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Do Investors Gain from Forecasting the Asymmetric Re-
turn Comovements of Financial and Real Assets? 

Abstract 

Recent research on asset allocation emphasizes the importance of considering non-traditional 

asset classes such as commodities and real estate—the former for their diversification proper-

ties, and the latter due to its importance in the average investor’s portfolio. However, model-

ling and forecasting asset return comovements is challenging because the dependence structure 

is dynamic, regime-specific, and non-elliptical. Moreover, little is known about the economic 

source of this time-varying dependence or how to use this information to improve investor 

portfolios. We use a flexible framework to assess the economic value to investors of incorpo-

rating better forecasting information about return comovements between equities, bonds, com-

modities, and real estate. The dependence structure is allowed to be dynamic and non-ellipti-

cal, while the state variables follow Markov-switching stochastic volatility processes. We find 

that the predictability of return comovements is significantly improved by incorporating macro 

and non-macroeconomic variables, in particular inflation uncertainty and bond illiquidity. The 

economic value added to investors is significant across levels of risk aversion, and the model 

outperforms traditional multivariate GARCH frameworks. 

Keywords: Forecast, Comovement, Asset allocation, Portfolio optimisation, Economic value 

added, Volatility, Copula, Markov models, Macroeconomic variables, Regimes. 
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1. Introduction 

Classical portfolio theory assumes that asset returns follow a multivariate normal distribution, 

and further that the dependence structure between assets can be fully characterised by the vari-

ance-covariance matrix of returns, i.e. dependence is symmetric. However, industry practitioners 

and researchers have reported that asset return dependence tends to increase significantly during 

bear markets and, in particular, during financial crises such as in 2008-09 (e.g., Aloui et al., 

2011). If asset return comovements are asymmetric, models based on mean, variance and covari-

ance may be inadequate for estimating portfolio risk and determining optimal asset allocations. 

Yet measuring, forecasting and explaining asymmetric return comovements remains a challenge 

in the asset allocation literature.  

This paper’s contribution is to link multivariate return comovements to macroeconomic and 

non-macroeconomic factors, across four asset classes (equities, bonds, commodities, and real es-

tate). We use a flexible framework to show how these factors drive the dynamic dependence 

structure of return comovements. We further show how this information helps forecast return 

comovements, and we assess the economic significance of the improvements for typical inves-

tors. Specifically, we aim to answer the following questions: 1) How does the economic market 

environment affect the joint dependence structure of return comovements between financial and 

real assets? 2) What factors explain a potentially non-elliptical joint return distribution in a multi-

asset portfolio? 3) What is the economic value to investors that is added by improving forecasts 

of comovements using (2)? These questions have significant implications for asset allocation de-

cisions. 

Our findings are as follows. First, the expansion regime of the dependence structure lasts 

longer than the contraction regime, and return comovements are less volatile during expansions 

than contractions. Second, inflation and the risk-free rate are significant drivers of return 

comovements during expansion regimes. However, during contraction regimes inflation and risk 

aversion are significant. Indeed, during economic contractions the intensity of return comove-

ments increases with risk aversion. Furthermore, we find evidence that non-macroeconomic vari-

ables matter. In particular, inflation uncertainty and bond illiquidity are significant, but their ef-

fect differs according to the economic regime. Third, we find that a Markov-switching stochastic 

volatility (MSSV) model outperforms non-switching models to forecast return comovements 
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across four asset classes. Fourth, our results suggest that investors benefit economically from in-

corporating the information from macro and non-macro risk factors in their asset allocation deci-

sions. This result is established by measuring Expected Utility certainty-equivalence (Willing-

ness-to-Pay) for a range of reasonable risk aversion levels. Fifth, we provide robustness checks 

using quantile regressions which support our main findings. 

Thus, our paper fills a specific gap in the literature on return comovements across asset clas-

ses and their economic implications for asset allocation. Indeed, to our knowledge this is the first 

study to show in a unified setting: (i) the dynamic structure of return comovements across asset 

classes, using a flexible non-elliptical framework, (ii) the macro and non-macroeconomic deter-

minants of return comovements across economic regimes, and (iii) how investors with different 

risk appetites could benefit from such information.   

The remainder of the paper is organized as follows: We begin by reviewing some related re-

search in Section 2. Section 3 presents the theoretical framework and describes the empirical 

methodology.  Section 4 describes the sources of data, and presents and discusses the empirical 

findings. Section 5 reports the robustness checks and specification tests, and lastly Section 6 con-

cludes the paper. Appendices A-C present additional information regarding the data and estima-

tion methods. 

2. Literature Review 

The existing literature on forecasting and explaining asset return comovements has mainly fo-

cused on modelling equities and bonds (e.g. Baele et al., 2010; Wu and Lin, 2014). However, ex-

panding the set of asset classes to include real assets such as commodities and real estate is 

highly relevant. First, this is because commodities and, more generally, alternative investments 

may provide useful diversification (Bodie and Rosansky, 1980; Erb and Harvey, 2006; Gorton 

and Rouwenhorst, 2006; Hillier, Draper and Faff, 2006).1 Indeed, over the past two decades there 

has been substantial growth in the importance of real assets and other alternative investments in 

portfolio allocation. For example, investment in commodity-based traded products has reached 

$125.8 billion (Carpenter, 2010). Second, real estate represents, for the middle-class investor, the 

largest share of his or her assets (Campbell, 2006; Guiso and Sodini, 2013). Indeed, the average 

1 However, Daskalaki and Skiadopoulos (2011) argue, on the basis of spanning tests, that the diversification benefits 
of commodities may have been overstated.  
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US household holds 40-45% of their wealth in real estate (Tracy, Schneider, and Chan, 1999; 

Tracy and Schneider, 2001). Thus, a better understanding of the portfolio implications of asset 

comovements is valuable for middle-class investors, who may over-invest in real estate, as well 

as wealthy investors, who seek to diversify beyond stocks and bonds (Campbell, 2006). 

The theory for asymmetric return comovements has evolved across different literatures and 

has been studied for different asset classes (equities, bonds, etc.). The basic theory concerns re-

turn comovements and the potential for diversification within and across asset classes (e.g. Ka-

rolyi and Stulz, 1996). If comovements increase, diversification potential decreases. Return 

comovements are said to be asymmetric when they are stronger for downside moves than upside 

moves. The asset pricing interpretation is that a greater proportion of risk in each asset class is 

systematic or factor-based (with common factors that affect all asset classes) and a smaller pro-

portion of risk is idiosyncratic and diversifiable. Indeed, Karolyi and Stulz (1996) argue that a 

significant gap exists between international finance theory and financial risk management prac-

tice (e.g., RiskMetrics). Accounting for comovements is important because they affect risk 

premia and thus the pricing of financial or real assets. This reasoning can be extended from co-

variances to higher-order moments if we allow a departure from multivariate normality. Then, 

asymmetric return dependence can be interpreted as the risk of financial contagion across asset 

classes or countries or both (e.g. Piplack and Straetmans, 2010). Lower tail dependence is of par-

ticular interest because investors are most concerned about diversification failing, and losses 

compounding, during crisis periods.  

For equities, the motivation starts with developments in two literatures, namely on condi-

tional volatility and covariance, and on asset allocation. Kroner and Ng (1998) argue that the lit-

erature on multivariate GARCH models fails to account for asymmetry in the dependence struc-

ture. Thus, stylized facts such as Black’s leverage effect cannot be captured. Their goal is to 

show how to model time-varying covariances that are more consistent with financial data. More-

over, they show that various available multivariate GARCH models impose different restrictions, 

and that such restrictions may be difficult to justify empirically. Ang and Chen (2002) further 

show that individual stock return conditional correlations with the market return are sharply 

asymmetrical. Correlations are higher conditional on downside moves, and clearly non-Gaussian. 

Ang and Bekaert (2002) extend this empirical analysis to international stocks, and show the im-
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portance of regime-specific (bull or bear market) asset allocation strategies. Indeed, a sound un-

derstanding of the behavior of asset return comovements is essential for efficient asset allocation 

decisions. Guidolin and Timmermann (2007) show that since asset return comovements are time-

varying, investors require information about the conditional distribution of asset returns to imple-

ment dynamic asset allocation strategies. Furthermore, asset return comovements change due to 

variation in economic conditions and/or changes in non-macroeconomic factors.  

Regarding equity-bond comovements, most research confirms that stock and bond return cor-

relations vary inversely with stock market volatility. Connolly et al. (2005 and 2007) relate this 

result to the ‘flight-to-safety’ phenomenon. Moreover, real interest rate and inflation volatility 

have a significant influence on stock-bond return correlations (e.g. d’Addona and Kind, 2006; 

Boyd et al., 2005 and Andersen et al., 2007). Piplack and Straetmans (2010) provide pairwise 

analysis of lower tail dependence for equities, bonds, T-bills, and gold. They find evidence of 

greater co-crash risk for stocks and bonds or T-bills, and for bonds and T-bills. Gold, however, 

appears to perform as a ‘safe haven’. 

Models used in the literature often impose time-stability restrictions when examining the dy-

namics of the dependence structure. These assumptions may not hold in practice, however, as it 

is well established that the joint distribution of daily asset returns within and across asset classes 

is not multivariate normal (e.g. Longin and Solnik, 2001; Patton, 2009). Thus, linear correlation 

may not be an adequate measure of the dependence structure of returns.2 Moreover, there is evi-

dence showing that the dependence structure is time-varying, in particular during financial crisis 

periods. For example, Piplack and Straetmans (2010) show that asset return comovements 

change during periods of market stress. Thus, in constructing an optimal portfolio, one should 

consider how asset return comovements might change during different economic conditions.  

Two further issues arise from the existing empirical evidence. First, research shows that it 

would be desirable to obtain a more reliable, alternative density specification for a higher-dimen-

sional case (i.e. many asset classes) is desirable (e.g. Creal and Tsay, 2015). Second, a richer 

framework for the dependence structure would better account for information contained in the 

distributional tails. In this study, we address both of these issues by employing: i) a dynamic con-

ditional copula model to measure the joint distribution of return comovements, and ii) a Markov-

Switching Stochastic Volatility (MSSV) model to examine their determinants. 

2 For problems linked to linear correlation, see e.g. Embrechts et al. (2002). 
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Much of the research in this general area has focused on international links between equity 

markets, rather than across asset classes. Rodriguez (2007) uses copulas to characterize and doc-

ument financial contagion for countries affected by the East Asia and Mexican crises. The results 

show the dependence structure can break down (through tail risk) even if the evidence suggests 

no change in correlation patterns. Li (2013) develops a new, nonparametric approach to test the 

symmetry of stock market return comovements. This test is applied pairwise to the US market 

and five other developed countries. Symmetry is rejected in all cases except for US-Japan. Gar-

cia and Tsafack (2011) consider both stocks and bonds for two pairs of country, namely Canada-

USA and France-Germany. Their approach allows for two regimes, one where comovements is 

symmetric and the other where it is not. They find a strong and nonlinear (asymmetric) depend-

ence between the two countries in each pair within an asset class, but not across asset classes. 

Chollete, De La Pena and Lu (2011) also look at international equity market index returns for a 

larger set of countries. They find, first, that dependence has increased over time, linked to closer 

financial integration between countries. They further find asymmetric dependence to be particu-

larly strong in Latin America but less so in the G5 countries or in East Asia. They conclude that 

the evidence of asymmetric tail dependence in returns data suggests limits to international diver-

sification. Weiß and Scheffer (2015) show how to improve portfolio risk management and re-

duce Value-at-risk using mixture copulas. Chui and Yang (2012) find that in the US and UK, 

stock and bond return correlations are exceptionally high when markets are either very bullish or 

bearish. In Germany, however, bonds offer diversification potential when stock returns fall.  

The literature for asset classes other than stocks and bonds is smaller. Liu, Ji and Fan (2017) 

use half-rotated copulas to capture time-varying nonlinear dependence between equity and com-

modity returns. Their results confirm asymmetric tail dependence and also that the dependence 

structure is most affected by crisis events. Ji et al. (2018) show that time-varying copulas help 

capture the link between BRICS equity market returns and crude oil returns and that risk spills 

over from oil to equities. Paltalidis and Patsika (2019) examine currency markets and find evi-

dence of tail dependence and stronger links during high-volatility periods, suggesting market 

contagion risks. Chan et al. (2011) look at different asset classes in the US and characterize, us-

ing a Markov-switching model, two regimes – tranquil and crisis. They find evidence of flight-

from-quality and contagion between asset classes during the crisis period. Case et al. (2012) 
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show that multivariate GARCH models can help improve portfolio performance by adding and 

dynamically rebalancing real estate investments.  

Concerning asset allocation and forecast performance, Wu and Liang (2011) show that using 

dynamic copulas allows them to improve stock-bond comovements forecasting, which translates 

to economically sizable gains to investors who implement such strategies. Wu and Lin (2014) 

further show that investors have significant gains models when their stock-bond investment strat-

egies are based on a combination of Student-t copulas and GJR-GARCH marginal, compared 

with passive or multivariate GARCH approaches. 

Despite a large literature on this subject in general, a gap remains. Specifically, there is to our 

knowledge no study which addresses in a single setting the questions raised here. For example, 

Chan et al. (2011), Case et al. (2012), and Delatte and Lopez (2013) examine the dynamics of 

correlation between different asset classes. However, they do not explore how different eco-

nomic regimes affect return comovements, nor do they look at why comovements might be 

asymmetric. Some recent studies use a copula approach to capture tail dependencies (see e.g., 

Aloui et al., 2011; Chollete et al., 2011; Weiß and Scheffer, 2015; Wu and Lin, 2014), but these 

studies examine bivariate return comovements, rather than a wider set of asset classes in a single 

joint setting. Yang et al. (2010) use a bivariate regime-switching model to characterize coskew-

ness, but only consider stock-bond returns.  

3. Model Development and Empirical Methodology  

In this section, we present the model and describe the methodology. First, we describe a time-

varying dependence structure to capture asset return comovements. Second, we present a condi-

tional volatility framework for the asset returns. Third, we adopt a New Keynesian dynamic 

framework to link the economic source of return comovements to macro and non-macroeco-

nomic state variables. Lastly, we present the Markov-Switching Stochastic Volatility framework 

for the state variables.  

3.1 Estimating the Dependence Structure of Returns 

Recent work in finance has shown the usefulness of multivariate copula approaches to estimate 

the joint return comovements of assets, e.g. to better describe international diversification (Chris-

toffersen et al., 2012). Using this general approach, we estimate our models using the inversion 

method by substituting the marginal densities of the asset returns. We characterize a multivariate 
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p-dimensional copula as � ∼ �(0,�), where  � denotes the CDF of a standard t-distribution, R is 

the correlation matrix and u is the realization of probability integrals of the asset return marginal 

distributions, X. The choice of the t-copula is motivated by the existing literature. Although no 

single copula is ideal in every setting, the t-copula has been found to perform very well. Indeed 

in this literature on return dependence in different asset classes, the t-copula often performs ei-

ther best or nearly best among a wide class of copula functions. This is documented for example 

in Chollete, De La Pena and Lu (2011) and in Wu and Lin (2014). In addition, in their study of a 

wide range of mixture pair copulas, Weiß and Scheffer (2015) find that “For all fitted Mixture-

PCCs, the key component is the Student’s t copula.” Lastly, in his survey of copula models for 

economic and financial time series, Patton (2012) writes that on the basis of statistical tests, “the 

Student’s t copula is preferred” although no single copula model is always preferred. Then, the 

corresponding log likelihood function is 

��(�,�;��) = −� ln
� �� + �

2
�� ��

2
� − � � ln

� �� + 1
2

�� ��
2
�

− �� + �
2

���ln�1 +
��� × ��1 × ��� ���

��1

− � ln|�|

�
��1

+ �� + 1

2
��� ln �1 +

���2� ��
��1

�
��1

(1)

For the t-copula we have �� = ����1��1,�, … ,��,���, which is the vector of transformed standard-

ized residuals, where ��1 represents the inverse of the Student’s t-distribution, d are the degrees 

of freedom, and R is the correlation matrix. To accommodate for a potentially time-varying de-

pendence structure corresponding to conditional copulas, we allow the dependence parameter ��
to vary according to an ARMA (1, q) process (see Hafner and Manner, 2012), which is defined 

as 
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�� = ���
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+ �
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1����1(����)�
��1

+ �
3
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where �
1
 is the autoregressive term, and �

2
, the average of the sum-product of the transformed 

variables � and �. The term �
1
���1

 accounts for the persistence effect while the term �
2

1� ∑ ��1(����)���1  captures the variation effect of the dependence parameter. We add a dummy 

variable term �
3
� , which enables us to examine the impact of the 2007-08 financial crisis. The 

dummy variable takes the value ‘0’ prior to the subprime crisis, July 2007, and thereafter takes 

the value ‘1’. Based on the AIC value, we select the lags of the moving average term. However, 

for forecasting purposes, we do not use the dummy variable in the equation.  

Let asset returns be denoted ��,� for asset i and period t. Then we specify the marginal distri-

bution of the asset returns in eq. (3) using an Autoregressive Moving Average ARMA (p, q)-

EGARCH (1, 1)-t process (Nelson, 1991). The model is characterised as 

��,� = �� + ����
��1

��,��� + ����
��1

��,��� + ��,� (3)

ln(��2) = �0 + ��1��
��1

ln�����2 � + ��2��
��1

���������� +��3��
��1

���������� (4)

� ���,�2 (� − 2)
�1/2

. ��.�|���1 ∼ i. i. d. ��� (5)

where ��  and ��,��1  are the conditional mean and error terms, reflecting news relating to lagged 

volatility, �� is the autoregressive component, and �� is the moving average parameter. Further, 

in eq. (4) ����2 is the GARCH component, ���1 is the ARCH component capturing the infor-

mation content of volatility, and �3 captures the leverage effect. In eq. (5), the noise process ��
follows a skewed Student-t distribution with (�) degrees of freedom and conditional variance ��2. 

The information set is the conditioning vector ‘k’. The ARMA term order ‘p’ is determined using 

the Akaike Information Criteria (AIC). 
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3.2 Estimating the Macro and Non-Macroeconomic State Variables 

As we are interested in the economic source of return comovements, we consider a variety of 

standard macro and non-macroeconomic variables for forecasting purposes. We include three 

macro-economic factors: the risk-free rate �����, output gap (��), and inflation (��). These varia-

bles are expected to affect asset values through their impact on cash flows and discount rates 

(d’Addona and Kind, 2006). To capture the impact of long-term interest rates, we include the 

nominal risk-free rate, expected inflation, and the term premium.  

To investigate the influence of the term premium and inflation premium we use two ‘eco-

nomic’ risk proxies, i.e. output uncertainty (���) and inflation uncertainty (���). Furthermore, 

we include a proxy for liquidity, which can affect asset prices in two significant ways. First, in 

illiquid markets, beta (or multiple beta-factors) may fail to reflect quickly the impact of eco-

nomic shocks. Second, economic shocks that increase liquidity may have a positive impact on 

asset returns by lowering liquidity risk or the cost of liquidity. Moreover, monetary policy can 

affect liquidity by increasing borrowing constraints and/or triggering trading activity, thereby in-

fluencing asset return comovements. Prior research is inconclusive about such liquidity effects 

(Chordia et al., 2005; Goyenko et al., 2009). To address this issue in our model, we consider un-

constrained proxies of liquidity shocks. We capture stock market illiquidity (���) using the capi-

talization-based proportion of zero daily returns across all listed firms in the U.S. market (see 

Lesmond et al., 1999). For bond market illiquidity (���), we use bid-ask spreads across all secu-

rities, i.e. one month, three months, and one, two, three, five, seven, ten, twenty and thirty years 

of maturity.  

Plosser and Rouwenhorst (1994) and Estrella and Hardouvelis (2012) use the term spread 

(���) as a leading indicator of economic activity. However, recent evidence shows that the spread 

has become less informative over time. Dotsey (1998) and Henry et al. (2004) show that the rela-

tionship between business cycles and economic output behaves asymmetrically. Öcal (2006) pro-

vides evidence of an asymmetric relationship between economic output and growth. Therefore, it 

is reasonable to assume the existence of a non-linear relationship between these variables. We 

use an alternative measure to capture the different regimes of the business cycle. Specifically, 

our measure of the modified depth of recession (���) is based on Lee and Wang’s (2012) esti-

mate of a business cycle proxy. This measure enables us to study its impact for both recession 

and expansion regimes. 
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To identify structural shocks, we split the state variables into two sets: i) “macro varia-

bles (��)”,  ��,�� = ����, ��, ��, ����′  and ii) “other variables (��)”, i.e. ��,�� =����, ���,�����,���, ���, ���, ���,����′. The ‘other variables’ (��) include the non-macroeconomic 

variables. To model ��,�� we employ a New Keynesian model, which we discuss below. To 

identify the ��,�� shocks we characterize a simple empirical model where the ‘other variables’ ov 

depend on the macro variables��.   

To model ��,��, we formulate the structural model for ��,�� employing New Keynesian dy-

namics (see Bekaert et al., 2010). The model contains three equations: i) the forward-feeding 

monetary policy (MP) rule (eq. (6)), (ii) the demand (IS) equation (7), and iii) the aggregate sup-

ply (AS) equation (8). Further, eq. (9) describes the risk aversion proxy (ra). This approach al-

lows us to capture the potentially time-varying risk aversion dynamics in the structural model. ��� = ��� + �����1
+ (1 − �)����������(���1) + ���������� + ���� (6)

�� = ��� + ���(���1) + (1 − �)���1 + ���� − ����� − ��(���1)� + ��� (7)

�� = ��� + ���(���1) + (1 − �)���1 + ��� + ��� (8)��� = ��� + �����1 + ���� (9)

(�) in eq. (6) represents the forward-looking monetary policy smoothing estimate. Cho and 

Moreno (2006) show that changes in monetary policy significantly influence macro dynamics 

and structural shocks. We therefore introduce a standard Markov-chain process that allows the 

monetary policy to vary across two regimes ������, expansion and recession, with constant tran-

sition probabilities.  

Parameters (�) and (�) in eq. (7) and (8) represent the degree of IS and AS forward-looking 

behaviour, respectively. (�) estimates the impact of the real interest rate on the output gap, and 

(�) the effect of the output gap on inflation. A high positive value of � and � will indicate that 

monetary transmission mechanism has a significant influence on the economy’s output and infla-

tion. The state variable (���) accommodates stochastic risk aversion in the demand equation of 

the New-Keynesian model, nesting Campbell and Cochrane’s (1995) external habit model. In 
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particular, (���) represents the local curvature of the utility function. (�) measures the counter-

acting effect of consumption smoothing and precautionary savings of risk aversion on the real 

economy. For the non-macroeconomic variables, we characterize the structural model as 

��,�� = ���(��) + ������1,�� + � ��,������ + ��,�� (10)

where �� represents the set of regime variables that drive the coefficient matrices. ��,�� is mod-

elled based on Hamilton’s (1989) specifications. ��� is a diagonal matrix, Σ���� is a 7 × 4 matrix, 

which appropriates contemporaneous covariance with the macro variables ��,�� , and ��,�� is the 

vector of uncorrelated structural shocks of the “other variables”. In eq. (10), the non-macroeco-

nomic factors may partially exhibit autoregressive dynamics of the macroeconomic state varia-

bles. Moreover, ��,�� represents shocks related to non-macroeconomic variables. Finally, allow-

ing the drifts to depend on the regime variable �� enables us to model the structural changes in 

the liquidity parameters (Hasbrouck, 2009). 

3.3 The Dynamic Dependence Structure Model 

To investigate the dynamics of the dependence structures, we employ a Markov-Switching 

framework, according to which each state variable follows an evolutionary process. Although au-

toregressive conditional heteroskedasticity (ARCH) models can be used for this purpose 

(Bollerslev et al., 1988; Engle, 1982), the Normally and Independently Distributed (NID) as-

sumption of the error term is often violated in practice. We therefore specify a model for the state 

variables that allows each of the vectors to follow an Independent Stochastic Volatility (ISV) 

process. The combination of the Markov-switching and stochastic volatility frameworks has been 

particularly successful in the interest rate modelling literature (e.g. Smith, 2002; Maheu and 

Yang, 2016). The Stochastic Volatility (SV) specification builds in a time-varying variance pro-

cess for each of the elements of the structural factors by allowing the variance to be a latent pro-

cess. We specify the MS model as follows, first defining the dependence structure ���� as 

�� = �������,�� + ���
��1

(11)
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where � denotes the number of switching coefficients, ��,� represents the explanatory state varia-

bles, �� represents the regime of the variable at time t, and �� ∼ � ����� with �(�) as the proba-

bility density function of the innovations defined by the vector (�). Each of the independent 

state variables �� follows a MSSV process, which we discuss next. 

We let the log volatility of the state variables evolve stochastically over time, which stands in 

contrast to (G)ARCH-type models. The model has the advantage of being parsimonious yet flex-

ible. Following convention (Ball and Torous, 1999; Shephard, 1996), we characterize the SV 

model as a discrete-time extension of the time-diffusion process ∆�� = � + ����1 + �����1
� �� (12) 

where � represents the diffusion term, ∆�� = �� − ���1 and �� is a standard normal random varia-

ble. The residual of the above equation is �� = �����1
� ��. The volatility parameter (�) evolves 

stochastically, following a first-order autoregressive process 

ln��2 = � + � ln���1
2 + �� (13) 

where �� ∼ i. i. d.��0,��2� is the disturbance term. As a result, the variance is subject to random 

shocks. We transform the residuals in eq. (12) to �� = Δ�� − � − ����1, which allows us to for-

mulate a quasi-likelihood function using Kalman filtering. The log of the squared residuals is 

ln ��2 = ln ��2 + 2 � ln ���1 + ln ��2 (14) 

Further defining �� = ln ��2 and �� = ln ��2, it follows that eq. (14) reduces to �� = �� + 2� ln ���1 + ln ��2 (15) 

where �� = �� + ����1
+ ��. Next, we discuss the complete MSSV model, which is used to ex-

amine the dynamics of the dependence structure. 

The above model is a generalization of the SV and the MS model. This framework allows 

volatility parameters to vary across different regimes, better fitting the data. Thus, a key motiva-

tion to use MSSV is that it allows for different estimates of the elasticity of variance (�). By 

combining (12)-(15), the MSSV model is characterised as 
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�� = �� + 2� ln ���1 + ln ��2�� = �� + ����1
+ ��

(16)

with all variables and parameters defined above. In contrast to the standard SV model, in (16) we 

define �� = ln ��2 , allowing us to capture the different regimes at a particular point in time. 

With the regimes governing the dynamic behaviour of the estimated state variables, we condition 

a particular regime and calibrate the density of the variable of interest. In this parameterization of 

the MS model, the transition probabilities from state m to state n at time t are defined as ��� =

Pr[�� = �|���1 = �]. Note that for � = 1, … ,�, only �(� − 1) needs to be specified, 

as ��� = Pr[�� = �|���1 = �] = 1 − ∑ Pr[�� = �|���1 = �]��1��1 . The unconditional volatility 

can change between different states by allowing (��) to take values of � ∈ {1, … ,�} at time �. 
The corresponding equation becomes ∆�� = � + ����1 + �����1

� �� (17) 

An important component of the Markov-switching model is that the switching of the regimes fol-

lows a stochastic process. Thus, identifying regimes based on distributional characteristics of the 

regime-switching variable, such as (� ± �), would lead to a restricted form of the switching 

model that may not capture the true dynamics of the dependence structure. However, using a 

weak regime classification will imply that the model is unable to successfully distinguish be-

tween the regimes only based on the behaviour of the data, leading to misspecification. To ad-

dress this issue, we identify the regimes based on a regime-switching classification. Ideally, the 

switching model should classify the regimes such that they are mutually exclusive. Following 

Ang and Bekaert (2002), we construct the regime classification statistic (RCS) for M states as 

���(�) = 100�2 1�� �� ������1

����1

(18) 

where  ��� = Pr (�� = �|��) indicates the regime transition probabilities and 100�2 serves as a 

normalizing constant to keep the statistic between 0 and 100, where a value of 0 indicates a per-

fect regime classification, while a value of 100 implies that the regimes cannot distinguish the 

behaviour of the dependence structure. We use the Kalman filter to estimate the MSSV model. 
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To remove any path dependence, we compute the conditional expectation of the log-volatility 

forecast by taking the weighted average output of the previous iteration. The estimation process 

is described in Appendix A. 

To assess the forecasting of asset return comovements robustly, it is standard practice to con-

sider an adequate hold-off sample period. Therefore, we choose 15 years (1987 to 2002) as the 

observation period to estimate the model parameters, and then we forecast return comovements 

for a period of 9 years (2003 to 2012). Moreover, since we make no assumption regarding 

whether our switching model outperforms a single-regime model, the forecasting exercise is re-

peated for different subsamples. Specifically, we fit the model for four years, estimate the one-

step-ahead forecast, delete the first observation, and add the next one and then again re-estimate 

the forecast.  

To assess forecast quality, the median of squared errors is calibrated for the regime-switching 

MSSV model and the non-regime switching stochastic volatility model. Furthermore, following 

Pagan and Schwert (1990) we run a forecast efficiency regression to examine whether the re-

gime-switching model outperforms the non-regime model (NRM). We model the forecast effi-

ciency regression as ���,� = � + �����,� + ��. In this framework, if the mean and the variance fore-

cast of the asset return comovements (���,�) are unbiased, then the regression implies that  � = 0

and � = 1. To test forecasting efficiency, the regression model is estimated using OLS with 

Newey and West (1987) heteroskedasticity and autocorrelation-corrected standard errors. We 

also correct the standard errors for possible factor estimation uncertainty. Since we use a rolling 

sample, we follow West and McCracken (1998) and multiply the Newey-West standard errors 

by�(1 − �2 3⁄ ) , where � = 9 15⁄ , i.e. the forecasting period by parameter estimation period. 

4. Data, Empirical Analysis and Results 

4.1 Data  

We require data on four asset classes, namely equities, bonds, commodities, and real estate. We 

extract US data for the Standard and Poor’s (S&P) 500 index (E), U.S. 10 year Government bond 

return index (B), two commodity benchmarks, i.e. the S&P GSCI Gold index (G) and West 

Texas Intermediate – WTI (Cushing, Ok.) crude oil prices (O), and the S&P Case-Shiller Com-

posite-10 home price index (RE). The data cover the period from the fourth quarter of 1987 to 
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the fourth quarter of 2012. Lastly, we compute daily returns for each index. More detail about 

the data sources is presented in Appendix B. 

<<Insert Table 1>> 

Table 1 presents the summary statistics of the asset returns. Panel (A) of Table 1 shows that the 

annualized mean return of crude oil is highest (3.39 percent) over the sample period, followed by 

equity (6.27 percent) and bond returns (5.52 percent). Similarly, the standard deviation is also 

highest for crude oil returns (33 percent) followed by equity returns (16.42 percent). All asset re-

turns are negatively skewed, except for gold. Further, asset returns display excess kurtosis. The 

Jarque-Bera test statistics in Panel (B) of Table 1 reject the hypothesis that the unconditional dis-

tributions of the asset returns are normally distributed. 

4.2 Dynamics of Multi-Asset Return Comovements 

We begin by looking at whether multi-asset return comovements show any evidence of regime-

switching behaviour. We refer to the trajectory of the multi-asset return comovements as the 

Joint Dependence Structure (JDS). Panel A of Table 2 reports the transition probabilities and the 

expected durations3 of the two regimes, which are identified using the Regime Classification Sta-

tistic (RCS) as described in eq. (19).  

Our findings indicate significant transition probabilities for both regimes. The identified re-

gimes represent: i) the Dependence Structure High State or contraction regime (DSHS or High) 

(Regime 1) and the Dependence Structure Low State or expansion regime (DSLS or Low) (Re-

gime 2). Based on the transition probability and the expected duration values presented in Panel 

A of Table 2, the Low regime tends to be considerably longer than the High regime. The practi-

cal implication of this result is that investing in different asset classes leads to considerable di-

versification because the multi-asset return comovements tend to stay in a lower state. Panel A 

further indicates that return comovements are more volatile during the economic contraction re-

gime (DSHS), compared to the economic expansion regime (DSLS). 

3 Following Hamilton’s (1989) formula we estimate the expected duration of the regimes as ∑ ��
11(22)
��1 �1 − �

11(22)�∞��0 , 

where �
11

(�
22

) are the transition probabilities in Regime 1 (Regime 2). 
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Panel A of Figure 1 presents the time path of the multi-asset return comovements. The graph 

shows that the regimes of the return comovements closely align with the economic expansionary 

and contractionary phases of the dating cycle proposed by the NBER and which are convention-

ally accepted (the dating cycles are reported in Appendix C). The shaded region in the figure rep-

resents the economic contractionary periods. Panel B of Figure 1 shows the average value of re-

turn comovements from August 1987 to September 2012. Comovements during the economic 

contractionary period are higher than during the economic expansionary period, consistent with 

known stylized facts. The findings provide evidence of an increase in return comovement after 

August 2007 and leading into the financial crisis. However, our findings show no evidence of ex-

treme events in either of the tails. This suggests that investment in real assets can lead to signifi-

cant portfolio diversification during economic contraction regimes. 

<<Insert Table 2>> 

<<Insert Figure 1>> 

4.3 Macroeconomic and Non-Macroeconomic Factor Exposure

The impact of macroeconomic and non-macroeconomic variables during DSHS (economic con-

traction phase, i.e. Regime 1) and DSLS (economic expansion phase, i.e. Regime 2) are reported 

in Table 2, Panel B. In the economic contraction phase, inflation and risk aversion are statisti-

cally significant, while in the economic expansion phase, inflation and the risk-free rate are sig-

nificant. The findings suggest that an increase in risk aversion during the contraction phase in-

creases the intensity of return comovements. Inflation has a positive influence on return comove-

ments during both regimes. This result suggests that (expected) inflation may reflect information 

about the real interest rate and may induce positive correlation in asset returns.  

In the economic contraction regime, non-macroeconomic variables, i.e., output uncertainty, 

inflation uncertainty, bond market illiquidity, and depth of recession are all significant, while in 

the economic expansion regime, inflation uncertainty and bond illiquidity are significant. Over-

all, the factor coefficients presented in the table indicate that non-macroeconomic variables, es-

pecially inflation uncertainty (IU) and bond illiquidity, play a more important role in explaining 

multi-asset return comovements. While IU negatively influences return comovements during the 

economic contraction phase, it has a positive influence during the economic expansion regime. 

The positive impact of IU suggests that during the economic expansion phase, risk premiums and 
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asset valuations are affected by increasing economic uncertainty. This finding is also consistent 

with the learning models of Veronesi (1999), in which uncertainty decreases the equity risk pre-

mium.  

More interesting yet is the evidence of a negative impact during an economic contraction 

phase. Indeed, this result suggests that during periods of economic recession, an increase in eco-

nomic uncertainty lowers interest rates through the channel of a “precautionary savings effect”.4

In contrast, the effect of bond illiquidity is positive during an economic contraction phase and 

negative during an economic expansion phase. The former result provides evidence as to how 

liquidity shocks co-move across markets, while the latter result is consistent with the research 

suggesting that economic recovery may drive investors and traders from less liquid, safer Treas-

ury bonds toward highly liquid but riskier assets like stocks. As a result, the resulting price pres-

sure effects may induce negative return correlations among the more and the less risky financial 

assets. Thus, the liquidity effect is consistent with the “flight-to-safety” phenomenon. 

4.4 Factor Contributions 

In this sub-section, we show the extent to which macro and non-macroeconomic variables con-

tribute to explain multi-asset return comovements. To answer this question, we re-estimate the 

MSSV model by including the macro and the non-macroeconomic variables separately. Panel C 

of Table 2 reports the results of this estimation. The implications of the AIC and BIC criteria are 

clear. Indeed, the model fit worsens considerably when we drop the non-macro factors. Overall, 

amongst the macroeconomic variables, inflation plays a significant role in both regimes, whereas 

among the non-macroeconomic variables, inflation uncertainty and bond illiquidity variables are 

dominant in both phases of the economy. The findings suggest that non-macro variables do in-

deed play a significant role in explaining the dynamics of multi-asset return comovements. In 

particular, non-macro variables influence return comovements differently in different regimes. 

For instance, the bond illiquidity measure loads positively during the economic contraction 

phase, suggesting that liquidity variation induces positive correlation among asset returns across 

classes.  

4 The “precautionary saving effect” refers to the delay in an individual’s consumption and saving in the current period 
due to uncertainty relating to his or her future earnings. 
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4.5 Forecasting Performance of Asset Return Comovements 

Panel A of Table 3 presents the median of squared errors and the coefficients of the forecast effi-

ciency regression for the MSSV and the non-regime switching models. It is clear that the median 

of squared errors is significantly lower for the MSSV model, and the null hypotheses of � = 0

and � = 1 cannot be rejected. This indicates that the MSSV models adequately capture the dy-

namics of the asset return comovements.  

In contrast, the null hypotheses of � = 0 and � = 1 are rejected for the non-regime switch-

ing models. This result suggests that the non-regime switching models are not efficient in captur-

ing extreme return comovements. The findings of � ≠ 0 and � ≠ 1 indicate that the non-regime 

switching model either underestimates or overestimates the true volatility of asset return 

comovements. To distinguish between the two cases, i.e. high and low volatility of return 

comovements, we re-estimate the forecast efficiency regression by allowing a break in the re-

gression line at the median forecast. That is, there are two pairs of (�,�) estimates, one pair  

(��,��) used for forecasts above the median and (��,��)  below the median. Table 3, Panel B, 

presents these results. We find that (��,��) are significantly different from (0,1). The estimated 

coefficients of �� indicate that non-regime models overestimate the true variance. 

Taken together, these findings imply that the MSSV framework enhances the flexibility of 

the model in accommodating the persistence of volatility shocks. For instance, if shocks are more 

persistent in periods of economic contraction than in periods of economic recovery, this feature 

should be adequately captured by the regime parameters. Moreover, our Markov switching 

model can capture the ‘pressure smoothening’ effects of those shocks that are not persistent. 

4.6 Economic Value of Asset Return Comovements 

A better understanding of the variables that drive asset return comovements should be useful for 

investors in improving their asset allocation decisions. In this subsection, we examine whether 

this is empirically true for a short-horizon dynamic strategy. In this setting, investors maximize 

their one-period expected utility (EU) and do not hedge against future changes in the investment 

opportunity set (Fleming et al., 2001). Since a short-horizon dynamic strategy ignores the hedg-

ing component, it is expected to underperform the optimal strategy under Merton’s (1973) frame-

work. Therefore, compared to an optimal strategy, a short-horizon strategy sets a higher bar in 

terms of what represents significant economic value added.  
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The framework in Fleming et al. (2001) does not allow for an analytical solution to the opti-

mal portfolio. Therefore, they evaluate their short-horizon dynamic strategy by examining two 

sub-optimal portfolios relating to maximum-mean and minimum-variance. To overcome this is-

sue, we assume a power utility function over terminal wealth, i.e., �(��) = ��1�� (1 − �)� , 

where � is the investor’s constant relative risk aversion coefficient. Based on Campbell and 

Viceira (2002), the one-period optimal asset allocation is 

��� =
1� ���1������1 − ���. � − ��2 2⁄ � (19)

where  ��� is the vector of asset weights, Σ� is the conditional asset return covariance matrix, �����1 is the expected asset return vector, ��� is the risk-free rate, � = [1, 1]′ and ��2 is the vector 

of asset variances.  

Below, we present a comparison of two approaches: a multivariate conditional covariance 

(MCC) approach, and a dynamic approach. In the MCC approach, investors forecast one-period 

ahead return comovements using a DCC-GARCH model,5 while in the dynamic approach, inves-

tors base their forecast on macroeconomic and non-macroeconomic variables. Investors form 

their portfolio based on eq. (19) and rebalance it at the end of each quarter. The portfolio for-

mation period is 1987 to 2002 while the investment period is from 2003 to 2012.  

To assess economic significance, we use Willingness-to-Pay (WTP) as a measure of cer-

tainty-equivalence. WTP is defined as the maximum fee (�) an investor is willing to pay for 

holding a dynamic strategy over the alternative strategy. WTP is defined as 

��� = ��� ���� �������/����� ≤ � ����������� − ���� (20)

Note that terminal wealth is thus �� = �� ∏ (1 + ��)���1 , where �� is the investor’s initial 

wealth, and where expected log-utility is defined using 

� ln��(��)� = (1 − �)� ln(1 + ��)���1
+ (1 − �) ln�� − ln(1 − �)

(21)

5 A direct extension of univariate GARCH models to multivariate GARCH models (such as VEC-GARCH model of 
Bollerslev et al. (1988) and BEKK-GARCH model defined in Engle and Kroner (1995)) suffers from dimensionality 
issues and thus cannot be used to estimate covariance matrices of many financial assets. In this study, we use the 
DCC-GARCH model of Engle (2002) which is more appropriate to estimate large covariance matrices. 



21 

= (1 + �)�. ln(1 + ��)������������� + (1 − �) ln�� − ln(1 − �)

Since eq. (16) suggests that �(��) is log-normally distributed, EU is computed as 

�(��)��������� = ��� �(1 + �)�. ln(1 + ��)�������������
+

1

2
(1 − �)2�2���� �ln(1 + ��)��������������� .

��1��
1 − �

(22)

Table 4 compares the performance of the two approaches for various levels of risk aversion and 

of the risk-free rate. The last column reports the bootstrapped p-values of the hypothe-

sis:�����:��� ≤ 0.
The main findings are as follows. First, for constant relative risk aversion investors, the dy-

namic approach using macro and non-macro variables outperforms the MCC approach. That is, 

in all instances, the hypothesis��� ≤ 0 is rejected. Second, the findings show that the dynamic 

approach is riskier, as volatility is higher. However, the computed Sharpe ratios suggest that in-

vestors are better rewarded under the dynamic approach. Third, WTP decreases as risk aver-

sion (�) increases. Indeed, this result is consistent with theory as it suggests that a higher level of 

risk aversion discourages investors from holding riskier assets. Fourth, WTP increases as the 

risk-free rate increases. Indeed, there is an informational advantage, under the dynamic approach, 

of accounting for the effect of the risk-free rate on return comovements, thereby improving di-

versification opportunities.  

Overall, the findings reported in Table 4 indicate that the dynamic approach using macro and 

non-macro variables outperforms the conventional MCC method. The findings also imply that 

the investor’s optimal portfolio choices are improved by a better understanding of the dynamics 

and influence of these variables on asset return comovements.   

<<Insert Table 3>> 

<<Insert Table 4>> 

Finally, to support our main findings, we present several robustness checks and specification 

tests in the next section. These include univariate tests, covariance tests, and quantile regressions. 
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5. Robustness and Specification Tests 

To ensure that the state variable and MSSV models are adequate in recovering the dynamics of 

the state variables and factor exposures, the estimated model must satisfy some basic require-

ments. To this end, we perform univariate tests and covariance tests on the residuals of the 

model. 

5.1 Univariate Test 

The following equation defines the reduced-form model that identifies the structural factors and 

the factor exposure of the variables.  �� = �(��) + ����1 + �(��)�� (23)

Note that  �� assumes two values representing regimes 1 and 2. Let the conditional probability 

for �� = 1 be ���1
 and the corresponding conditional probability for �� = 2 be (1 − ���1

). Con-

sidering these conditional probability estimates, the residual of the above model is defined as ������ = �� − ����1 − ����1
�

1
+ �1 − ���1

��
2
� (24)

where �
1
and �

2
 are the means of regime 1 and regime 2, respectively. The conditional variance 

(�������,��1
) of ������ is 

�������,��1 = ���1
�1

2 + �1 − ���1
��2

2 + ���1
�1 − ���1

���
1

− �
2
�2 (25)

where �1
2 and �2

2 are the variances of regime 1 and regime 2, respectively. Based on Timmer-

mann (2000), the conditional skewness (��������,��1
) and the conditional kurtosis (��������,��1

)

are given by 

(26)
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��������,��1 =
���1

�3�1
2 + ��

1
− ��4

+ 6�1
2��

1
− ��2� + (1 − ���1

) �3�1
2 + ��

1
− ��4

+ 6�1
2��

1
− ��2�����1

�1
2 + �1 − ���1

��2
2 + ���1

�1 − ���1
���

1
− �

2
�2�3/2

In the univariate specification tests, we test for zero mean and no higher order correlation for five 

lags, i.e. whether or not �
0
, �1, �2, �3, �4 and �5 are zero in the following equations: �[������] − �

0
= 0 and ��������� − �

0
��∑ ��������5��1 �������1

− �
0
�� − ∑ ��5��1 = 0

To test for excess skewness and kurtosis, we examine whether ��� and ��� are equal to zero in 

the following equations, respectively 

� �������� − �
0
�3�� �������� − �

0
�2�3

2

− �������� − ��� = 0 

� �������� − �
0
�4�� �������� − �

0
�2�2

− �������� − ��� = 0

The estimates of �
0
, �1, �2, �3, �4, �5, ��� and ��� are obtained using a General Methods of Mo-

ments (GMM) framework using a Newey-West (1987) weighting matrix accommodating for 5 

lags. The univariate test of zero means, unit variance, and the presence of zero excess skewness 

and kurtosis follows a chi-squared distribution with one degree of freedom. The test of no auto-

correlation up to 5 lags follows a chi-squared distribution with degrees of freedom equal to the 

number of lags. 

5.2 Covariance Test

We carry out the covariance test to ensure that the state variables adequately capture the covariance 

between the factor shocks. The following condition is tested: ��������,�������,�� = 0, for � = 1, … ,� ; � = 1, … ,� ; � ≠ �
where � denotes the number of state variables. The joint test follows a chi-squared distribution 

with degrees of freedom equal to �(� − 1)/2. Furthermore, we test whether the shocks of each 

of the state variables have zero covariance with the factor shocks. This test follows a chi-square 
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distribution with 10 degrees of freedom. Table 5 presents the specification test results. The hy-

pothesis of zero covariance cannot be rejected at the 5 percent level for all the state variables. 

This result confirms that the MSSV model is correctly specified.  

<<Insert Table 5>> 

5.3 Quantile Regressions  

We estimate quantile regression models to further investigate the factors that drive the depend-

ence structure. Although this approach allows us to estimate various quantiles (Koenker and 

Bassett, 1978), we rely on least absolute deviation (LAD) regression to overcome the low-power 

problem of the OLS regressions (Connolly, 1989). Furthermore, the results from the different 

quantile regressions help us to provide a more robust description of the variables that drive 

multi-asset return comovements. We estimate the coefficients of the quantile regression at � (de-

noting the quartiles for which the relation between the dependence structures and the explanatory 

variables is estimated) from 0.05 to 0.95, with 0.05 increments.6 We include two additional ex-

treme percentiles at the 0.99 and 0.01 levels to document changes in the dependence structure 

when large deviations are present. The statistical inferences from these regression models are 

drawn by the bootstrapping method (for details, see Andrews and Buchinsky 2000; Angelis et al. 

1993). Note that, consistent with the earlier notation, lower � values indicate an economic expan-

sion phase (DSLS), while higher � values indicate an economic contraction phase (DSHS). 

We present the results of these regressions in Table 6. The findings are consistent with our 

earlier MSSV model estimations. Among the macroeconomic variables, inflation and the risk-

free rate are found to have a significant effect, while among the non-macroeconomic variables, 

inflation uncertainty and bond illiquidity significantly affect return comovements. The coeffi-

cient signs are generally consistent with our previous findings. Interest rate shocks have a nega-

tive effect during an economic expansion, reflecting the effect of the discount rate on asset re-

turns. Surprisingly in light of the recent literature, the variance premium is not significant in ei-

ther of the regimes. This variable allows us to capture nonlinearities in consumption growth. 

Since the variance premium correlates positively with the implied volatility of returns for risky 

assets (such as stocks), but negatively with observed volatility, we can establish whether the 

6 Since the inferences based on the results of all the quintiles are similar, and given space constraints, we report only 
a subset of the results (the full results can be provided upon request). 
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“flight-to-safety” effect is due to the risk premium component. Therefore, the non-significance of 

the variance premium suggests that during recession periods, the exposure of asset returns to 

cash flow shocks (such as the output gap uncertainty) increased in absolute terms.  

<<Insert Table 6>> 

5.4 Alternative Copula Specifications 

The measurement of asymmetric tail dependence may be sensitive to the choice of copula func-

tion.7 To address this issue, we investigate this measurement using alternative copulas, in particular 

the Joe-Clayton copula. The results (omitted for brevity—see the appendix) reveal no substantive 

impact on measuring tail dependence or on the subsequent analysis.  

6. Conclusion 

A growing literature documents the diversification properties of non-traditional asset classes in-

cluding commodities and real estate. There is, however, a significant gap in the literature on opti-

mal asset allocation. Indeed, little is known about how investors should adjust their allocations 

across asset classes to reflect two stylized facts, namely that the joint dependence of asset returns 

is non-elliptical, and that the dependence significantly changes between economic regimes, e.g. 

from economic expansions to recessions/crisis periods. The paper aims to fill this gap in the liter-

ature by presenting evidence of the characteristics, determinants, and predictability of asymmet-

ric return comovements across asset classes. We contribute to the existing literature--which is 

largely restricted to modelling stock-bond correlations--by including real assets and relaxing the 

normality assumption. We characterise return comovements and show that their behaviour as 

well as their determinants vary across different economic regimes. We also propose a new ap-

proach to forecast multi-asset return comovements and show that it improves certainty-equiva-

lent wealth for investors across a range of plausible risk aversion levels, by helping them make 

more informed optimal portfolio choices.  

Our findings suggest that amongst macroeconomic variables, inflation plays a particularly 

important role in explaining the joint dependence structure in both expansionary and contraction-

ary economic regimes. Thus, inflation reflects expectations about real interest rates, inducing 

7 We thank a reviewer for suggesting this point. 
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positive asset return comovements. Among non-macroeconomic variables, inflation uncertainty 

and bond illiquidity significantly influence return comovements. The positive impact of inflation 

uncertainty suggests that during an economic expansion phase, increasing economic uncertain-

ties affect risk premiums and asset valuations. In contrast, the negative effect during periods of 

economic recession highlights a precautionary savings effect. The impact of bond illiquidity sug-

gests that liquidity shocks co-move across markets, leading to a “flight to safety” phenomenon. 

In terms of factor contributions, we find that the model fit worsens considerably when we drop 

non-macroeconomic factors. Our results are robust to alternative specification tests.  

We then test the economic significance of the variables which we find to be key determinants 

by assessing their economic value-added. We conduct this assessment by examining forecasts of 

the joint distribution of asset return comovements. We find that the dynamic model, using a re-

gime-switching framework and using information from macro and non-macro explanatory varia-

bles, outperforms the multivariate conditional covariance model in terms of accurately forecast-

ing multi-asset return comovements. Finally, we show that investors—across a range of plausible 

risk aversion levels--benefit from improved comovement forecasting by enhancing their portfolio 

optimisation choices using our model. 

Data Availability Statement 

The data that support the findings of this study are available from Datastream (published by Thom-

son Reuters). Restrictions apply to the availability of these data, which were used under license 

for this study. Data are available from the authors with the permission of Thomson Reuters.
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Table 1: Summary Statistics  
Panel A: Descriptive Statistics of Asset Returns (1987 – 2012) 

 Equity (E) Bond (B) Real Estate 
(RE) 

Gold (G) Oil (O) 

Mean (%) 6.274 5.524 3.394 5.438 6.331 
Standard  
Deviation (%) 

16.428 1.293 2.730 15.449 33.000 

Kurtosis 3.854 0.138 0.611 1.986 1.687 
Skewness -1.114 -0.165 -0.726 0.064 -0.357 
Panel B: Diagnostics (1987-2012)

Equity (E) Bond (B) Real Estate 
(RE) 

Gold (G) Oil (O) 

Jarque-Bera 
statistics 

208.3** 
(0.000) 

7.7**  
(0.020) 

31.5**  
(0.000) 

45.7** 
(0.000) 

48.4** 
(0.000) 

ARCH LM sta-
tistic (1) 

31.586** (0.000) 17.737**  
(0.000) 

1741.764** 
(0.000) 

4.586** 
(0.033) 

13.676** 
(0.000) 

ARCH LM sta-
tistic (5) 

17.489** (0.000) 8.571**  
(0.000) 

371.920** 
(0.000) 

3.003** 
(0.016) 

4.563** 
(0.000) 

ARCH LM sta-
tistic (10) 

12.804** (0.000) 4.903**  
(0.000) 

190.231** 
(0.000) 

1.927** 
(0.041) 

2.913** 
(0.001) 

Ljung-Box sta-
tistic (1) 

8.293** 
 (0.045) 

9649.404** 
(0.000) 

4232.160** 
(0.000) 

4.433** 
(0.036) 

5.757** 
(0.017) 

Ljung-Box sta-
tistic (5) 

1.254  
(0.282) 

1932.252** 
(0.000) 

914.690** 
(0.000) 

3.005** 
(0.011) 

3.223**  
(0.007) 

Ljung-Box sta-
tistic (10) 

0.869  
(0.562) 

971.691** 
(0.000) 

452.606** 
(0.000) 

1.619 
(0.100) 

2.156**  
(0.022) 

Note: Panel A represents the descriptive statistics of the asset returns for the sample period: fourth quarter of 1987 to 
the fourth quarter of 2012, yielding 302 observations. The return and the standard deviations are annualized from the 
monthly observations. Panel B provides the diagnostic test results. Under the normality null hypothesis, Jarque-Bera 
test statistic follows a Chi-square distribution with fixed (2) degrees of freedom. The null hypothesis of the ARCH-
LM test is: there is no evidence of ARCH effect. We conduct the test at lags 1, 5 and 10 with corresponding 1, 5, 10 
degrees of freedom. Tests using other lags yield the same results. We conduct the Ljung-Box test for serial correlation, 
corrected for heteroskedasticity at lags 1, 5 and 10. The p-values are reported in the parentheses. ** signifies rejection 
of the null hypothesis at 5 percent level. 
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Table 2: MSSV model estimates and factor exposure 
Panel A: Model Characteristics 

Tr. Prob. 
Std. 
Dev. Exp. Dur. AIC 

Regime 1 
(DSHS) 0.850 0.050 6.657 

-311.587 
Regime 2 
(DSLS) 0.904 0.011 10.385 

Panel B: Coefficient Estimates 
Macroeconomic Variables Non-Macroeconomic Variables 

Constant RF O I RA OU IU LR DS TS VP DR 

Regime 1 
(EC) 

-0.173 0.100 -1.180 0.546** 0.066*** 0.532*** -4.522*** -0.001 5.238** 0.097 0.013 
-

0.012** 
(0.164) (0.779) (0.120) (0.012) (0.006) (0.005) (0.003) (0.258) (0.038) (0.421) (0.914) (0.032) 

Regime 2 
(EE) 

-0.111 -1.552*** -0.456 0.722** 0.026 -0.135* 3.010*** 0.000 -3.544*** 0.048 0.037 0.002 
(0.479) (0.000) (0.167) (0.044) (0.448) (0.052) (0.000) (0.721) (0.000) (0.676) (0.672) (0.356) 

Panel C: Model Performance 
Full 

Model (-) non-Macro 
(-) 

Macro (-) non-Macro & I (-) Macro, IU & DS 

AIC -311.587 -240.045 
-

259.311 -232.11 -233.075 

BIC -238.363 -203.433 
-

207.008 -200.091 -203.011 
Table 2 notes are presented on the following page. 
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Table 2 (continued) 

Note: The table reports the MSSV Model characteristics, the model estimates, and the factor contributions to the model performance. Regime 1 corresponds to the 
expansion regime of the dependence measure (DSHS), and Regime 2 corresponds to the contraction regime of the dependence measure (DSLS). The expansion 
regime of the dependence structure (DSHS, i.e. Regime 1) relates to the economic contraction (EC) phase and the contraction regime of the dependence structure 
(DSLS, i.e. Regime 2) relates to economic expansion (EE) phase. Panel A: Tr. Prob. (TP) corresponds to the transition probabilities of the two states. TP for state 
1 refers to the probability that the dependence measure will stay in the expansion regime, and TP for State 2 corresponds to the probability that the dependence 
measure will stay in the contraction regime. Std. Dev. reports the standard deviation of the regime states. The Standard errors are reported in parentheses. Expected 
(Exp.) Duration (Dur.) corresponds to the expected duration of the dependence measure in the expansion regime (Regime 1) and in the contraction regime (Regime 
2). The sample period is from the fourth quarter 1987 to the fourth quarter 2012. Panel B: In the set of macroeconomic state variables, RF is risk-free rate, O is the 
output gap, I is inflation and RA is (constant relative) risk aversion. In the set of non-macro factors, OU is output uncertainty, IU is inflation uncertainty, LR is a 
measure of equity illiquidity, DS is a bond illiquidity measure, TS is the term spread, VP is the variance premium, and DR is the depth of recession. Panel C: This 
reports the factor contributions of five different model characteristics. The corresponding AIC and BIC values are reported. It is clear that non-macroeconomic 
variables play a central role in enhancing the model fit. Furthermore, among the non-macro variables, the illiquidity and uncertainty factors are significantly 
important. Among the macroeconomic variables, inflation plays an important role in defining the JDS.  
* corresponds to 10 percent level, ** corresponds to 5 percent significance level and *** corresponds to one percent significance level. 
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Table 3: Out-of-sample forecasting of asset return comovements 

Panel A: Forecasting performance of MSSV and non-regime switching stochastic volatility model 
MSE 

(MSSV-
NRSM) 

� �
MSSV NRSM MSSV NRSM 

Joint Depend-
ence Structure 

0.024 0.000 0.000 1.015 1.709 

(0.019) (0.630) (0.037) (0.743) (0.048) 
Panel B: Below and above median forecasting performance of MSSV and non-regime switching stochastic volatility 
model 

Below Median Forecast Above Median Forecast �� �� �� ��
MSSV NRSM MSSV NRSM MSSV NRSM MSSV NRSM 

Joint Depend-
ence Structure 

0.000 0.000 0.931 2.376 0.000 0.000 1.019 0.107 

(0.273) (0.028) (0.119) (0.000) (0.119) (0.042) (0.529) (0.039) 

Note: Panel A of this table reports the difference between the median of square errors of MSSV models and the non-
regime switching models (NRSM), as well as the forecast efficiency regression estimates of the MSSV model and the 
non-regime switching model (NRSM). The parameters are estimated for the period 1987 to 2002 and the forecasting 
is done for the period 2003 to 2012. The forecasting estimates are calibrated for the joint dependence structure. It is 
clear that the MSSV model’s median square errors are significantly lower than the non-regime switching models. The 
panel also shows the forecast efficient regression estimates of (�,�). In the forecast efficiency regression framework, 
if the mean and the variance forecast of the asset return comovements are unbiased, then the regression implies that  � = 0 and � = 1. The p-values are in parentheses. 

Panel B reports the forecast efficiency regression estimates for below the median (��,��) and for above the me-
dian (��,��). In this framework, if the mean and the variance forecast of the asset return comovements are unbiased, 
then the regression implies that  � = 0 and � = 1. The findings indicate that the non-regime switching models provide 
biased out-of-sample forecasts. The p-values are in parentheses.
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Table 4: Economic value of forecasting asset return comovements 

MCC Strategy Dynamic Strategy 

Mean Std. Dev SR Mean Std. Dev SR WTP p-value � = 5

0.5% 17.31 18.59 0.90 24.87 22.55 0.99 0.19 0.089 

1.0% 16.68 17.16 0.86 22.73 21.45 0.94 0.35 0.070 

1.5% 16.57 15.73 0.85 21.80 20.91 0.91 0.40 0.053 

2.0% 15.20 15.39 0.83 22.05 22.09 0.86 0.55 0.045 

2.5% 14.34 14.48 0.77 21.57 21.00 0.84 0.85 0.024 

3.0% 14.29 12.74 0.78 22.09 21.89 0.84 1.21 0.001 

3.5% 13.45 12.12 0.76 20.92 21.29 0.80 1.65 0.001 � = 10

0.5% 10.63 9.89 0.90 20.15 18.50 0.98 0.11 0.090 

1.0% 9.71 8.78 0.87 20.63 19.58 0.92 0.33 0.063 

1.5% 8.40 7.68 0.84 20.55 20.13 0.91 0.39 0.058 

2.0% 7.85 6.54 0.83 18.52 18.93 0.86 0.50 0.047 

2.5% 7.08 5.35 0.81 16.86 16.80 0.86 0.52 0.039 

3.0% 6.36 3.98 0.77 16.97 18.40 0.82 0.68 0.015 

3.5% 5.63 2.68 0.79 14.76 17.74 0.80 0.79 0.007 � = 15

0.5% 6.18 5.95 0.88 17.93 16.59 0.98 0.10 0.092 

1.0% 5.79 5.21 0.85 15.86 15.17 0.93 0.31 0.077 

1.5% 5.03 3.85 0.83 14.79 14.76 0.90 0.32 0.076 

2.0% 4.53 2.80 0.84 13.66 14.91 0.86 0.46 0.040 

2.5% 3.67 1.42 0.80 11.86 15.35 0.86 0.48 0.037 

3.0% 3.61 0.79 0.79 9.22 13.69 0.82 0.55 0.022 

3.5% 3.56 0.13 0.78 7.23 30.16 0.81 0.60 0.010 

Note:  The table compares the performance of the MCC strategy and the dynamic strategy. The portfolio formation is 
done using the period 1987 to 2002 and the investment period is from 2003 to 2012. The annualized mean, standard 
deviation and the Sharpe ratios are reported for both strategies. It is clear that the dynamic strategy yields higher 
returns and is more volatile than the MCC strategy. However, the Sharpe ratios are higher for the dynamic strategy, 
suggesting that investors are better rewarded for their risky portfolios. The investors are assumed to have power utility 
function and constant relative risk aversion represented as coefficient �. The Willingness-to-pay (WTP) certainty-
equivalence measure computes the maximum fee (�) an investor is willing to pay for holding a dynamic strategy over 
the other strategy. The last column reports the bootstrapped p-values of the hypothesis:�����:��� ≤ 0. The hypoth-
esis is rejected for all the cases at 10, 5 or 1 percent significance levels. The findings show that the dynamic strategy 
outperforms the MCC strategy. 
*, **, *** represents significance at 10, 5 and 1 percent levels 
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Table 5: Specification tests for state variables and MSSV models 

Specification Tests for State variable Models 

State Univariate Test  Covariance 

 Variables mean lag 1a lag 2a lag 3a lag 4a lag 5a Excess 
Skewness 

Excess 
Kurtosis 

Variance Test 

Rf 0.999 0.738 0.723 0.871 0.587 0.688 0.170 0.370 0.742 0.900 

O 0.999 0.061 0.169 0.311 0.462 0.515 0.380 0.250 0.096 0.970 

I 0.876 0.830 0.514 0.681 0.752 0.817 0.280 0.430 0.828 0.976 

Ra 0.999 0.553 0.621 0.667 0.714 0.726 0.270 0.400 0.530 0.999 

Ou 0.999 0.259 0.324 0.382 0.438 0.496 0.390 0.400 0.202 0.999 

Iu 0.149 0.981 0.988 0.995 0.442 0.195 0.180 0.220 0.535 0.936 

Lr 0.999 0.522 0.755 0.879 0.934 0.96 0.220 0.270 0.936 0.999 

Ds 0.282 0.907 0.981 0.105 0.512 0.323 0.340 0.260 0.929 0.982 

Ts 0.999 0.694 0.781 0.839 0.895 0.934 0.150 0.280 0.935 0.999 

Vp 0.999 0.927 0.877 0.353 0.501 0.639 0.310 0.220 0.198 0.999 

Dr 0.999 0.934 0.953 0.947 0.967 0.973 0.160 0.320 0.825 0.999 

Note: The table reports the specification tests for the state variables and the MSSV models that examine the determi-
nants of the asset return comovements. Panel A presents the Monte-Carlo p-value estimates of the univariate and 
covariance tests for the 11 state variables - the risk free rate �����, output gap (��), inflation (��), risk aversion (���), 
output uncertainty (���), inflation uncertainty (���), bond market illiquidity (���), equity market illiquidity (���), 
variance premium �����, term spread (���) and the depth of recession (���). The p-values are reported for zero mean, 
serial correlation for up to five lags, zero excess skewness, zero excess kurtosis, and constant variance. The covariance 
test reports the Monte-Carlo p-values of zero covariance of the factor shocks of one state variable with the factor 
shocks of the other state variables. The results indicate that the state variable models are correctly specified, providing 
consistent outcomes that adequately accommodate the dynamics of the state variables and the determinants of the 
return comovements. 
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Table 6: Quantile regressions and factor  

contributions to model performance

Quantile Regression (�) OLS 
Fac-
tors Variables 0.01 0.10 0.25 0.50 0.75 0.99  Regression 

M
ac

ro
ec

on
om

ic
 v

ar
ia

bl
es

RF -1.150** -0.862 -0.781 -0.873 -0.708 0.511 -0.085*** 

(0.022) (0.192) (0.162) (0.144) (0.121) (0.559) (0.001) 

O -0.348 -0.632 -0.095 -0.007 -0.062 -0.048 -0.087 

(0.545) (0.287) (0.144) (0.067) (0.183) (0.319) (0.194) 

I 0.883** 0.729*** 0.587*** 0.782*** 0.502*** 0.351*** 0.772*** 

(0.018) (0.003) (0.000) (0.001) (0.001) (0.000) (0.001) 

RA 0.051 0.075 0.076 0.032** 0.032** 0.085*** 0.064** 

(0.428) (0.205) (0.266) (0.036) (0.031) (0.001) (0.026) 

N
on

-M
ac

ro
ec

on
om

ic
 v

ar
ia

bl
es

OU -0.185 -0.132 -0.172* 0.163* 0.169** 0.432*** 0.324** 

(0.156) (0.189) (0.092) (0.065) (0.011) (0.004) (0.038) 

IU 2.931*** 1.847*** 1.591*** 2.300** 
-

2.156*** 
-

4.994*** -2.453*** 

(0.006) (0.001) (0.000) (0.035) (0.000) (0.000) (0.000) 

LR 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

(0.672) (0.789) (0.841) (0.811) (0.500) (0.805) (0.774) 

DS 
-

3.101*** 
-

3.427*** 
-

4.781*** 2.872*** 3.580*** 6.930*** 2.713*** 

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

TS 0.011 -0.106 -0.219 -0.131 -0.223 0.072 -0.245 

(0.956) (0.636) (0.339) (0.457) (0.178) (0.810) (0.136) 

VP 0.033 0.186 0.099 -0.192 -0.004 -0.091 -0.057 

(0.874) (0.401) (0.658) (0.247) (0.982) (0.790) (0.653) 

BS 0.004 0.001 0.006 0.003 0.001 -0.011** 0.002 

(0.556) (0.906) (0.234) (0.421) (0.805) (0.022) (0.581) 

Constant 0.247 0.307 0.245 -0.107 -0.223 -0.223 -0.266* 

(0.357) (0.195) (0.370) (0.623) (0.319) (0.491) (0.072) 

R2Measure 0.576 0.538 0.466 0.458 0.583 0.645 0.623 
JDS 

Mean 0.007 0.022 0.046 0.061 0.079 0.154 0.063 
aNote: The table reports quantile regression estimates at � (denotes the quartiles for which the relation between the 
dependence structures and the explanatory variables is estimated). The lower � values represent economic expansion 
regime (DSLS) and the higher � values represent economic contraction regime (DSHS). Amongst the macroeconomic 
state variables, RF is the risk free rate, O is output gap, I is inflation and RA is risk aversion. In the set of non-macro 
factors OU is output uncertainty, IU is inflation uncertainty, LR is the measure of equity illiquidity, DS is the bond 
illiquidity measure, TS is the term spread, VP is the variance premium and DR is the depth of recession. 
* corresponds to 10 percent level, ** corresponds to 5 percent significance level and *** corresponds to one percent 
significance level.
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Figure 1: Characteristics of multi-asset return comovements 

Panel A: The time path of multi-asset return comovements 

Panel B: The average multi-asset return comovements  

over the economic regimes

Note: The figure shows the joint dependence structure (JDS) of multi-asset return comovements of the three different 
asset classes. The period of analysis is from the fourth quarter 1987 to the fourth quarter 2012. The shaded portion in 
Panel A represents the economic contraction regime. Panel B presents the average dependence measure for the whole 
sample. It is clear that the dependence measure increases post sub-prime crisis. In panel B the various economic 
expansion (E) and economic contraction (C) correspond to the economic cycles as dated by NBER. The periods are 
described in Appendix C. 
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Appendix A

Estimation filter for the MSSV model 

The Kalman filter employed for projection is an iterative process. It forecasts the state variable at '1' t

period and updates it when tz is observable (see eq. (12)-(16)). For deriving the filtering equations we 

denote 

 11
),(

1| ,,   tttt

nm

tt nSmSgEg  ,  11
,

1|
,

1| ,,)(   ttt

nm

ttt

nm

tt nSmSggEp  ,

 11| ,   ttt

m

tt mSgEg  and  1
2

1|1| ,)(   tt

m

ttt

m

tt mSggEp  . 

Following Smith (2002), we first forecast log-volatility and then update the previous forecasted estimate. 

The sequential steps are: 

Step 1: The log-volatility is forecast using 
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Step 2: The forecasted estimate is updated using 
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The conditional densities are computed using the following equation 
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(A- 5)

It can be noted that the above procedures makes our process exclusively path dependent. Hence, to remove 

the path dependence we rely on Kim (1994) as stated in Smith (2002). We compute the conditional expec-

tation of the log-volatility forecast by taking the weighted average output of the previous iteration using the 

formulations stated below. 
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We calculate the regime probabilities based on Smith’s (2002) modification of Hamilton’s (1989) filter. 

First, we estimate the regime probabilities using 

     11111 PrPr,Pr   ttttttt mSnSmSnSmS  (A- 8)

The term  11Pr   tt mS   in the equation (A- 8) is the previous iteration filter output. Next we calibrate 

the joint density using 

     111111 Pr,,,,   tttttttttt mSnSmSzfnSmSzf  (A- 9)

where  11,,   tttt nSmSzf   is defined previously in equation (A- 5). In step three we integrate the 

regimes to calculate the unconditional density as given in equation (A- 10) and then we update the proba-

bility of the regimes in state '' t  using equation (A- 11). 
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Appendix B 

Data Description: All variables are defined for US data unless stated otherwise 

Output Gap (ot): Gross Domestic Product (GDP) is the measure of output. The gap is the percentage dif-

ference between the output and its quadratic trend. 

Expected Output Gap (ge): It is estimated as: 
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where GDPt is the level of real GDP at time t and qt
GDP  is the quadratic trend value of real GDP. To 

measure 






 

t

t

t
GDP

GDP
E 1 , the median of the survey response from Survey of Professional Forecasters (SPF) 

is used when available. 

Output Uncertainty (out): Mean of SPF’s real output volatility. 

Inflation (it measured as )( ): Log difference of the Consumer Price Index (CPI) for all items for all urban 

consumers 

Expected Inflation )( e : The yield of Treasury Inflation Protected Securities (TIPS) note subtracted from 

the yield of ten-year US Treasury note. 

Inflation Uncertainty (iut measured as )( u ): Estimated as the absolute measure of (�� − �) �⁄ , where ��
is Expected Inflation and � is Inflation.

Risk Aversion Factor (rat): The measure of the risk aversion factor is based on external habit specifications 

of Campbell and Cochrane (1995) taken from Baele et al. (2010).  

Nominal Risk-free Rate (Rf): Three-month US Treasury bill rate. 

Stock Market Illiquidity (lrt): Capitalization-based zero daily returns across all listed firms. 

Bond Market Illiquidity (dst): Bid-ask spreads across all securities, i.e. one month , three months, and one, 

two, three, five, seven, ten, twenty and thirty years of maturity. 

Variance Premium (vp): The difference between ex-post realized variance and variance swap rate. 

Term Spread (tst): Difference between ten-year and three-month Treasury bill yields. This will serve as a 

proxy for short-term economic conditions. 

Depth of recession (drt): Based on Lee and Wang’s (2012) estimate of business cycle proxy.
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Appendix C

Turning Points in the Business Cycle

Turning Point Date Expansion (E)/Contraction (C) Months in Phase 

0 8/1987 E1 35 

1 7/1990 C1 8 

2 3/1991 E2 120 

3 3/2001 C2 8 

4 11/2001 E3 73 

5 12/2007 C3 18 

6 6/2009 E4 40 

Notes: The turning points of the business cycle are based on the NBER-official dates of troughs and peaks (NBER, 

2013). The sample period is from the fourth quarter of 1987 to the fourth quarter of 2012, yielding 302 monthly 

observations. Each month in the sample is divided into an expansionary phase or a contractionary phase, based on the 

turning point. The expansionary period has 268 months and the contractionary period has 34 months. 
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Appendix D: Copula robustness checks

Here, we establish the estimation procedure for examining the cross-sectional dependence of the 

asset return comovements. We use conditional time-varying copula models to capture the dynamic 

non-linear relationships and the asymmetries the asset returns. Another motivation for using cop-

ula models is that they allow for the separation of marginal distributions. The copula approach 

constructs multivariate distribution functions that avoid the limitations of the normality assump-

tions (Philippas and Siriopoulos, 2013). We estimate the copula models using inversion method 

by substituting the marginal densities of the asset returns.  

For two random variables, in our case the marginal distributions of the asset returns, we character-

ize the conditional distribution function as 

),())|(),|((()|,( ||| vuCkyFkxFCkyxH KYKXKXY  (1)

where, )|,(| KyxH KXY  is the conditional distribution function and )|(| KxF KX  and )|(| KyF KY

are the marginal distributions given a conditioning vector K. In the above equation kKyx )|,(

and   is the support of k  for all k  and RRyx ),( . In equation (1), u and v are the reali-

zations of )|(| kxFU KX  and )|(| kyFV KY  given kK  . U and V are the conditional proba-

bility integrals of the asset return marginal distributions, X and Y. To allow for upper and lower 

tail dependence we characterize our copula function (modified Joe-Clayton copula) as  
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where the JCC  , the Joe-Clayton (JC) copula (Joe, 1997). The use of such copula framework to 

capture the tail asymmetries has been proposed in wide range of studies (see Patton, 2012).  

�����,�; ��, ��� = 1 − �1 − ��1 − (1 − �)���� + �1 − (1 − �)���� − 1��1��1� (3)

where 
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   and )1,0(, LU  . Alternatively, the JC copula is the 

Laplace transformation of the Clayton copula. 




