a complete understanding of system dynamics (Pandit et al. 2015; Rehak et al. 

2016). When understood in this way, system-level optimisation and management for broad-reaching 

global interests become realistic possibilities. Further, such a perspective enables the recognition of 

commonalities that infrastructure networks can share with ecological networks (itself exemplifying a 

simple, knowledge-based opportunity), and the identification of shared typologies of 

interdependence. In understanding where and how nature benefits from interdependence, it is 

possible to adapt this understanding to human engineered systems and appreciate the ways in which 

they can benefit from complexity. If this understanding can then become incorporated into the 

business models of organisations and the strategies of managers, and thus directly embedded in the 

guiding principles of how industries operate and create value (Morris et al. 2005), sustainability and 

resilience may become much easier and more natural issues to tackle. 

Barriers to and enablers of opportunity 

Opportunities can be recognised or driven in numerous ways, but several specific areas may be 

considered from a Janusian perspective as either key barriers to or enablers of interdependency-based 
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opportunity. First, existing technology can act as a limiting factor in the realisation of new innovations, 

but as it develops new opportunities may emerge that were previously unfeasible. This is evidenced 

in the growth of smart systems, renewable energy generation and increased efficiency in a variety of 

systems. Second, design and innovation play a key role in re-evaluating how systems can function 

more effectively, such as through the adoption of circular economic principles and the consideration 

of green and blue infrastructure. If design perspectives are resistant to new ideas and entrenched in 

conventional approaches this can impede and discourage innovation; however if creative thinking is 

encouraged and decision-makers are open to new ideas, this can enable opportunity from innovation. 

Third, how the maintenance of built systems is considered influences the efficiency and effectiveness 

with which they are managed, largely in terms of whether most maintenance activity is only reactive 

to faults or preventative and thus forward-looking. Fourth, governance can act as a considerable 

barrier to opportunity if regulatory structures rigidly enforce historic approaches and silos, but are 

equally capable of enabling opportunity through careful and informed consideration of how public 

policy, regulation and legislation can and should adapt to changing conditions. Finally, societal 

behaviour is fundamental in determining whether innovations will be met with resistance or 

acceptance, and is thus critical to the recognition and enabling of new opportunities through demand-

side responses to service delivery and conscious awareness of the context and implications of 

consumer decisions. 

Pervasive to all of these driving forces, opportunities become easier to recognise and exploit when a 

holistic, system-based perspective is adopted and perceived boundaries are expanded beyond 

convention. Opportunities for improving the functioning and resilience of critical infrastructures may 

even involve linkages with systems outside of critical infrastructure networks, as exhibited in some of 

the case studies explored below. 
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CASE STUDIES 

The typologies laid out above provide a framework by which system interactions can be explored and 

understood in ways that can aid in the identification of opportunities. By applying this framework to 

a series of case studies, the opportunities that have been exploited can be categorised and explained. 

This helps to show how the framework can be used in future efforts to identify opportunities when 

multiple infrastructure systems connect. Further, this application to case studies supports the utility 

and validity of the framework for understanding the positive potential of interdependencies. The 

studies exhibit diversity not only in the systems they are concerned with, but in the approach they 

take to harnessing opportunities, the stage at which costs and savings factor in to the process, and 

whether they represent adaptive changes to or disruptive replacement of existing frameworks (Table 

2). 

 [INSERT TABLE 2 HERE] 

Case study: MK:Smart 

The MK:Smart project is a collaborative initiative based in the town of Milton Keynes, UK (MK:Smart 

Consortium 2017). Much of the project centres on the creation and use of a ‘Data Hub’ where diverse 

information from a variety of city-wide infrastructure systems is acquired and stored (d’Aquin et al. 

2015). The Data Hub presents opportunities for innovation around the ways in which the various 

datasets can be combined and used, and the project as a whole has enabled previously disparate 

systems to connect and benefit from one another. Several specific examples out of this project 

demonstrate the principles present in the framework. 

The ‘Motion Map’ service involves the rollout of sensors across the city to track traffic flows and 

congestion in car parks and busses (Valdez et al. 2015). This information is intended to be pooled and 
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distributed to local travellers via a mobile app, enabling informed decision-making and intelligent 

routing. Further, these and similar sensors can be mounted largely on existing lampposts, making use 

not only of pre-existing structures but the electrical supplies already present. New innovations, like 

‘BluePillar’ systems combining street lamps, electric vehicle (EV) charging points and base transceiver 

stations provide an example of how such efforts can be integrated from the design stage (BluePillar 

2016). In a related sense, the idea of using existing vehicles such as busses or taxis as mounting points 

for a city-wide sensor network to track traffic, air pollution, and other attributes has been put forward 

as a potential opportunity for infrastructure sharing and cost reduction (E. Motta, personal 

communication). 

Data on electrical use, EV ownership and the presence of solar photovoltaic (PV) cells by the MK:Smart 

programme are being gathered and analysed with the intention of exploring potential synergies 

between electricity and transport systems (Bourgeois et al. 2015; Elbanhawy et al. 2016). The rise in 

EV ownership has the potential to increase demand on the urban electrical grid; however, an 

optimised management approach combining EV charging, distributed generation of renewable 

electrical power through residential PV infrastructure, and distributed electrical storage using 

residential battery technologies could not only offset these concerns but increase the resilience and 

sustainability of both the electrical and transport systems. Many home and transport energy demands 

would be met using renewable systems, and battery storage could correct for discrepancies in the 

relative timing of electrical supply and demand. The underlying technologies are still in the process of 

being developed and adopted by residential users, but data collected by MK:Smart are intended to 

help prepare for the management of such an interconnected system. When completed, this synergy 

would represent an interdependent opportunity at all three levels of information sharing, physical 

interlocking, and systemic integration, with many benefits to society. 

The entire MK:Smart programme is built on the recognition of opportunities from interdependency 

that are present in a modern urban system. Simple opportunities underpin many of the interactions 
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that contribute to the project, identifying ways in which historically disparate infrastructure systems 

can benefit one another through cooperation and idea sharing. The Motion Map service exemplifies 

this particularly by providing information on real-time transportation infrastructure status to residents 

to enable more informed decision-making. The use of existing infrastructure to mount and power the 

sensors also exhibits a clear geographical/physical opportunity through infrastructure sharing. 

The integration of electrical use, EV charging and distributed power generation and storage provides 

a clear example of opportunity at all three levels. Information sharing is present in the rich flow of 

information between multiple systems and their collective management; geographical/physical 

opportunity is exploited in the co-location of EV charging points, electrical use and power generation; 

and the entire system-of-systems represents an integrative opportunity given the depth with which 

the various infrastructures interact with and benefit from one another. Finally, the Data Hub that 

underpins the entire MK:Smart programme is itself based on the recognition of previously untapped 

integrative opportunities that are present across the urban system. Possible weaknesses in the system 

are most evident in the form of small-scale localised damage taking out multiple network sensors, e.g. 

vehicle collision with a lamp post, and information security concerns where potentially sensitive data 

on users and systems across the city are stored in a single unified Data Hub. The combination of 

different technologies and approaches nevertheless enables the MK:Smart programme to span 

simple, geographical and integrative types of opportunities, while exhibiting ecological principles of 

interdependence, partnership, flexibility and diversity. 

Case study: Milton Keynes linear floodplain parks 

Another example from Milton Keynes, UK, concerns the co-consideration of flood prevention and 

ecosystem service provision (Varga 2016). The development of natural flood plains into managed 

linear parks has synergistic benefits. On one hand, the preservation of a natural character of stream 
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channels slows the movement of water during peak flow periods through the use of semi-natural 

floodplain regions, reducing the risk of hazardous flooding both within the urban area and 

downstream from it. Concurrently, the presence of green space benefits urban residents through the 

delivery of ecosystem services such as recreation and well-being, as well as supporting ecological 

functioning by offering diverse and well-connected wildlife corridors. Such linear connectivity may 

further act to support city-wide wildlife biodiversity in ways that isolated land parcel-based parks may 

not (Grafius et al. 2017; Rosenfeld 2012). 

While not directly concerning traditional critical infrastructure systems, this example importantly 

represents a way in which interdependent opportunistic thinking can include natural systems as well 

as anthropogenic ones. Like examples focused solely on built infrastructure, opportunities of this 

nature begin with simple knowledge exchange through the recognition of mutually beneficial efforts. 

Urban planners focused on flood risk mitigation and environmental officers focused on green 

infrastructure and biodiversity may not have many existing institutional incentives to collaborate with 

one another; however this example shows how doing so may benefit the goals of both. What begins 

as a knowledge sharing opportunity can identify geographic opportunities for these shared purposes, 

and ultimately support an arrangement where urban green infrastructure achieves multiple goals. 

Further, the use of floodplain lands for parks as opposed to residential development would in fact 

serve to reduce the threat of damage to personal property, only requiring comparatively inexpensive 

efforts to clean and repair parklands after flooding events. Here, both simple and geographical 

opportunities are present, along with ecological principles of partnership and diversity. 

Case Study: circular resource model for urban agriculture 

A study made use of a rooftop greenhouse in Barcelona, Spain to examine the benefits of a closed-

loop hydroponic agricultural production system (Rufí-Salís et al. 2020). Water leaching from substrate 
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bags and nutrients not assimilated by plants were recirculated into the system. The study was 

evaluated using a life cycle assessment to compare it against a more conventional linear agricultural 

system with no nutrient or water recovering. Two green bean crop cycles were measured for yield, 

climatic variables, and water and nutrient balances. 

The closed-loop system notably accounted for daily savings of 40% for water, and between 30 and 

55% for various nutrients. As some of these nutrients are linked to nonrenewable resources, and urban 

water security may be an area of growing concern, the importance these findings stands out. As 

studied in this case, the experimental closed system proved to be less environmentally efficient over 

its full life cycle due to receiving less radiation input than the linear system and thus requiring a longer 

time period to reach an equivalent total crop yield. Additionally, the relatively small production 

volumes coupled with the infrastructure costs associated with leachate recycling resulted in 

undesirably high environmental impacts. The authors propose that future efforts could mitigate this 

by using recycled materials in the creation of these systems. Although not presenting an immediately 

perfect model, the study nevertheless breaks new ground and demonstrates how circular resource 

flow can be used to make urban agricultural systems more efficient and less wasteful, especially with 

further research. 

Although this example was unable to meet all its desired goals over its full life cycle, it represents a 

proof of concept that warrants further research and could present multiple benefits through the 

lowering of direct resource inputs and reduction in waste products. Cyclical flow is at the core of the 

endeavour, which resonates widely with various infrastructure-based attempts to move toward a 

more circular economy rather than a ‘take-make-dispose’ model (Bech et al. 2019). More broadly, the 

pursuit of urban agriculture has benefits in the production of food closer to points of demand, 

reducing monetary and environmental transport costs and making greater use of local resources that 

may otherwise be treated as waste, such as rain runoff (Al-Kodmany 2018). Urban agriculture faces 

many challenges to adoption, and its greatest introduced risks stem from uncertainties around its 
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unexplored economics; however, the importance of its untapped potential is being increasingly 

recognised (Edmondson et al. 2020; Grafius et al. 2020). The opportunities in this case are 

geographical and integrative, and the main ecological principle is cyclical flow. 

Case study: Olympic Park, London 

The Olympic Park area in London was developed primarily to host the 2012 Summer Olympic Games, 

but with a particular focus on sustainability, responsible development, and the post-Games legacy of 

the site (LOCOG 2012; Naish and Mason 2014). In contrast to the developments for many past Olympic 

Games, the Olympic Park in London aimed to be developed as sustainably as possible and create a site 

that would continue to be used by residents for housing, recreation and events. Examples of specific 

goals involved the recycling of materials from demolished buildings cleared for site construction (99% 

of material waste from construction and decommissioning were re-used or recycled, exceeding 90% 

goal), delivery of new materials to the site primarily by water and rail, and the recycling of wastewater 

on site to reduce water demand. Permanent structures were engineered with legacy use in mind (e.g. 

the Olympic Village afterward being used as a residential community of 20-30,000 homes), while other 

event structures were constructed to be deliberately temporary when it was clear there would not be 

the demand to support their use after the Games. Visitors were encouraged to travel using rail rather 

than private vehicles through public transport planning and service upgrades (Fussey et al. 2016). The 

overarching management approach employed by the programme involved the public Olympic Delivery 

Authority (ODA) appointing CLM as the delivery partner; a private sector consortium made up of 

CH2M Hill, Laing O’Rourke, and Mace. These private companies brought experience and expertise in 

large-scale programme management and construction projects, and were granted the necessary 

latitude to deliver to targets effectively while ODA retained sufficient assurance and oversight of the 

broader programme. The importance of forming and retaining an effective relationship between ODA 

and CLM throughout the programme was known to be essential, so CLM remained integrated into the 
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governance and delivery review meetings throughout the programme’s life cycle; a true partner in the 

process rather than a ‘fire and forget’ subcontractor (Hone et al. 2011). 

The overarching approach encompassing all of the varied goals involves a forward-looking and 

systematic perspective, recognising opportunities at all three levels from the planning stages. 

Emphasis was placed on the forming of partnerships, the sourcing of sustainable materials and their 

use in efficient and intelligent ways, interdisciplinary thinking, an awareness of interdependencies, 

and the balancing of multiple solutions for multiple objectives. As such, the London Olympic Park’s 

development exemplifies positive interdependency at all levels; from simple opportunities (through 

interdisciplinary collaboration) to geographical and physical opportunity (through the use of local and 

recycled materials, circular resource flows and a focus on within-site sustainability) to full integration 

(through the adoption of a perspective truly focused on designing on-site systems to work together 

and synergise in as many ways as possible). Unlike many interdependency opportunities, the 

development also exemplifies a novel approach designed from its beginning to be integrative rather 

than being a retrofit of existing infrastructure. In so doing, it represents all three types of opportunities 

(simple, geographical and integrative) as well as ecological principles of interdependence, cyclical 

flow, partnership, flexibility, and diversity. Widely hailed as a success, the greatest weakness or threat 

demonstrated by the megaproject is most likely the considerable cost of the approaches it took, which 

would likely prove prohibitive to most smaller or less-supported developments. 

Case study: The sewerless nano-membrane toilet prototype 

Conventional sewer systems place heavy impacts on water availability and quality, energy, food and 

the environment. Poor sanitation resulting from inadequate or insufficient infrastructure can have 

massive impacts on human health. Modern sewerless sanitation efforts therefore seek to combat 

these impacts and provide a sustainable alternative to expensive centralised sewerage systems in 
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developing countries, using modern technological advancements (Martin et al. 2015). Such 

decentralised sanitation systems are primarily concerned with the containment, immobilisation, or 

destruction of pathogens in human waste. Modern approaches vary by global context, but the Bill & 

Melinda Gates Foundation's 'Reinvent the toilet challenge' has been instrumental in driving a new 

generation of research into modular toilets that neutralise pathogens, recover water and nutrients, 

operate off grid, and are relevant in both low and high income countries. Although many of these 

systems remain in development, a fully self-contained toilet has the potential to eliminate the 

dependency on multiple infrastructure systems, greatly reducing risks to the environment and human 

health. 

A major challenge faced by all designs is the separation of solid and liquid wastes, which the nano-

membrane prototype accomplishes using silicon tubing and vaporisation of liquid wastes. Energy 

requirements of the system are then met by the combustion of dried solid residues, while vaporised 

liquids are condensed and recovered downstream, free of pathogens. CO2, NOx and SOx from the 

burning solids can be intercepted by a suite of adsorbents. Waste ash from the system will be 

microbiologically inert and thus can be safely disposed of alongside household waste (Martin et al. 

2015). 

The main environmental benefit of such a system is its water saving ability, whereas the lack of 

dependence on critical infrastructure systems would also represent a major economic and social 

benefit, particularly in rural areas of developing nations. As a prototype it remains difficult to currently 

assess threats or weaknesses of the system, but a driving principle of the project is reducing user 

dependency on unreliable or unavailable infrastructure systems, thus removing the potential threat 

of being denied them. At a broad scale, this prototype system thus appears to represent the 

elimination of interdependency rather than its exploitation; however at the scale of the individual 

unit, it is the recognition and deliberate integration of interdependencies between water, energy, 

health and the environment that drive the system’s design. In this way, the project exhibits an 
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integrative opportunity, while demonstrating interdependence, cyclical flow, flexibility, and diversity 

as ecological principles. 

Case study: Cornwall local energy market 

A trial project is currently ongoing in Cornwall by Centrica to test a virtual local energy market that 

combines renewable distributed electricity generation, home battery storage technology, and a 

system of smart grid management using supply/demand adaptive pricing structures (Centrica 2017). 

Under the trial setup, timing discrepancies between the generation of renewable energy and the 

demand for it are balanced by the presence of home storage batteries, and managed by pricing 

structures that adapt to encourage participants to use or store power when supply is high, and reduce 

their use or sell stored power back to the grid when supply is low. The trial is currently ongoing so no 

final results are currently available at time of writing, but the study is anticipated to prove informative 

about management and implementation strategies for renewable energy, home power storage and 

local energy trading. 

Like similar examples discussed previously, this locally-focused energy integration combines principles 

of sustainability and flexibility, reducing load on the national electrical grid and minimising the need 

for long-distance electrical transmission. The need for accurate real-time usage data in order to 

manage the system effectively represents a potential weakness in the event of a communications 

failure, but the distributed nature of the infrastructure introduces a level of geographic resilience not 

common to more traditional energy grids. The system does this by taking advantage of opportunities 

at all three levels of integration around the simple sharing of knowledge, the exploitation of 

geographically co-located resources, and the integrative linking of technologies with system-level 

optimisation and management. The ecological principles of interdependence, flexibility and diversity 

are also employed. 



26 

Case study: multi-use ocean platforms 

Spurred by intergovernmental targets on sustainability and renewable energy production, interest has 

grown recently in the concept of ocean platforms to support multiple uses, especially combining wind 

and wave energy generation while in some cases also including aquaculture installations. The 

advantages of such platforms in shared costs, smoothed power output and combined construction 

and maintenance efforts make them an attractive proposition; however, their implementation 

currently faces barriers in the lack of unified governance and support, longer development times, 

uncertainties around insurance and risk, and the immaturity of important technologies in wave energy 

capture and local energy storage (Abhinav et al. 2020; Pérez-Collazo et al. 2015; Stuiver et al. 2016). 

For these reasons such platforms currently remain speculative and theoretical, but prototypes and 

exploratory case studies to optimise development approaches have been completed (Zanuttigh et al. 

2015, 2016). 

If constructed, multi-use platforms that combine different offshore infrastructures in a common area 

or structure would primarily represent the exploitation of a geographic opportunity, taking advantage 

of co-location to share structures, costs and logistics (Abhinav et al. 2020 (in press)). Co-location 

remains perhaps the most obvious double-edged sword, as it can represent infrastructure sharing 

opportunities as well as introducing threats in the event of localised disturbances. Additionally, the 

offshore nature of such platforms may make them more difficult, costly, or time-consuming to access 

for maintenance than onshore equivalents. As key energy technologies mature, however, these 

platforms could grow to represent more integrative opportunities as well through the synergy of 

different power generation and local storage approaches (Abhinav et al. 2020 (in press)). For now, 

such projects remain primarily geographical in the nature of their exhibited opportunities, making use 

of the ecological principles of interdependence, partnership, and flexibility. 
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Case study: The Kuala Lumpur SMART Tunnel 

The Stormwater Management and Road Tunnel (SMART) project in Kuala Lumpur uses a combined 

approach to mitigate two separate but major problems faced by the city; traffic congestion and storm 

water management/flooding (Kim-Soon et al. 2016, 2017; Wallis 2004). The tunnel, completed in 

2007, consists of a 9.7 km tunnel to divert water during flash flood events, 3 km of which is shared 

with a two-layer motorway constructed to alleviate traffic problems during peak times throughout the 

rest of the year. This unique shared use infrastructure is subject to a specially-designed maintenance 

and management scheme to assure continued fitness for both purposes, and has alleviated numerous 

potentially damaging flooding events since its completion. 

The SMART Tunnel represents a novel case of co-location, recognising a geographic opportunity to 

alleviate two otherwise unrelated problems facing the city and integrating multiple systems to 

manage it. Again, this co-location makes the potential risk factors clear; damage to one use case would 

negatively impact the other, likely requiring repair before either could be fully restored. Nevertheless, 

under a conventional isolated approach to infrastructure design, such an ambitious and combined 

project would not have been possible; however, a systematic perspective and consideration of 

multiple objectives has allowed a shared opportunity to answer multiple needs. This project is thus an 

exemplar of a geographical opportunity, making use of the ecological principles of both partnership 

and flexibility. 

CONCLUSIONS 

Due to the way they have been historically developed, infrastructure systems traditionally tend to be 

silo-bound; built and managed in ways that discourage systemic thinking and treatment of 
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interdependencies. Future efforts need to capture the ‘system of systems’ view and work across 

conventional disciplinary and organisational boundaries in order to plan and manage infrastructure 

systems in the wider context of one another and with regard to long-term benefits and risks to human 

well-being. 

Where interdependencies are recognised, research, management and policy have largely remained 

focused on their negative aspects and the risks they represent to resilience; however, further 

attention is warranted on the opportunities that complexity may represent to society. The risks 

represented by global climate change (and the interdependencies they highlight) have driven a 

recognition of the need for organisations to consider these risks and adapt to them together (Dawson 

2015; Jude et al. 2017; Street and Jude 2019). By a similar token, infrastructure design and 

management must recognise the risks and opportunities presented by interdependency and adapt 

appropriately to these as well. It is advocated here that the focus on interdependency be broadened 

from solely considering risks and vulnerabilities, and seek to recognise and embrace the myriad 

opportunities that exist. Numerous projects, either theoretical or in practice, are beginning to 

recognise and exploit these opportunities as the above case studies illustrate. Such projects can range 

from adaptations of existing infrastructure systems to novel disruptive business models that seek to 

replace entire supply chains and conventional approaches (Keely et al. 2016; Moreno et al. 2017), and 

should be looked to by future efforts for inspiration. 

The typologies proposed in this paper represent a way in which the opportunities associated with 

interdependencies might be more effectively recognised and exploited in future efforts. The case 

studies seek to exemplify these typologies in action, in both theory and practice. To further recognise 

and understand opportunities, managers and planners should consider several dimensions: 1. What 

is the intensity of the opportunity? Is it a true two-way interdependency, and if so how strong are the 

linkages? If not, is it a one-way dependency or simple co-location, and might it develop into a true 

interdependency, either deliberately or unintentionally? 2. Has the opportunity been planned in 
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advance, or has it been recognised and exploited based on pre-existing systems? Or is it completely 

emergent and serendipitous? 3. What specific value does the opportunity offer, i.e. what is its business 

case? Does it provide increased resilience, an engineering benefit or a cost benefit? Are the benefits 

represented in the market (i.e. monetary) or not (e.g. societal well-being)? 4. What are the spatial and 

temporal scales of the benefits? How large a geographic area do they impact, and at what stage in the 

project’s life cycle do they factor in? 5. Finally, how do the benefits weigh against the risks? 

All of the above dimensions can and should be used to explore both opportunity and risk, and consider 

them in the context of one another, in order to weigh the overall value of interdependent efforts. 

Accurately recognising and understanding opportunities from interdependency can aid managers and 

decision makers in making informed choices as new innovations are pursued. Most of all, transitioning 

thinking toward the proactive recognition and pursuit of opportunities from complexity on their own, 

rather than only in reaction to threats, will have powerful and far-reaching benefits for organisational 

effectiveness and global well-being. 
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TABLE 1. Principles of ecology and system survival (Capra 1996), and examples of how they can be 

applied to infrastructure to build resilience and sustainability

Principle Description Relevance to Infrastructure 

Interdependence All members of an ecological 

community are connected in a vast and 

intricate network of relationships via 

multiple feedback loops that create 

non-linear response patterns. 

 Reliance on outputs as inputs 

between infrastructures 

 Information feedback to 

optimise functioning (smart 

metering) 

Cyclical Flow Nutrients are recycled so that waste of 

one species becomes food for another. 

Organisms are open systems but 

ecosystems are largely closed with 

respect to materials. In human society, 

by contrast, outputs of one market-

driven entity may threaten the survival 

of another, especially as environmental 

and social costs are 'external' and not 

considered in market models. 

 Recycling of residue from one 

infrastructure to drive 

another 

 Avoidable waste reduction 

 Circular economy and 

engineering for re-use 

 Carbon tax systems etc. to 

account for environmental 

and social externalities, thus 

recognising the closed nature 

of the system 

Partnership and 

Cooperation 

Co-evolution, symbiogenesis and 

mutually interdependent adaptations 

 Infrastructure sharing (asset 

focus – cost efficiency) 

 Sharing economy (society 

focus – enhances well-being 

and community) 

 Knowledge exchange 

Flexibility Continual adjustment to feedback in 

response to constantly changing 

conditions. Negative feedbacks 

facilitate stabilisation after disturbance 

or a shift in conditions. 

 Adaptation to uncertainty 

(e.g. climate change) 

 Driverless vehicles and 

responsive traffic routing 

 Optimising to meet multiple 

objectives rather than 

maximisation to one 

Diversity Pluralistic resilience, biodiversity with 

overlapping ecological functions that 

can partially replace one another 

 Distributed (i.e. pluralistic) 

energy storage 

 Multiple energy sources 

 Multiple network pathways 

 Replacement of outdated 

systems 



37 

TABLE 2. Comparison of case studies showing types of opportunities exploited, ecological principles 

exhibited and description of the project 

Case Study Type of 

Opportunity 

Ecological Principles Description 

MK:Smart Simple, 

geographical 

and integrative 

Interdependence, 

partnership, flexibility 

and diversity 

Disparate systems integrated 

to support efficiency and 

novel services 

Milton Keynes 

linear parks 

Simple and 

geographical 

Partnership and 

diversity 

Urban green infrastructure is 

preserved and managed for 

multiple goals 

Urban rooftop 

greenhouse 

agriculture 

Geographical 

and integrative 

Cyclical flow Water and nutrients recycled 

in a hydroponic growing 

system to maximise resource 

efficiency 

London Olympic 

Park 

Simple, 

geographical 

and integrative 

Interdependence, 

cyclical flow, 

partnership, flexibility 

and diversity 

Full life cycle approach 

identified and exploited 

opportunities at all stages 

Nano-membrane 

toilet prototype 

Integrative Interdependence, 

cyclical flow, flexibility 

and diversity 

Prototype to integrate all 

toilet/sewerage functions 

into a single unit to eliminate 

dependency on central 

infrastructure 

Cornwall local 

energy market 

Simple, 

geographical 

and integrative 

Interdependence, 

flexibility and diversity 

Pilot creation of a novel 

energy market linking 

renewable generation, local 

storage and smart 

management 

Multi-use ocean 

platforms 

Geographical Interdependence, 

partnership and 

flexibility 

Theoretical concept for 

offshore platforms combining 

energy generation and 

storage 

SMART Tunnel Geographical Partnership and 

flexibility 

Combined use urban tunnel 

managed to mitigate flood 

risk and traffic congestion 


