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Bedrock geochemistry influences vegetation
growth by regulating the regolith water
holding capacity
Zihan Jiang1, Hongyan Liu 1✉, Hongya Wang1, Jian Peng1, Jeroen Meersmans2,6, Sophie M. Green3,

Timothy A. Quine 3, Xiuchen Wu4 & Zhaoliang Song5

Although low vegetation productivity has been observed in karst regions, whether and how

bedrock geochemistry contributes to the low karstic vegetation productivity remain unclear.

In this study, we address this knowledge gap by exploring the importance of bedrock geo-

chemistry on vegetation productivity based on a critical zone investigation across a typical

karst region in Southwest China. We show silicon and calcium concentrations in bedrock are

strongly correlated with the regolith water loss rate (RWLR), while RWLR can predict

vegetation productivity more effectively than previous models. Furthermore, the analysis

based on 12 selected karst regions worldwide further suggest that lithological regulation has

the potential to obscure and distort the influence of climate change. Our study implies that

bedrock geochemistry could exert effects on vegetation growth in karst regions and highlights

that the critical role of bedrock geochemistry for the karst region should not be ignored in the

earth system model.
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Understanding the drivers of the spatial variations in
vegetation productivity is critical for interpreting and
predicting the stability and resilience of terrestrial eco-

systems1–3. Vegetation productivity is controlled by interactive
processes within the atmosphere, pedosphere, and lithosphere
that are driven by energy obtained from the sun, CO2 captured
from the atmosphere, and water and nutrients absorbed from the
regolith4,5. However, until recently, most of the studies related to
vegetation productivity have been largely confined to climate and
topsoil features6, whereas the importance of deeper belowground
components remains poorly understood.

As the lower boundary of Earth’s critical zone, bedrock has
great potential to influence overlying plants by regulating the
chemical and physical properties of regolith7. Bedrock is the
source of most mineral nutrients (e.g., Fe, P), which subsequently
shapes plant growth and community composition8,9. Conversely,
bedrock also supplies heavy metals (e.g., Hg, Pb and Cd), which
can inhibit plant growth10. In addition, bedrock can influence the
regolith texture and consequently control the water and nutrient
retention capacity of the regolith11. Recent studies that con-
sidered deep regolith and rock samples provided evidence that the
chemical composition of bedrock can impart a substantial influ-
ence on soil erosion processes, thereby influencing the amounts of
water and nutrients retained by the regolith12,13. Furthermore,
bedrock composition can also be closely linked to ecosystem net
carbon gains and losses14. However, until now, the lithological
controls on plant growth were intuitively considered of secondary
importance compared to the effects of climatic and pedological
factors15,16.

In carbonate rock regions, the bedrock compositions strongly
influence regolith properties17 that, in turn, might play the pri-
mary role in plant growth. Carbonate rocks mainly consist of
highly soluble components, such as limestone, dolomite and
gypsum. These components are easily dissolved by rainwater,
which leads to the formation of crevices within the bedrock
surface (Fig. 1). The number of crevices is proportional to the
bedrock solubility18, and crevices will create preferential flow
paths that may contribute to enhanced regolith water loss by
leakage, limits the retention of water in regolith, therefore, lead to
high regolith water loss rate (RWLR)18. Moreover, since carbo-
nate rocks have low contents of acid-insoluble components, only
a small quantity of residue is left after dissolution12, further
limiting the retention of water.

The variation in the RWLR across the lithosequence will most
likely result in remarkable differences in vegetation productivity.
Areas dominated by soluble rock substrates are often character-
ized by large temporal variations in plant water availability that
are induced by rainfall intermittency and droughts during periods
without precipitation19. These droughts will have an important
influence on the vegetation growth potential20. In contrast, for
bedrock that highly resistant to solution, the accumulation of
water improves because these bedrock types create an impene-
trable barrier of residuals and in turn constrain water loss. In this
type of environment, reduced water stress for plants over
extended periods of drought may lead to increased overall
productivity21.

Here, we explore the factors controlling the vegetation pro-
ductivity on carbonate rock through a case study in China to
unravel the role of bedrock geochemistry, which remained
unclear until present. A novel and key aspect of our approach is
the consideration of the RWLR in order to evaluate the impact of
the temporal variability in regolith moisture levels during dry
spell events at the regional scale. This estimation allowed us to
compare the relative strength of bedrock geochemistry versus
other competing models (Table 1), and examine the bedrock
geochemistry-RWLR-vegetation productivity relationships.

Results
Regional variations of predictor variables. We selected 23 cri-
tical zone units (CZUs) are located along large climatic gradients
(Fig. 2). From the south to the north of our study area, the mean
annual temperature (MAT) decreases from 19.9 to 11.2 °C,
whereas the annual precipitation (AP) increases from 739 to
2300 mm. CZUs also exhibited high variation in bedrock geo-
cheimsity, with bedrock Si oxide concentrations (BRSi) of 2.4%
−49.3%, and bedrock Ca oxide concentrations (BRCa) of 4.8%
−74.2%.

In this study, the RWLR was evaluated by variations in regolith
moisture during dry spells, while the regolith moisture
was represented by the temperature vegetation drought index
(TVDI, see Estimation of RWLR in Methods for more details).
During 2001–2010, 428 dry spell events were identified, with an
average of 19 dry spell events in each CZU. Sixty-five percent of
these dry spell events were <10 days in duration (Supplementary
Fig. 1a) and occurred mainly during fall and winter (i.e.,

a b

Fig. 1 Illustration of our hypothesis. a Karst critical zone structure; b non-karst critical zone structure; the bubble in the regolith represents the regolith
water-holding capacity. We hypothesize that in the karst zone, the bedrock geochemistry can influence vegetation productivity through controlling the
regolith water hold capacity: increased Ca concentrations correspond to increased limestone, which is highly soluble, so the bedrock develops an amount of
crevices. These properties limit the retention of water and hence affect the vegetation productivity. We expect that in karst regions, by regulating the
regolith water-holding capacity, bedrock geochemistry plays an important role in the spatial variability in vegetation productivity.
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September–December) (Supplementary Fig. 1b). The values of the
RWLR index and the bedrock Si and Ca concentrations (BRCa

and BRSi) showed significant differences between carbonate and
non-carbonate areas, while the other selected climatic parameters
and contents of chemical elements did not exhibit significant
differences between the carbonate and non-carbonate rock types
(Supplementary Fig. 2).

Relationships between NPP and predictor variables. Among the
selected soil and climate variables that could affect the net pri-
mary productivity (NPP) (Table 2), only the RWLR index and
MAT showed significant relationships with the NPP. The RWLR
index exhibited a negative relationship with NPP, whereas MAT
was positively correlated with NPP. In particular, the RWLR have
greater explanatory power as a predictor of the variation in NPP
than other selected climate and soil variables (Fig. 3 and Table 2).

BRSi and BRCa show significant correlations with the RWLR
(Fig. 3 and Table 2). BRSi was negatively correlated with the
RWLR, whereas BRCa showed a positive relationship with the
RWLR. Moreover, the information theoretic approach (ITA,
see the Methods for more detail) confirmed that BRSi emerged as
the best predictor of the RWLR.

Influence of geochemistry on NPP through affecting RWLR.
The structural equation modeling (SEM) was used to quantify the
indirect influence of geochemistry on NPP through affecting
RWLR. To simplify the SEM, we did not include the independent
variables of AP, Solar duration (SD), the Palmer Drought Severity

Table 1 Set of hypotheses and related predictor variables
used for analyzing the spatial variation in vegetation
productivity, the selection of competing hypotheses account
to previous studies.

Abbreviation Description Unit

Lithological control hypothesis (Fig. 1)
RWLR Regolith water loss rate: variation in soil moisture

during a dry spell
Energy hypothesis: vegetation productivity determined by energy
availability

MAT Mean annual temperature35 °C
SD Solar duration35 hour

Drought hypothesis: lack of precipitation or high evaporation result in
drought stress, which limits vegetation growth.

AP Annual precipitation36 mm
PDSI Palmer Drought Severity Index36

Soil fertility hypothesis: plant growth greatly affected by soil nutrients
Soil N Soil nitrogen content37 %

Other
elements BrCaO

140

N

km
NPP

I II III VI V

BrSiO

Fig. 2 Spatial distribution of critical zone units in Guizhou. The pie chart represents the location of the critical zone units considered in this study. The
different colors within the pie charts represent the bedrock concentrations of the elements. Each critical zone unit has a meteorological observation station
at the center with a radius of 20 km. the net primary productivity (NPP, g Cm-2 yr-1) is divided into five levels, i.e., I: 0.00–319.83, II: 319.83–513.40, III:
513.40–740.65, VI: 740.65–1060.48, V: > 1060.48.

Table 2 Relative variable importance (RVI) of each
candidate variable when predicting net primary productivity
(NPP) and the regolith water loss rate (RWLR).

Response
variables

Candidate
variables

AIC RVI

NPP RWLR 270.11*** 1.00
Soil.N 289.03 0.41
SD 289.32 0.24
MAP 290.32 0.21
MAT 283.05* 0.18
PDSI 290.2 0.18

RWLR BRSi 48.43*** 0.96
BRCa 48.43*** (0.97)
BRMg 58.73 0.44 (0.22)
BRFe 59.52 0.22
BRAl 55.11 (0.20)

Since BRSi and BRCa are strongly correlated (Supplementary Table 1), we separated models into
subset for RWLR in order to mitigate the collinearity in explanatory variables, with one subset
included BRSi and the other included BRCa are shown outside and inside the brackets,
respectively. The Akaike information criterion (AIC) was obtained from single variable linear
models (LMs), while the RVI was obtained from the information theoretic approach. For more
detail, see Supplementary Tables 1 and 2.
Levels of significance are shown as: *p < 0.05, **p < 0.01, ***p < 0.001.
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Index (PDSI) or soil variables in our model, given that these
variables did not show significant relationships with the NPP
(Table 2). Each variable included in the SEM exhibited either a
direct or indirect effect on the NPP and contributed to the sim-
plification of the model.

Given BRSi and BRCa showed strongly negative correlation
(Supplementary Table 1), to mitigate the problematic effects of
collinearity, they were separated into two SEMs (Fig. 4). The
separated SEMs performed well, with both explaining 55% of the
variations in NPP. The results of the SEMs were consistent with

the output from the ITA analysis, thereby showing that bedrock
element contents have greater explanatory power than the MAT
as a predictor of NPP. BRSi and BRCa explained 49% of the
variations in NPP, respectively, while MAT explained only 10%.
The indirect effect of bedrock geochemistry on the NPP through
influences on the RWLR was identified by the SEMs. BRSi and
BRCa were highly correlated with the RWLR, which exhibited
significantly negative and positive relationships, respectively. Both
SEMs showed that the RWLR was negatively correlated with
NPP.
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Fig. 3 Linkages between NPP and predictor variables. Relationships between NPP and a regolith water loss rate (RWLR), b mean annual temperature
(MAT); the relationships between RWLR and: c bedrock calcium oxide content (BRCa), and d bedrock silicon oxide content BRSi. Adjusted R-squared (R2)
and levels of significance are shown (*p < 0.05, **p < 0.01, ***p < 0.001).
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Fig. 4 Structural equation models of vegetation productivity. Two separated SEMs for the indirect effects of bedrock chemical elements (left: BRSi, right:
BRCa) on NPP. The selection of explanatory variable terms in the results of single LMs and previous knowledge (Table 1). The blue arrows indicate positive
effects, and the red arrows show negative effects. Standardized regression coefficients are given, with the thickness of the arrows expressing the size of the
standardized regression coefficients. The R2 values of each model (black) and the total effect of response variables (blue) are given between the brackets.
Adjusted R-squared (R2) and levels of significance are shown (*p < 0.05, **p < 0.01, ***p < 0.001).
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Vegetation activity–temperature relationships in global karst.
The mean normalized difference vegetation index (NDVI) from
April to September was used as a measure to assess vegetation
activity across the 12 largest karst regions located at mid-latitudes
of the Northern Hemisphere. The results showed that vegetation
activity exhibited different sensitivity to interannual temperature
variations in these karst regions compared to the surrounding
areas, with the exception of the karst zone located in the middle
and western parts of Canada (Fig. 5). Out of the 12 karst regions,
6 showed significantly low correlations between the NDVI and
mean temperature for the growing season (RNDVI-T), while 4 of
them showed high correlations compared to those surrounding
areas, suggesting that carbonate could alter the effect of tem-
perature on vegetation growth.

Discussion
With a comprehensive, broad-scale assessment of the influence of
bedrock properties on the regional variations in vegetation pro-
ductivity, we determined that bedrock geochemistry can strongly
regulate vegetation productivity at the regional scale by influen-
cing the regolith water storage capacity. More importantly, even
with the marked variations in the climatic and soil conditions
across the study area, the bedrock geochemistry exhibits a major
explanatory role for the variations in vegetation productivity,
which highlights that the role of bedrock geochemistry is more
important than so far assumed.

The strong bedrock geochemistry-RWLR-vegetation pro-
ductivity associations could be elucidated from several possible
mechanisms. The bedrock geochemistry might be linked to
its mineral composition in a way that responsible for solution
process, which thus influence the regolith water-holding
capacity16,22. Solution-resistant minerals are quite different in
the Ca-rich and Si-rich bedrock, resulting in differentiated water-
holding capacity substrate and consequently differentiated vege-
tation growth potential.

Other possible lithological controls on the regolith water-
holding capacity might act by influencing the regolith

thickness23–25. In the karst regions, high Ca concentrations in
bedrock might result in thin regolith, which on its turn might
correspond to increases in calcium carbonate concentrations,
resulting in low-regolith formation rates for bedrocks with lim-
ited acid-insoluble components, as only a small amount of
insoluble residues are derived from dissolution26. Moreover,
regolith loss because of underground leakage will further limited
the remaining amount of the regolith in these environments27.
Thus, the positive correlation between RWLR and Ca con-
centrations may reflect the differences in regolith thickness.

In addition, the positive correlation between the regolith water-
holding capacity and bedrock Si concentration could be explained
by the clay content. Si-rich bedrock derived regolith is typically
characterized by high-clay contents. These high-clay contents
improve the regolith water-holding capacity, as they create a
regolith structure with smaller pores, and therefore, water can be
held at higher suction pressures23; or because clays create a less
penetrable layer that restricts the rate of water infiltration24. The
models, including BRSi and BRAl, show the third best explanatory
power for the RWLR (Supplementary Table 2b), which may be
evidence of such inference.

The bedrock-vegetation connection could also be elucidated
from nutrients. Many mineral nutrients that are extremely
important for plant growth (e.g., P and Fe) are derived from
bedrock, and their availability may be controlled by the chemical
and physical processes at the soil-bedrock interface25,28. This
phenomenon is particularly important in karst regions, where, for
example, the P availability is strongly controlled by the CaCO3

content in regolith29,30, as CaCO3 can reduce the P solubility by
producing Ca phosphates31. Hence, as the P limitations are
widespread in areas characterized by CaCO3-dominated sedi-
mentary rocks, this is a key factor limiting vegetation develop-
ment. However, a lack of P availability data along the
lithosequence restricts the current level of knowledge, and
therefore future experimental research on designing fertilization
experiments is needed to investigate the functional relationship
between P availability and bedrock compositions.

0.12 West of
Canada

Mid-Canada

Texas, USA

Florida, USA

Balkan Peninsula

Iran

Tuekey

Tibet, China

Siberia, Russia

East of USA

France and
Spain

Edge of
Hudson Bay

0.08

0.04

0.00

0.20

0.6

0.4

0.3

0.2

0.1

0.0

0.4

0.2

0.0

0.15

0.10

R
N

D
V

I-
T

R
N

D
V

I-
T

R
N

D
V

I-
T

R
N

D
V

I-
T

R
N

D
V

I-
T

0.3

0.2

0.1

0.0

R
N

D
V

I-
T

0.4

0.3

0.2

0.1

0.0

R
N

D
V

I-
T

R
N

D
V

I-
T

0.4

0.12

0.08

0.04

0.00

0.3

0.2

0.1

0.0

R
N

D
V

I-
T

R
N

D
V

I-
T

0.20

0.15

0.10

0.15

0.00

R
N

D
V

I-
T

0.20

0.15

0.10

0.15

0.00
0.15

0.10

0.05

0.00

R
N

D
V

I-
T

0.15

0.12

0.08

0.04

0.00

0.05

0.00

Karst Buffer

Karst Buffer

Karst Buffer

Karst Buffer

Karst Buffer

Karst Buffer

Karst Buffer

Karst Buffer

Karst Buffer

Karst Buffer

Karst Buffer

Karst Buffer

Fig. 5 Locations of the selected 12 largest karst regions. The selected karst regions are located at mid-latitudes (i.e., 30° to 60°N) in the Northern
Hemisphere. The dark gray, and blue parts are the carbonate rock areas. The relationship between the NDVI and the growth season (April–September)
mean temperature (RNDVI-T) was calculated at the pixel level. Subsequently, the difference in RNDVI-T between the inner and outer areas of carbonate rock
buffer zones (with a width of 50 km) using a Mann–Whitney Wilcoxon test. Bars represent means for each treatment and error bars are 95% confidence
intervals of the mean. Blue graphs indicate that the RNDVI-T value in the inner carbonate rock area is significant different with the outer area, dark gray
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By regulating the hydrologic properties of regolith, bedrock
composition can play a fundamental role in vegetation growth. It
is reasonable to believe that such lithological regulation is strong
enough to change the response of vegetation to climatic factors.
More importantly, the different temperature sensitivities of karst
vegetation show that the bottom-up effect of bedrock could
presumably have widespread significance in karst regions
worldwide.

The different temperature sensitivity of karst vegetation might
link to multiple mechanisms. We suspect that the typically low-
regolith water-holding capacity of these systems significantly
enlarges the impacts of drought events on the vegetation devel-
opment, and therefore change association of vegetation pro-
ductivity to temperature. Moreover, it is noteworthy that the
influence of land use, which can interact with role of bedrock,
strongly change the response of vegetation to climate change.
While karst is usually characterized by thin soil layer and a
number of sinkholes underground32, irrational land use could
cause serious soil erosion, exposing the bedrock to the surface.
The resulting rocky landscape could have a different association
of vegetation productivity to temperature. In addition, the bed-
rock could be involved in amount of ecological processes and its
influence is likely common worldwide, about which our knowl-
edge is still very limited.

Since bedrock have the potential to obscure or distort the
influence of climate, our ability for predicting vegetation activity
under warming climate will benefit from empirical research of
lithological control. For example, in Guizhou Province, it is rea-
sonable to expect that increasing temperature would have
stronger influence on karst vegetation, since they suffer more
drought stress than non-karst regions. However, the influence of
bedrock has not been widely addressed, therefore, we hope the
evidence presented here will provide motivation for other ecol-
ogists to explore the bedrock-vegetation link in other karst
systems.

Although our study highlights the impact of bedrock geo-
chemistry on vegetation productivity, we do not intend to deny
the importance of climate. The dissolution and weathering of
bedrock is not only determined by its mineral compositions, but
also depend on climate. We have to admit that, due to the lim-
itation of direct measurement of regolith thickness and water-
holding capacity as well as observation of ecological processes at
regional scale, the bedrock geochemistry-regolith water-holding
capacity-vegetation productivity connections can only be eluci-
dated from statistical analysis rather than direct observation in
this study. Moreover, as we focus on a regional level impact of
bedrock geochemistry, we have not discussed the great hetero-
geneities in belowground future, climate feature, and vegetation
composition within the karst critical zone in our study region.
More explicitly assess the role of bedrock will benefit from
long term critical zone monitoring and experimental research
worldwide.

In conclusion, our study emphasizes that bedrock geochemistry
has a great potential to influence plant growth in kart areas
through controlling the regolith water-holding capacity. Hence,
these results indicate that the role of bedrock geochemistry in
vegetation productivity could have been underestimated. Despite
the uncertainties, the critical zone approach employed in this
study provide evidence about importance of bedrock on vegeta-
tion, as the functioning of terrestrial ecosystems is determined by
a wide range of processes with complex interactions across the
atmosphere, biosphere, pedosphere and lithosphere, all these
components need to be considered to obtain a full and detailed
picture of any studied terrestrial ecosystem. Therefore, an
understanding of vegetation productivity and associated drivers
can be obtained from coordinated multidisciplinary scientific

research approaches, which are based on the critical zone fra-
mework as presented in this paper.

Methods
Regional settings. The study area covers the entire Guizhou Province (N24°
30′–29°13′, E103°1′–109°30′; Fig. 2). This area is 128,480 km2 and is characterized
by numerous karst geological formations, accounting for 64% of Guizhou Pro-
vince’s lithology, which contains a variety of different carbonated rock types. The
remaining 36% of the lithology (mainly present in the southern, northern and
southeastern parts of Guizhou) consists of igneous and metamorphic rocks, which
are typically rich in silicon (Si) and have low calcium carbonate contents. The study
region is characterized by a subtropical humid monsoonal climate with a MAT of
ca. 11− 20 °C and mean AP of ca. 730− 2300 mm. The precipitation is seasonally
variable, with ~75% of the AP occurring during the summer and autumn
(June–November).

Data compilation. To study the vegetation-regolith-bedrock links, 23 CZUs were
established (Fig. 2 and Supplementary Fig. 3) with a radius of 20 km and a
meteorological observation station at the center of each zone. The selection of sites
was based on the quality of precipitation data. To estimate the regolith water-
holding capacity of each site, it was necessary to investigate the precipitation
patterns and estimate the variation in soil moisture during dry spells, so each CZU
should have a meteorological observation station at the center. There are 71
meteorological observation stations in Guizhou Province, but only 30 of them have
precipitation data covering a time span of 10 years (i.e., 2001–2010). We also
excluded the sites on which the associated meteorological observation was relo-
cated during 2001–2010, as well as sites characterized by <10 identifiable dry spells,
resulting in a final selection of 23 sites in total, which satisfy our study design: the
selected sites were distributed evenly throughout Guizhou Province, including
different bedrock types and along a wide climate range; the sample size was
appropriate in order to carry out all the presented statistical analyses because we
treated each site as a sample, which makes our statistical approaches robust, and
hence, our results are reliable. This particular CZU area extent was chosen based on
the recommendation of Liu et al.33, as the meteorological station data are repre-
sentative of the entire zone, because homogeneous climatic conditions within each
CZU can be assumed.

The 23 CZUs are well distributed across the entire study area (i.e., Guizhou
Province, Fig. 2). Fourteen of these CZUs are located on carbonate rock, whereas
nine are on clastic rock. The remote sensing retrieved terrestrial annual NPP values
were obtained from Resource and Environment Data Cloud Platform with a spatial
resolution of 1 × 1 km (http://www.resdc.cn/Default.aspx), which was estimated
from the light energy utilization model (GLM_PEM)34. This dataset was used to
obtain an approximate estimate of the regional vegetation growth for each CZU.
The time span for both the climatic and NPP data was from 2001 to 2010.

Predictor variables for NPP. We used a total of seven predictor variables (Table 1)
in order to explain the vegetation productivity. These variables were selected since
they are related to the hypotheses of this study and widely considered potential
drivers of vegetation productivity in Guizhou35–37. More details about these vari-
ables were provided below.

We used meteorological station data (available at http://data.cma.cn/), which
included daily temperature, precipitation and solar radiation covering the period
2001–2010. The associated climate variables (MAT, SD, AP, PDSI) were calculated
for each CZU.

In each CZU, three sites were selected for bedrock and soil sampling within
each lithologic unit (Supplementary Fig. 3), and the delineation of the geological
system was based on the 1:50,000 scale geologic map from the National Geological
Archives of China, http://www.ngac.org.cn). In total, 204 sampling sites were
established. To avoid artificial disturbance effects, the selected sites were kept as far
away from farms, towns and cities as possible. All soil and bedrock samples were
taken from fresh road cuts. To reduce the influence of fire events and grazing
activity during evaluation of importance of bedrock geochemistry to vegetation
productivity, the selected road cuts were covered by intact and undamaged
vegetation. At each site, three profiles were sampled, each of which were separated
by 5− 50 m, depending on the length of the road cut. A ring-knife was used to
collect soils from 0− 30 cm depth and fresh bedrock samples were collected using
a geological hammer.

In total, 612 bedrock and 607 soil samples were collected (five soil samples were
not obtained due to a lack of significant soil coverage). In the laboratory, composite
samples were made by thoroughly mixing the replicate soil samples (from the same
stratigraphic unit and CZU) before being oven dried (40 °C, 72 h) and sieved (2
mm mesh size to remove plant material and stones). Subsequently, each sample
was crushed and milled to 100 μm to allow for soil chemical measurements. The
total soil nitrogen (soil N) was measured by a standard Elemental Analyzer (Vario
EL, Germany). All bedrock samples were crushed and powdered to 50 μm using a
three head grinding machine (XPM-φ120 × 3, China). Replicate bedrock samples
(same stratigraphic unit and CZU) were mixed and then fired (550 °C, 12 h).
Concentrations of major bedrock elements were measured by X-ray fluorescence
spectrometry (M4 TORNADO, Germany). Soil N contents and the major bedrock
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elemental concentrations were weighted by area fractions of the different
stratigraphic units present within each CZU.

Estimation of RWLR. In the karst regions, the hydrological function of substrate is
characterized by high-spatial heterogeneity38. More precisely the regolith water-
holding capacity is not only influenced by regolith thickness and topography, but
also depends on the network of fractures and fissures (Fig. 1). Thus, even in the
CZU dominated by geochemically homogeneous bedrock, the variations in the
RWLR can be great within a CZU. Hence, the relationship between bedrock
geochemistry and RWLR is difficult to detect through direct measurements over a
small spatial scale (e.g., considering detailed on-site monitoring).

Nevertheless, large scale surveys of regolith water dynamics can help to
determine whether bedrock geochemistry is an important regulator of the RWLR.
In this study, we assessed the RWLR across the different CZUs using a satellite-
based index. We quantified the variations in soil moisture during dry spells,
assumed that a high RWLR corresponded to high variations in soil moisture. The
TVDI that has been widely used for soil moisture monitoring is used as a surrogate
variable of soil moisture39,40. More importantly, previous studies showed that
TVDI was highly correlated with soil moisture in karst regions located in southeast
China41,42. In this study, variations in the TVDI during dry spells were used to
represent the RWLR (Supplementary Fig. 4).

TVDI is based on an empirical parameterization of the relationship between
land surface temperature and vegetation indices43. As TVDI is relatively insensitive
to precipitation, it is appropriate to adopt this index to estimate the soil moisture
variations related to the RWLR. More precisely, TVDI was calculated as:

TVDI ¼ Tobs � Tw

Td � Tw

Td ¼ aþ b*NDVI

Tw ¼ cþ d*NDVI

where Tobs is the surface temperature at each pixel; Tw represents the minimum
surface temperature under the given vegetation conditions, while Td represents the
maximum surface temperature, which is estimated from the edge of the NDVI/Tobs
space (3). Therefore, Tw and Td are linear functions of NDVI, the a, b, c, and d
associated parameters were estimated at the pixel level, and hence, high TVDI
values indicate high-surface water deficits.

Furthermore, as the monitoring of soil moisture changes during dry spells
requires fine temporal resolution data, the satellite images used to calculate the
TVDI were obtained from the MODIS–Terra sensor (i.e., Ts: MODLT1F, 5-day
scaled at 1 km resolution; NDVI: MODND1F, with 5-day interval at 500 m
resolution. http://www.gscloud.cn/), covering a time period from 2001 to 2010. The
Ts and NDVI products includes atmospheric corrections to eliminate the influence
of background noise. To match the pixel size of the NDVI map with the Ts map,
the 500-m resolution of NDVI images were resampled to 1 km, using the nearest-
neighbor-interpolation technique. The TVDI images of Guizhou Province of China
were analyzed using ENVI 5.1 software, and then each CZU was extracted using
ArcGIS. If the qualities of the NDVI or Ts images were unacceptable for the TVDI
estimation, they were excluded.

For each CZU, the RWLR was calculated as the average variation in TDVI
during dry spells (Supplementary Fig. 4). In this study, a dry spell was defined as
the period of 5 or more consecutive days with no precipitation:

RWLR ¼
X

i¼n

TVDIb;i � TVDIa;i
ΔTab;i

´ 100

n represents the number of observable dry spells from 2001 to 2010; i represents
the ith dry spell, a and b represent the ath and bth TVDI (b > a), ΔTab represents the
time interval between a and b.

Statistical analysis. To compare the importance of the RWLR in predicting the
NPP with other variables, and to evaluate the predictive power of the bedrock
concentrations of the major elements for the RWLR, the ITA44 was performed.
This approach allowed us to determine the relative variable importance (RVI) of
each explanatory variable. All possible combinations of explanatory variables were
tested. The best model subset for NPP and RWLR was identified by summing the
Akaike weights of the highest ranked models until the value exceeded 0.95. The
RVI for each of the candidate variables was calculated by summing the Akaike
weights for all models in which the variable occurred in the best model subset.

To avoid collinearity among variables, we pre-selected the candidate variable
based on our hypothesis and the performance of the prediction, which was
estimated using a linear model (LM). Wherever two variables exhibited strongly
collinearity (Pearson’s | r | > 0.70)45, we excluded the variable showing weaker
(greater Akaike information criterion (AIC)) with the response variables. One
exception was BRSi and BRCa, which were strongly correlated (Supplementary
Table 1) but we did not exclude either because both showed a significant
relationship with RWLR and the AIC values were very close; and they even showed
a high collinearity, but they might influence the RWLR via different mechanisms.

Therefore, we separated the RWLR models into two subsets, with BRSi excluded in
one model subset, and BRCa excluded in the other subset.

The LMs were conducted using R3.1.0 software46, and the model selection was
performed using the “dredge” function in R package MuMIN

47.

Structural equation model of vegetation productivity. To explore the interac-
tions between bedrock geochemistry, RWLR, and NPP, and assess the indirect
influence of bedrock geochemistry on NPP, a SEM48 was developed to understand
the relationships among bedrock geochemistry, the RWLR, climatic factors, soil
nutrients and NPP. The use of a SEM allows for the direct and indirect effects of
candidate variables to be considered. Furthermore, SEM can be used to test whe-
ther the integral model is statistically acceptable. In our SEM, the RWLR and
vegetation productivity were treated as response variables, whereas the bedrock
geochemistry, and climatic and soil variables were treated as explanatory variables.
First, we designed an SEM to investigate the relative importance of bedrock geo-
chemistry on vegetation productivity through regulation of the RWLR. Addition-
ally, we assessed the influences of climate and soil variables on the NPP, as well as
the relationships with the RWLR.

Since this study is characterized by a rather small sample size (23 CZUs), a
model simplification is required. We considered only those explanatory
variables showing significant relationships with the response variables in our
SEM analysis. An additional component for the SEM was developed to evaluate
the residual correlations and modification indices after model’s execution.
The root mean square error of approximation (RMSEA) and the comparative
fit index (CFI) were used to evaluate the goodness of fit. The final SEM was
chosen when the following criteria were met: p-values of χ2 and the goodness of
fit test p > 0.05; CFI > 0.9, and lower 90% confidence intervals (CIs) for RMSEA
< 0.05 (ref. 18). The SEMs were calculated using the R packages “sem”49 and
“lavaan”50.

Calculation of the NDVI-temperature relationship. To estimate the influence of
bedrock on changes to the response of vegetation activity to temperature varia-
bility, 12 largest karst regionss from mid-latitude bands (30°–60°) of the Northern
Hemisphere were selected to detect their temperature variation signals of vegeta-
tion productivity. We chose this area because: first, the mid-latitudes in the
Northern Hemisphere exhibits obvious climate seasonal variation, and climate
change will most probably have a significant influence on the vegetation
productivity51,52. Second, A total of 61% of the world’s karst regionss are dis-
tributed in this zone53. Moreover, the carbonate rock areas located in deserts were
discarded from further analysis, as the NDVI-values highlighted the lack of any
significant vegetation development in these areas.

The temperature variation signal of vegetation productivity is calculated as the
correlation coefficient between NDVI (obtained from Global Inventory Modeling
and Mapping Studies, spatial resolution: 0.5°; biweekly data from 1982 to 2011)54

and growing season mean temperature (April–September, obtained from Climate
Research Unit55, the spatial resolution and temporal range are consistent with
NDVI) (RNDVI-GT) at the pixel level. To assess the influence of bedrock on the
relationship between vegetation activity and temperature, we employed a buffer
zone approach. We compared the RNDVI-GT within carbonate rock areas and buffer
zones outside the carbonate rock areas boundaries by Mann–Whitney Wilcoxon
test. The width of these buffer zones is 50 km (1 pixel), because this width
minimizes the influence of climate and results in similar numbers of pixels in the
inner and outer areas.

Data availability
The authors declare that the source data supporting the findings of this study are
provided within the paper.
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