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Abstract

This doctoral thesis proposes a novel approach to road tra�c de-con�icting. It comes

as a framework consisting of a user-tailored, multi-objective cost function and a nego-

tiation algorithm, in which tra�c con�icts are de�ned within game theoretic formula-

tion, based on side-payment to fairly distribute the bene�ts, thereby ensuring feasibility

within a distributed, intelligent system. The algorithm is then applied to two-agent con-

�ict resolution in a simulated intersection and platooning/overtake scenarios. Energy

consumption and loss of time are compared, indicating a threefold improvement in the-

oretical e�ciency of the framework in relation to a noncooperative solution. It occurs

when agents are the most heterogeneous. The intersection and platooning algorithms are

then further developed to handle multi-agent scenarios, where complexity is the greatest

challenge. A formulation based on graph theory is proposed, estimating the complexity

to be no smaller than that of complete graph sequence, with time of calculation infeasibly

long above 10 agents, calling for implementation speci�c heuristics.

The last chapter of this work considers the framework's future paths of development.

It features extended cost function formulations, incorporating, among others, ancillary

energy use or battery wear. System's sensitivity cheating or market penetration is also

studied, proposing human-in-the-loop architecture as means to ease the adoption process.
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1 Introduction

The powertrains employed in the cars we drive are approaching their theoretical ther-

modynamic limit. The year 2017 was the �rst, when a Formula 1 car achieved 50%

powertrain e�ciency, beating . There is little more mechanical energy to be extracted,

while the need for e�ciency is still growing. The vehicle automation and soon even auton-

omy are being intensively developed, thus the focus on the optimality of the interaction

between them is the natural next focal point.

What empowered Homo Sapiens to shape its environment, e.g. build roads or power

plants, was the ability to exchange ideas and organize into complex social structures,

enabled by language [1]. It is particularly noticeable when observing how the broadband

internet and mobile electronics have changed the landscape of public life in the last decade,

as companies who manage private information are wealthier than some governments [2].

Despite being intertwined with the fabric of modern day economy and society, road

tra�c is one of the last holdouts of the information age. The oldest Highway Code will

soon be a century old, while tra�c lights and speed cameras are the only social electronic

aids, as SatNav is not a networked device. The limited breadth of the information channel

between drivers and complex ownership & liability structure are the main causes for

this resistance. Today's tra�c is a self-organized distributed system, whereby complex

con�icts are resolved with minimum information by means of prede�ned rules and social

norms, which research only begins to realize [3], which autonomous cars have to learn to

pass the driver-Turing test [4] and be accepted to the driver community.

The body of research already o�ers optimal, centralised, tra�c organisation algo-

rithms, but their mainstream implementation may not be possible until all vehicles are

fully automated, rendering our driving skill and tra�c norms obsolete, which may not

be feasible in the oncoming decades, if at all, based on the Connected Autonomos Ve-

hicle (CAV) implementation predictions [5]. On the other hand, multi-agent systems

of rational and autonomous agents and negotiation dynamics between them have been

thoroughly examined by classical economists, game-theory mathematicians [6] [7], social

scientists and even lawyers, but are somewhat overlooked by the engineers racing towards

a fully autonomous car. This doctoral thesis is an attempt to bridge these distant �elds
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of research, thereby enabling a framework in which a synergic road tra�c paradigm may

be developed, where the today's norms are not replaced but capitalized upon and harmo-

niously augmented creating a distributed yet e�cient, synchronised yet resilient tra�c

system within one generation. Fig. 1 outlines the topology of the CAV ecosystem, the

overlaps between its various aspects and the scope of this thesis.

Figure 1: A Venn diagram, outlining the relationship between various aspects of Con-
nected Autonomous Vehicle driving. The scope of the thesis is encircled with red.

1.1 Objectives and contribution

The intention behind this thesis is to explore the areas of research which promise room

for further energy optimality in the road vehicle powertrain design, considering that the

individual components of the powertrain and the dynamics of their interaction have been

researched throughout. However, the way a vehicle as a whole interacts with others on

road is only receiving attention in the recent decade. On the other hand, there is literature

proposing, applying and testing various centralized tra�c management schemes, such as

reservation-based intersection algorithms. These publications, however, are assuming

strong integration between infrastructure and vehicles, as well as full automation and

trust. This may hinder a potential industrial deployment, making the way from laboratory

to public roads, the main challenge for the oncoming decades. The key objective of this

thesis is to propose how to design the decision functions of the individual road tra�c
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agents, so that the resultant behaviour of the collective minimises the cost [8]. Thus it

aims to o�er a novel, information-based algorithm for e�cient tra�c de-con�icting. Given

that the further the agents' objectives are apart, the further the con�ict is from being

a purely competitive zero-sum game, this framework aims to capture the heterogeneity

of user intention and vehicle parameters to serve as di�erentiators to ensure the payo�

matrix de�ning the con�ict is non-zero sum, and thus posses a distinct, optimal solution.

It stands in contrast to the majority of publications, which homogenise the agents to

ensure computational e�ciency.

This intention-based negotiation algorithm starts with a novel cost function, which

considers the user's value of time to o�set the energy expense, �nding the optimal cruise

velocity. Today, as the user de�nes their objective in their navigation system, an expected

time of arrival is returned. Rather than being a mere estimate, this value can serve as

an estimator of the value of time. The user would be presented with a slider, with

energy-optimal and time-optimal solutions on either ends, as presented in Fig. 2, having

a choice of their preferred duration of the journey and estimated cost of energy to serve

as an input to the cost function, based on which optimal vehicle operation strategies are

found. A human driver could use it as an advanced cruise control/driving advisory, while

an automated vehicle may employ it as a strategic reference for its longitudinal control,

just as an airline does with the Airline Cost Index whilst choosing how to operate its

air�eet.

Figure 2: Proposed slider, interfacing user's value of time by preferred duration of the
journey and associated cost. The diminishing journey time cost increasingly more energy.
The values of the expected cruise time and costs presented serve as example.

Then, as a con�ict on road occurs, the agents share their cost functions via V2V to

�nd the optimal solution. To clarify the way optimisation is executed from the user's

perspective. Consider a scenario, where a truck A is to turn left, intersecting with a light

passenger vehicle B, as visualized in Fig. 3. According to the tra�c code, B yields to

A. However, the energy optimal solution is the reverse of tra�c code rules. The small,

lighter vehicle B slows down, so the heavier one A can retain its kinetic energy. The
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self-enforcement of the framework originates from the B's question: why should I yield

when having right of way?. B's energy expense and time delay are compensated with

a side-payment [9], guaranteeing that every agent is always better o� cooperating, and

thus requiring no external oversight.

Figure 3: The cooperative intersection problem. Today, the sequence is B,A.
The time/energy optimal solution reverses it to preserve A's momentum, relying on a
micro-payment to incentivises B to yield, ofsetting her costs.

The research hypothesis for this work then follows: the information sharing, and the

cooperative-competitive solution concept o�er an increased e�ciency in resolving tra�c

con�icts, thereby con�rming the Aumann's Conjecture (see Section 2.5.3) for the tra�c

con�ict scenarios.

The objectives of this research are divided as follows:

• De�ne the cost function, serving primarily as vehicle's strategic decision reference.

It is thus to serve as a game design rule, to de�ne the con�icts between agents, while

satisfying the self-enforcement requirement of being acceptable to an individual.

• O�er the formulation describing tra�c con�icts, both intersection and in-line, solved

by platooning or overtake. The game design is to originate from the prede�ned
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cost functions, aiming to arrive at a formulation, which guarantees optimal con�ict

solution.

• Propose an expanded, multi-agent formulation and explore its complexity scaling,

to estimate the computational power needed for real-time implementation.

• Validate the framework by hardware implementation. Scaled, automated vehicles

and a communication channel are set up to evaluate framework's feasibility under

physical measurement uncertainty.

• Evaluate the possible further directions of the framework's development, consider-

ing its scalability and challenges to implementation and challenging the research

assumptions:

� Further expansion of the cost function, selecting not only the velocity, but also

higher order parameters, acceleration and jerk, being subject to e.g. compo-

nent or battery wear or user's comfort or safety.

� Signal the resilience to malicious intention, analysing the incentives to cheat

and vulnerabilities of the self-enforcement assumption.

� Study the implementation challenges, as the distributed nature of a self-

enforced framework shall require a critical mass to be operational, calling for

additional, early-adopter functionalities.

� Consideration of the possibility of Human-Machine Interaction. Given the

above challenge, a capability for CAVs to cooperate with human drivers with

retro�tted V2V communication tool could ease the path to mainstream tra�c

cooperation paradigm.

In addition to the tangible objectives above, this work aims to assemble the literature

from the �elds of research relevant to the implementation of autonomous mobility, from

powertrain design, through economy to social norm formation, utilizing a consistent lin-

guistic toolbox, enabling communication regardless if one is a software engineer working

on a new car or a city council executive, who strives to minimise pollution.
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1.2 Thesis Contribution

The work towards the above objectives has led to the following novel contributions:

• Proposition of intention-de�ned value of time, serving as a trade-o� to the cost of

energy, in the context of road transport optimisation.

• Use of payment mechanism as a self-enforcement mechanism in a distributed tra�c

setting.

• Application of cooperative-competitive solution concept as a method of �nding

Pareto solutions in tra�c con�icts.

• Evidence to support Aumann's Conjecture on pre-play communication as means to

equilibrium seeking.

• Identi�cation of legal obstacle to optimal tra�c mechanism, as energy optimal

con�ict solutions do not coincide with tra�c code regulations.
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1.3 Outline of the thesis

This doctoral thesis begins with literature review in Chapter 2, which positions it in

relation to the advancements in intersection management schemes, but also in neighbour-

ing areas, such as powertrain optimisation. It is followed with a more speculative analysis

of literature addressing non-engineering challenges to implementation of autonomous ve-

hicles, touching subjects as sociology and economy, but also air tra�c control, which

meets similar challenges.

Moving on to the core of the thesis, Chapter 3 features the model, the solution concept

and the assumptions which shape the workspace. It is concluded with the optimal cruise

velocity selection algorithm as the �rst application of the cost function. Then, Chap-

ter 4 outlines the con�ict resolution algorithm for the in-line problems, while chapter 5

presents the two agent intersection con�ict formulation. Multi-agent implementation fol-

lows. Having outlined the framework, in chapter 6 it is validated by hardware implemen-

tation. There scaled, automated and autonomous vehicles are deployed to communicate

and form a cooperative platoon, demonstrating framework's feasibility.

The core of the work is then supported with Chapter 7, the further considerations,

where additional perspective of the framework is considered. Various assumptions are

challenged in subsequent subchapter, including the cost function's scalability, sensitivity

to agent honesty, or challenges to the industrial application. The thesis is concluded in

Chapter 8, with a summary of the �ndings and discussion of recommendations, touching

on the future work.
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2 Review of the literature

With the emergence of electri�ed powertrains, and soon complete autonomous vehi-

cles [5], calls for research on optimal road vehicle designs based on these new powertrain

technologies [10]. The 'electric island' of any powertrain, as marked in Fig. 4 always

features a motor, power electronics and Energy Storage System (ESS). Both the elec-

tromechanical motor design and the electrochemistry of the ESS have extensive research

to them [11].

Figure 4: Topology of a parallel hybrid electric powertrain, with its electric component
encircled [10].

Just as the emergence of hybrid powertrains introduced an additional level of control

[12], the Connected Autonomous Vehicle (CAV), brings a new layer of strategic con-

trol, that is the tra�c con�ict resolution between drivers. While centralized, mass-point

intersection management schemes are o�ered [13], so are agent to agent, game theory for-

mulations [14] dedicated to distributed architectures. This chapter outlines these �elds,

to provide background for an algorithm facilitating V2V-enabled negotiation of con�icts

between tra�c agents.

Further, centralized optimisation algorithms for various applications are presented,

followed by basic concepts of game theory as an introduction to distributed control applied

to micro- or macroscopically modelled tra�c systems. The research question of this

Thesis is: How should one initialize/update the payo� utility functions of the individual

processes so that the ensuing behavior of the entire collective achieves large values of

the provided world utility? Since such technology would directly engage the driver, the

economic and behavioural aspects of the proposed framework are touched.
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2.1 Optimisation of powertrains

The electric powertrains have always competed with the Internal Combustion Engine

(ICE). In recent years they are being revived, to diversify the energy mix in transport

industry, contributing to economic stability [15]. With a growing number of powertrain

topologies to choose from, a growing amount of work is done in the pursuit of the most

optimal powertrain for a given application. Apart from well studied ICE and electric

motors, control engineering is worked on to enable the construction of optimal hybrid

topologies.

Hence a powertrain topology optimisation toolbox has been o�ered [16], whereby

various powertrain technologies: internal combustion engine, mechanical hybrid, electric

hybrid, both in-line and parallel, or fully electric with various storage technologies are

scaled and dimensioned to �nd an optimal powertrain size for a particular drivecycle,

using a genetic algorithm to optimise for vehicle's fuel e�ciency and the well-to-wheel fuel

e�ciency, with the whole energy supply chain accounted for. The results are presented in

Fig. 5a, challenging the Plug-In Hybrid Electric powertrain's economic feasibility, as the

electric powertrain o�ers roughly 60% in Well-to-Wheel CO2 emission cut in exchange for

almost sevenfold increase in powertrain cost in relation to an ICE. These �ndings could

e.g. help de�ne the fair economic price of CO2 emissions in a Pay-as-You-Pollute scheme,

one of components of the developed cost function.

Fully electric vehicle may also feature a hybrid component. A Hybrid Energy Storage

System (HESS) consists of an energy source, such as battery and power source, such

as ultra-capacitor covers for power peaks, which cooperating to achieve desired energy

storage characteristics [17].

The more complex the powertrain, the more re�ned its controller has to be in order

to capitalize upon its potential. Since, currently, the supervisory powertrain controller is

the human driver, e�ort has been made to predict their behaviour, so that the powertrain

controller can adapt to driver's behaviour. Thus predictive methods of estimating driver's

behaviour are proposed [18] [19] [20].

In a similar manner a neural network has been deployed in receding horizon formu-

lation to predict tactical velocity change [21]. The same approach has been combined

with tra�c data to manage a hybrid powertrain, to optimise the battery input for a given

journey [22]. Optimisation of battery State of Charge (SoC) for given journey, has been
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(a) Mutlti-objective optimisation of powertrain
topology for an ARTEMIS drivecycle is a trade-
o� between cost and energy e�ciency of the
powertrain. Electric Vehicle is most fuel e�-
cient but most costly, whereas ICE emits most
CO2 [16].

(b) Dynamic programming approach to plug-
in hybrid optimisation. Prior knowledge of the
length of the journey allows to �nd an optimal
battery depletion, with respect to energy and air
pollution [12].

Figure 5: Powertrain optimisation, the topology selection and an optimal control strategy
for a hybrid one.

also considered with more deliberative Dynamic Programming (DP) algorithm, whereby

battery depletion pro�le are outlined: fully electric and charge sustaining modes, with

an optimal pro�le being a trade-o� found considering the powertrain topology, journey

distance, elevation change, etc. [12].

Interestingly, game theory, described in Chapter 2.4, has been applied to minimize

hybrid vehicle's emissions. The powertrain controller is set up as a decision agent, playing

against the human driver, attempting to predict their actions so that vehicle can be

operated in a way which minimises NOx emissions [23].

Numerous optimisation strategies are being employed in the automotive industry, e.g.

a vehicle-based tra�c light assistant [24] or predictive gear shifting [25].

2.2 Connected Autonomous Vehicles (CAV)

In 2018 the Society of Autonomous Engineers (SAE) published the J3016 standard.

It de�nes a terminological framework for describing the levels of vehicle autonomy and

outlines �ve stages between human-driven and autonomous vehicle. However, the idea

of self-driving cars emerged much earlier, as soon as defence research has enabled the

aerospace guidance systems. The vision of an automated, self-driving vehicle soon fol-
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lowed with �rst mentions as early as 1956.

Always sought for, the self-driving cars implementation prediction date has always

drifted ahead, never becoming reality, as we did not realize how complex navigation

through a public road is. The Project ARIADNE (Application of a Real-time Intelligent

Aid for Driving and Navigation Enhancement), as described in The Times article from

13th Aug 1993 is the earliest traced popular literature describing a real implementation

of an automated vehicle [26], where the role of the driver is that of a supervisor of the

ultrasound and radar-based control system.

There is extensive literature studying navigation for automated vehicles [27] [28]

[29]. However, it is theoretic, while the engineering applications performed by com-

panies recently are trade secrets. An Open Source autonomous vehicle operating system:

Apollo.auto has been o�ered, among others, by Baidu [30], o�ering an open GitHub

repository and a dedicated hardware set. There are also numerous companies, both es-

tablished and start-ups, attempting to commercialize autonomous driving as quickly as

possible [31] [32].

In general, the vehicle operation is performed in four levels: perception, prediction,

planning and control. Before we reach to the point where vehicles are autonomous,

parallel driving is proposed as a transition, where driver and machine operate the vehicle

in parallel, learning from each other and supporting each other [33].

Unlike airspace, public roads are full of environmental hard constraints and other

autonomous decision-makers: drivers, cyclists, pedestrians at various stages of life or

even belonging to di�erent species, who may or may not be de�ned as rational. Only

recently, the advances in machine learning have enabled navigation through these complex

systems of public roads, but still having problems blending in, failing the driver-Turing

test, being easily identi�ed as an automated vehicle by other drivers. The scienti�c

literature addressing the social ineractions between autonomous agents is very general

[34] [35]. Its application to public roads is primarily focused on policy and urban planning

[36] [37]. However there is a number of popular articles on the matter, which observe

that human drivers may 'bully' overly defensive AVs [38] [39] [40] [41], with driver's non-

rational aggression as a common denominator of all above papers. On the other hand,

the recently retired CEO of Daimler admitted that while today's autonomous vehicles

are designed with maximum safety, in future they also need to modulate it, to assert
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their space in order to prevent being 'bullied' by other road users [42]. In addition overly

defensive AVs behave unpredictably, what results in other drivers rear-ending them [43].

2.2.1 CAV safety

With the road to vehicle autonomy outlined, the most important issue, leaving be-

hind energy e�ciency and comfort, is safety. While today it is in the hands of the driver,

allowing little insight into it other than behavioural psychology research [44] and road

safety statistics [45]. This shall change with the CAV. The supplier of the autonomous

technology is the one responsible and who is most familiar with their technology, being

aware of the weaknesses and failure rates. Taking an analogy from the nuclear power

industry, the power plant operator is supervised by the government regulatory body,

who ensure that the operator follows International Atomic Energy Agency (IAEA) safety

requirements and ISO 9001/14001 standards. This features risk estimates for every op-

erating conditions the facility can experience, integrating them in a general nuclear Core

Damage Frequency estimate [46] [47]. Mitigation strategies are also developed to protect

the population. Similarlily, in aviation regulatory oversight is present to protect the trav-

ellers [48]. Thus, an honest seller of CAVs, should make the customer aware of the risk,

for example providing an estimate of reliability of their autonomous/automated vehicle.

Whilst in the case of a nuclear core the unit of risk is core damage events per year [y−1],

in case of transport it would be incidents, per road users per year [d/u/y] [49], however

there is no regulation enforcing risk-informed vehicle advertisement.

Another alternative is to allow each user to manage their risk individually, either by

an explicit de�nition of their maximal accepted risk, or by a mechanism which would

explicitly infer it based on user's feedback.

Fig. 6 o�ers a comparison of the nuclear safety framework and the contemporary

approach to CAV design. It has been inspired by a seeming lack of strategic direction to

develop a CAV vehicle safety framework. Comparing the state of the art of autonomous

vehicle design framework discussion with the nuclear activities such as e.g. US Nuclear

Regulatory O�ce proposition from 2012 [50], there is vast experience on protecting the

public from engineering mistakes, which is to be learned from the nuclear and reapplied

in the automotive industry.

Currently engineers attempt to overcome the technical problems by feeding more
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(a) An outline of the International Agency of
Atomic Energy Nuclear Safety Framework [51].

(b) A proposition of the topology of user-
oriented Autonomous Vehicle Safety Frame-
work. Intensity of colour de�nes the level of in-
stitutionalization. There is no CAV regulatory
body.

Figure 6: A glance on similarities and di�erences between well established Nuclear Safety
Framework and a possible, emerging, user-oriented AV Safety Framework.

learning data to the same, machine learning systems, hoping that the Arti�cial Inteligence

o�ers a solution, instead of a structured analysis to �nd an informed, optimal solution. In

the author's view, the literature on social science, behavioural psychology and economy

may be re-purposed for the design of tra�c Human Machine Interface (HMI) systems, and

is therefore outlined later in this chapter. Currently, in the curriculum of both automotive

and software engineering courses there is little dedicated safety oriented HMI design

training, what could have hopefully prevent accidents such as the one of an experimental

Uber Inc. vehicle in March 2018 [52] [53], whereby an autonomous vehicle has killed

a pedestrian. While the victim had been detected by the radar, the unfortunate lack

of illumination prevented the camera from supplying the data, which would allow the

de�nition of the type of the object. The architecture of the decision system did not

account for this event and no predictive threat level has been assigned to the unidenti�ed

object, leading to collision [54]. A safety analysis would have likely detected this �aw

and prevented the accident which costed a by-stander's life but was not present.

Rather than relying only on the on-board sensors, in future, connected vehicles may

share their data. Then, not only the present location would be more precise, but also
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users could de�ne their objectives on individual basis, so that the future actions are

accounted for, and later even negotiated for an optimal resource utilisation.

2.2.2 Security

As numerous connectivity-based optimisation schemes already developed and tested,

apart from safety, the main obstacle is the security and robustness of any connected

system [55]. There is also literature studying possible cyber-attacks CAVs can experience

[56], o�ering i.e. intrusion detection methods [57] or cybersecurity testbeds being put

forward [58].

Given the negotiation aspect of this thesis, the proposed algorithm may be particularly

vulnerable to fraud or deception attacks [59]. While their mitigation in CAV scenarios

has not been put forward yet, there is general literature addressing this issue [60].

2.3 Tra�c management schemes

With the number of miles driven using Adaptive Cruise Control (ACC) on public

roads increasing and an increasing number of both established companies and start-ups

attempting to bring autonomous driving to roads [31] [32], an opportunity emerges to seek

for further energy e�ciency and pollution reduction, for scenarios such vehicles may en-

counter. The largest contributors to the energy ine�ciency are braking and aerodynamic

drag. The elimination of braking is a matter of information, enabled by the connectivity.

The drag, however, is roughly proportional to the square of the velocity and thus can be

addressed by careful selection of the cruising velocity.

This subchapter focuses on the energy perspective opened by V2X connectivity. It

neglects the technological requirements to achieve it, as there is an extensive body of

literature focusing on this technology [61] [62], and its possible safety improvements [63]

[64]. A survey on vehicle coordination o�ers deeper insight [65]. The literature outlined

here could be divided by two criteria. Most of the literature features centralised, top-

down algorithms, as they perform best in heavy tra�c conditions. As the tra�c intensity

diminishes, the adaptive, distributed approaches are scarce, leaving the development of

user-oriented, infrastructure-free approach as a research gap, which this thesis aims to

challenge.
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2.3.1 Cruising, Platooning and Overtaking

Energy consumption depends on the square of the speed, therefore cruising e.g. at 30

[m
s
] rather than 35 [m

s
] theoretically requires 26 % less energy. The selection of the optimal

cruising speed can then be an important aspect of energy optimisation in the future. Very

narrow scope of research, however, explores this. Since the pure minimisation of energy

consumption leads to optimal speed equal to zero, researchers add an arbitrary coe�cient

to de�ne the cruising speed [66] [67]. The subjective, abstract parameter does prevents

this approach from being easily integrable with other systems. Clearly a deeper approach

may be required. This brings up the economic purpose of the journey, which could allow

to incorporate the value of user's time as a decision-factor. It is discussed further in

section 2.5.4.

Expanding on the cruising scenario, a strong proposition to bridge macro-scale e�ects

and microscopic tra�c simulation is the three-phase tra�c theory [68], which was devel-

oped while studying the relationship between vehicle density k [veh/km] and �owrate q

[veh/h] on a single motorway. The theory proposes that there are three modes of tra�c:

Free �ow (F), Saturated �ow (S) and Jammed �ow (J), which are visualised in Fig. 7.

As k grows, we arrive at maximum throughput. There, any disturbance triggers the F

→ S transition. Then, the throughput is diminished, due to proximity between vehicles

and if the upstream �ow is not throttled it may trigger the congestion. An application

of Cellular Automata simulation [69] to test this theory has yielded positive results at

reasonable computational complexity.

Figure 7: Three phase tra�c theory. We can distinguish the Free �ow, whereby vehicle
density and �owrate are proportional and Saturated �ow, where vehicles are synchronized,
where increase in density diminishes the throughput [68].
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Platooning, where vehicles follow one another has a potential to bring 15 % energy

saving, by virtue of aerodynamic drag reduction [70]. Additional bene�ts of a connected

platoon are cooperative sensing [64] [71], relevant from a safety perspective, and indirectly

the decrease of complexity of intersections, since the whole platoon can be treated as a

single agent. Given the risk of collision, the main challenge towards the implementation

of platooning technology, apart from the need for a shared communication standard,

is the controller stability [72] [73] [74]. The closer the vehicles are to each other, the

greater the road throughput is, the sharper controller setting is required, making the

interaction between agents a tradeo� between congestion and individual user's comfort,

what further complicates the platoon stability. This also shifts the characteristics of tra�c

from being the average of user's driving norm to engineering design. The general research

on multi-agent �ocking dynamics is mature [75]. While it is being recently applied to

aerial vehicle formation [76], the tra�c implementation of it is not developed past its

white paper [77]. A notion of tra�c cooperation has been proposed [78], but the research

redirected towards more imminent 802.11p V2V connectivity [79]. There is no research

speci�cally addressing the consensus on the con�icting objectives among participants of

a platoon.

Autonomous overtaking has received attention already. Research focuses on the the-

oretical background to guide further development and harmonization of the lateral and

longitudinal controls or the technical requirements to handle it [80]. More recent stud-

ies propose a division of the maneuver into three phases, acceleration, overtake-cruise

and deceleration, to apply adaptive control algorithm [81], or application of spacecraft

rendezvous algorithms to approach the problem [82]. Most importantly, studies the feasi-

bility of autonomous overtaking have been performed, utilising Model Predictive Control

(MPC), taking the safety and comfort as objectives [83]. The cost function is de�ned to

penalize deviation from the reference velocity and trajectory, taking into account the dis-

tance to the oncoming vehicle. However, the formulated method assumes no cooperation,

as agents optimise for themselves, and does not track energy consumption nor time.

A noteworthy publication on the matter to be summarized is a hardware-in-the-loop

agent-based cooperation algorithm, whereby scaled CAVs cooperate by slowing down to

let another car ahead, in an in-line problem. The implementation is presented in Fig. 8,

which is a screen from a video [84], which refers to [85].
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Figure 8: A glympse on the state-of-the-art cooperative tra�c algorithm. Scaled Au-
tonomous cars cooperate by voluntarily yielding to in a lane change con�ict to improve
road throughtput by 30% [85].

2.3.2 Intersections

While Section 2.1 considered a vehicle as standalone complex control system, the traf-

�c management schemes consider many vehicles at once, treating them as simple mass

points, aiming to minimise the total time delay and energy consumption. The main

di�erentiating factor splits the literature into centralized and distributed schemes. The

centralized approach assumes there is a single decision-maker providing velocity pro�les

to all tra�c agents, who execute it sel�essly. The Intelligent Cooperative Adaptive Cruise

Control (iCACC) concept [86] provides velocity pro�les ahead of the intersection's Con-

�ict Zone (CZ) in order to correct time of arrival of vehicles in such a way that the

con�icts are mitigated and sum of the time delay is minimised. This work is visualised

in Fig. 9. In such arrangement, the only on-board control is the execution of the velocity

pro�le. It is safety-critical, with no room for autonomous decisions, but o�ers threefold

improvement mitigating intersection delays in comparison to tra�c lights. This work has

greatly inspired the intersection resolution algorithm developed herein. The main dif-

ference, however, is that the cost function there considers only time delay, albeit across

a range of tra�c densities. There are several similar publications [87] [88], where for

computational simplicity, the vehicles are all kept as anonymous agents. On the other

hand, in this thesis the decision is a result of multi-objective optimisation between time

and energy, in order to provide a general framework for formulation of con�icts, which

considers users heterogeneity. The computational complexity is allowed to increase, re-

lying on the growing CAV's computational power to handle it. The safety-criticality of

the intersections is being addressed by a design of robust intersection scheme, where an

optimal trajectory is followed by a safe one, should the situation require it [89].
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Figure 9: Intersection management based on vehicle connectivity. The con�icts are re-
solved by adjusting the velocity pro�le ahead [86] with an objective to minimize the time
delay.

Elimination of the uncertainty, enables information-driven optimisation of hybrid pow-

ertrains. It has been proposed to �nely adjust hybrid powertrain controls by means of

a central computer [90], as opposed to on-board algorithms as in Chapter 2.1. An ele-

gant approach to the elimination of uncertainty is a tra�c light assistant system, which

suggests the time to green light and is being developed into an energy-optimal adaptive

cruise control [24].

There is also a number of distributed approaches to intersection management, where

calculations are shared between agents, with an emphasis on system resilience [91] [92] [93]

[94] [95]. A block-chain based approach to intersection occupancy scheduling has also been

proposed [96]. In general, all these schemes put forward a notion of a schedule, whereby

each vehicle reserves a time window of the intersection's CZ, by means of an automated

algorithm. The key di�erence among publications, apart from details of the algorithm

formulations, is the processing unit architecture. It is either a central road-side unit,

which could, for instance, operate together with tra�c lights, or distributed architecture,

whereby every participant contributes their processing power. All the proposed schemes,

however, utilise a First-Come-First-Served (FCFS) policy. While it is fundamentally

fair, it prevents re�ned optimisation, resulting in scenarios of paradoxically degraded

performance of advanced intersection, e.g. due to platoon breakup [97] [98].

An energy-oriented approach to intersection control has been proposed as well [99]

[100]. The objective of minimising energy, however, results in optimal solution being
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stationary. A time delay penalty, with an arti�cial biasing parameter, has been thus

introduced to o�set it.

In order to re�ne the optimality of intersections, apart from time delay, the �uency

of tra�c, understood as the departure from the cruising speed, as well as the vehicle

mass are considered to minimize energy consumption [101] [102] [103]. In such case,

heavier vehicles are prioritised, as it would be more costly for them to detour. While this

promises signi�cant energy-e�ciency improvement and the performance of the framework

is unchallenged, no consideration is given to the enforcement mechanism. A rational

decision-agent, be it a human driver or an autonomous controller, of a lighter vehicle has

no incentive to adopt a strategy which does not favour them [104].

The consequence of the energy oriented optimisation is that some agents are worse-

o�. The enforcement of the mechanism and the economic incentive for the journey are

becoming relevant. Thus an auction-based negotiation algorithm has been proposed,

whereby vehicles queuing to the tra�c-light regulated intersection jointly bid for the

priority, with the winner having to pay for their right of way from their onboard wallet

[105]. More generally, a market-inspired approach to urban road networks has been

theorised, whereby a number of payment-focused algorithms are proposed, o�ering a

dynamic intersection pricing algorithm or auctioning system. It is to be coupled with a

driver information system as a remedy to urban congestion [106]. A block-chain payment

systems has also already been implemented [107]. These publications are a voice for a

micro-payment based, pay-as-you-drive system. Although the literature is not extensive,

in the year 2019 Jaguar Land Rover has partnered with a cryptocurrency, to enable their

cars to autonomously perform transactions [108]. As a �rst use case the vehicle is to be

paid for information on the road quality data, but in future it is to serve as a payment

mechanism, e.g. for parking or congestion charges.

Since the ownership structure of CAVs is speculated to shift, as a taxi-like, driverless

pay-as-you-go mobility service may become a feasible operation model [109]. The privacy

aspect of such business model, whereby intelligent agent negotiates for the user, has also

been considered [104].

An Adaptive Cruise Control system has been coupled with an intelligent tra�c light

scheduling [24]. An auto manufacturer has implemented a �rst-generation implementa-

tion of this technology in their vehicles already [110], albeit only in a single country, where
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tra�c light systems has countrywide infrastructure standard. It is claimed that optimal

tra�c light approach trajectory can save 20% energy at no loss of time, as visualised in

Fig. 10 [111]. The second generation of this system is consider tra�c light schedule input

to adopt both the velocity pro�le and the powertrain control strategy in a manner similar

to [22].

Figure 10: Tra�c light enabled ACC. The red line symbolizes the tra�c light constraint.
Vehicle ahead is also a constraint. The data is then used to optimise the battery SOC
pro�le [111].

Finally, vehicles can also change lanes. It is not a challenge, from a control perspective,

as such a manoeuvre is a special case of both a platoon formation and an unconstrained,

Y-shaped intersection. A simplistic, static game-theoretic approach to lane merging con-

�ict has been o�ered, although the game design features arbitrary payo� de�nition [112].

A multi-lane motorway optimal lane selector algorithm has been proposed as well, fea-

turing a complex cost function, considering multiple decision factors, including travel

e�ciency, safety or control e�ort required [113]. There, parameters as safety, eqilibrium,

travel e�ciency, control e�ort, selection of the route and subjective preference are the

decision factors. The output is a reference number of the lane, which the vehicle should

follow. This algorithm has been also applied in Hardware-in-the-Loop [85], yielding road

throughput increase of 35%.

Summarising, there is a number of publications proposing various con�ict resolution

schemes optimising for time, or energy consumption. All of them provide strong, promis-

ing results, but there is no e�ort towards providing a background for individual economic

incentives for users participating in such system. Given the distributed ownership struc-

ture of the public tra�c agents, the issue gains importance when considering that a tra�c

cooperation scheme needs for voluntary stakeholder opt-in, in order to become feasible.

The user-oriented consideration to tra�c may suggest a path, whereby economic intention
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is a factor in optimal tra�c de-con�icting, a notion this thesis intends to further.

2.4 Game Theory

While an optimisation algorithm acts on a single control system, consisting of sensors,

a single decision unit, and actuators. Even with Multiple Input Multiple Output systems,

there always exists one point in the system, where all information streams converge.

In addition the sensors are honest, giving a complete information on the state of the

system and when a decision is forwarded to the actuators, it is always sel�essly executed.

Whenever either of the above conditions fail, we deal with more than one decision agent.

Then the decision process must account for actions of other agents too. There is no

central authority, and nobody is guaranteed to have a whole picture of the system.

While designing a controller the goal is to design a strategy to optimize a given system.

In case of game design the choice of control strategies is left at the discretion of players,

instead game designer chooses rules of the game to elicit certain social behaviours, e.g.

favouring one equilibrium over another [114].

Game Theory (GT) is a branch of mathematics, which considers systems with mul-

tiple, autonomous decision-makers. Games can be played once, as one-shot events, e.g.

when taking tactical decisions on a battle�eld. Then, it is di�cult to conceptualize any

equilibrium beyond level-k reasoning, that is attempting to estimate what would the ad-

versary do assuming what the player does (level 1), what would they do if they accounted

for what I do in response to what I do (level 2), and so on (level k) [115]. More often,

games are iterative, with the same mechanism reoccurring in a set of agents. In such

system, we cannot de�ne an explicit solution, therefore various solution concepts are

proposed.

A strategic model of interactions de�nes a game consisting of agents N = {1, ..., n},

where n ≥ 2 and i ∈ N . The agents have a set of choices ai ∈ Ai. The possible actions

agents take are assigned as A ⇒ N for each, ith agent. The joint actions a = (a1, ..., an) ∈

A1×, ...,×An =: A de�ne the payo� function

Ji(a) = f(ai, a−i), (1)

where the a−1 is the actions of all agents except the i-th.
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The Nash Equilibrium (NE) is a state of an iterative game, where no player has

an incentive to deviate unilaterally. If we mark an equilibrium strategy as a∗, a Nash

Equilibrium is a state when

∀i a∗ = arg max
a∈Ai

(a∗i , a
∗
−i), (2)

meaning the optimal response to an equilibrium strategy is an equilibrium strategy.

The Nash theorem states that every strategic game, with �nitely many players and

actions, always has a mixed strategy Nash equilibrium (NE) [116]. However, �nding an

NE in a continuous solution space belongs to NP-hard complexity class [117]. The other

equilibria, inspired by the NE and the most relevant to this thesis are:

• Correlated equilibrium [118] is one where an action is not only the best response

(>), but also equal (≥) to another.

• Pareto equilibrium (PE) [119] exists if no player can bene�t more without it costing

others. This is not relevant to zero-sum games.

• Bayesian equilibrium [120] is a NE played in a Bayesian game, that is where players

do not know their and adversary's payo� functions, but need to learn them from

observation. In a Bayesian game, the objective is not only to choose the best

strategy, but also to deceive the opponent's situational awareness.

• Stackelberg equilibirum [121] is thought of as an asymmetric situation, where one

player knows the adversary's strategy in advance. The order of the players is rel-

evant, and thus decision-tree form is relevant. In this thesis, however, only the

matrix form su�ces.

A game can also be designed as a zero-sum, where the sum of all payo�s is constant and

one agent's loss is another's gain. Such games are purely competitive. Non-zero-sum are

games where the payo�'s do not add up to a constant number. As a consequence, a form

of coordination is possible to beat the environment. Therefore every non-zero sum game

is partially competitive and partially cooperative [122]. It is further explained in Section

3.2. In experimental application a cooperative game, however, is only cooperative as long

as the players are incentivised to cooperate. It can be provided either by an external

authority, e.g. law, or be incorporated into the game design. The self-enforcement is
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understood as a capability of the framework to operate without external oversight. It

is achieved by consideration given to sharing of bene�ts enabled by the cooperation. A

side-payment method of enforcing cooperative games has been proposed recently [9].

The complexity and ambiguity of a solution results in game theory being an aid to

reasoning about a multi-agent problem, as opposed to an explicit solution. As such,

there is a number of example games, with certain distinct research characteristics. As an

example, we consider a Stag Hunt game. De�ned is a game with two players: ROW and

COL. Each can either attempt to hunt a Stag (S), where both are better o� cooperating,

or a Hare (H), a smaller payo�, but independent of the adversary. We can then create

a payo� bi-matrix, which considers all combinations of actions assigning value to each

case, for both players.

COL

R
O
W

S H
S 3,3 0,2
H 2,0 2,2

We can then observe, that there are two Nash equilibria. In a one-shot game, we

don't have any prior to draw conclusions from. Given a random chance of 50− 50, if we

go for a Stag, the expected payo� E for either player is 0.5 · 0 + 0.5 · 3 = 1.5. Compared

to a certain payo� of 2 for a Hare, the optimal solution is Hare. We can consider it as

a risk-dominant equilibrium. In an iterated game, however, the selection of a strategy is

also an information on the player's intention. One can play Stag, the locally suboptimal

strategy to mark the readiness to cooperate. An intelligent adversary recognizes it and

plays Stag too, arriving at the payo�-dominant equilibrium, with no incentive to deviate.

It is a Pareto equilibrium.

Engineering applications of GT involve distributed controller design used to facilitate

drone formations [123] or distributed electric power generator control. It is relevant for

wind turbine farms [124]. GT algorithms to foster cooperative driving are also present

[125].

GT is also extensively used to model tra�c con�icts already o�ering multiple ap-

proaches, employing advanced methods of �nding solutions in multi-agent systems, how-

ever, again, the game design features homogeneous agents [86] [14] [126]. GT is also em-

ployed to �nd numerous unconventional problems. As such we can �nd GT approaches

to the Poker card game [127], and to the political decision making scenarios [128].
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2.5 Further literature

This section contains any literature which is not essential for the positioning of this

thesis in relation to research on the tra�c optimisation. It provides, however, a high level

view on some non-engineering aspects of the tra�c optimisation. It is an introduction

to the Chapter 7, which focuses on the Framework Scalability Analysis, where the core

novelty of this work is tested against its assumptions.

2.5.1 Game Theory as a view on economy

Game theory �nds application in several �elds of research, such as economy, where it

serves to help understand decisions humans make [129] or design auction schemes [130].

Another recent example is the bounded rationality approach to economy [131] [132].

It strives to explain the deviations of neoclassical economy by means of cognitive science,

model decisions under the �nite computational power constraint.

One possible approach to GT is to treat it as a mathematical method of framing

con�ictual multi-agent optimal control or decision problems, to aid in the design of given

system environment. Games, however, have a natural tendency of converge towards some

equilibria, which tend to be summarised with literary parallels. As such we have the

stag-hunt game, described above, but other examples involve: the chicken game, beauty

contest, congestion game, cake cutting game, etc. All of them serve as metaphor to

re�ect some game dynamics, o�ering a frame for reasoning and understanding of societal

interactions or methods of arriving at the consensus [133]. GT also allows de�nition

of bargaining or auction algorithms. These negotiation games can be methodologically

formulated to design fair auction schemes or to frame historical events, such as the Cuban

Missile Crisis, in a numeric decision scheme [6]. It also has been employed to study

political negotiation scenarios, exempli�ed with a model of the dilemma faced by a voter

in a secret ballot election scheme, used in every western democracy, or parliamentary

veto bargaining models [128].

2.5.2 Air Tra�c Control

Consideration to road tra�c management cannot be given without mentioning Air

Tra�c Control (ATC). The optimisation problem seems similar: to manage con�icts

between agents, minimising delay and energy use. The environment, however, is quite
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di�erent. The very selection of words: Air Tra�c Control and Road Tra�cManagement,

mark di�erent liability structures. Whilst airborne the sole responsible for any damage

is the government appointed airspace operator [134], with the aircrew merely executing

ATC operator's instructions. By design it is a centralised system, with clearly de�ned

hierarchy, as any potential incident would be disastrous. On the other hand, on the

ground, where road collisions yield little risk of fatality, the drivers are the held liable.

By design, it is a distributed system.

The clearly de�ned liability has driven research on ATC de-con�icting for the previous

several decades [135] [136]. The cruising con�icts occur only in most congested areas

and are usually mitigated by vertical separation. The biggest challenge, however, is the

approach to the descend and landing phases, where all aircraft converge to the same

point, with the wake turbulence forcing a time separation. Additionally, each aircraft

type follows an individual descent path, which is sensitive to weather conditions and the

wait time is constrained by fuel burn. The Time-Based Separation (TBS) system [115],

an automated aircraft approach scheduling algorithm is recently being implemented in

the largest airports to assist the ATC controllers. It is a step towards automation of

ATC, where the key obstacle is not the implementation strategy, as it is on roads, but

computational complexity, system resilience and robustness.

The Airline Cost Index (ACI) is a function that de�nes the aircraft's operating cost,

accounting for operating time and fuel burn as a function of velocity. Should it be public

and known to the ATC, complexity of de-con�icting would decrease vastly. However, the

ACI is the key operating cost of an airline and thus the deciding factor in its business

strategy decision. Because of high competitiveness of the air travel market the ACI is

thus always a trade secret. On the ground, however, automated taxiing is being developed

[137].

As one can notice, while the ATC and road tra�c management are similar in their

core idea, the liability structure and nature of constraints have resulted in very di�erent

approaches. An aircraft operates in three dimensions, mitigating con�ict in vertical and

lateral axes, but can change its speed only in a very narrow window. Cars, on the other

hand, are constrained to their lane, obviously cannot �y, but can easily accelerate or even

stop. Therefore, with ATC research being several decades ahead, tra�c designers can

draw inspiration from their colleagues, but must do their own due diligence to understand
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the speci�city of the tra�c optimisation problem.

2.5.3 Communication in GT and self-enforcement

The main challenge of GT is that the formulation does not capture the contextual

information of the game. An example to visualise it is the ultimatum game [138], where

one player decides how to split the resource. The second player may reject it, then

nobody gains anything. The calculations and experimental results di�er. While mathe-

matically, the second player's best response is to accept any o�er, human players reject

unjust o�ers, with the threshold varying across culture. These unwritten social norms

convey expectations into the game, but there has been no formulation proposed, which

would enable capturing this phenomenon. The solution concept employed in this work,

the cooperative-competitive value [122] relies on the notion that agents can exchange

information and side-payments.

The Aumann's Conjecture observes that, in non-cooperative games, the communica-

tion between players allows to achieve higher overall welfare, even with no enforcement

mechanism. The only value of the agreement is to convey information [139]. It is the

payo�-dominance of the coordinated solution, that provides the incentive to honour the

agreement. However, the 'pre-play cheap talk' is also considered to come at no cost,

while the negotiation algorithm promising the PE, proposed here, comes at a measurable

computational e�ort, which should not be neglected in the game design.

2.5.4 Human driving and CAV

Human drivers and machine-based decision systemsreason in di�erent ways [140].

Humans understand the situation and its context, but are subject to fatigue. While an

'AI' never gets tired, it merely emulates reasoning and cannot guarantee its performance.

Economy and sociology are broad areas of research which, instead of considering

tangible objects like physics and engineering, deals with large systems consisting of human

actors. As a result it lacks tangible, measurable quantities and relies to a larger extent

on theory, for its metrologic aspect.

Engineers are focusing on maximizing the energy e�ciency of transportation. The

most e�cient way of saving energy is not to travel at all. However, a methodological

consideration of the reason for a journey would be impossible without violation of the
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user's freedom [141]. So far the �nancial ability has always served as the decision factor

deciding the distribution of goods or services, leaving the fairness of the system to be a

function of the distribution of wealth. The Austrian School of Economics proposes the

cost of opportunity as the cost of the gain that could have been achieved if an action

was not taken [142]. Applying this notion to mobility, the driver would assign a value of

time to justify their journey. To support this concept, the Value of Travel Time Savings

(VTTS) is a dominant economic factor for user bene�ts estimates, which are conducted

when deciding infrastructure development directions [143]. However, in this thesis the

Cost of Time evaluation, denoted CT , is applied to vehicle control. It serves as one of

the optimisation criteria o�setting the cost of vehicle operation, which is one of the main

contributions of this work.

2.5.4.1 Cognitive aspect of driving

The cognitive processes enabling us to drive are still unknown. Even automated racing

cars, in a seemingly much simpler environment than tra�c, are still far from matching

human drivers [144]. There is also literature attempting to measure the driver's distrac-

tion by means of eye movement tracking [145], or studying the e�ect of visual disruptions

on driver safety [146]. In the previous decade an e�ort has been made to develop a

prediction system which would aid in detecting potential collisions with other objects

based on intention prediction [147]. More recently a sensor suite dedicated to emotion

detection is being set up to analyse the relationship between emotions and cognitive load

[148]. However, there is little research attempting to explore the phenomena occurring in

the very human brain during driving, e.g. by utilising brain imaging techniques to track

thought activity, with [149] being the major publication.

Surprisingly, there are no legal regulations or research on the Human-Machine Inter-

face (HMI) between the driver and their car, resulting in today's cars having the driving

data feed morphed with entertainment for passengers, resulting in an 'infotainment' sys-

tem. It is a strong contrast with the aerospace industry, where consideration is given to

the cognitive processes undertaken by pilots while executing tasks, resulting in carefully

optimised layout of �ight instruments and innovations such as head-up display systems,

which are proven to improve pilot's precision in aircraft control [150]. Currently, research

focuses on enabling single-seat aircraft to be manageable from task load perspective by
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a single pilot [151].

2.5.4.2 Social norms

Society in which we live in consists of autonomous individuals. The space for argu-

ments always follows The free will. Every culture, however, develops a set of social norms

that provide behavioural patterns to ease these tensions. The simple example being a

formation of queue in a shop, or letting people to pass through a door. These everyday

processes escape our attention, but where performance of socio-technical system matters

the most, the military, the role of cultural norms has been identi�ed as a single most

important performance predictor [152].

Research on how such norms emerge indicate that heterogeneity of individuals fosters

creation of new norms, as stronger agents volunteer to challenge the status quo [3] [153].

The emergence of cooperation in the biosphere, a seemingly purely noncooperative world

is also easily observable and understood [154]. Currently attempts to capture social

network behaviours by means of GT algorithms take place [155] [156]. Their application

varies from improving urban space to advertisement targeting. In work on cooperation

between human and robotic agents, some �ndings indicate that adding noise to the system

helps improve the overall wellness [157].

Just as we refer to behavioural norms exploring cuisine abroad, in the same manner

tra�c norms are organized. Driving an automobile features a language formulated to in-

form (road signs), signal intentions (indicator and stop lights), or resolve con�icts (tra�c

lights or the law). The written, formal rules: The Highway Code also provides the rules

on how to share liability should an incident occur. There are also informal norms such

as using emergency lights to signal a tra�c jam on a motorway, �ashing one's lights to

signal a voluntary yield, or tailgating to signal hurrying. These norms may be very subtle

and account for the driving experience varying between countries. The emergence of such

particular unwritten rules is not known.

The literature on social norms in tra�c focuses on safety. The road accident predic-

tors are being sought for [158] and the road aggression on is one of focal points [159].

However, the emergence or control of informal tra�c norms described above is forgone. If

researched, however, it could provide a deliberative framework for �ne-tuning of a CAV
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tra�c behaviour to match local driving norms with precision unmatched by adaptive

learning algorithms.

2.5.4.3 Ethics of autonomous systems

Another social challenge of tra�c automation is ethics. With the exception of au-

tonomous weapon systems on a battle�eld [160], roads are the �rst occurrence of au-

tonomous systems to perform safety-critical decisions considering human life. Since it is

the OEM who takes responsibility, there is little clarity as to how to progress. There is a

number of papers considering the CAV ethics issue in critical conditions [161] [162] [163],

albeit super�cial, reluctant to draw conclusions. Most interestingly, an article studying

moral decisions humans make in a simulation of an event where it is too late to break

and one can either hit pedestrians or a wall indicate the heterogeneity of decisions across

various cultures [164]. None of the above, however considers safety of CAVs as an inher-

ent feature, ensuring fail-safe operation of vehicles, just as it takes place with aircraft or

nuclear systems, as it has been touched in chapter 2.2.1.

It is relevant to notice that consideration is given to the question whether autonomous

military aircrafts' kill-decisions are to be performed in deliberative architectures, where

decision parameters are ultimately human-decided. The alternative is an adaptive archi-

tecture, e.g. using Machine Learning (ML) [165], whereby an abstract decision rule is

tested in the process, to empirically match the model to observation. ML is the dominant

method for deploying decision frameworks autonomous road vehicles'. The intelligent ar-

chitecture design for negotiations in multi-agent environments is outlined in [166].

2.5.5 Future of road mobility

The research on tra�c management and the vision of industrial actors converge on a

vision for the future of road transport. The abundance of information, V2X connectivity

and autonomous control systems promise a highly synchronised, cooperative, safe mode

of mobility. The current paradigm, however, with a clearly de�ned liability is well estab-

lished in a very distributed environment. Multiple automotive manufacturers compete

with one another, attempting to predict the will of the consumers, while complying with

the governmental regulations. Consumers, in turn, comply with regulations, with the
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insurance services cushioning the costs. The multitude of actors results in the transition

period being di�cult to forecast.

As of the date of writing this work, there are OEMs, who provide V2V communication

on their vehicles to inform of the dangers on the road ahead [167]. The data sharing,

however, is limited only to vehicles of the same brand, since the trustworthiness of the

third party data is inestimable. However, today we put the safety of our lives in the hands

of others daily and, despite the car being everpresent, transport accidents are only the 9th

mode of death worldwide [168]. This discrepancy suggests there is a gap in understanding

of human social trust dynamics, from which information sharing paradigm among road

users could emerge.

The main change during the transition is in the liability structure. In an autonomous

system it is the service provider who is responsible, not the driver themselves. This causes

an ethical challenge. The safety decisions, which are currently made by drivers in the

heat of the moment, will now have to be formally prede�ned in software.

A possible solution of this stalemate, tackling both the safety and ethics problems

is shifting the role of the drivers to Open-Source programmers, who work together on

creating a global tra�c cooperation framework in the same way as Apache server software

has been created, that is by hobbyists, driven by passion [169]. The social structure of

Open-Source software developers and their motivations have been a subject of several

studies [170] [171]. This would require the driver, despite possibly not following the

situation on road as required by lower SAE autonomy levels, to be familiar with their

vehicle's decision architecture, and therefore being able to anticipate its failure points

rather than waiting for the vehicle to request a take-over.
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2.6 Summary of the literature

The literature review has outlined the body of research focused on tra�c optimisa-

tion. The �rst focus, the literature on powertrain optimisation (2.1) o�ers strong, well

structured research with no gap for novelty. Moving on to the control of vehicles, the his-

tory of Connected Autonomous Vehicles (2.2) and state-of-the-art challenges are outlined,

identifying safety and interactions with human drivers as key challenges. The tra�c man-

agement research (2.3) o�ers methods of �ghting congestion. There is extensive literature

on both macroscopic tra�c algorithms and cooperative agent-to-agent systems, applied

to the relevant scenarios: intersections, overtakes and platooning. Novel business models

are explored and the security of V2V communication is studied. But the consideration to

the user's economic incentive to opt-in into either of these technologies remains a gap. In

addition, the heterogeneity of agents, otherwise neglected, may serve as the key enabler

in �nding energy-optimal solutions to tra�c con�icts.

Having outlined the direction of applied research, the mathematical tools needed to

conceptualise de-con�icting, the game theory, is introduced (2.4). The extended lit-

erature provides a step back, to o�er a distant look on the economic and sociological

relevance of the tra�c optimisation problems, such as ethics and cognitive science. Air

Tra�c Control (2.5.2) is also mentioned as a good example of successful implementation

of optimisation algorithms to de-con�icting. The di�erences between aircraft and cars

are so vast, however, that the solutions applied are not compatible. Finally, the litera-

ture on human-machine interactions 2.5.4 in distributed systems is gathered, to consider

challenges to CAV implementation.
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3 Formulation of the tra�c con�ict problems

This chapter outlines the mathematical formulation of the optimal resolution of the

tra�c problems. Firstly, the vehicle model is outlined. It is then followed by the de�nition

of game-theoretic solution concept assumed and the geometric model of con�icts. All the

assumptions taken in order to formulate the problem and control its complexity are also

listed. Finally the negotiation algorithms for all considered cases are presented.

3.1 Vehicle model

While more re�ned vehicle models improve result precision, the main objective of

this work is to propose a fundamental understanding of the decision and negotiation

algorithm. Simplistic vehicle models are thus applied for clarity, as there is little novelty

in already researched optimality of powertrain selection [16].

Powertrains can be modelled either as a forward-facing or backward-facing model.

The �rst one employs a driver model and a closed-loop controller with a timestep under

0.1 second, allowing to capture the whole of longitudinal dynamics of the system and its

physical limits [172]. It is deemed to be unnecessarily complex, however, for the scope of

this work, which focuses in inter-vehicle con�ict-resolution. In the later, backward-facing

model, the drivecycle provides reference to the powertrain model, which operates on a

quasi-static basis.

For the purpose of this work, a simpli�ed, backward-facing powertrain model is em-

ployed and outlined here. The time is discretised into T = 1, 2, ..., i, ...N elements with a

timestep tstep in order to employ Euler forward method to numerically resolve the vehicle

model. The nth vehicle's state is de�ned by its acceleration an, speed vi,n and position

si,n as

an =
Fnet,i,n
mi

, (3)

vi+1,n = vi,n + ai,ntstep, (4)

si+1,n = si,n + vi,ntstep. (5)

The control variable is the acceleration an, being assumed constant, as dynamics are
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neglected for simplicity, to focus on the strategy selection. Then the time of given velocity

change manoeuvre Ta is found from the boundary velocities V ∗n and V ovt
n

Ta =
(V ovt

n − V ∗n )

an
. (6)

The propulsive force required to execute is found by relating to the balance of forces

de�ned as

Fnet,i,n = FW,i,n − Froll,i,n − Fdrag,i,n (7)

where the FW,i,n is the propulsive force, assumed to represent torque of the motor acting

on the tyre-ground interface. It is constrained by F̂n, to limit the powertrain power

output, as

FW,i,n ≤ F̂n. (8)

Regarding the resisting forces, the rolling resistance is de�ned as

Froll,i,n = µroll,imgvi,n, (9)

where m is vehicle's mass and g gravitational constant, and the aerodynamic drag force

is de�ned as

Fdrag,i,n =
1

2
AnρairCi,dv

2
i,n. (10)

The powertrain's unit energy consumption is calculated as

Ei,n =
1

ηP
FW,i,nvi,ntstep (11)

where the powertrain e�ciency ηP is a product of all powertrain components, in the case

of electric system ηi,M , ηi,PE, ηi,B, being respectively, electric motor, power electronics

and battery.

Finally, the energy expense of a manoeuvre is found as

En =
∑
N

Ei,n. (12)

Given that friction brakes convert kinetic energy to heat, any its use is wasteful. Since

this work focuses on the strategic selection of optimal vehicle control strategies friction
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braking is neglected. Apart from energy dissipation, the deceleration manoeuvres may

performed with electric motor, recovering some of the energy. It is capped at a �xed

maximum retrograde force

F̂rec = −F̂W,i,nβ, (13)

where β is the energy recovery limit.

3.2 Game-theoretic solution concept

Game Theory is a method of formulating optimisation problems, as explained in Sec-

tion 2.4, where more than a single decision agents are present. On a road it could be

two vehicles approaching an intersection on a collision course. They are self-optimizing

agents, whose objectives are di�erent, but not mutually exclusive. Thanks to the proper-

ties described here, they may agree on a globally optimal solution and share the bene�t,

according to their negotiative power. Equilibrium seeking approaches to GT do not re-

quire enforcement, but are computationally expensive and cannot guarantee the payo�-

dominant solution [117]. Incentivised by a promise of an optimal solution, a self-enforced

cooperation can be achieved by a cooperative-competitive (co-co) solution concept, which

is predicated upon agents being able to communicate [173], but guarantees the Pareto-

optimal equilibrium at low computational cost, under requirement of agent honesty. The

threat of cost wasted by a manoeuvre, which is interrupted by the adversary's agreeability

constraint, together with the promise of e�ciency are assumed to su�ce to justify the

choice of the solution concept. The problem of the system's sensitivity to agent honesty,

however, is further discussed in Section 7.2.

This work o�ers an optimisation framework based on cooperative Game Theory,

whereby CAV agents cooperate by sharing their intentions to �nd the optimal solution,

and the payment to enforce it, limiting the communication to four messages.

The information abundance in a tra�c con�ict anti-coordination game enabled by

the communication allows to shift the strategic solution of tra�c con�icts from some NE

to the Pareto Equilibrium, whereby resources: energy and time, are allocated optimally

with respect to users' intention. The di�erence between an individual's locally optimal

solution and the globally optimal PE solution is covered by a side-payment.

If agents are heterogeneous, their interaction is by de�nition a non-zero sum game. If
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they are willing to communicate, they can adopt a pair of strategies (u#
1 , u

#
2 ) [122] which

minimise the combined, cooperative cost J#
sum as

J#
sum = min

u1,u2

(
J1(u1, u2) + J2(u1, u2)

)
(14)

where J#
sum is the total, combined cost of cooperative strategies, which by de�nition of

non-zero sum games is a PE.

In the pair of strategies yielding J#
sum, one of the agent's noncooperative strategy may,

however, return greater payo� than a cooperative one

J∗n > J#
n . (15)

Then, a rational agent will never cooperate, unless an incentive is provided. However,

given the de�nition of PE [119] we observe that if the cooperative solution is globally

more optimal than NE, meaning that the cooperation is enforceable, then at least one

agent's payo� in a cooperative solution shall be greater than its Nash payo�, that is

∃ J#
sum > J∗sum ⇒ J#

−n > J∗n > J#
n . (16)

where −n refers to the other agent.

The bene�ting agent then can a�ord, and needs to provide a side payment p = J [ to

compensate for the inequality (15) guaranteeing, under threat of rejection, that

J#
n + J [n > J∗n, (17)

satisfying the requirement of agreeability.

As proposed in [174], the payment should be proportional to the players' power,

understood as relative values of J∗, and contribution to the common achievement. The

payo�s are thus divided as follows:

J#
split =

J1(u1, u2) + J2(u1, u2)

2
, (18)

J [split =
J1(u1, u2)− J2(u1, u2)

2
. (19)
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With such division, we can formally split the game as a sum of a purely cooperative

game, where players have payo�s J#
n , and a purely competitive, zero-sum game, where

players have opposite payo�s J [n = −J [−n. Then, the result of a co-co game is de�ned as

J1 =
J#

2
+ J [, J2 =

J#

2
− J [. (20)

3.3 Topology of tra�c con�icts

This subchapter de�nes the boundaries of the proposed framework. Given that the

purpose of transportation is to generate value by the movement of goods or users, at the

expense of time and energy. The loss of time is inversely proportional to the speed, while

the largest contributors to the energy ine�ciency are braking and aerodynamic drag.

The elimination of braking is a matter of data, enabled by the connectivity. The drag,

however, is roughly proportional to the square of the speed and thus can be addressed

by careful selection of the cruising speed.

The possible manoeuvres a car can perform are proposed in Fig. 11. They are sorted

with respect to the order of the main reference parameter. For example, in case of parking

or passing a stationary obstacle, the limiting constraint is the position, while on a corner

it is the lateral acceleration. The Intersection, Overtake and Lane Change are special

cases where both position and velocity are important.

Figure 11: The division of the possible road vehicle manoeuvre, with respect to the order
of the spatial dimension. Encircled are the manoeuvres relevant to energy and time
optimisation.

36



Given the above, the most basic manoeuvre subject to time/energy optimisation is

free cruising. With an optimal speed V ∗ selected and adhered to, interruptions occur

forcing departure from the V ∗.

We propose that all the energy/time relevant tra�c con�icts can be de�ned with

respect to the temporal and spatial domains, as visualised in Fig. 12. Time-wise, the

con�icts occur either as a discrete event, or continuously, over-time. Space-wise, the

con�icts can be of �xed location, or can be relative and delocalized. Of course the more

constrained and time-critical a con�ict, the more challenging the implementation is. As

such human drivers can be observed attempting to communicate, be it by eye contact

or relative positioning in Platooning and Lane Change scenarios, as they allow enough

time to do it. The constrained and event-critical Intersection and Overtake, on the other

hand, are strongly regulated, with the Highway Code, road markings or tra�c lights.

The growing computational power at hand, may soon enable a feasible optimal con�ict

resolution paradigm for all tra�c con�icts.

Figure 12: A graphical representation of the types of tra�c con�icts across the tempo-
ral and spatial domains. On time domain we distinguish time-critical and continuous
events. Similarly, in spatial domain, the con�ict can be constrained by the environment
or delocalised.

All the interactions between vehicles, where the optimal strategy is a tradeo� between

energy and time are assumed to be platooning, overtaking, lane change and negotiating

an intersection. The Fig. 13 outlines the topological representations of the considered
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problems. Other scenarios, which the reader can think of, cannot be de�ned with respect

to this cost function, as comfort or safety are much more relevant. For example in

cornering, the energy loss is related to di�erential friction and the tyre slip. Therefore

in this work, the manoeuvres are de�ned only by the longitudinal dimension, neglecting

the lateral component.

The lane change is a special case, carrying both the easiest features of the Overtake

and Platooning. While the problem is geometrically similar to a platooning, the solution

will resemble a reduced overtake con�ict. While it is mentioned here for the sake of

completeness, it will not be further considered to avoid repetitions. De�nitions are as

follows.

• Cruising is de�ned as a steady state operation at constant speed V .

• Intersection is a tra�c con�ict occurring between agents on separate routes, which

are intersecting. The overlap of the roads is the Con�ict Zone (CZ). The problem

is de�ned as a CZ occupancy schedule.

• In-line con�ict occurs as an agent encounters a slower vehicle ahead, preventing

it from cruising freely, costing time. It can be resolved by:

� Overtake, which occurs when the road conditions allow. While a free over-

take, where no speed change is needed as agents have enough space to remain

alongside, opposing tra�c or road topology may call for speeding up, consum-

ing more energy. An overtake is a single energy expense, which mitigates the

over-time loss of time.

� Platooning or convoy, occurs when an overtake is not feasible. There the

agents agree on a new, consensus speed and proceed together.
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Figure 13: A map of all the scenarios a vehicle can encounter accounting for the assump-
tions, which may be optimised with respect to energy and time decision variables

3.4 Input to calculations

In order to verify the performance of the framework, all the scenarios outlined above

are simulated and analysed. Because the optimality of the solution is predicated upon

heterogeneity of agents, two vehicle types are considered: a Car and a Truck. Their indi-

vidual parameters are listed in Tab. 1. Common parameters are: powertrain e�ciency,

assumed ηP = 0.82, rolling resistance µroll = 0.005, and energy weight, corresponding

to its market value CE = 0.12 [¿/kWh] [175]. In case of the dynamic scenarios, that is

overtake and intersection problems, the acceleration is kept �xed at an = 2 [m/s] and the
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model dynamics is discretised with a timestep tstep = 0.1 [s]. The requirement to precisely

model the energy consumption, in case of the dynamic scenarios, calls for integration of

velocity pro�le at every iteration. This slows down the numerical optimization algorithm.

The intended embedded implementation of the algorithm is to be performed in Python

or Objective-C languages. These factors have led to select an exhaustive search for op-

timization. Later, in Further Considerations, Section 6.3, dynamic calculations employ

MATLAB's optimisation toolbox function fmincon.

Table 1: Vehicle types and their di�erentiating parameters. The Car is a generic small
passenger vehicle weighing 1.4 t, whereas the Truck is a small cargo vehicle with 10 t of
mass.

Veh. type mass aerodyn. area drag coef. length max force

Symbol m [kg] A [m2] Cd [−] ∆X [m] F̂n [kN]
Car 1400 2 0.3 10 4
Truck 104 4 0.5 25 10

3.5 Calculation assumptions

The algorithm presented in this work will be developed and modelled in a software en-

vironment. With all the prerequisites to outline the algorithm mentioned in this Section,

in order to present the results, as obtained in Sections 4.5 and 5.2, all the simulations are

performed based on the following assumptions. Some of them are challenged in Sections

6 and 7.

• No information loss: the Quality of connectivity Service (QoS) is assumed to be

perfect. There is no latency and no data packets lost. All agents can communicate.

• Honesty: the agents are always truthful when sharing their objective functions.

This eliminates a substantial amount of complexity, and is feasible under the self-

enforcement assumption and is further discussed in Section 7.2.

• Full tra�c penetration: all of vehicles on roads are capable of communication,

negotiation and execution of prede�ned speed pro�les. This notion is discussed in

Section 7.3.
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• Self-Enforcement: ideally, optimal solutions should be agreed upon without ex-

ternal enforcement. Thus, for rational, autonomous agents to be willing to partici-

pate, the participation must always be bene�cial. It is feasible, given that cooper-

ation yields optimality and a side-payment mechanism exists to share the bene�t,

as it is outlined in Fig. 14.

Figure 14: The cycle of self-enforced cooperation.

• Longitudinal positioning error is neglected, as this causes safety problem in

cooperative scenarios. In validation its mitigation is emulated by introduction of a

distance margin.

• Lateral movement is neglected, since vehicles do not operate at the limit of

handling, tyre slip is negligible and energy loss minimal.

• Vehicle dynamics of higher order is neglected. The acceleration changes are

instantaneous.

• Anciliary loads such as HVAC or headlights are neglected. This assumption is

challenged in Section 7.1.1.
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3.6 Cruising, the cost function

In the case of uninterrupted cruising, most often only the energy is considered [99]

[176], as the other operating costs are either proportional to it or negligible. However, if

we optimise just for the cost of operation, the optimal solution is to stand still. Hence, a

component of the cost function de�ning the purpose of the journey is required to o�set

the cost.

Founders of the Austrian School of Economics [141] suggest that any economic phe-

nomenon, such as commuting, is a result of human individual intention. Furthermore,

as an individual chooses between the available, yet exclusive options, the choice of either

carries an additional cost of not being able to pursue the alternatives, called the Cost of

Opportunity. We may then account for the cost of time a journey takes de�ning it as a

value of user's time CT
[
$/h
]
. It is intended to be selected by the user of the vehicle, as a

mean of expressing their intention as to how much do they hurry. As the user begins their

journey, currently they de�ne the destination in the navigation system, which predicts

the duration of the journey. The novelty here is to collect not only the destination but

also the context of the journey, i.e. how much does one hurry. This could be interfaced

by o�ering a choice on the time of arrival to the destination, providing the cost-bene�t

estimation by a slider as in Fig. 2.

If we then consider that the intention is to move a distance ∆S, in some steps δS,

and v is the speed at given time. Then, since it cannot be in�nite, for given speed there

is always a time elapsed ∆t(v) de�ned as

∆t(v) =
∆S

v
. (21)

Since the loss of time occurs over the distance of the journey

∆T (v) =

∫ S

0

∆t(v) dS :=
1

v
. (22)

The energy is found in a similar manner from the propulsive force necessary to maintain a

steady state speed v, considering the powertrain e�ciency ηP , aerodynamic characteristics
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CdA and rolling resistance coe�cient µroll.

E(v) =
1

ηP

∫ S

0

(1

2
ρairCdA v2 + gµroll v

)
dS. (23)

Then the value of the unit of energy consumed by the powertrain is de�ned as CE,

and the overall cost function of each agent n is then a balance between time and energy.

Jn(v) = CEE(v) + CT∆T, (24)

or in more structured form

Jn(v) = Av2 +Bv + C +
D

v
, (25)

where:

A =
CE
ηP

1

2
ρairCdA (26a)

B =
CE
ηP

gµroll (26b)

C = 0 D = CT . (26c)

Consideration of extensions to the cost function is presented in Section 7.1. Apart

from time and energy, there are also other factors which may be accounted for, including

ancilliary energy consumption, users' comfort, or wear model of the sensitive components

of the vehicle, such as the battery [177], to control vehicle's operating cost as a whole,

or manage pollution. The ride comfort and perception of safety are the most imminent

candidates [178] [179], but the main control inputs for them, are relative position and

its higher temporal derivatives, acceleration and jerk. Accounting for them would thus

require much greater computational power. This, along with the subjectivity of safety

and comfort, results in a focus on two main decision factors.

The optimal cruise speed V ∗ which minimizes the cost function is then just a function

of time and energy costs and is found as

V ∗ = argmin
v

(
Jn(v)

)
. (27)

The minimal cost per unit distance, i.e. the cruising cost CC , corresponding to V ∗, is

43



de�ned as

CC,n = Jn(V ∗n ) = min
v

Jn(v). (28)

The derivative of the cost function (24) with respect to velocity assumes the form

dJn
dv

= 2Av +B − D

v2
(29)

which, when solved for V ∈ R+ has only one root, guaranteeing a unique minimum.

The sensitivity of optimal cruising speed V ∗ to user's objective CT is examined herein,

as it is the only variable that is not �xed, for a given vehicle.

Fig. 15 visualises the components of the CF. The cost of time delay term is a hy-

perbola, while the energy cost is as a parabola. The CF minimiser refers to the optimal

speed V ∗. Going slower is time ine�cient, while going faster than needed wastes energy.

Then, cost functions, for the vehicle parameters V P of Car type, and the trajectory

of the minimizer for CT varying between $5 and $55 are presented in Fig. 16, to showcase

the CF's dynamics. The marginal decrease of CT naturally o�ers diminishing gain in

optimal speed V ∗, and the CF minimizer follows a parabola itself.
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Figure 15: The cost function and its components, the hyperbolic Cost of Time and the
parabolic Cost of Energy. The CF minimizer refers to the optimal speed V ∗. Going
slower is time ine�cient, while going too fast wastes energy.
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Figure 16: The cost functions sensitivity to varying cost of time CT . The red curve
indicates the trajectory of the functions' minima. It follows a parabola, as the increasing
speed results in the drag increased as its square.

In inter-vehicle communication, the CF serves as a cost of departure estimator. Ob-

serving the dynamics of the CF, we can observe that the slope is smaller for ∆V+, since

the hyperbolic component approaches in�nity when stopping, meaning speed change by

the same value may incur less cost whilst accelerating. the Cost Function's gradient dif-

fers, depending on the direction, as opposed to a common quadratic cost function, where

the cost function is de�ned with respect to a �xed weight and a quadratic expression

(x− x0)2. There, the hyperbolic behaviour on the time-ine�cient, slow-down side is not

present. Implementation of a tra�c negotiation, with a hyperbolic term approaching

in�nity as the speed approaches zero,

lim
v→0

(
Jn(v)

)
=∞ (30)

may result in the algorithm appreciating the cost of delay appropriately. Fig. 17 visu-

alises the di�erence between the hyperbolic cost function developed here and a quadratic

one.
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Figure 17: The di�erence between the hyperbolic CF presented herein and a standard
quadratic cost function (x− x0)2. Extended, asymmetric CF captures the heavy penalty
on the jammed, low speed journey, and is more lenient towards speeding up in relation
to the quadratic CF.

3.7 Conclusions

The backbone of the V2V-enabled cooperative tra�c de-con�icting framework has

been outlined in this chapter. It begins with the de�nition of the vehicle model (3.1) and

the GT solution concept applied (3.2). Then it explains the concepts related to vehicle

control, the topology of the con�icts, and other assumptions made to perform calculations

(3.3). Finally, the cost function is proposed, introducing a notion that vehicle's objective

is derived from its parameters and the user's value of time cost of opportunity (3.6).

The CF's minimum indicates the optimal cruise speed and its dynamics is compared to a

quadratic CF, observing a bias against standing still, as it approaches in�nity when close

to zero.

The de�nition of the key building blocks of the framework in this chapter allows to

move on to its application on intersections and in-line tra�c con�icts in the following

chapters.
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4 In-line con�ict resolution

The Cost Function (CF), which allows to �nd the optimal cruise speed V ∗, is de�ned

in the previous chapter, together with the topology of possible con�icts between cars.

This section outlines the negotiation algorithm. It utilises the cooperative-competitive

solution concept, outlined in Chapter 3.2, capitalising on the dynamics of the CFs to �nd

the globally optimal solution to con�icts, along with the side-payment needed to enforce

it. The algorithm is then applied to it to in-line con�icts, that is a scenario where a

freely-cruising vehicle encounters a slower one ahead. It can overtake it, or propose to

form a platoon.

4.1 Cooperative con�ict resolution

The con�ict resolution requires communication, compliance and cooperation. This

section de�nes the communication algorithm. Its architecture, where calculations take

place, and semantics, that is the messages exchanged [180]. The Tab. 2 lists the commu-

nication occurring as the Ego Vehicle (EV) meets an Obstacle Vehicle (OV). It requests

the adversary's vehicle parameters V P , to execute the algorithm as outlined in Section

8.1.1, and to �nd the optimal solution to the con�ict. The manoeuvre is then proposed

and rejected or agreed upon or, limiting the negotiation communication to four mes-

sages. The architecture of the negotiation algorithm is presented in an activity diagram

visualised in the Fig. 18. It has been inspired by the N∗ negotiation algorithm [181].

In addition, the input data to the algorithm is listed in the Tab. 3, and the decision

variables for each event are listed in Tab. 4. Given that vehicles are to interact with each

other, X̌n de�nes the n
th car's minimal distance at which other vehicles can approach it.
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Table 2: The table of possible messages to be exchanged between agents.

Message Content

Request parameters -

Share V P
{V ∗, A,B,C,D, X̌n}

see eq. (25)

Propose a solution see Tab. 4

Decide Yes/No

Table 3: The input parameters for the tra�c con�icts, de�ning the environmental con-
straints relevant to given topologies.

Scenario Input Symbol

Cruise User's value of time CT

Platooning expected platooning distance SS [m]

Overtake dynamic overtake gap Smax [m]

Intersection communication range SI [m]

Table 4: The control variables which de�ne the strategies for each topology. The output
of the decision algorithm.

Scenario Decision variable Symbol

Cruise Equilibrium speed V ∗

Platooning Consensus vel., payment V #
P [m/s], p [$]

Overtake Cons. vel. pro�les, payment V ovt
EV , V

ovt
OV , p

Intersection Phasing vel. pro�les, payment VP , p
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Figure 18: Activity diagram of the communication between agents needed to �nd an
agreeable strategy. The EV, who has the biggest incentive to cooperate takes the initia-
tive, requests the OV's parameters and assumes the computational burden.
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4.1.1 Strategic mode selector

The possible scenarios a CAV can encounter are outlined in Section 3.3, however,

since the individual scenarios require speci�c functions, and a communication protocol.

Therefore, a strategic �nite-state automaton is visualised in Fig. 19. It allows for navi-

gation between the scenarios presented. Either vehicle can Cruise (C) and as a con�ict

occurs the agents employ GT resolution algorithm for given scenario. Then, as Cruising

is not possible due to obstacles, the transitions to Intersection (I) or the in-line con�icts:

Platooning (P) and Overtake (O) occurs. The former one, however, can transition to the

latter, as when the road conditions change an e�cient overtaking manoeuvre may emerge

as a new possibility. The set of all possible manoeuvres X is such that X ∈ {C P O I}.

Again, the lane change here is a special case of the P.

Figure 19: Finite-state map of two automatons navigating their interactions. While C
can transition to any other state and back, but P can be resolved either by agents parting
their ways or an overtake, should the road situation change.
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4.2 Platooning negotiation

Suppose that as a vehicle cruises freely, it encounters a constraint ahead, in a form

of a slower vehicle or a platoon ahead, one of the solutions is to request an increase of

the speed, incentivising it with a payment. The proposed approach, assumes that each,

nth vehicle shares their cost function jn(v), albeit normalized by subtracting the cruise

cost CC,n, and only between participating agents V ∗, as due to convexity the solution lies

between them. Then the CF de�nes only the cost of departure from V ∗ and is de�ned as

jn(v)|VEV
VOV

= Jn(v)− CC,n, (31)

or by assigning the negative cruise cost to the constant C in the CF (26c) C = −CC,n.

Because this normalized CF is valid only for given journey, it is further called the Local

Cost Function (LCF). It is de�ned as jEV (v) and jOV (v), for platooning speeds between

V ∗EV and V ∗OV , and discretised with a step ∆V . Becasue the GT uses payo� matrices

to de�ne con�icts, the Tab. 5 represents the LCF expressed as a payo� matrix MP,n.

It de�nes the in�uence of agents' strategies on each other. Since the information loss

is neglectd and any set of strategies outside of the diagonal of the matrix would be

infeasible from a safety perspective, the values not on the diagonal are rejected. The

solution concept is based on complete information, eliminating the equilibrium seeking.

Table 5: Platooning payo� matrix MP,n. Only the diagonal is saturated, as any other
combination, by de�nition of the manoeuvre, is not feasible.

VP V ∗OV V ∗
OV + ∆V · · · V ∗EV

V ∗OV jn(V ∗OV ) NaN · ·
V ∗
OV + ∆V NaN jn(V ∗OV + ∆V ) NaN ·
... · NaN

. . . NaN

V ∗EV · · NaN jn(V ∗EV )

Since the promise of payment turns the game into a cooperative one, the payo�s from

diagonals of MP,EV and MP,OV are then summed as

jP (v) = jEV (v) + jOV (v) (32)

and the optimal platooning speed VP is found as
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CP = min
VP

jP (v). (33)

Then, the initiating agent proposes a platooning speed VP . The cost of the OV's

departure from V ∗OV is covered by the EV's payment pP = jOV (VP ). Note that this

formulation de�nes the speci�c cost of platooning with the unit [$/km].

To evaluate the performance of the framework, the reference, that is the noncooper-

ative solution, is de�ned as

CP = min
V NC
P

jP (V NC
P ) (34)

where V NC
P is the noncooperative platooning speed. The Price of Anarchy (PoA), de�ning

the loss of optimality of the GT solution in relation to the globally optimal, is then

PoA =
jP (VP )

jP (V NC
P )

. (35)

4.3 Optimal overtaking manoeuvre

An overtake is an alternative to the platooning strategy. The reasoning behind this

is to spend energy in order to mitigate the continuous loss of time when platooning. An

energy-focused overtake model is thus proposed below.

4.3.1 Overtake model

As mentioned above, the lateral movement is neglected as there is substantial work

addressing it [182] [83]. The model is thus focused only on longitudinal dimension and

energy. While the Xi,n de�nes given vehicle's distance to the reference frame, the ∆Xi

is the relative, longitudinal distance between the EV and OV at given timestep. The

event-related safety distance X̌s is the largest of either vehicle's safety distance X̌n (see

4.1), but accounted for vehicles' length ln, since they are modelled as mass points.

Xs = max
EV,OV

X̌n +
1

2

(
lEV + lOV

)
. (36)
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Then, the overtake manoeuvre is de�ned to occur when relative distance ∆Xi is within

the absolute value of the safety distance

2Xs < |∆Xi|, (37)

from −Xs with the OV in the lead, to +Xs with the EV in the lead.

The frame of reference for an overtake is considered to be the moment vehicles begin

an overtake. Then the longitudinal distance of the manoeuvre is constrained by the

maximal distance to be spend alongside, Sa. Since during the overtake the EV has to

drive two vehicle lengths further, the distance of the OV is constrained to

Sa,OV = Sa − (2Xs). (38)

The positions during the overtake are de�ned using the moment vehicles begin to overlap

as a reference. It is assumed that the manoeuvre is performed either at a constant speed

vovt,n or constant acceleration an. The selection of manoeuvre accelerations depends on

e.g. battery wear or user comfort. To focus on the negotiation algorithm, an is �xed.

Thereby each agent's decision variable is the overtake speed only. Example speed pro�les

for an overtake are presented in Fig. 20. The overtake then consists of three phases:

acceleration at an from V ∗n to the preselected overtake speedy Vovt,n, cruising at constant

Vovt,n and deceleration back to V ∗n at −an. Acceleration rates are assumed constant,

leaving Vovt the only decision variable.
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Figure 20: Velocity pro�les of vehicles performing an overtake, visualised in space domain.
The velocities are assumed to be adjusted before the overlap, as to minimize the time on
the opposite lane.

Then, the powertrain model returns energy consumption to evaluate the energy ex-
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pense Covt
E,n. The overtake cost is found by adding the time cost as

Jovt(V
ovt
EV , V

ovt
OV ) =

∑
N

Covt
E,n + Covt

∆T,n. (39)

The manoeuvre is constrained by the oncoming tra�c

V ovt
EV − V ovt

OV > 2Xs
V ovt
EV

Smax
. (40)

Since the overtake gap is never stationary, a maximal distance to perform an overtake is

derived from dynamics of the oncoming vehicle. De�ning Sgap as a distance between two

oncoming vehicles, between which the overtake is to occur, which are moving from the

opposite direction at Vgap,

Sa = Sgap

(
1− Vgap

V ovt
EV

)
. (41)

This can be viewed as relative speed being su�cient to pass before the EV's distance

exceeds Sa. It is assumed that vehicles coming from the opposite direction have a known,

constant speed, so the Sa is constant.

Equation (41) for the dynamic overtake gap length Sa has been derived from the real

length of the gap Sgap, and the velocity of the gap Vgap. After factoring the Sgap into the

parentheses the equation (41) is

Sa = Sgap −
Sgap
V ovt
EV

Vgap, (42)

where overtake time is de�ned by a fraction

Tovt =
Sgap
V ovt
EV

, (43)

which then allows to �nd the distance the oncoming tra�c travels during the overtake

Sgap = −VgapTovt (44)

which is subtracted from the static gap, returning to (42).
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4.3.2 Optimal overtake

With the overtake model as described above, a matrix of possible solutions to the

con�ict MVovt is created. Given a speed set from V ∗n to the highest modelled overtake

speed V̂n, discretised with a step ∆V

V ovt
n = {V ∗n , V ∗

n +∆V , ..., V̂n}, (45)

theMVovt assumes the form as in Tab. 6. In reverse to the EV, the OV's speed is counted

from the minimal V̌OV to V ∗OV .

Table 6: Payo� matrix MVovt for an overtake. The last position in the �rst row, M1,N , is
presented as infeasible. The notation is simpli�ed for clarity.

V ovt
EV \V ovt

OV V̌OV · · · V ∗OV

V ∗EV Jovt(V ∗
EV , V̌OV ) Jovt(V ovt

EV , V
ovt
OV ) NaN

...
... Jovt(V ovt

EV , V
ovt
OV ) Jovt(V ovt

EV , V
ovt
OV )

V̂EV Jovt(V̂EV , V̌OV ) · · · Jovt(V̂EV , V
∗
OV )

Then the optimal overtaking manoeuvre is a vector of V ovt
n which minimizes theMVovt

Covt(VEV , VOV ) = min
V ovt
n

(
MVovt(VEV , VOV )

)
. (46)

Given the convexity of the CF, the V ovt
n is found by �nding a root of cost function's

gradient

(V ovt
EV , V

ovt
OV ) 3 ∇Jovt(V ovt

EV , V
ovt
OV ) = 0, (47)

subject to feasibility constraint

V ovt
OV < − 2Xs

Smax(1− Vgap
V ovt
EV

)
V ovt
EV + V ovt

EV . (48)

and powertrain force constraint

Fnet,n < F̂n, (49)

where F̂n is the maximal propulsive force.

Finally, as agreeability condition, payment povt = Covt
OV , covering all costs of the ma-

noeuvre on OV's side is issued, as the EV would be free to cruise unimpeded.

55



4.4 Decision rule

Having evaluated the speci�c cost of platooning CP and the cost of overtake Covt, the

decision to overtake is selected if

CPSS ≥ Covt (50)

and platooning otherwise. The EV proposes to OV a feasible strategy and a payment,

which, to ensure enforcement, must satisfy (17). The strategy selected by the EV, be it

platooning or an overtake, is accepted by the OV if

Cx − p ≥ CC . (51)
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4.5 Results

Since the platooning and overtake models and optimisation routines have been out-

lined, this Section features the calculation results.

4.5.1 Platooning

In a scenario where a freely cruising vehicle encounters a slower one ahead, which

cannot be overtaken, the platooning negotiation is performed. The costs of departure

from optimal speed for each vehicle is compared and the possible solution points are

found. The results, for two Cars with various CT , are visualized in Fig. 21. Point 1

marks the cost of a baseline, non-cooperative manoeuvre, where the EV merely follows

the OV at OV's V ∗. The point 2 marks the cooperative function's minimum, where

agents' combined costs of departure from optimum are minimised.
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Figure 21: A result of the platooning negotiation algorithm. The blue point marks the
cooperative, Pareto equilibrium solution, while the red one marks the noncooperative,
Nash solution.

The same calculation has been performed for various vehicle types, to explore how

the di�erence between agents changes the solution. The scenarios are: a Car following a

Truck, again two Cars and a Truck following a Car. For clarity, the CT has been selected

to match V ∗ for di�erent vehicle types, as in Tab. 7. The results are presented in Fig. 22
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and Tab. 8. One can observe how the Pareto-optimal solution shifts towards the larger

vehicle's V ∗, re�ecting its negotiative power. PoA = 1 means the negotiated solution is

equal to the non-cooperative. Because the objective is to minimise the cost, higher PoA

values indicate higher the gain in e�ciency.

Table 7: Vehicle types and preferences for several cases of platooning.

Feat.\Case C1 C2 C3
EV OV EV OV OV EV

Veh. type Car Truck Car Car Truck Car
CT [¿/h] 25 67 25 10 167 10
V ∗ [m/s] 28.4 21 28.4 21 28.4 21

Table 8: Platooning solution costs and Prices of Anarchy (35), a comparison between the
three cases. The larger the di�erence between the EV and OV, the greater the PoA. The
growth is driven by the large cost of the noncooperative solution.

Case
Cost [£ 10−2 ]
NonC. Pareto Price of Anarchy

1 15.7 12.7 1.23
2 15.7 6.26 2.5
3 105 9.6 10.9
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Figure 22: Sum of platooning cost for various vehicle types. The red is a Car following a
Truck and blue a Truck following a Car. The di�erences in negotiative power are easily
noticeable. Points mark the functions' minima.
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4.5.2 Overtake solution

The scenario whereby the EV encounters a slower vehicle is continued, now with the

overtake possible. While in platooning the cost is incurred over time, as proportional loss

of time ∆T/T . The alternative, event-based resolution to an in-line con�ict is possible,

where the cost is incurred once, drawn from the energy component of the cost function,

as an overtake features quick speed changes.

The overtake calculation utilises the same algorithm, using the same vehicles as in

the platooning example and the model de�ned in Section 3.1. The vehicle parameters

are listed in Tab. 7 and the values of MV ovt
n

assume the distribution presented in Fig. 23.

Additionally, all calculations are computed for a �xed overtake gap Sgap of 150 [m]. For

small overtake speed di�erences (V ovt
EV − V ovt

OV ), the manoeuvres are rejected as infeasible,

due to physical constraint - another object approaching from the opposite. The cost

increases quickly, leaving the feasibility boundary as location of the optimal solution.

The constraint on propulsive force rules out solutions for which required acceleration is

not achievable at given V ovt. Fig. 24 outlines the same example, viewed from above, to

visualise the surface of feasible solutions. The powertrain constraint is at V ovt
EV = 36.9

[m/s]. The optimal solution, for an overtake gap of 80 [m], is found to be, in this example,

V ovt
EV = 34.7 [m/s] and V ovt

OV = 14.3 [m/s].

The computation time to �nd this solution, with the precision of 0.01 [m/s] is on

average 5.2 [s]. However, assuming that the solution is on the feasibility constraint, what

is justi�ed by the convexity of the cost function, it takes only 0.57 [s] with an exhaustive

search algorithm. The Fig. 23 depicts with blue the isolated curve.
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Figure 23: An example of the overtake costs surfaces and the feasibility front of their sum.
Given the convexity of the CF, the optimal manoeuvre lies on the feasibility constraint,
which re�ects the size of the gap ahead of the oncoming tra�c. The powertrain power
constraint is also presented on the EV's cost function.

Figure 24: A projection of the above �gure from above, showcasing the constrained
solutionspace. Both the oncoming tra�c constraint and the powertrain power constraint
are presented.
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4.5.3 Sensitivity of overtake cost to variation of the distance available

So far, the above calculations have considered a �xed overtaking distance. This anal-

ysis tracks the cost of an optimal overtake Čovt as a function of the available space Sa.

Three cases from Tab. 7 are being considered. The results are presented in Fig. 25.

The overtake velocities needed to execute the manoeuvre within the Smax constraint are

plotted, together with the total cost of manoeuvre. The cost decreases hyperbolically

with overtake gap available, as a smaller gap requires a higher speed di�erence. Tab 9

lists the results of an R-square �t to a hyperbola R2
Covt(Sa) = a

(x−b) + c.

Table 9: The results for the cost of overtake as a function of distance Covt(Sa) �tting to
hyperbola using R-square �t method.

Case C1 C2 C3
R2 [%] 99.31 99.67 99.85

Upon encountering a slower vehicle the EV would platoon behind the EV, await for an

opportunity to overtake. As a gap large enough emerges on the opposite line, it triggers

the recalculated overtake, according to the decision rule outlined in chapter 4.4, as the

EV would be free to cruise unimpeded afterwards.

40 60 80 100 120 140 160 180 200
Distance available for overtake S

a
 [m]

0

5

10

15

20

25

30

35

40

45

50

C
os

t x
10

00
 [£

], 
O

vt
. V

el
oc

ity
 [m

/s
]

C1 - Car, Truck
C2 - Car, Car
C3 - Truck, Car
Maneuvre cost

V
OVT
EV

V
OVT
EV

V*
EV

V*
OV

Figure 25: Overtake cost, and payment required for performing an overtake is here plotted
as a function of overtake gape space available for the maneuver Sgap. The range is from 40
to 200 [m]. The oncoming vehicle's velocity Vgap = −20 [m/s]. Note that while vehicles
cooperate, that is both change their velocity, the OV is more prone to slow down. This
phenomenon is a result of the energy being proportional to speed squared.

61



4.6 Conclusions

This Section presents the results returned by the algorithm, when applied to the in-

line con�icts, that is platooning and overtaking. Both possible solutions are calculated

and compared, selecting the less costly one.

In the platooning scenario the calculation results allow to observe how the di�erence

in vehicle mass and drag changes the dynamics of the solution, as the optimum shifts

towards the heavier vehicle. The bigger the EV is in relation to the OV, the larger the

bene�t brought by the algorithm.

In the overtake scenario the Fig. 23 represents the solution space well. For a �xed

overtake gap, the same manoeuvre can be performed with varying overtake speed dif-

ferences, but it is certain that optimal overtake always features OV's deceleration, since

speeding up is always more costly. In addition, the sensitivity of the overtake cost to the

distance available suggests the Covt is a hyperbolic function with RMS �t with R2 above

99.3% for all cases, prompting further work direction towards analytical de�nition of the

overtake cost variability, to reduce complexity.
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5 Intersection con�ict

The intersection formulation addresses a con�ict between agents whose trajectories

collide at a road junction. The priority is considered based on the current tra�c rules:

yielding to the vehicle on the right. An optimal, cooperative solution can be di�erent,

however, but the enforcement payment must cover the cost of deviation from primary

rules.

The activity diagram of the algorithm is the same as the Platooning/Overtake prob-

lem. The computational e�ort of the algorithm is to be performed by the agent with

greater potential bene�t, further called the Ego Vehicle (EV), the adversary is the Ob-

stacle Vehicle (OV). As an agent meets an obstacle, it requests adversary's preference

parameters and �nds the best manoeuvre, which is proposed and agreed upon. The

problem of system's sensitivity to agent honesty is discussed below, in Chapter 7.2.

To clarify the way optimisation is executed from the user's perspective. Consider a

scenario, where a Truck is to turn left, but according to the tra�c code, to mitigate a

collision it needs to yield to a small vehicle approaching from ahead. The scenario is

introduced in Fig. 3 in Chapter 1. The solution of the algorithm is the opposite of tra�c

code rules. The small, lighter vehicle yields, so the heavier one can retain its kinetic

energy, receiving a side payment for it's e�ort.

While the tra�c code violation poses a liability challenge, there is no way around the

fact that an optimal drive cycle minimises the used powertrain power.

5.1 Con�ict resolution formulation

The mitigation of con�ict is performed by adjusting speed before the manoeuvre,

ensuring that nth agent's time of arrival TI,n at the CZ of agents is su�ciently separated

from others. The speed pro�le is parametrized, keeping the number of decision variables,

and thus complexity, to minimum. As a vehicle approaches the intersection, �rstly Zone

I is where vehicles establish communication. Its length must su�ce to solve the described

algorithm before entering Zone II, where the phasing manoeuvre occurs. The length
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(a) The geometry of the intersection prob-
lems, along with example speed pro�le in
Zone II. The width of the lane

(b) Intersection con�ict resolution approach.
The speed pro�le, shifting from V ∗ to the
phasing speed VPH , in this case for a slow-
down scenario.

Figure 26: The intersection con�ict topology is visualised marking the approach zones.
In Zone I connectivity is established and a solution found. Beyond the SI distance, in
Zone II, the phasing manoeuvre occurs at a phasing speed. Zone III is the intersection
con�ict zone, the CZ.

of the Zone II is de�ned as SI . Finally, Zone III is the Con�ict Zone, of length aCZ

where agents manoeuvre at Vman. Fig. 26a outlines the geometry and example of the

intersection problem.

An example vehicle speed pro�le across the approach to the CZ is visualised in Fig.

26b for a slow-down, yielding scenario. This method of formulating tra�c con�icts is

similar to the intelligent Coperative Adaptive Cruise Control (iCACC) algorithm [86].

There, however, the cost function is de�ned only with respect to time delay. The main

novelty and distinguishing factor of this algorithm, is the multi-objective optimisation

built upon the framework.

It is assumed that the vehicle follows a constant speedy Vph,n, and acceleration is

performed at a constant an, positive when speeding up and negative when decelerating.

Varying the selected Vph,n changes the length of speed change manoeuvre.

Let us de�ne the time domain as Θ. With the geometry of the problem and the single

control variable Vph,n, the time of arrival at intersection TI,n and the CZ occupation time

for each vehicle is calculated, given that

TCZ,n =
2Ln + aCZ
VM,n

. (52)

Ln is the length of the nth vehicle and VM,n is the speed at which the CZ is traversed.
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For notation simplicity we de�ne CZ exit time as

TE,n = TI,n + TCZ,n. (53)

Then, the interval of time a vehicle spends occupying the CZ, TCZ is de�ned as

TCZ,n ∈ {Θ : TI,n ≤ Tn ≤ TE,n}. (54)

A con�ict occurs if

∆tfix =: TCZ,EV ∩ TCZ,OV 6= ∅, (55)

de�ning ∆tfix as the time overlap, but also as minimal correction required to mitigate

the con�ict. It is visualised in Fig. 27.

The cost of the traversing the intersection Cint(v), for given a speed pro�le is

Vph,n[t] = [an, Vph,n,−an, VM ]. (56)

Figure 27: Intersection con�ict in time domain and all possible con�ict resolutions. It can
be mitigated by either agent accelerating or slowing down. A - acceleration, S - slowing
down.

It is then found as in equation (24), by integration of the cost function over the

distance of Zone II, where vehicles adapt their speed to mitigate the con�ict

Cint(Vph,n[t]) =

∫ 0

SI

CEE(v) + CT∆T dx. (57)
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Since a speed pro�le results a�ects the time of arrival at the intersection, the in-

tersection traversing cost as function of time change Cint(∆T ) is found by means of an

expression

∆T (VP ) = f(VP,n[t]). (58)

It allows to form a function of manoeuvre cost in relation to the time correction, given

the parametrized phasing speed pro�le Vph,n[t]

CP,n(∆T ) =

∫ 0

SI

CEE(VP,n[t]) + CT [t]∆T dx. (59)

An example of the CP (∆T ) result is outlined in Section 5.2. Interestingly, the convexity of

cost function and powertrain energy ine�ciency lead to a steep cusp around the function's

root, which is always at zero. It suggests that an optimal solution is on one of the axes.

Note that the negative ∆T indicates an acceleration manoeuvre.

We can then note that to each con�ict there are four distinct solutions, with each

of both agents either slowing down or accelerating. We can then de�ne all the minimal

correction values required to mitigate the con�ict

tfix+
n = TI,n − (TI,−n + TCZ,−n), (60a)

tfix−n = (TI,n + TCZ,n)− TI,−n, (60b)

de�ning −n as the other player and +/− depicting the con�ict from ahead, usually

mitigated by slowing down, or from behind, mitigated by speeding up. We can then

combine them in a 2 by 2 matrix ∆T fix, with A as a solution where an agent accelerates

and S slows down,

∆T fixmin =

 ∆tfixEV,A ∆tfixOV,A

∆tfixEV,S ∆tfixOV,S

 , (61)

observing that

∆tfixEV,A = −∆tfixOV,S (62a)

∆tfixEV,S = −∆tfixOV,A (62b)
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and simplifying, given that −a is the alternative action,

∆tfixn,a = ∆tfix−n,−a (63)

This allows to distinguish two correction values: ∆tfixa and ∆tfixb , characterized by the

inequality

∆tfixa ≤ ∆tfixb . (64)

A con�ict can be also resolved by combination of two neighbouring solutions, with

both agents yielding partially. A blending coe�cient α = [0, 1] is introduced, such that

∆tfix = (1− α)∆tfixn + α∆tfix−n . (65)

Note, that while naturally the time domain is the same for all agents, the control of

the problem features two temporal parameters, one for each agent, as seen in eq. (55)

above. In order to detach these two and be able to de�ne a function between them,

consider a two-dimensional time domain Θ2 such that

Θ2 =: ΘEV ×ΘOV 3 T fixEV , T
fix
OV . (66)

The de�ned coordinate system is presented in Fig. 28. There, the quarters I and III

do not belong to feasible region, due to alike signs on axes. The time in which the

con�ict occurs there is changed, but not trivially resolved. The solutions with α de�ned

partial yields (65) mark the boundary of the feasible set in the quarters II and IV of

the coordinate system. The axes have opposite signs, what bears a physical meaning of

one agent accelerating and the other yielding, resulting in the con�ict mitigation. This

results in a feasible set Θ2
F being constrained by

Θ2
F := {Θ−EV ,Θ

+
OV } ≥ 〈−∞, T

fix
EV,A,

(1− α)∆tfixEV,A + α∆T fixOV,S, T
fix
OV,S,∞〉

(67a)

Θ2
F := {Θ−OV ,Θ

+
EV } ≥ 〈−∞, T

fix
OV,A,

(1− α)∆tfixOV,A + α∆T fixOV,A, T
fix
EV,S,∞〉,

(67b)
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where α = [0, 1]. The angle brackets 〈 〉 denote endpoint inclusion in the set. The

topology of the feasible region is visualised in Fig. 28. Finally, the optimization problem

is formally de�ned as

Cph

(
∆tEV ,∆tOV

)
= min

∆tn∈Θ2

(
∆tfixEV ,∆t

fix
OV

)
, (68)

subject to constraint

{tfixEV , t
f ixOV } ∈ Θ2

F . (69)

Figure 28: Intersection con�ict in time domain. The dashed line outlines the boundaries
of the feasible region. I to IV name the quarters. A - acceleration, S - slowing down.
Note that acceleration results in negative ∆T .
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5.1.1 Simpli�ed intersection decision algorithm

As mentioned in Literature Review, in Section 2.3.1, one of challenges in tra�c op-

timisation is the complexity and ensuing computational time required. For a number

of players n growing, the computational time increases rapidly. While the Section 5.4

discusses the complexity of the platooning problem, Section 5.3 provides an estimation of

the intersection problem complexity. However, this Section contains a naive, simpli�ed

optimisation algorithm for multi-agent intersection problem is presented in the Section

5.3. It is based on the assumption that the solution is always pure, meaning only one

agent is required to adjust their strategy. We o�er, thus, a simpli�ed formulation, that

allows a computationally lean method of �nding the candidate minimizers ∆tfixmin (61).

We observe that the apparent cusp around the root of the cost function indicates that

mixed strategies, that is where α varies, are characterised by a concave function. The

derivative of the cost function is presented in Fig. 29, showing negative curvature on the

<+ side what allows to assume that the optimal solutions are pure, that is on either of

axes of the system, what is de�ned as

argmin
α
{0, 1}. (70)

This assumption enables us to reduce the Θ2 solution space and project both agent's

cost functions to a single dimension, to �nd the potential solution points. We can now

also de�ne the three possible actions agents can undertake An = {A, 0, S}, where 0

corresponds to no action.
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Figure 29: An example of the integrated cost function and its 1st derivative are presented.
Plot of the integrated cost function CP,n(∆T ) (59). It allows to �nd the cost for the given
time correction. Note the steep cusp around zero and the linear function as the ∆T in-
creases. The derivative's slope decreases asymptotically, suggesting that the summarised
cost function between the optimal points are concave.

69



We then �nd the costs of manoeuvres CP (∆tfix) and express them as game-theoretic

payo� bi-matrixMEV,OV as in Tab. 10, rejecting the infeasible strategies. The result is

presented in Fig. 31, marking the constraints and points where they intersect with the

CF, that is the candidate points.

Table 10: The payo� bi-matrix M . Strategies marked with ∗ are infeasible, while the
ones marked with ‡ are feasible but rejected based on the assumption (70).

MEV \OV S 0 A

A ∗ CP (∆tfixEV,S), 0 ‡
0 0, CP (∆tfixOV,A) ∗ 0, CP (∆tfixOV,A)

S ‡ CP (∆tfixEV,S), 0 ∗

Thence, the con�ict between agents is reduced to a cooperative 3x3 game, whereby

the cost function solutions for the candidate points CP (∆tfixmin) are considered

A = argmin
An∈{A,0,S}

CP (∆tfixA ). (71)

An enforcement payment p covers the cost of the manoeuvre's cost, should the solution

di�er from the tra�c regulations.

The Price of Anarchy (PoA) is de�ned as a proportion of the GT solution in relation

to the globally optimal one

PoA =
minCP (∆T )

C∗NC
, (72)

where C∗NC is the cost of the subgame noncooperative, equilibrium solution, regulated

by the tra�c code. Evaluation of the loss of e�ciency caused by the requirement of

agreeability is then possible.

5.2 Intersection con�ict simulation

To visualise the way the outlined algorithm operates, a simulation of an example is

performed. As explained in Section 1.1 on Fig. 3, the intersection scheduling operates by

�nding optimal correction times for vehicles, so that the sequence of vehicles is optimised

by prioritising e.g. massive vehicles, to minimise combined powertrain e�ort. Firstly

the integrated cost function is visualised. It is a function of cost of arrival at a de�ned

time
∫ 0

SI
CP (VP : Tarr)dx and is presented above in Fig. 29. Any departure from the
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cruising speed, which corresponds to the unadjusted time of arrival, corresponds to no

cost. However, increasing the speed, that is decreasing the ∆T increases the cost rapidly,

while the delay has shallower dynamic.

This cost function is then compared with the other agents', to complete the intersec-

tion optimisation algorithm. The optimal solution is found by projecting the functions

on the Θ2 domain. The combined cost function is visualised in Fig. 30, presenting two

CP (∆T ) functions projected onto the feasible region as de�ned by the equation (67) and

visualised above, in Fig. 28, both located in Ch. 5.1.

Figure 30: The solution of the intersection problem employing the complete formulation.
It showcases the three dimensional model of the combined cost functions for a collision
solution between agents. The convexity of the CF allows �nding candidate optimal points,
marked with red. The axes of the coordinate system are marked, to aid with spatial
visualisation.

Then, by executing the simpli�ed algorithm, we �nd the edges of the cost functions.

Given the convexity of the function, the search can be limited to there, as the optimal

solution is on the intersection of the constraint and the CF. The cost function edges are

thus projected on a single, combined ∆T domain and visualised in Fig. 31. Out of four

points where the CFs intersect with constraints, one of which is out of the plot's scale,

one can easily �nd the smallest of the four points. In the presented example it is when

the OV yields by speeding up, allowing the EV to cruise unimpeded, just behind it. For

numerical comparison Tab. 11 lists the simulation results. In this scenario, the combined
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cost of manoeuvre is decreased from £2.02 · 10−2 to £0.85 · 10−2, what corresponds to

PoA = 2.38.

While the tra�c code resolves con�icts based on the position of the vehicles, the

proposed algorithm disregards it, focusing solely on the cost minimisation, also neglecting

safety. As such, for around 50% of cases, the optimal solution is in violation of the tra�c

code, calling for more complete, optimality focused legislation.

Table 11: A comparison of the intersection con�ict resolution results. A noncooperative
case - with the EV slowing down following tra�c code, and an optimized, cooperative
case, where the heavier EV incentives the OV with a micro-payment to accelerate.

Noncoop. Cooperative

Solution EV, S OV, A
Time corr. [s] +0.84 −0.84
Cost [10−2$] 2.02 0.85
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Figure 31: The solution of the intersection problem employing simpli�ed formulation.
It showcases cost functions and their constraints of the example case reduced to two
dimensions. The candidate optimal points, on constraints, are marked. The minimal
point corresponds to a scenario whereby the EV yields by speeding up, allowing the OV
to cruise unimpeded. The dashed line refers to the CF within the infeasible zone.
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5.2.1 Performance evaluation

The optimality of the proposed algorithm is measured by evaluation of the PoA, that

is loss of optimality in relation to the centralized, unenforced solution, which is incurred

by the agreeability constraint. The baseline for the comparison is the solution regulated

by the tra�c code, with the vehicle on the left to yield.

While normally a simulation involving powertrain components would involve cyclic

drive cycle runs, e.g. employing NEDC, ARTEMIS or more recent WLTP load cycles

[183], this framework tackles the optimality of the very cycle itself. Thus its evaluation

calls for estimations of its e�ciency, applied to particular road scenarios. In order to

give reliable numbers, randomized Monte Carlo simulations are being performed to give

Price of Anarchy estimates. Since the co-co solution concept brings value only for games

between heterogeneous agents, PoA is evaluated as a function of the tra�c heterogeneity,

that is the proportion of trucks in the tra�c.

Monte Carlo simulation is performed using MATLAB, with n = 104 samples for each

data point, randomizing input data as in Tab. 17, as uniform distributions. Thereby

randomness of tra�c events and the user's choice of their personal cost of time delay

CT,n is captured.

As a key test, to evaluate the level of energy and time savings enabled by V2V

cooperation, Fig. 32 presents the PoA as a function of tra�c heterogeneity. One can

note that the PoA is always above 2 with a peak of 3.12 whenever the fraction of trucks

in relation to cars is between 20% and 40%, a number similar to the �ndings in the

literature. The results suggests that from both time and energy perspective the optimality

of First-Come-First-Served (FCFS) schemes may be further optimised, by reorganizing

the order of the vehicles, as the management of the order of vehicles on the intersection

can promise e�ciency improvement. It is worth reiterating, however, the subjectivity of

the time parameter CT and the fact that the simulated model did not consider overlaps

between multiple vehicles interactions introduce some subjectivity to the result. It is

expected that the performance of the algorithm degrades, as the tra�c density grows,

but certainly o�ering an operating window, for low and medium density tra�c, which

may o�er measurable bene�ts.
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Table 12: The randomized input parameter ranges for the Monte Carlo intersection
simulation.

Veh. type unit min max
CT (Car) $ 5 50
CT (Truck) $ 33.5 368

Maneuver distance SI m 150 250
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Figure 32: Results of a Monte Carlo simulation with 104 samples for each data point.
Price of Anarchy as a function of the fraction of all vehicles is presented. Decisions based
on tra�c code are considered as a baseline. The PoA is always above 2.5 with a peak
of 3.12 when 20% to 40% of vehicles are trucks. This indicates that from both time
and energy perspective, the optimisation of the order of vehicles on the intersection can
promise vast optimality, reiterating however the subjectivity of the time parameter CT .

5.3 Multi-agent intersection con�ict formulation

Until now, the algorithm, for simplicity, de�nes interactions between two agents, as

this allows for a clear understanding of the problem. This subchapter considers a multi-

agent scenario, where n agents's trajectories are intersection. A generalised formulation is

put forward, based on the intersection derivation from ch. 5.1. While most research work

leaves the solution of multi-agent con�icts to centralised optimisation algorithms [184], as

presented in Section 2.3.2, this is a proposition of a deliberative and distributed de�nition

of the problem. Given the safety-critical assumption of the complete information, the

relations between n agents con�icting on an intersections is assumed to be de�ned by the
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complete graph topology, with number of links de�ned as Kn [185] [186]. The number

of con�icts is de�ned as Kn = 1
2
n(n − 1) [187]. However, since each con�ict may be

mitigated by either of action of either agent, the complexity is expected to double. The

further increase in complexity originating from the interactions between multiple agents

is yet to be estimated.

Given an intersection con�ict between n agents, de�ned by a set N = {1, 2, ..., i, ..., n}

of agents, sorted ascending with respect to their time of arrival TI,n. We can then de�ne

an adjacency bi-matrix, de�ning the ∆t required to mitigate the given con�ict (60a). For

clarity, the ∆ symbol is dropped. The TS thus denotes the solutions where a agent slows

down,

TS =


− t1,j · · · t1,n

ti,1 − . t2,n
... · . . . ·

tn,1 tn,2 · −

 . (73)

Of course, since an agent cannot be in con�ict with oneself, the positions on the diagonal

are not feasible and marked as −. Similarly, the TA refers to the acceleration side of the

resolution, where the correction values are negative. The positioning in the matrix can

be interpreted as: the ith agent's obstacle is resolved by jth agent adapting its time of

arrival at the intersection by ∆ti,j.

The matrices still consider all interactions, even those where no con�ict occurs, con-

suming the computational power. As a con�ict detection measure, we �nd all the ∆T

signs not matching with the matrix they belong to and reject them. All interactions

which do not pose a con�ict are equalised to 0

[T+
S , T

−
A ] = max(TS, 0) min(TA, 0). (74)

Then, by analogy to (62) we can observe that the sum of the obtained matrices transposed

is zero

T+
S + T−TA = 0. (75)

Since the adjacency matrices are symmetric along its diagonal, is customary to represent

only one half to avoid repetition. We may then merge the bi-matrix so that all relations

are captured in a single matrix. We could then de�ne a single matrix ∆T0 = T+
S and
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to access the acceleration-resolved side of con�icts, we could �nd T−A = −∆T T0 . Then,

just as in (59), the matrix of phasing manoeuvre cost CP (∆T0) is found by solving the

integrated cost function over the assumed phasing speed pro�le, for each position in the

matrix

CP (∆T0) =

 cPi,j(ti,j) · · ·
...

. . .

 . (76)

With the con�icts detected and their mitigation time corrections de�ned, the evaluation

of costs follows. It requires, however, to capture solutions involving more than two

agents. Suppose that while an agent con�icts with two adversaries, where one solution

is S while the other A. Then, in either direction, the third vehicle's solution is a�ected

by both con�icts. Consider the scenario of three vehicles, A, B and C, as presented in

Fig. 33. In such instance, while there is no AC con�ict at the moment, however, the

S-solution to the AB con�ict, where B would slow down, creates a new BC con�ict.

This con�ict propagation may be approached by stepping back, and considering also the

non-con�ictual interactions, otherwise lost in (75).
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Figure 33: An example visualisation of a propagated con�ict. While there is no BC
con�ict, an S-solution to AB overlaps with C's CZ occupancy. This greatly complexi�es
the n-agent formulation.

Finally, having identi�ed the con�icts in ∆T0, we propagate the ∆ti,j on the original

[TS, TA] bi-matrix, respectively downstream for S and upstream for A, obtaining

TS := ∆t′i+1,j+1 = ∆ti+1,j+1 + ∆ti,j (77a)

TA := ∆t′i−1,j−1 = ∆ti−1,j−1 + ∆ti,j. (77b)

Then, again, to �nd each con�ict resolution cost, we solve the equation (59), that is the

CF integrated over the phasing speed pro�le (59), albeit accounting for the recursion
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de�ned in equation (77), to give

CP (∆TS) := cPi,j(ti,j) =
n∑
k=1

n∑
l=1

cPk,l(tk,l) (78a)

CP (∆TA) := cPi,j(ti,j) =
n∑
k=1

n∑
l=1

cPk,l(tk,l)−
i∑

k=1

j∑
k=l

cPk,l(tk,l). (78b)

The optimization problem is then formally de�ned as

CP

(
∆TA,∆TS

)
= min

(
CP (∆TS), CP (∆TA)

)
. (79)

While the simulation using Monte Carlo was stable, the estimation of complexity was

inconclusive. While the n is similar to the complete graph series [187], the exact com-

plexity depends on more constraints than the model currently captures. Development of

an experiment with real tra�c data may be needed for further work.

5.4 Complexity of n-agent platooning problem

So far, in this thesis, the Game Theory Optimisation problem has been de�ned as a

con�ict between two agents, where based on mutual trust, the agents agree on a Pareto

Optimal solution. But suppose there is a road-side unit [90] alongside larger intersections.

In the Chapter 5.3, we have introduced �rst a 3rd and then nth agent, with the matrix TS

(73) where an Euler explicit method to model the n-agent intersection, to evaluate the

rate at which the complexity scales with the number of agents, yielding observations but

no conclusion, as the con�ict propagation is as a source of additional complexity layer.

Considering the above, this Chapter is a step back, to correlate the above �ndings

with another numeric validation, this time using platooning, Section 4.2 as an example.

Because the Platooning is indi�erent to position, xn, only dependent on its di�erence,

∆xEV,OV , and it is a two dimensional problem, it is substantially quicker to compute.

Here we consider a scenario where a platoon Pm consisting of m-agents meets a slower

n-agent platoon, Pn. Then, as visualised in Fig. 34, vehicles can be recon�gured to �nd

a new, re-optimized platoon.
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Figure 34: Visualisation of the recon�guration of two platoons. In this example, a faster
platoon approaches a slower, single vehicle platoon. As they merge, the multi-agent
platoon is re-optimised, �nding that, the optimal solution is to allow the green vehicle to
overtake the remaining ones, as the additional cost it would have to pay to the orange
agent outweighs the overtake cost.

All con�gurations of platoons are considered, with Tab. 13 presenting an example ith

membership array for i ∈ N : {1, ..., (n + m− 1)}. Fig.35 outlines the algorithm to �nd

the optimal m-n-agent platoon optimal recon�guration. It has been developed with help

of MSc student Kritikesh Ravishankar [188].

Table 13: Example ith membership array for multi-agent platooning scenarios.

Car no. m1 m2 m3 n1 n2

in ith platoon? 1 0 1 0 0

Given that participation in a platoon is expressed binarily, the rate of growth of the

platooning problem's complexity follows a 2N sequence [189]. The N is here the sum of

all vehicles, except the �rst one, as by de�nition of platooning it is the slowest of all,

thus N = n+m− 1. The time to compute the time to �nd the optimal solution for two

platoons with n and m agents exceeds 10 [s], as N > 6, too long to be relevant.
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Figure 35: The �ow diagram of the n-m-agent platoon re-optimisation algorithm.

5.5 Discussion of the results

Naturally, the information exchange allows to greatly improve the energy e�ciency of

the con�ict resolution in relation to the tra�c code regulations. The PoA = 2.5 indicates

a 2.5-fold improvement in time and energy e�ciency of the negotiated tra�c, in relation

to today's tra�c, with prede�ned, �xed right-of-way rule. The result is theoretical only,
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considering full system penetration, that is all cars being able to communicate, and for

con�icts among no more than 2 agents. Although a platoon of vehicles can be reduced

to single agent [190].

It is important to observe that in roughly 50% of cases the optimal solution is the

very opposite of what a non-cooperative, law-regulated solution dictates. This poses a

challenge to the framework's implementation, as the initial confusion and lack of liabil-

ity protection to the users may pose a barrier too large to overcome without the road

operator's support. The platooning is the only scenario, whereby the con�ict occurs con-

tinuously over time with minimal speed di�erences, as opposed to time-critical separation

required by the intersection and overtake problems. It would then be the �rst scenario to

be feasibly deployed. It would require, however, apart from precise relative positioning, a

notion of mutual trust between machine and human drivers, which is addressed in Section

7.4.

The multi-agent implementation however, while guarantees a Pareto optimal solution,

it worsens. As the solutions This additional layer of complexity is challenging to compute.

Firstly the analytical operations are performed on numerical solutions, since (59) is not

easily computed analytically. In addition the recurrence within the matrix occurs only

on con�ictual interactions, likely ruling out the possibility of a formal derivation of the

complexity at all, calling for a numerical simulation to settle it. The issue is further

considered, albeit with a simpler to model. The Platooning model, Section 4.2, is studied

for n agents in Section 5.4.

The platooning implementation, however, carries complexity characterised by 2N

power series for the platooning problem, and still unde�ned complexity for the inter-

section problem. It has been established that it follows complete graph complexity KN ,

excluding the con�ict propagation. Regardless of the result, the computational time for

N < 5 is not likely to exceed 20 seconds, retaining feasibility for medium-intensity tra�c

application. It can also be further minimised by a platoon merging heuristic.

Summarizing, while the bene�ts of the data-enabled negotiation of tra�c con�icts of-

fers vast bene�ts, its deployment poses numerous obstacles, from multi-agent complexity,

through need for new legal regulation, �nishing at vulnerability to users opting out.
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6 Hardware validation

The results in the above, Chapter 5 demonstrate the theoretical performance of the

framework proposed herein. However, they were obtained in simulations, for which a

number of assumptions were made, as described in Section 3.3. These assumptions sep-

arate the simulation from the physical domain. Thus, the validation of this work re-

quires a Hardware-in-the-Loop (HiL) implementation, so that some real-world challenges

are demonstrated to be overcome. Thus, this chapter features hardware implementa-

tion of the algorithm. In addition, just as the Section 5.3 above o�ered an approach to

multi-agent intersection problem, here the complexity of the platooning between multiple

vehicles is considered.

After every bit of theory comes test in practice. A control strategy or an algorithm

that is proven to work in simulation is tested in a hardware set-up. There are a number of

Hardware-in-the-Loop (HiL) testbeds to test various con�gurations and control strategies

for hybrid powertrains [191] [192]. In similar manner, HiL testing of autonomous vehicle

control systems is being researched. However, this area is dominated by commercial

testbeds [193] [194]. While the above testbeds focus on the optimisation of the powertrain

itself, hardware testbeds for social interactions in cooperative driving are also present [195]

[196].

6.1 Raspberry Pi implementation

As a �rst step, to demonstrate the practical applicability of the negotiation procedure,

as presented in the communication activity diagram from Fig. 18 in Section 4.1, a simple

platooning scenario is considered, where a freely cruising Ego Vehicle (EV) encounters a

slower vehicle (OV) on its way, as outlined in Chapter 4. The overtake and platooning

scenarios are simulated and the less costly one is selected. The C++ code is provided in

the Appendix.

Individual agents are simulated on standalone devices, with only LAN connections

to negotiate. In addition to the negotiation algorithm, the boards are equipped with

connectivity, synchronisation and display handling functions. The algorithm has been
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implemented on two Raspberry Pi 3 Model B chips. They are equipped with a 64bit

ARM Cortex-A53 quad-core CPU with 1.2 GHz frequency and 1 GB RAM. The boards

were connected by Ethernet cable and equipped with displays. The Fig. 36 presents the

results. The photographies of the screens, the EV is on the left and the OV on the right.

It is presented during the following manoeuvres: A: cruising, B: Platooning and C an

overtake. For further explanation, the Tab. 14 features an explanation of symbols used.

The computations were performed on the EV, with the OV deciding to accept the o�er.

Table 14: The meanings of symbols as displayed on the Raspberry Pi displays below.

X V D P

reference
speed

distance to the payment
position vehicle ahead incurred

Figure 36: Raspberry Pi displays, respectively, during the approach, cruising freely, pla-
tooning and overtake. As the EV, denoted as 1, approaches, it executes the algorithm as
presented in Fig. 18 in Section 4.1. The OV may reject it, but accepts, as the payment
o�sets the cost, and executes the requested speed pro�le.

To assess the computational burden, the execution times of the algorithm were mea-

sured using the Raspberry Pi's clock_gettime() function. Twenty observations were made

for platooning and overtake scenarios. The time values obtained are shown in Tab. 15.

The platooning evaluation function takes less than 0.001 [s] to execute, while the overtake

calculation takes consistently less than 0.4 [s]. Because the algorithm is to be executed

once per manoeuvre, this example demonstrates its feasibility as a real-time application.
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Table 15: Calculation times for the distributed platooning and overtake negotiation im-
plemented on Raspberry Pi. For a single 1.2 GHz core, the platooning calculation is
negligibly fast, while the overtake takes less than 0.4 s.

Function Average [s] Std. Dev. Coef. of Variation

EvalP lat 5.79 · 10−4 2.2 · 10−5 3.79 · 10−2

EvalOvt 0.38 7.5 · 10−3 1.9 · 10−2

6.2 Scaled, automated vehicle implementation

As the next step in validation, the algorithm has been implemented on a scaled,

automated vehicle platform, which is visualised in Fig. 37. This validation approach

is very similar to [85], where a �eet of cooperative vehicles is made to cooperate on

a two lane road. However, the main di�erence from this work is, again, the emphasis

on the heterogeneity of agents. In this validation work, the connected vehicles perform

negotiations in real time, thanks to MQTT [197] communication protocol in, to run the

hardware-implemented model of platooning and overtake algorithms. This work has been

implemented with the help of MSc student Ashwil Joseph [198]. The distributed control

architecture has been designed by a visiting student, Mario Pavan.

Figure 37: The scaled automated vehicle employed of the hardware validation. The sen-
sors visible are the ultrasound positioning beacon, line follower module and the standard
Arduino's ultrasonic range �nder, necessary for the platoon formation.

The hardware composition of these scaled cars is outlined in Fig. 38. It consists of a

PWMModule, which controls the motors' rpm and the steering servomotor, Line Follower
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Module and IMU, which all communicate to Raspberry Pi through I2C protocol. The

motor encoder, voltage and current sensor reading are then received by Arduino Nano

which communicates to Raspberry Pi using the USB bus. The indoor positioning is

provided by the Marvelmind Mobile Beacon, which communicates with the Raspberry

Pi using virtual universal asynchronous receiver-transmitter (UART) emulated on the

USB interface. Additionally, in the platooning mode, a forward ultrasound sensor serves

as additional speed di�erence sensor, to allow precise manoeuvres. The Inter-Vehicle

communication is managed by a cloud-server based MQTT protocol [199], facilitated by

a Personal Computer. Wireless 802.11bgn protocol, that is Wi-Fi, serves as the physical

layer, and the MQTT is used as a subscription-publication based protocol on data link

layer.

Having constructed the vehicles and the the connectivity connectivity between them,

the deployment of the automated intersection negotiation is mainly focused on the tuning

of the PID controllers. The most challenging PID to tune was the �ne speed control. It

regulates the relative position of the vehicles, during the platooning, with the motor

torque.

IMU

Arduino Nano

Quadrature Motor 
Encoder Voltage Sensor

Marvelmind Mobile 
Beacon

Raspberry Pi

USB

USB

Digital Interrupt

I2C

Analog Signal

Current Sensor

PWM Module 5 Channel Line Follower Module

Figure 38: Vehicle's hardware control system topology. The Arduino is used separately
to control the motors, to ensure motor phase alignment.

The set-up to validate the negotiation algorithm is a closed-loop track as presented in

Fig. 39a. It was observed in Section 5.5 that the easiest to implement is the platooning

scenario. Two vehicles with various cost functions are cruising freely on the track until

the ultrasonic sensor detects a con�ict. The communication is managed through a server,
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but the negotiation algorithm is run on the faster vehicle, who has the incentive to

cooperate. The slower one agrees to cooperate if, and only if the agreement bene�ts them.

It is visualised in the activity diagram in Fig. 18 in Chapter 4.1. A new, cooperative

platooning speed is agreed upon and executed, as plotted in Fig. 39b. The platooning

control is performed by the ultrasound sensor and a PID controller, achieving a stable

platoon at a new, consensus speed VP .

Observation of the hardware deployment has o�ered an insight into the in�uence on

the PID controller tuning on tra�c stability. When the control was insu�cient, the

vehicles collided. When control was overshot, they vehicle was jerky. It is thus a trade o�

between safety and comfort. Today, the distance control is performed by human drivers,

thence the road throughput is a result of the average of drivers' preference, regulated

by the cultural perception of safety. As automated platooning emerges [72] the trade-

o� between congestion and safety becomes an engineering choice, whereby the engineer

chooses between user comfort and road throughput, just as it is with aircraft autopilot

[200].

(a) The track with the automated cars located
at opposite sides. The beginning of an experi-
ment.
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(b) Distance of each vehicle elapsed from the
beginning of the simulation, plotted as a func-
tion of time. The transition to platooning and
the new, consensus speed are observable.

Figure 39: The Hardware-in-the-Loop set-up for the negotiation algorithm. Two vehicles
with various cost functions cruising freely until they detect a con�ict. All the communi-
cation is performed in a distributed manner just as vehicles detect they are on collision
course
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6.3 Conclusions

This Chapter has outlined the application of the game-theoretic de-con�icting algo-

rithm applied on hardware. It serves as a validation of the framework, as it demonstrates

it is operability in a physical, V2V system. Firstly, the algorithm was run on embed-

ded Raspberry Pi platforms. It then expanded to become a scaled automated vehicle

implementation. The objective was to demonstrate that the execution of the platooning

scenario on the automated vehicles, in real time was achieved. The vehicles perform cal-

culations in real time and cooperatively execute a velocity transient. The development of

multi-agent intersection/overtake/platooning scenario is possible as the most imminent

next step.
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7 Framework scalability analysis

In the core of the framework, as derived and validated in the Chapters above, the main

novelty is in the game theoretic method of negotiation. It has also been implemented as

a Hardware-in-the-Loop application, but there are several assumptions. Thus, for further

validation of this work, in the following chapter various assumptions are challenged, to

o�er additional viewpoints on the behaviour of the algorithm proposed. Unless stated

otherwise, the input from Section 3.4 and assumptions from Section 3.5 hold.

Firstly, a study of the cost function modularity is proposed and a tests of the honesty

assumption. It is followed by a sensitivity analysis of the algorithm's e�ciency to the frac-

tion of agents present on a public road, who can communicate. The chapter is concluded

with an exploratory notion, whereby human drivers could cooperate with CAVs.

7.1 Cost function development

So far, the cost function relates the energy and time costs to �nd optimal actions,

neglecting other, higher order parameters, which a�ect the overall experience of the user.

These include comfort, component wear or perception of safety [178] [179]. The main

control input for these are relative position and its higher temporal derivatives, accel-

eration and jerk, which call for a more complex formulation. This feature, along with

metrological challenges associated with the subjectivity of safety and comfort, resulted

in the pursuit for a more comprehensive cost function.

7.1.1 Ancillary energy loads

Thus far, this work only considere the energy consumption originating from the ve-

hicle motion, as assumed in Section 3.5. In this Section, however, the ancillary load is

considered as well, be it cabin heating, lights, etc. It is introduced as an additional term,

Eanc. The cost function assumes the form

J(v) = CEE(v) + CT∆T + CEEanc. (80)
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It is modelled on a Car type vehicle to examine the sensitivity of the optimal speed V ∗

to variation in Eanc. The value of the cost of energy CE is taken from Section 3.4 [175].

Three values are considered, 1, 2 and 3 [kW]. Results are presented in the Tab. 16 and

the cost function visualised in Fig. 40. The gradual increase in the V ∗ re�ects the e�ort

to minimise the duration of the �xed ancillary load.

Table 16: The optimal cruise speed as presented in Section 3.4, enriched with ancillary
energy consumption, independent of time.

Ancillary power [kW] 0 1 2 3
V ∗ [m/s] 14.49 16.13 17.5 18.68
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Figure 40: The cost function's sensitivity to ancillary load. Increasing regenerative break-
ing obviously �attens the cost function, further proving the elasticity of the CF.

7.1.2 Battery wear model

While so far the CF considers only energy and time consumption, this Section fea-

tures an additional cost, the cost of component wear. The weakest link of an electric

powertrain is the battery. A simulation of an overtake manoeuvre is performed, using

MATLAB's fmincon optimisation routine to �nd optimal speed pro�les vn(t) [201]. The

time domain is discretised with step of 0.1 [s] and no overtake parametrisation is used.

There, the throttle traces of both agents were optimised together cooperatively, using the

CF enriched with a simplistic, linear battery State of Health (SoH) estimator model Jbatt

[202] de�ned as

Jbatt = γb

∫ t

0

|ib(t)| dt (81)
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where γb is an arbitrary wear coe�cient, selected to represent the sensitivity of the battery.

This is a �rst approximation of the wear. The result of the simulation, is presented in Fig.

41. One can observe that the penalty on the absolute value of the current |ib| reduces

the input while elongating the manoeuvre. Furthermore, while in the control sample,

without battery wear, the throttle traces are symmetric, the solution accounting for the

battery wear is biased towards moderation of the control e�ort.
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Figure 41: The cooperative overtake speed pro�le optimisation with no parametrisation.
Two original cost function is compared with an extended one, featuring a linear battery
wear model. The later one features asymmetric throttle traces, preferring moderation of
the control e�ort during the deceleration phase, actually reducing the energy recovery.

7.1.3 Variable energy recovery fraction

The electric motors allow for energy recovery. It is varied however, to manage the

battery wear. Because of that, the cost function's sensitivity to varying electric pow-

ertrain energy recovery settings is examined [11]. So far no energy recovery have been

considered, with the energy loss originating from either powertrain ine�ciency, drag or

energy dissipation from breaks. In this simulation, upon deceleration a fraction of kinetic

energy is redirected to the energy storage, de�ned as Erec

EW
, according to the de�nitions

(11) from ch. 3.1. The Fig. 42 presents the CF for varying energy recovery fractions.

7.1.4 Consideration of externalities

An externality is an e�ect of an action, possibly unintended, which a�ects an another

agent. For example, the noise originating from the rolling tyres a�ects the neighbours,
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Figure 42: The cost function's sensitivity to varying fraction of energy recovery. In-
creasing regenerative breaking obviously �attens the cost function, further proving the
dynamics of the CF.

it is a negative externality. In fact, any societal externality cost [203] could potentially

be introduced to the CF as well. Apart from air pollution from engine, even brake dust

or tyre wear pollution and their in�uence on the biosphere could be also de�ned and

quanti�ed.

O�ering an example, the mass �ux of rubber (R) from tyre wear deposited in the

environment (E), could be performed with an equation:

ṁR→E = q̄S̄R
m0

mTR

, (82)

where the q̄ is the average vehicle throughput, S̄R average length of life of a rubber tire,m0

the initial mass and mTR at the end of life. The unit of ṁR→E is [kg/(km ·y)]. Gathering

such statistical data, in synchronism with research on e.g. health e�ect of heavy metal

pollution in urban dust from tyre and brakes [204] [205], could enable deeper, real time

awareness on how transport really a�ects the citizen's health [205].
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7.2 Agent honesty

As the proposed framework features a payment system, there exists an incentive to

tinker with the device, or simply strategically manipulate one's cost function in order to

game the system. Thus to understand the system's sensitivity to the agent's honesty,

thus section examines the possibility of exploitation of the system rules.

7.2.1 Platooning

Given that agents request a payment for their change in speed, the system could be

cheated by increasing the local CF's (31) slope, while maintaining the same minimizer.

It is achievable if some parameters of the cost function are swayed by a constant cheating

multiplier W , arriving at a local, platooning cost function with the same minimum,

but with steeper slopes, as presented in Fig. 43, requiring much higher payment. The

dynamics of the negotiation, however, would result in a speed much closer to the cheater's

V ∗, negating a fraction of the gain.
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Figure 43: The thruthful local platooning cost function compared with its cheated ver-
sions, with a swaying factor W = {2, 3, 4, 5, 6}.

This vulnerability can be mitigated, however, by sharing of the cruise cost CC,n as

a control value. Just as today there are ANPR equipped law compliance systems i.e.

enforcing vehicle road tax [206], in future, there could be mobile connectivity stations,

which check on the vehicles within their V2V range.
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7.2.2 Overtake and intersection

The overtake and intersection are dynamic events. The cost of such manoeuvre is

sensitive to vehicle mass, which is variable and cannot be inferred from observation.

Therefore agents may be inclined to overvalue it as the payment is proportional to the

agent's mass. However, since vehicles' behaviour can be monitored over time, a cheater

would exhibit inconsistency in strategy selection between uninterrupted cruise and ne-

gotiation. A networked approach to cheating detection could thus be developed and

incorporated into a reputation mechanism, drawing on examples as [57]. The following

conjecture is a preliminary derivation of the penalty to be incurred by the system to a

dishonest user. It assumes that there is only a chance of detection. It is a starting point

for de�nition of rule design in a multi-agent system.

Conjecture: We may de�ne the bene�t of a single cheated interaction as

B† = C† − C[ (83)

where [ corresponds to a cost of an honest, cooperative agreement, while † to a cheated

agreement. Then, let the penalty for cheating be an exclusion from the n next cooperative

manoeuvres, assuming

P = n
(
C[ − C∗

)
. (84)

With PD as probability of discovery, we de�ne the risk [46] associated with cheating as

R = PD P . (85)

Given that the agent is rational [207], meaning always maximizes their payo�, an agent

is honest if, and only if the risk outweighs the bene�t B† < R. In order to evaluate the

level of enforcement of honesty, associated with a minimal chance of detection PD, which

guarantees honesty

PD =
C† − C[

n(C[ − C∗)
=
B†

P
. (86)

The n parameter can be used to control the severity for the penalty, to deter agents

from cheating despite PD being low, to minimise the cost of the detection system.
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7.3 System's performance and tra�c implementation

So far in this Thesis, it has been assumed that all cars are capable of communication,

as stated in Section 3.5. Because the cooperation can occur only when both interact-

ing agents can communicate, it is hypothesised that the system's e�ciency depends on

its tra�c penetration. The probability of cooperative interaction thus is a function of

probability for either agent. In similar fashion as random interactions in a bimolecular

chemical reaction, referred to as a second order reaction kinetics [208]. De�ning P ′ as

the macroscopic system's penetration, or microscopic probability of a given agent being

equipped with the communication capability, we thus expect the Price of Anarchy to be

second order proportional to P ′

PoA(P ′) ∝ P ′2. (87)

This would suggest that the real-world implementation of e�cient, autonomous tra�c

consists of two phases. At a low ratio of CAVs there is a very little marginal gain for

each new participant. However, as the number of cooperative agents eclipses some critical

mass and the chance of success in tra�c increases, and the marginal gain of ∆PoA(P ′)

increases. Then each next user feels a growing incentive to join the trend, accelerating

the convergence to complete tra�c saturation.

7.3.1 Simulation and results

Monte Carlo simulation is performed using MATLAB, with n = 104 samples for

each data point. The input data is randomised as in Tab. 17, as uniform distributions.

Note that Trucks' CT is increased so that V ∗ ranges are same for both types. To model

heterogeneity of tra�c, vehicle type is chosen depending on the macroscopic fraction of

trucks PT . The tra�c' penetration with the system is de�ned as a fraction of vehicles

PS ≡ P ′, which are capable to negotiate. De�ning a random value from the interval

R = [0, 1], cooperative solution is chosen if {PS < R ∧ PS < R} and noncooperative

otherwise. The system's sensitivity to the fraction of vehicles equipped with compatible

communication technology is then examined. If at least one of the interacting agents were

not equipped, the negotiation algorithm is suppressed and the noncooperative solution is

executed.
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Results are presented in Fig. 44. To evaluate the hypothesis from (87) the second

order dynamics curve is added. The root-mean-square (RMS) error of the �t to the

parabola is 0.082, con�rming the hypothesis. The result of the simulation, projected on

the PoA curve is visualised in Fig. 45. This indicates, that until the number of users

reaches 30 %, the marginal gain to the user is minimal. This poses an obstacle to the

implementation of the technology proposed in CAVs, and calls for a method of retro�tting

it to the existing vehicles. This is addressed in the following subchapter.

Table 17: The randomized input parameter ranges for the Monte Carlo intersection
simulation for the tra�c penetration estimation.

Veh. type unit min max
CT (Car) $ 20 40
CT (Truck) $ 133 267

phasing distanceSII km 100 250
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Figure 44: PoA as a function of system's tra�c penetration. Linear and 2nd order
functions are added for reference. The RMS error of the �t to the parabola is 0.082,
con�rming the hypothesis.
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Figure 45: A surface of PoA as a function of System's penetration and truck concentra-
tion. While the pattern of the main result of the e�ciency correlated with heterogeneity
is visible, the PoA marginal gain at low tra�c penetration is minimal, posing a challenge
to the connected tra�c implementation.

7.4 Human in the loop

The above calculation casts a shadow on the feasibility of the implementation, as it

indicates that a certain critical mass of users is required to provide su�cient marginal

gain to incentivise growth. This obstacle, however, could be mitigated if CAVs were able

to communicate and cooperate with Human Driven Vehicles (HDV).

Until now in this thesis, much like in chess, the key assumption is that all information

was known. However, in a real application, some data in the system may be subject to

noise, sensor false positives or even some forms of deception [60]. In our case it may also

be human error, such as delayed response or the user 'changing mind' in the process [89].

A scenario where a Human-Driven Vehicle (HDV) encounters an Autonomous Vehicle

(AV) on an intersection is here considered. Suppose that the HDV is equipped with

hardware for communication and negotiation, along with a Human-Machine Interface

(HMI), which feeds the system's state data to the driver, and which is trusted by the

driver [209]. Then provision of false information, either as a malfunction or malevolence,

could be mitigated with belief-based methods of evaluating information with on-board

sensors [210]. This was mentioned also in ch. 7.2.2. It is worth noting that similar
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GT approach to interaction between mistrustful agents is implemented as an 'AI' for a

strategic computer game StarCraft [211].

The main challenge to implementation of such tra�c cooperation framework is the safety

and security [56]. Just as in the case of guided weaponry, the precision can be ensured a function

assigning risk to the distance between cars with some distance xA,B, guaranteeing separation,

corresponding to required level of safety. The smallest achievable distance CAVs can get to

each other is the key factor limiting the throughput of roads, according to the three-phase

tra�c model, as minimising the gap triggers safety deceleration as visualised in Fig. 46 [68].

Since the diminishing gap reduces the safety of passengers, the road throughput and user safety

are con�icting objectives. Today it is moderated in a distributed, cultural manner by driver's

perception of safety. Therefore in the years to come when ACC controlled platoons will become

mainstream, road congestion and user safety shall become a decision factors for the electronics

engineers, as well as in the economic calculation the trade-o� between economic cost of delays

and insurance and health expenditure [212].

Figure 46: The relationship between the cruise speed and the gap between vehicles, ac-
cording to the three-phase tra�c model. It is the key factor limiting the road throughput
[68].

The implementation of such a concept in road tra�c arrangement also requires driver's

readiness and capability to cooperate with the recommendation system on a more intuitive basis

than in the case of aircraft. The self-enforcement only guarantees compliance of a rational agent,

whilst human decision-makers deviate from rationality [213]. Secondly, a control algorithm for

the correction of the human-introduced error is required.
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7.4.1 Problem formulation

With the prerequisites de�ned above, the proposed controller consists of the negotiation al-

gorithm, being the core novelty of this thesis, along with a simplistic error correction mechanism,

sensor and trust evaluator. The agents play a chicken game [14] on an intersection, gathering

evidence from sensor data and comparing it with pre-negotiated reference to evaluate the trust

and safety. Then we suppose that on the HDV's side human error is introduced, which the

CAV's controller must account for [89]. The vehicle interaction is modelled as continuous time,

what is realized by randomisation of the order of action at every timestep.

7.4.1.1 Error correction

The execution error of the other vehicle is estimated by comparing the adversary's speed pro�le

agreed on during negotiation v−nref (t) and the real, measured speed v−nreal(t), �nding the execution

error ∆v−nref,e(t) de�ned as

∆v−nref,e(t) = v−nref (t)− v−nreal(t), (88)

where the superscript −n refers to the 'other' agent.

Conjecture: for given t the v−nreal(t) is found using maximum likelihood estimation as v−nreal(t) =

V̂−n, based on the vector of measurements ~Vk from k sensors [214], de�ned as

V̂−n = arg max
v∈R+

L(V | ~Vk(t)). (89)

The notion L(V |~Vi) is understood as the V which has the highest chance of being the peak of

the distribution of measurements ~Vk(t). Further development of the quality of the solution here,

may involve Bayesian rare events analysis [215].

In this application, the above error estimation is applied to estimate a control input to

correct the error introduced by a human. The corrector Γn(t) is found

Γn(t) = α∆v−nref,e(t) + β

∫ t

0
∆v−nref,e(t)dt, (90)

where α and β are weights used to regulate the response characteristics, which could be inter-

preted as timidness.
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Then, the vehicle's control variable, that is acceleration, is found as

an(t) = anmax · erf
(
vnref (t)− vn(t) + Γn(t)

)
, (91)

resembling a modi�ed PI controller. erf denotes an error function. Note that the correction

coe�cient refers to the data de�ning the other vehicle's observation.

7.4.1.2 Trust model proposition

The decision whether to engage in a cooperative behaviour is found from a model-based decision

agent [216]. It decides whether the cooperation is worth the risk, based on the observation of

the adversary's speed.

The history of past interactions and given agent's execution error is de�ned as mean correc-

tion cost CC , considering the cost function in (24) it is found as

CCi,n =
1

Kn

Kn∑
k=1

J
(
v, (Γn,k(t)

)
. (92)

K is the history of measurements of the observed n-th agent. Proposed parameter may either

be local to an agent, or can be shared within a population, arriving a problem of a reputation

studied in [217]. Then, the agent chooses to engage in the cooperative manoeuvre if the expected

value outweighs correction error costs

C[ − C∗ ≥ CCi,n. (93)

Should the required error be too large to correct, the safety game module considers the

trajectory and adversary's trust, to decide to continue the cooperative manoeuvre or to defect

and follow a safe trajectory. It is based on the chicken-game [14] [218] type decision.

The decision to continue cooperation is selected as long as the bene�ts of cooperation out-

weigh the risk of incurring cost of departure to safety PE · CSaf . The CEM is de�ned as the

cost of emergency, that is the cost of transition from cooperative to the safe speed pro�le. The

probability of failed cooperation PE is found as

PE = exp
(
− qTCCi,n

)
, (94)
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where qT is some arbitrary input of trust gain used to moderate the timidness of an agent. Then

decision to cooperate is taken if

C[ − C∗ > PECSaf . (95)

7.4.2 Controller architecture

With all the components described above, they are integrated into the agent architecture

[166], presented in Fig. 47. The negotiation algorithm feeds reference values to the controller,

adversary's behaviour is measured and the correction is found. Finally, the correction is quan-

ti�ed, to track adversary's trustworthiness and the manoeuvre is executed through the vehicle

model, moving on the execution of the other vehicle's
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Figure 47: The control agent architecture conceptualised, intended for the interaction
with human drivers. The AV corrects for adversary's error and updates its belief on their
trustworthiness.
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7.4.3 Simulation results

In order to verify the behaviour of the human-in-the-loop framework proposed, an intersec-

tion scenario has been simulated. The vehicles are modelled, as de�ned in chapter 3.1. Since

the interaction between agents occurs over time, the problem is formulated as a di�erential

game. Continuous time e�ect is accounted for by randomizing the order of agents [219] as they

increment their time in steps of tstep = 0.01 [s].

7.4.3.1 Step response

At t = 0 the reference of the human driven OV is incremented, the EV is observing and following

the OV. The resulting speed plots are presented in Fig. 48.
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Figure 48: Velocity pro�le of the human-driven vehicle (OV) as a response to a step
reference. The autonomous (EV) vehicle, in this example follows the OV as its reference.

7.4.3.2 Intersection Scenario

As two vehicles meet, in an intersections scenario, they agree on speed pro�les and begin to

execute the speed pro�le at t = 0 [s]. The OV is to yield but features an execution error of

reference undershoot. The EV ideally should not deviate from its V ∗EV , but corrects for the

OV's error, to ensure su�cient separation when arriving at the con�ict zone. In the middle

of the manoeuvre a disturbance in the OV's speed is further introduced. Then, as the cost of

correction required is too large, according to (95), the trust between agents is broken and the

EV accelerates to a safe trajectory, ensuring su�cient separation at the CZ. The results are

presented in Fig. 49. Observe that the EV uses the di�erence between OV's reference speed,

and the real speed.
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Figure 49: Speed pro�le of the human driven vehicle (OV) following a step reference
and autonomous (EV) vehicle following with OV as reference. The EV accounts for
the adversary's undershoot error, and as the error achieves a trust breaking threshold it
aborts the cooperative manoeuvre escaping to a safe speed pro�le.

7.5 Discussion

This Chapter featured analyses to provide an additional view on the tra�c framework pro-

posed in this thesis, to allow further understanding of its dynamics. The concept of cost func-

tion modularity has been tested by adding a new component to the cost function. Then the

sensitivity of the framework to its market share is considered, yielding a pessimistic result of

minor marginal gain at an early stage of potential implementation, prompting a scenario where

retro�tted connectivity is to feature cooperation between connected HDVs and CAVs.

The notion of putting the humans into the loop requires an assumption that agents act

as rational decision-makers. While this would greatly soften the barrier to implementation of

information-abundant, connected tra�c, the behavioural norm change would require powerful

regulatory action to foster or enforce it.
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7.5.1 Human vs Machine decisionmakers

The above Chapters 3 to 5 present an automated framework to �nd optimal solutions to

tra�c con�icts. It is based entirely on mathematically described decision rules, whereby any

output is calculated deterministically. It stands in opposition to today's Machine Learning

approach, where decisions may contain a random or arbitrarily assigned component. This poses

a challenge to autonomous vehicle ethics, as randomness needs to be ruled out when the user's

and public health are at stake [212].

Additionally, as yet, human capability to intuitively �nd unconventional, e�cient tactics in

complex systems is unchallenged by machine-based models [140]. Whether it is a political party,

a businessman, or a car driver, human decision-agents provide examples of surprising tactics,

which seem counter-productive for a simple convex optimiser. A great example of this is the 2019

Italian Formula 1 Grand Prix qualifying session. There, as result of safety incidents, a group of

drivers was released together towards the end of the last session to attempt last time attack. The

high speed nature of the track allows drivers to gain time by closely following the one ahead. The

�rst one to speed up, thus, would be the one to lose the slipstream advantage. This prompted

an emergence of a 'bubble', where all drivers would slow down to otherwise unsafely low speeds.

Furthermore, coincidentally three drivers at the front were happy with the current standing and

slowed down even further, so those behind would run out out of time. This coalition of drivers

from competing teams emerged spontaneously, with no communication. The situation occurred

as a response to the speci�c, unprecedented circumstance. This gamesmanship has earned the

coalition some positions on the race grid, at a cost of a mere reprimand [220]. A counter-

intuitive coalition has emerged as a tactical response to the speci�c, unique circumstance. The

distributed, non-cooperative system was optimally solved by humans forming a coalition at a

time substantially shorter than a centralized optimisation would take.

The above also exempli�es a speci�c case where the optimal solution is to do the very opposite

of the current equilibrium strategy, with a transient of disorganisation following. Returning to

the public road scenarios, where currently the tra�c code regulations apply, an optimal solution

in half of the cases may be very opposite of today's and in violation of the tra�c code. This

indicates that the optimal tra�c paradigm is as much a challenge for engineering as it is for the

public liability regulator. A phenomenon which requires multi- analysis in the research to come.

7.5.2 Communication and enforcement

The main challenge of both the bi-matrix form and decision tree form game formulations is

the inability to capture the contextual information, which is the main reason for the Aumann's
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Conjecture still being unproven [221] [222] [223].

The Aumann's Conjecture, as described in [139] and in Section 2.5.3, observes that pre-play

communication of virtually zero computational e�ort controls the equilibrium selection, speeding

up convergence or even enabling arrival at PE. In our connected car an example message is

OV will choose V ∗OV or EV will yield. However, the automated V2X communication brings

computational power to convey more complex information, the complete cost function. The

negotiation algorithm then �nds the solution, which is closest to Pareto Optimal but still self-

enforced, thanks to the calculated side-payment. The computational complexity, however, means

that the pre-play communication is not free [224] and might need to be accounted for in the game

design. The Monte Carlo simulations from ch. 5.2.1 also suggests that heterogeneity of agents

maximises the performance of the negotiation algorithm. This suggests a correlation between

cooperative-competitive solution concept and Aumann's Conjecture, calling for further study of

the matter at hand.

As an example, hypergame theory has been o�ered to formulate con�icts, where agents

can have variable or uncertain number of actions [225]. In similar way, Aumann's Conjec-

ture observed that a-priori information a�ects the equilibrium to which the game converges

[139], without the change of the pay-o�s. Just as hypergame formulation captures the existence

of strategies unknown to some agents, in similar fashion, a new game formulation is needed,

whereby the abundance of information and its entropy [226] are captured into the mathematical

formulation of the con�ict.
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8 Conclusions

This thesis o�ers a framework for cooperative tra�c de-con�icting, with implementation as a

strategic Connected Autonomous Vehicle controller. It comes as a multi-objective cost function,

where each agent de�nes their objective and a negotiation algorithm optimally resolves con�icts

between them. While the literature review returns a number of tra�c management schemes

already, on a strategic control level they all assume that all agents are homogeneous. The

key novelty of this work is the cost function, which features user-de�ned parameter, fostering

heterogeneity among agents. It is the source of both for the optimality and self-enforcement of the

framework. It is then followed by the negotiation algorithm facilitating optimal cooperation in all

time/energy relevant scenarios. That is cruising, intersections and in-line con�icts: platooning

and overtake. The results indicate vast improvement in the e�ciency of tra�c, albeit the

measured result is partially subjective. The study of the negotiations among heterogeneous

agents also indicates that the PoA grows as the mass of the initiating agent increases, as the

information sharing allows the smaller agent to move aside at minimal costs. This negotiation

algorithm is thus biased towards heavy goods vehicles.

This work's main novelty is in the game theoretic method of negotiation, such that agents

may trust that adversaries join to cooperate, just as today drivers trust each other. The al-

gorithm formulates the road tra�c con�icts with respect to agent's individual cost functions,

employing game theory to enable de�nition of a Pareto optimal solutions. While the system

can be distributed in low density scenarios, up to 6 agents on a single PC core, in high density

tra�c, not only a centralized computation unit could be located next to busy intersections, but

there is a number of heuristics, which may bring down complexity by several orders of magni-

tude. The reduction of energy consumption and pollution would o�set the cost of the road-side

infrastructure. With all the potential bene�ts, it is impossible to engage all stakeholders of road

tra�c: drivers, operator, OEMs and insurance to fairly share data and bene�ts of its use using

current business models.

In addition, the platooning occurs on a straight road. The three-phase tra�c theory sug-

gests which existence of a breaking point in the tra�c level build-up, as outlined in Section 2.3.1.

The control of platoon [70] thus may a�ect when the will the tra�c stream deteriorate into a

tra�c jam. We observe, that the distance between vehicles becomes a trade-o� when minimis-

ing between the Value of Travel Time savings [143] and the collision rate. The �ammability of

battery-electric cars has been identi�ed as a health, or life risk [227]. A responsible technology
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supplier should notify the regulator body, much like in nuclear facilities, the risk associated with

the use of an autonomous vehicle, to protect the citizens and passengers' health, as refereed to

in ch, 2.5.4. Given electri�cation as a factor [15], and the changing automotive industry, we

should begin discussing the correlation between society's health health, when following the Key

Performance Indicators of the Transport Sector. Summarizing, as the number of vehicles with

Adaptive Cruise Controllers grows, being de-facto autonomous vehicles from energy consump-

tion perspective, cooperative platooning may become a key congestion mitigation method. In

addition, the research on mixed human-machine systems indicates that even a small fraction of

coordinated robotic agents in the network may a�ect the populations wellness factor signi�cantly

[157].

As the framework's mathematical formulation has been put forward, it has been theoretically

tested for platooning and overtake con�icts. A Monte Carlo simulation has also been employed

to test the most complex, intersection scenario. The framework simulation results indicate up

to threefold increase in optimality in relation to noncooperative solution occurring when agent

heterogeneity is maximal. It is noteworthy, however, that while part of the gain is in the

subjectively de�ned cost of time, it still o�ers substantial gain in energy e�ciency.

Then, platooning, the easiest to implement, has served as a scenario for a Hardware-in-the-

Loop validation, achieving a successful hardware demonstrator. The multi-agent con�icts tend

to scale badly, so the n-agent complexity analysis follows, concluding the computational e�ort

growth following the complete graph links sequence.

Finally, some aspects of the framework's possible challenges to deployment are touched.

Namely, the modularity of the cost function is considered, by adding i.e. a linear battery

wear model. The system's sensitivity to tra�c penetration with communication technology

is con�rmed to follow second order reaction dynamics, what results in a low initial gain in

e�ciency, o�ering little incentive to early adopters. This �nding, however, neglects the multi-

agent interactions. As a method of overcoming it, a retro�tting technology enabler has been

attempted. The possibility of cooperation between human-driven and automated vehicles is

tested, putting forward a chicken-game reputation/trust dynamics model. It is integrated into

an intelligent architecture, whereby an agent controls their speed pro�le accounting for the

human-like errors in the pre-negotiated strategy execution. If experimentally validated, the

proposed approach may enable further development of connectivity-based cooperation paradigm

for both human-driven and autonomous vehicles, which could speed up the CAV implementation

signi�cantly.

Departing from the tangible deliverables, as of the date of writing this thesis, there is no
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debate on the safety regulation for CAVs. Interaction with the industry, while laconic due to IP

reasons, hints a discrepancy between the language of engineers and that used by game theorists

used to model con�icts. Thus, while the real implementation of the proposed algorithm might be

distant in time, the most imminent objective of this thesis is to provide a terminological toolbox

for automotive engineers, to conceptualise the problems encountered on the way to computerize

the automobile interactions, with all the socio-engineering challenges it brings to the table.

8.1 Further work recommendation

The core of the contribution is a complete negotiation algorithm with a focus on its simplicity,

to promote understanding. In the process of development it was further tested by the additional

analyses, ch. 6.3. While the results are promising, a signi�cant amount of further work is

required to complete the technology.

From the scienti�c research perspective, the results of the simulations, so far, prove that the

pre-play communication improves the welfare of agents. However, the key assumption was the

completeness of the information. As such, the following subjects to consider in further research.

• Elimination of the perfect Quality of Service and honesty assumptions in a laboratory

environment, to evaluate the framework's resilience and the trust dynamics among agents.

• Development of the robust model for decision-making under uncertainty based on a

Bayesian game formulation. It would feature a form of reputation algorithm as well

as security countermeasures.

• Addressing the issue of the formal de�nition of con�ict propagation, in order to arrive at

robust mathematical de�nition of n-agent con�ict resolution formulation.

• While GT o�ers models for e.g. incomplete information games, the contextual information

not captured neither by bi-matrix, nor decision tree form games. The autonomous vehicles

may serve as example to develop method to formally capture the contextual pre-play

communication.

• As a measure of success of the above, the Aumann's Conjecture could �nally be formally

con�rmed or disproved.
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• To provide economic validation for the cost of opportunity concept embedded in the cost

function, the relationship between national hourly productivity and average free cruise

speed could be examined.

The alternative glance on the further work is to continue the engineering development of the

tra�c cooperation framework. Further work in this aspect would feature the following.

• Development of a complete Hardware-in-the-Loop testbed for the framework presented. It

would feature multiple scaled vehicles on an 8-shaped track, where all considered scenarios

would take place.

• The above would allow to experimentally study the non-convexity of the multi-agent

con�ict formulation, as to explore the possibility of complexity reduction in the multi-

agent problem. Alternatively, a heuristic formulation is to be developed.

• Extension of the cost function. Apart from time and energy, the decision factors would

feature user comfort, component wear, safety, etc. These factors, however, are subjective,

making the engineering objectives hard to de�ne.

• Setting up a Human-in-the-Loop experiment to evaluate the possibility of human-machine

cooperation, establishing advanced human driver characteristics.

• Building a regulatory guidance framework, translating the nuclear regulatory framework

or airspace safety framework to the speci�c application of safe engineering of autonomous

vehicles.
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Appendix

title

C++ code for HiL negotiation

The following code has been implemented on Raspberry Pi devices. Please observe it is
not complex, highlighting only the key functions. The main body of the environment and
other functions not mentioned below, such as display control are available upon request.

#inc lude "header . h"

i n t main ( )
{
C rCC ;
v eh i c l e ∗ v eh i c l e 2 = ( s t r u c t v e h i c l e ∗ ) mal loc ( s i z e o f ( s t r u c t v e h i c l e ) ) ;
i n t rc ;
pthread_t threads [NUM_THREADS] ;

/∗ key_t queue = f tok (FTOK_PATH_Q, FTOK_CHAR_Q) ;
i n t id_queue = msgget ( queue , IPC_CREAT | 0664 ) ;
i f ( id_queue < 0){ pe r ro r ("msgget f a l l i t a " ) ; e x i t ( 1 ) ; }
synchron ize ( id_queue ) ;∗/

∗ v eh i c l e 2 = Init_communication_V1_V2 ( ) ; // Set the parameters f o r the communication V1−>V2
∗ v eh i c l e 2 = Init_communication_V2_V1 ( ) ; // Set the parameters f o r the communication V2−>V1

synchron ize ( ( void ∗) v eh i c l e 2 ) ; // Synchronize f o r the s ima luat ion

∗ v eh i c l e 2 = I n i t i a l i z eV eh 2 ( ( void ∗) v eh i c l e 2 ) ; // Set the parameters o f the v e h i c l e
s l e e p ( 5 ) ;

rCC = EvalCruise ( ( void ∗) v eh i c l e 2 ) ;
s l e e p ( 5 ) ;
veh i c l e2−>V[ 0 ] = rCC . V_Target ;
veh i c l e2−>CC[ 0 ] = rCC .CE;
veh i c l e2−>CC[ 1 ] = rCC .CT;

cout << "Creazione thread 0" << endl ;
r c = pthread_create(&threads [ 0 ] ,NULL, MainProcess , ( void ∗) v eh i c l e 2 ) ;

i f ( rc ){ cout << " e r r o r e " << endl ; e x i t (−1); }

//msgct l ( id_queue , IPC_RMID, 0 ) ;
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f o r ( i n t k = 0 ; k < NUM_THREADS; k++)
{
pthread_join ( threads [ k ] , NULL) ;
cout << "Veh ic l e " << k+2 << " has f i n i s c h e d " << endl ;
SaveOnCsv ( ( void ∗) v eh i c l e 2 ) ;
}

pthread_exit (NULL) ;

void VehMdl( f l o a t dt , void ∗veh1 , i n t time ){

v eh i c l e ∗ v eh i c l e 1 = ( s t r u c t v e h i c l e ∗) veh1 ;
f l o a t a , wheelF , v_mean , sumF , v , x , dEn , Evthrust ;

wheelF = ( veh i c l e1−>wheelFmax )∗ veh i c l e1−>U[ 0 ] ;
sumF = VehForce ( ( void ∗) veh i c l e1 , wheelF , time ) ;

a = 0 ;//sumF/ veh i c l e1−>VP1 [ 0 ] ;
v = veh i c l e1−>V[ time ] + a∗dt ;

v_mean = ( 0 . 5 ) ∗ ( veh i c l e1−>V[ time ] ) ;
x = veh i c l e1−>X[ time ] + v_mean∗dt ;

dEn = wheelF ∗(x−veh i c l e1−>X[ time ] ) / veh i c l e1−>VP1 [ 5 ] ;
Evthrust = veh i c l e1−>Ethrust [ time ] + dEn ;

veh i c l e1−>X[ time+1] = x ;
veh i c l e1−>A[ time+1] = a ;
veh i c l e1−>V[ time+1] = v ;
veh i c l e1−>Ethrust [ time+1] = dEn ;
}

f l o a t VehForce ( void ∗veh1 , f l o a t wheelF , i n t time ){

v eh i c l e ∗ v eh i c l e 1 = ( s t r u c t v e h i c l e ∗) veh1 ;

f l o a t r o l l F = veh i c l e1−>V[ time ]∗ veh i c l e1−>VP1 [ 1 ] ;
f l o a t dragF = 0.5∗ veh i c l e1−>VP1[ 2 ] ∗ 1 . 1 8 ∗ veh i c l e1−>VP1 [ 3 ] ∗ ( veh i c l e1−>V[ time ]∗ veh i c l e1−>V[ time ] ) ;
f l o a t sumF = wheelF − r o l l F − dragF ;

re turn sumF ;
}
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V_C EvalPlat ( void ∗veh1 , void ∗veh2 , i n t d i s t , f l o a t V2 , i n t time ){

s t r u c t J_arrV rJ_arrV_OV , rJ_arrV_EV ; f l o a t V_Star_EV, V_Star_OV;
v eh i c l e ∗ v eh i c l e 1 = ( s t r u c t v e h i c l e ∗) veh1 ; v e h i c l e ∗ v eh i c l e 2 = ( s t r u c t v e h i c l e ∗) veh2 ;
i n t V_OV = V2−2; i n t V_EV = veh i c l e1−>V[ time ] + 2 ;

rJ_arrV_EV = PrefVec ( ( void ∗) veh i c l e1 , V_OV , V_EV ) ;
rJ_arrV_OV = PrefVec ( ( void ∗) veh i c l e2 , V_OV , V_EV ) ;

V_Star_EV = vStar ( (V_EV − V_OV)/0.1+1 , rJ_arrV_EV ) ;
V_Star_OV = vStar ( (V_EV − V_OV )/0.1+1 , rJ_arrV_OV ) ;

cout << endl ;
cout << "−−−−−−−−−−−−−−−−−−−−−−PLATOONING−−−−−−−−−−−−−−−−−−" << endl ;
cout << "V_Star_EV: "<< V_Star_EV; cout << "V_Star_OV: "<< V_Star_OV
<< endl ;
cout << endl ;

r e turn Plat toon ing ( ( void ∗) veh i c l e1 , ( void ∗) veh i c l e2 , V_Star_EV, V_Star_OV) ;
}

V_C EvalOvertake ( void ∗veh1 , void ∗veh2 , i n t d i s t , f l o a t V2 , i n t time ){

s t r u c t J_arrV rJ_arrV_OV , rJ_arrV_EV ;
v eh i c l e ∗ v eh i c l e 1 = ( s t r u c t v e h i c l e ∗) veh1 ;
v e h i c l e ∗ v eh i c l e 2 = ( s t r u c t v e h i c l e ∗) veh2 ;
f l o a t V_Star_EV, V_Star_OV, Smaxdyn , deltaV_ovt , f e a s i b i l i t y ;
i n t i , b , row , column , l enght = 0 ;
f l o a t M_E_EV, M_E_OV, M_T_EV, M_T_OV, CO_sum, CO;
Delta_En_T rDelta_En_T ;
s t r u c t V_C rV_C;
i n t V_OV = V2−2; i n t V_EV = veh i c l e1−>V[ time ] + 2 ;

rJ_arrV_EV = PrefVec ( ( void ∗) veh i c l e1 , V_OV, V_EV) ;
rJ_arrV_OV = PrefVec ( ( void ∗) veh i c l e2 , V_OV, V_EV) ;

V_Star_EV = vStar ( (V_EV−V_OV)/0.1+1 , rJ_arrV_EV ) ;
V_Star_OV = vStar ( (V_EV−V_OV)/0.1+1 , rJ_arrV_OV ) ;

cout << endl ;
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cout << "−−−−−−−−OVERTAKING−−−−−−−−" << endl ;
cout << "V_Star_EV: "<< V_Star_EV << " V_Star_OV: "<< V_Star_OV <<endl ;
cout << endl ;

column =( i n t ) ( ( 1 . 4∗V_Star_EV) − V_Star_EV )/0 . 2 + 1 ;
row = ( i n t ) (V_Star_OV − ( 0 . 2∗V_Star_OV) )/0 .2+1;

f l o a t matV_EV[ row ] [ column ] , matV_OV[ row ] [ column ] , CO_pareto [ 4 ] [ column ] ;
f l o a t M_EV[ row ] [ column ] , M_OV[ row ] [ column ] , M_sum [ row ] [ column ] ;

//−−−−Meshgrid−−−−−//
f o r ( i n t idy = 0 ; idy < row ; idy++){
matV_EV[ idy ] [ 0 ] = V_Star_EV;
f o r ( i n t idx = 1 ; idx < column ; idx++){matV_EV[ idy ] [ idx ] = matV_EV[ idy ] [ idx −1] + 0 . 2 ; }
}

f o r ( i n t idx = 0 ; idx < column ; idx++){
matV_OV[ 0 ] [ idx ] = 0 .2∗V_Star_OV;
f o r ( i n t idy = 1 ; idy < row ; idy++){matV_OV[ idy ] [ idx ] = matV_OV[ idy −1] [ idx ] + 0 . 2 ; }
}

//−−−− I n i t M_EV, M_OV, CO_pareto−−−−//
f o r ( i n t idy = 0 ; idy < row ; idy++){ f o r ( i n t idx = 0 ; idx < column ; idx++){M_EV[ idy ] [ idx ] = NAN; }}
f o r ( i n t idy = 0 ; idy < row ; idy++){ f o r ( i n t idx = 0 ; idx < column ; idx++){M_OV[ idy ] [ idx ] = NAN;}}
f o r ( i n t idy = 0 ; idy < 4 ; idy++){ f o r ( i n t idx = 0 ; idx < column ; idx++){CO_pareto [ idy ] [ idx ] = 0 ;}}

//−−−−Fea sab i l i t y−−−−//
f o r ( i n t k = 0 ; k < row ; k++){
f o r ( i n t l = 0 ; l < column ; l++){

Smaxdyn = ( veh i c l e1−>EnvP [ 1 ] ∗ (1−( veh i c l e1−>EnvP [ 4 ] / matV_EV[ k ] [ l ] ) ) ) ;
deltaV_ovt = 2∗ veh i c l e1−>EnvP [ 0 ] ∗ (matV_EV [ 1 ] [ l ] / Smaxdyn ) ;
f e a s i b i l i t y = (matV_EV [ 1 ] [ l ] − matV_OV[ k ] [ 1 ] ) − deltaV_ovt ;

i f ( f e a s i b i l i t y > 0){
l enght = l ;
rDelta_En_T = sing le_ovt ( ( void ∗) veh i c l e1 , ( void ∗) veh i c l e2 , matV_EV [ 1 ] [ l ] , matV_OV[ k ] [ 1 ] , V_Star_EV, V_Star_OV ) ;

M_E_EV = veh i c l e1−>Cost [ 0 ] ∗ rDelta_En_T . deltaE_EV ; M_T_EV = veh i c l e1−>Cost [ 1 ] ∗ rDelta_En_T . deltaT_EV ;
M_E_OV = veh i c l e2−>Cost [ 0 ] ∗ rDelta_En_T . deltaE_OV ; M_T_OV = veh i c l e2−>Cost [ 1 ] ∗ rDelta_En_T . deltaT_OV ;

M_EV[ k ] [ l ] = M_E_EV + M_T_EV;
M_OV[ k ] [ l ] = M_E_OV + M_T_OV;

CO_pareto [ 0 ] [ l ] = M_EV[ k ] [ l ] ; CO_pareto [ 1 ] [ l ] = M_OV[ k ] [ l ] ;
CO_pareto [ 2 ] [ l ] = matV_EV [ 1 ] [ l ] ; CO_pareto [ 3 ] [ l ] = matV_OV[ k ] [ 1 ] ;

break ;
}
e l s e { M_EV[ k ] [ l ] = NAN; M_OV[ k ] [ l ] = NAN;}
}
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}

//−−−−M_sum, CO_pareto−−−−//
f o r ( i n t idy = 0 ; idy < row ; idy++){ f o r ( i n t idx = 0 ; idx < lenght
; idx++){M_sum [ idy ] [ idx ] = M_EV[ idy ] [ idx ] + M_OV[ idy ] [ idx ] ; } }
f o r ( i n t y = 0 ; y < 4 ; y++){ f o r ( i n t x = 0 ; x < lenght −1;
x++){CO_pareto [ y ] [ x ] = CO_pareto [ y ] [ x+1] ;}}

vector<f l o a t > CO_par_sum ( lenght −1) , M_CO_sum( row∗ l enght ) ;
i n t mm, nn , idz =0;

//−−−−CO_sum−−−−//
f o r ( i n t j= 0 ; j < lenght −1; j++){CO_par_sum[ j ] = CO_pareto [ 1 ] [ j ] + CO_pareto [ 0 ] [ j ] ; }
vector<f l o a t >: : i t e r a t o r r e s u l t = min_element ( begin (CO_par_sum) , end (CO_par_sum ) ) ;
i n t p = d i s t anc e ( begin (CO_par_sum) , r e s u l t ) ;
CO_sum = (CO_par_sum[ p ] ) ;

CO = CO_pareto [ 1 ] [ p ] ;

//−−−−M_CO_sum−−−−//
f o r ( i n t idx = 0 ; idx < lenght ; idx++){ f o r ( i n t idy = 0 ; idy < row ; idy++){
M_CO_sum[ idz ]= M_sum[ idy ] [ idx ] − CO_sum;
idz = idz +1;}
}
vector<f l o a t >: : i t e r a t o r r = min_element ( begin (M_CO_sum) , end (M_CO_sum) ) ;
i n t i i = d i s t anc e ( begin (M_CO_sum) , r ) ;

mm = i i / l enght ;
nn = i i%lenght ;

rV_C. payment = 100∗CO;
rV_C. velocityEV = matV_EV [ 1 ] [ nn ] ; rV_C. velocityOV = matV_OV[mm] [ 1 ] ;

cout << "V_Overtacking_EV = " << rV_C. velocityEV<< endl ;
cout << "V_Overtacking_OV = "<< rV_C. velocityOV << endl ;
cout << endl ;
cout << "Payment per a l l d i s t anc e = " << 100∗CO << endl ;

r e turn rV_C;
}

8.1.1 Algorithm's structure

and has the following structure.
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Algorithm 8.1: (lower, upper)

procedure CelsiusToFahrenheit(c)
f ← 9c/5 + 32
return (f)

main

x← lower
while x ≤ upper

do

{
output (x,CelsiusToFahrenheit(x))
x← x+ 1
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