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Summary

Electric vehicles (EVs) have a limited driving range compared to conventional

vehicles. Accurate estimation of EV's range is therefore a significant need to

eliminate “range anxiety” that refers to drivers' fear of running out of energy

while driving. However, the range estimators used in the currently available

EVs are not sufficiently accurate. To overcome this issue, more accurate range

estimation techniques are investigated. Nonetheless, an accurate power-based

EV energy consumption model is crucial to obtain a precise range estimation.

This paper describes a study on EV energy consumption modelling. For this

purpose, EV modelling is carried out using MATLAB/Simulink software based

on a real EV in the market, the BMW i3. The EV model includes vehicle

powertrain system and longitudinal vehicle dynamics. The powertrain is mod-

elled using efficiency maps of the electric motor and the power electronics'

data available for BMW i3. It also includes a transmission and a battery model

(ie, Thevenin equivalent circuit model). A driver model is developed as well to

control the vehicle's speed and to represent human driver's behaviour. In addi-

tion, a regenerative braking strategy, based on a series brake system, is devel-

oped to model the behaviour of a real braking controller. Auxiliary devices are

also included in the EV model to improve energy consumption estimation

accuracy as they can have a significant impact on that. The vehicle model is

validated against published energy consumption values that demonstrates a

satisfactory level of accuracy with 2% to 6% error between simulation and

experimental results for Environmental Protection Agency and NEDC tests.
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1 | INTRODUCTION

Global warming and environmental pollution have led

to more severe regulations on CO2 and other pollutant

emissions. In this context, electric vehicles (EVs) have

become an alternative to conventional vehicles as they

offer a zero-emission alternative. Besides, they are

cheaper to be recharged as electricity is cheaper than pet-

rol/diesel and also energy recovery is possible from

regenerative braking in EVs.

However, the EVs' market penetration rate is not very

quick because of their limited range, charging time,

battery replacement cost, and other limitations related

to infrastructure. This study is particularly related to one

of these restrictions, the limited EV range. This limitation

causes an issue called “range anxiety” that refers to

drivers' fear of running out of energy while driving.1 This

phenomenon can be limited by increasing the battery

capacity and/or the number of charging stations. How-

ever, both solutions are expensive, and will not improve

the confidence of drivers in the remaining driving range

estimation. Nowadays, range estimators are not suffi-

ciently accurate because they are mainly based on vehicle

historical data. Thus, they can lead to major estimation

errors and cannot be fully trusted by drivers. “Range anx-

iety” can be reduced by improving the range estimation

to increase drivers' confidence. For EV range estimation,

an accurate estimation of the EV's energy consumption is

vital and is therefore the purpose of this study.

In this study, the energy flow is only considered

inside the vehicle so, the energy flow between the grid

and vehicle is out of the framework. Generally, the EV

energy consumption refers to the sum of:

• Energy that is required at the wheels to propel the

vehicle,

• Energy losses along the powertrain, and

• Energy that is required for the operation of the auxil-

iary devices.

New techniques are required for more accurate EV

energy consumption/range estimation aiming to reduce

“range anxiety” and increase the driving range. In fact,

higher range can be achieved by giving more confidence to

the drivers, enabling them to extend the use of their vehicle

on a single charge. This idea comes from knowing that

nowadays, most of the drivers only use about 70% of the

estimated remaining battery energy due to a lack of

confidence.2

In this study, EV energy consumption estimation

is the main focus and it is performed based on vehicle

modelling using MATLAB/Simulink software. The BMW

i3 is selected as the case-study here to demonstrate the

proposed concept. The authors believe that same tech-

nique can be applied to other types of EV and the general

outcomes of this study do not depend on the vehicle type

used here. As an important part of this study, the pro-

posed vehicle model is validated against experimental

data obtained from the literature.

Two main approaches are used for EV modelling3:

(a) Forward approach also called “dynamic approach”

or cause-effect method, and (b) Backward approach also

called “quasi-static approach” or effect-cause method.

The forward approach is based on equations of the

powertrain components behaviour and the dynamic inter-

action between the components. This approach requires

a driver controller to set the start of the calculations.

Therefore, the driver behaviour can be studied using this

approach. The controller is implemented to model the

driver that has to press/release either the accelerator or

the brake pedal in order to reduce the error between the

actual speed and the speed from a drive cycle.4 The driver

model provides the torque demand to match the drive

cycle speed profile. Thereafter, from the driver set-point,

the energy required to overcome the opposing forces act-

ing on the vehicle is computed. The backward approach

considers a reference speed profile, as input, to determine

the forces acting at the wheels and then processes back-

ward through the powertrain. Subsequently, the model

computes the motor torque and the energy required from

the battery to power the electric motor.4 The advantages

of the forward method are that the driving speed profile

does not need to be known5 and that it can be easily and

rapidly used for prototyping and hardware in the loop

testing.6 Besides, it is suitable to identify the interactions

between components that can affect the energy consump-

tion and the performance of the vehicle. Even though it

requires more computational effort to solve the model's

differential equations, the forward approach is more accu-

rate than the backward approach.4

Vehicle energy consumption is affected by several

factors that can be divided into two main categories7,8:

(a) Internal Factors associated with the vehicle itself

(vehicle design parameters, characteristics, efficiency and

inertia of the vehicle components, auxiliary devices

usage, etc.), and (b) External Factors associated with driv-

ing conditions (environmental and traffic conditions, road

type and conditions, driving behaviour, etc.). To develop

an accurate EV energy consumption estimation model,

the impact of all factors must be carefully examined

because road slope, for instance, has a major impact on

that.9 The external factors demonstrates different level of

variability with regard to real world driving conditions.

Depending on their variability and their predictability,

they are classified in three categories10,11: Stable, Dynamic

but easy to predict and Dynamic and difficult to predict.
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For range estimation, most of the car manufacturers

use an approach based on analysis of a short history of

energy consumption to predict it in the near future. In

that method, it is assumed that the rate of energy con-

sumption remains unchanged in a short prediction hori-

zon. However, this approach is not accurate since it does

not consider the changes in driving conditions that may

occur.10 EV energy consumption estimation models can

be classified in three main categories: Analytical, Statisti-

cal and Computational models.7

Analytical models work based on longitudinal vehicle

dynamics and electric motor losses estimation from avail-

able efficiency maps.2,12,13 Longitudinal vehicle dynamics

is modelled from the vehicle dynamics theory to calculate

the required power at the wheels to overcome the opposing

forces. In some studies, the regenerative braking is mod-

elled as a linear function of vehicle speed to estimate the

energy recovered while braking or driving downhill2 or it is

modelled as a function of vehicle deceleration.12 The model

developed in Reference 12 considers the instantaneous EV

speed and acceleration to provide an accurate second-by-

second energy consumption estimation. Contrary to,2 the

model not only considers the motor efficiency but also the

efficiency of other powertrain components. The impact of

auxiliary devices is considered as well for an improved esti-

mation.12 The model introduced in Reference 13 expresses

the relationship between EV power, speed, acceleration

and road grade to determine the required power at the

wheels. The model can be either used for instantaneous

energy consumption estimation or energy consumption

prediction over a trip for eco-route planning.13 The existing

regenerative braking models are improved in this study by

considering the limitations coming from the battery and

the electric motor.

Statistical models are based on the analysis of real-

world driving data to derive empirical relationships

between different factors and EV's energy consumption.

For this purpose, regression models that consider both

EV dynamic behaviour and powertrain efficiency, have

been developed.14-16 For example, the model developed

in Reference 14, works based on historical and real-time

data analysis in order to derive polynomial combinations

of EV speed, acceleration and battery State-of-Charge

(SoC) under different operation modes. In Reference 15,

three regression models using multiple linear regression

(MLR) method, have been developed with different levels

of detail. Road characteristics, traffic conditions, driving

style and environmental conditions are well considered

to update the estimation models for an improved accu-

racy. The first model is used for energy consumption

estimation over a trip for route planning and does not

consider weight variation and acceleration, assuming

constant EV speed. It is improved with a second model

that includes acceleration data while a third model is pro-

posed for instantaneous energy consumption estimation

while driving.15 In Reference 16 an improved MLR

energy consumption model based on the extraction of

real-world data and speed profile prediction using Neural

Networks is presented. That model also considers the

energy consumption of auxiliary devices. The proposed

model performs well even in the existence of changes in

driving behaviour and environmental conditions.16 Fur-

thermore, Principal Component Analysis (PCA) is used

in Reference 7 to study the impact of each factor sepa-

rately. PCA consists of transforming a set of correlated

variables into a set of new uncorrelated variables using

an orthogonal transformation. The EV energy consump-

tion is then estimated as a polynomial combination of

each variable weighted depending on its relative impor-

tance.7 Statistical models demonstrate a good applicabil-

ity since they require less computational effort than

analytical models however, they are less accurate.

Computational models based on artificial neural net-

works (ANN) are developed to determine relationships

between a number of affecting factors and EV energy con-

sumption.7,17,18 This type of models are used to estimate

EV energy consumption as a function of the input factors,

where a weight is determined for each factor depending on

its relative importance using training algorithms.17 This

approach performs well in fitting nonlinear relationships

between input and output variables.7 ANN can also be

used for prediction of driving behaviour by classifying driv-

ing patterns using Global Positioning System data. This

method is found to be a powerful approach as it is data-

driven and self-adaptive.18 As part of this method, cluster-

ing techniques are used to recognize similar patterns in a

set of data in order to gather data with similar proper-

ties.19-23 It is applicable to driving pattern recognition and

driving behaviour analysis which is used to improve the

accuracy of energy consumption estimation models.24 The

computational models found in the literature do not take

into account all the factors affecting the energy consump-

tion such as auxiliary devices that can affect significantly

the vehicle energy consumption.

The selection of an estimation approach depends on

the targeted application. In general, statistical and compu-

tational models require more computational effort than

analytical models. However, they are more accurate as they

work based on data analysis and probabilistic prediction.

In addition, analytical models can only reflect changes in

vehicle behaviour as they are based on vehicle dynamics

and physical modelling. Using analytical models, it is diffi-

cult to take into account factors associated with driving

conditions such as environmental and traffic conditions.10

However, some hybrid methods that are both physics-

based and data-driven have been developed in References
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25 and 26. In Reference 26, a simulation tool called “Auto-

nomie” is described that is developed by Argonne National

Laboratory. That simulation tool works based on vehicle

parameters and data analysis and it is used for vehicle

energy consumption calculation. Autonomie has demon-

strated good accuracy against test data and is widely used

by the industry. Such hybrid methods combine the advan-

tages of both analytical and data-driven models.

Energy consumption estimation models can be used

for various applications:

• Estimation before a trip for route planning as part of

an eco-routing system. For a targeted destination, the

system determines the best route by minimising the

energy consumption based on the current traffic and

environmental conditions.7

• Estimation second-by-second to provide dynamic infor-

mation about the vehicle energy consumption.

• Eco Approach and Departure application to provide

recommendations to reduce the energy consumption

when approaching signalised intersections. Examples

are calculating the optimum speed to reach the next

traffic signal on a green light or to come to a stop in

the most efficient way and display it to the driver.27

In this study, a model-based EV energy consumption

estimator is proposed and validated for a case-study on

BMW i3. For this purpose, a forward EV powertrain model

is developed using MATLAB/Simulink software. The pro-

posed model considers the power consumption of auxiliary

devices in contrast to the work presented in Reference 2.

The power consumption of auxiliary devices is estimated

from average values found in the literature, which is dis-

cussed in this paper. This estimation is included in the EV

model since auxiliary devices can have a significant impact

on the vehicle energy consumption. In addition, the effi-

ciency values of power electronics and electric motor are

estimated from the efficiency maps whereas they are

assumed to be constant in previous studies such as the

work performed in Reference 28. The efficiency values are

interpolated over the entire range of the electric motor

using efficiency maps available in the literature. Further-

more, the regenerative braking strategy that is modelled in

this study works based on the series brake system configu-

ration used on the BMW i3. This strategy considers several

factors affecting the regenerative braking capability of the

EV such as vehicle speed, acceleration and battery SoC. As

a consequence, the braking strategy tends to be more accu-

rate than previous models developed for example in Refer-

ences 2 and 12.

Summarising the aforementioned literature, the nov-

elties of this study are as follows:

• Estimation of the power consumption of auxiliary

devices.

• Estimation of the efficiency of electric motor and

inverter from efficiency maps.

• Precise modelling of a regenerative braking strategy

currently used on the market.

Unlike conventional vehicles, the range of EVs is lim-

ited even if the battery capacity has been increased in the

newly available vehicles. Therefore, the use of highly pre-

cise range estimators is still a major issue in EVs. How-

ever, the current range estimators work on the basis of

vehicle's historical data analysis and are therefore not

very accurate. For range estimation, an accurate model of

the EV's energy consumption is essential. Such a model

can be implemented in EV range estimators to assess the

energy consumption of any EV model.

The main objective of this paper is to introduce an accu-

rate modelling approach for EV energy consumption esti-

mation. In order to demonstrate the proposed concept and

validate the results, a case-study on BMW i3 has been cho-

sen as a typical EV in the market. So, the goal is to model

the target EV including its powertrain system and longitudi-

nal dynamics and then validate it using the available data.

2 | VEHICLE MODELLING

Architecture of the EV energy consumption estimation

model, developed in this study, is presented in Figure 1. The

consumed energy, Econs, is calculated as per unit of distance

(Wh/m) derived from the battery power output Pbat
29:

Econs =
Ebat

d
, ð1Þ

Ebat =

ð

traction

Pb−out τð Þdτ−

ð

braking

Pb− in τð Þdτ

 !

�
1

3600
,

ð2Þ

Pb−out =
RTotal �VVehicle

ηPowertrain
and Pb− in = α �Pregen, ð3Þ

where Ebat is the battery energy output in (Wh), d is the

distance travelled in (m), RTotal is the total resistance forces

opposed to the vehicle motion in (N), VVehicle is the vehicle

speed in (m/s), ηPowertrain is powertrain efficiency (includ-

ing power electronics, electric motor and transmission), α

is the percentage of the braking energy that can be recov-

ered (0 < α < 1), that is also called regenerative braking

factor and Pregen is the regenerative power that is calculated

based on XBRegen
and motor's limitations as follows:
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TBr_demanded =
XBRegen

:rd

G �ηG
, ð4Þ

PBr_demanded =TBr_demanded:ωmotor sð Þ, ð5Þ

Pb − out and Pb − in are respectively the power provided

by the battery for vehicle motion and the power

regenerated to charge the battery considering electric

motor braking capabilities in generator mode.

As aforementioned, the battery power output Pbat is

divided into two main parts:

• Power that is used to propel the vehicle (Pb − out): the

battery must supply this power to overcome the oppos-

ing forces and any power losses along the powertrain

system (Power out).

• Power that is regenerated during braking (Pb − in): part

of the braking energy can be recovered from regenera-

tive braking by operating the motor in generator mode

and charging the battery (Power in).

In the following sections, individual components of the

proposed model are explained in more details. In order to

simulate the model, numerical values of BMW i3 are used

as a popular EV in the market. The proposed model is then

validated against the available data for that particular EV.

2.1 | Vehicle specifications

The 2014 BMW i3 60Ah Range Extender (REx) is consid-

ered to be modelled as a case-study. For simplicity, the

REx is not modelled since it is only used for battery SoC

below 6%.30 The vehicle model is therefore applicable

for SoC level above 6% which is sufficient for the proof

of concept in this study. BMW i3 is a rear wheel drive

(RWD) EV with one electric motor at the rear axle. The

power transmission between the motor and the wheels is

achieved by a single-speed automatic transmission sys-

tem. The vehicle specifications are presented in Table 1.

In addition, the efficiency maps of the inverter and the

electric motor that are used in the BMW i3, are shown in

Figure 2. The torque and power curves of the electric

motor are also shown in the same figure.

2.2 | Vehicle model

Since this study aims at EV energy consumption estima-

tion, only the powertrain system and the longitudinal

vehicle dynamics are modelled. The lateral dynamics is

neglected as it does not have a major impact on vehicle's

energy consumption. Three main power flows are consid-

ered in the proposed model:

• Energy flow from the battery pack to the wheels to

propel the vehicle.

• Energy flow from the wheels to the battery pack dur-

ing energy recovery by regenerative braking.

• Energy flow from the battery pack to the auxiliary sys-

tems via the 12 V battery.

The vehicle model is developed in MATLAB/

Simulink and consists of a combination of different sub-

systems listed in below:

• Driving cycle subsystem including the reference speed

that vehicle must follow. This subsystem is the input of

the model.

FIGURE 1 Forward electric vehicle model architecture
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TABLE 1 2014 BMW i3 60Ah Range Extender specifications31-33

VEHICLE BODY

Curb weight (EU) 1390 kg

Curb weight (US) 1420 kg

Aerodynamic drag coefficient 0.3

Frontal area 2.38 m2

Wheelbase 2570 mm

Static weight distribution

(empty car)

44.9/55.1 Front %/Rear %

Drivetrain Rear wheel drive (RWD)

POWERTRAIN

Number of motor(s) 1

Motor type Permanent magnet AC synchronous electric motor (BMW hybrid synchronous motor)

Motor operating range 0-11 400 rpm

Maximum power/at rpm 125/4775 kW/rpm

Maximum torque/at rpm 250/0-4475 Nm/rpm

Maximum regenerative brake

power

55 kW

TRANSMISSION

Type Single-speed automatic transmission

Simple fixed gear ratio 9.7:1

Tyres model Bridgestone Ecopia EP600

Front/rear tyres size 175/70 R19

Front/rear tyres radius 0.3638 m

BATTERY

Chemistry Lithium-ion

Battery configuration 8 Modules (96 Cells Connected in Series)

Nominal cell voltage 3.7 V

Nominal cell capacity 60 Ah

Nominal battery pack voltage 355.2 V

Nominal battery pack capacity 60 Ah

Nominal battery pack energy 22 kWh

PERFORMANCE

Top speed 150 km/h

Acceleration (0-100 km/h) 7.9 s

Driving modes Comfort

Eco Pro

Eco Pro +

Electric range (NEDC) 170 km

Electric range (EPA combined) 115 km

Energy consumption (NEDC) 13.5 kWh/100 km

Energy consumption (EPA

combined)

117 mpge

29 kWh/100mi

Abbreviations: EPA, Environmental Protection Agency; NEDC, New European Driving Cycle.
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• Driver model that is responsible for controlling the

vehicle motion by providing accelerator and brake

commands in the model.

• Brake system and the controller that is designed for

distributing the braking force/torque demand between

friction and regenerative brakes.

• Electric motor and inverter model for computing the

energy losses by considering the efficiency of the motor

and the inverter.

• Transmission model for calculating the tractive force

by considering the energy losses while transmitting the

torque from the motor to the driving wheels.

• Battery subsystem that is designed to calculate energy

demand from the battery pack by considering the limi-

tations of battery in terms of voltage and current

boundaries.

• Auxiliary subsystem that is designed to calculate the

power demand from auxiliary devices.

FIGURE 2 A, BMW i3 inverter efficiency map,34 B. electric motor efficiency map, and C. electric motor torque and power curves35

[Colour figure can be viewed at wileyonlinelibrary.com]
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• Longitudinal vehicle dynamics subsystem to calculate

the opposing forces and to update vehicle's velocity at

each simulation time step.

Figure 3 illustrates the whole vehicle model including

all the above-mentioned subsystems and interactions

between them. In the following sections, individual sub-

systems are explained with more details.

2.2.1 | Driver model

The driver model aims to represent a human driver's

behaviour in the most realistic possible way. However,

driving behaviour is a difficult phenomenon to be mod-

elled because it depends on subjective factors such as

driver's physical conditions and mood. In this study,

a simplified driver model is considered which is just

responsible to minimise the error (∆V) between the drive

cycle (reference desired speed, Vdesired) and the actual

vehicle's speed (Vactual). Depending on the sign of ∆V,

driver's acceleration or brake command is generated to

make the vehicle to follow the reference speed profile.

When ∆V is positive, an acceleration command (DA) is

generated, meaning that the driver must press the acceler-

ator pedal to increase vehicle's speed. On the other hand,

when ∆V is negative, a brake command (DB) is generated.

In that situation, the driver has two options, either press

the brake pedal to brake the vehicle using the frictions

brakes or release only the accelerator pedal to slow down

the vehicle by dynamic braking. The choice between one

of these two options depends on the braking strategy.

As shown in Figure 4, the proposed driver model con-

sists of two subsystems: (a) the driver controller, and

(b) accelerator and brake commands. PID controllers are

the most widely used controllers at industry as they are

easy to be implemented. Besides, PI controllers have been

found to be widely used for driver modelling in several

previous studies. Therefore, a PI controller is chosen to

model the driver in this study, as follows:

PI sð Þ= P+ I �
1

s

� �

, ð6Þ

where P and I are proportional and integral gains respec-

tively. The driver's pedal command tahen splits into brake

and accelerator commands according to its sign as shown

in Figure 4. The driver's command is scaled between −100

and 100% corresponding to fully pressed brake pedal and

fully pressed accelerator pedal respectively. Both com-

mands are then normalized between 0 and 1, corresponding

to fully released and fully pressed pedal respectively.

In order to tune the PI controller's gains, New

European Driving Cycle (NEDC) simulation case-studies

are performed. During real drive cycle tests, the test driver

must follow a reference speed profile such as NEDC with

maximum 2 km/h error.36 Therefore, to get a similar

behaviour to a human driver from the model, a maximum

allowed deviation of 2 km/h (±2 km/h) is considered in

the simulations as well. The PI controller is therefore

tuned according to the aforementioned criterion. A sensi-

tivity analysis is also conducted as shown in Table 2.

From this analysis, it can be concluded that when the

controller's gains are changed, the energy consumption

FIGURE 3 BMW i3 model in MATLAB/Simulink [Colour figure can be viewed at wileyonlinelibrary.com]
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varies slightly while the variation of the speed error is

substantial. As a result, because the actual vehicle speed

must remain in the allowable range (±2 km/h) the con-

troller parameters are chosen as follows: P = 60 and I = 2.

Reference velocity, actual vehicle velocity and the error

between them are demonstrated in Figure 5 for NEDC

simulation case-study.

2.2.2 | Braking strategy model

In EVs, dynamic braking by the electric motor enables

recharging the battery while driving. In order to estimate

the braking force required to slow down the vehicle, the

maximum available braking force XBMAX must be deter-

mined, which depends on the normal load acting on the

vehicle and the adhesion between the tyres and the

road29,37:

XBMAX =φ � Z f +Zr

� �

=φ �MVehicle �g, ð7Þ

where φ is the adhesion coefficient between the tyres and

the road, Zf and Zr are the normal loads on front and rear

axles in (N) respectively, MVehicle is the vehicle mass in

(kg) and g is the acceleration due to gravity in (m/s2). Typ-

ical values of φ are around 0.8 on dry or wet asphalt and

concrete surfaces.29 In the proposed EV model, the brak-

ing force is distributed between the friction and regenera-

tive brakes as follows:

XBFriction
=XBMAX �DBFriction

, ð8Þ

FIGURE 4 A, Driver model and B, driver accelerator and brake commands subsystem in Simulink

TABLE 2 Driver controller sensitivity analysis

Tuning setup

Distance Energy consumption Maximum speed error (+) Maximum speed error (−)

(km) (Wh/km) (km/h) (km/h)

P = 10 and I = 1 11.02 129.44 7.15 −8.35

P = 60 and I = 1 11.02 126.97 1.36 −1.57

P = 60 and I = 2 11.02 127.64 1.42 −1.52

P = 100 and I = 1 11.02 127.12 0.86 −0.95
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XBRegen
=XBMAX �DBRegen

, ð9Þ

where XBFriction
and XBRegen

are the friction and the regener-

ative braking forces in (N) respectively, and DBFriction
and

DBRegen
are the friction and regenerative brake commands.

Regenerative braking is only effective at driven axles

and is more efficient at the front axle due to the load

transfer from rear to front during braking giving

more grip and increasing the normal load at the

front. In general, 65% of the braking energy goes to

the front axle. In addition, regenerative braking at

the rear axle is more limited by the legislation

because the rear is more critical regarding wheel

locking.29 Furthermore, regenerative braking is found

to be limited by several factors such as battery charg-

ing power limitation and SoC, vehicle speed and

vehicle deceleration. A maximum regenerative brak-

ing power is set to protect the battery since the bat-

tery charging power is limited for battery protection.

For the BMW i3, the regenerative braking power is

limited to 55 kW at the wheels,32 which lead to a

limit of about 53 kW at the electric motor considering

the transmission efficiency of 97%.

The demanded motor braking power PBr_demanded is

compared to the maximum regenerative motor braking

power PMax_Regen to derive the limited motor braking tor-

que TBr_Limited as follows:

• If PBr_demanded > PMax_Regen:

TBr_Limited =

PMax_Regen

ωmotor sð Þ
, if ωmotor sð Þ 6¼ 0

0, if ωmotor sð Þ =0

8

>

<

>

:

• If PBr_demanded ≤ PMax_Regen:

TBr_Limited =

PBr_demanded

ωmotor sð Þ
, if ωmotor sð Þ 6¼ 0

0, if ωmotor sð Þ =0

8

>

<

>

:

where ωmotor is the motor speed in (rpm). Thereafter, the

available electric motor brake command EMAvailable_BC is

derived from the above limitation and the maximum avail-

able braking force as follows:

EMAvailable_BC =
TBr_Limited �G �ηG

rd �XBMAX
, ð10Þ

where G is the single-speed gear ratio, ηG is the transmis-

sion efficiency and rd is the dynamic tyre radius in (m).

At low speeds, regenerative braking is inefficient so,

it is disabled for safety reasons as it may cause the vehicle

to brake when the vehicle is started. Thus, regenerative

braking is set to zero at low speeds and it is progressively

increased for smooth operation.38 Figure 6 shows the

speed-dependent regeneration factor depending on

FIGURE 5 Reference and

actual speed profiles on the New

European Driving Cycle [Colour

figure can be viewed at

wileyonlinelibrary.com]
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threshold speeds u1 and u2 that must be determined. The

regeneration factor is set to 0 below u1 and is increased

linearly between u1 and u2 up to 1. Usually, u1 and u2

are set to 10 and 20 km/h respectively.38

Above a certain level of deceleration, the electric motor

is unable to brake the vehicle because the braking torque

demand is too high, and the friction brakes must therefore

be used. The deceleration limit is set at 0.7g where g is the

acceleration due to gravity. Above this limit, regenerative

braking is disabled as shown in Figure 6.

Regenerative braking also depends on the battery

SoC. It is disabled for SoC above 95% to avoid recharging

the battery when it is fully charged as shown in Figure 6.

The BMW i3 uses a series brake system because it is

possible to brake most of the time by only releasing the

accelerator pedal to recover as much kinetic energy as

possible during the braking phases. The brake pedal is

thus only necessary for a complete stop or emergency

braking.39,40 A series brake system is thus considered

based on the following algorithm:

• If DB < EMAvailable_BC:
DBRegen

=DB

DBFriction
=0

(

• If DB ≥ EMAvailable_BC:
DBRegen

=EMAvailable_BC

DBFriction
=DB−EMAvailable_BC

(

where DB is the driver's brake command, DBFriction
and DBRegen

are the friction and the regenerative brake commands

respectively and EMAvailable_BC is the electric motor's

available braking command. As a result, a regenerative

braking strategy based on a series brake system is used in

the proposed EV model by considering the limiting fac-

tors mentioned above.

2.2.3 | Power electronics and electric
machine model

In this section, another sub-system of the proposed EV

model is explained that is electric motor and power electron-

ics. Since the goal of EV modelling is energy consumption

estimation in this study, more focus here is on the efficiency

of the electric motor and power electronics as it affects the

overall energy consumption significantly. Energy losses due

to the power electronics increase the energy that the battery

has to provide to the electric motor and also reduce the

energy effectively recovered from regenerative braking. The

on-board charger is not considered in the model since the

energy loss between the grid and the EV battery is neglected

in this study. Thus, only the inverter and the converter

are modelled here. The inverter efficiency is computed in

Simulink using a 2D lookup table that is prepared according

FIGURE 6 Regenerative braking factors as a function of vehicle speed, vehicle deceleration and battery State-of-Charge [Colour figure

can be viewed at wileyonlinelibrary.com]
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to the BMW i3 inverter efficiency map shown in Figure 2.

Since no specific information was available about the con-

verter technology used in the BMW i3 in the public domain,

the converter efficiency is assumed to be 90% as the average

DC/DC converter efficiency is around 90%.41

Motor torque in Nm, motor speed in rpm and motor

efficiency must be taken into account in the vehicle model

too as they affect the vehicle energy consumption. The tor-

que demand is the input of the electric machine model

whereas the output torque from the motor, by considering

motor and inverter efficiencies, is the output. The torque

demand TDem is derived from the driver model as follows:

TDem =TMax �DA, ð11Þ

where TMax is the maximum available torque in (N) and

DA is the driver acceleration command. TMax is equal to

the output torque from the motor divided by the efficiency

of the motor and the inverter. The motor torque

is computed in Simulink using a 1D lookup table that is

prepared according to the electric motor torque curve

shown in Figure 2. The motor efficiency is computed for a

given motor speed and a given torque demand using a 2D

lookup table that is prepared according to the available

electric motor efficiency map. The electric machine model

developed inMATLAB/Simulink is shown in Figure 7.

2.2.4 | Model of auxiliary devices

Nowadays, there are more and more auxiliary devices

in vehicles for safety and comfort. They are powered

by a 12 V battery that is charged by the high voltage

battery via a DC/DC converter. The power consump-

tion of the auxiliary devices can significantly affect the

overall EV's energy consumption. That is why, they

must be included in the vehicle model for more accu-

racy. The power demand of auxiliary devices is calcu-

lated as follows:

PDem =
PAc

ηDC=DC �η12V_bat
, ð12Þ

where PDem is the power demand in (W), PAc is the

power consumption of the auxiliary devices in (W) and

ηDC/DC and η12V_bat are the DC/DC converter and the

12 V battery efficiencies respectively. The energy con-

sumption of the auxiliary devices depends on several fac-

tors such as the ambient temperature. However, for the

sake of simplicity, average values are extracted from

the literature as stated in Table 3. The table includes the

main auxiliary devices in an EV and their average power

consumption.

Thereafter, the effective power consumption of the

auxiliary devices are estimated based on the devices acti-

vated during the tests. For instance, during NEDC homol-

ogation tests, lights and auxiliary devices must be switched

off, except those required for testing and day-time opera-

tion of the vehicle.36 From the list of auxiliary devices

shown in Table 3, it is assumed that only the driving con-

trol and energy management systems are activated during

NEDC tests. Figure 8 shows the battery energy consump-

tion with and without auxiliary load on the NEDC. The

battery energy consumption increases by 9% with a load

FIGURE 7 Electric machine model in Simulink

512 MIRI ET AL.



around 300 W. Therefore, auxiliary devices have a major

impact on energy consumption and must be considered as

accurately as possible.

2.2.5 | Battery model

There are two main energy storage systems in the BMW

i3: the high voltage Lithium-ion battery pack used to pro-

pel the vehicle and the low voltage (12 V) Lead Acid bat-

tery that powers the auxiliary devices. In this Section,

dynamic charging/discharging characteristics of the high

voltage battery pack is modelled to determine its operat-

ing voltage and SoC with a satisfactory level of accuracy.

The charging/discharging efficiency of both batteries is

also considered as it affects the EV energy consumption.

According to the literature, the charging/discharging effi-

ciency of the Li-ion and the Lead Acid battery packs are

assumed to be 95% and 80% respectively.29

According to the literature, the two most widely

used battery modelling techniques are the electrochemi-

cal and the equivalent circuit network (ECN) modelling

techniques.44 Electrochemical cell modelling approach

is the most accurate approach however, it requires signif-

icant computational effort because of its complexity. On

the other hand, ECN modelling approach is roughly

accurate, and it can be used in real-time applications too.

The high voltage battery is therefore modelled using The-

venin model that is the most famous ECN model shown

in Figure 9. The model consists of an internal voltage

source (VOC), an ohmic resistance (RO) and polarisation

resistance (R1) and capacitance (C1).

From the above electrical circuit, the battery terminal

voltage Vt is derived as a function of the current load IL
from Kirchhoff's Laws:

V t =VOC−RO � IL−V1, ð13Þ

dV 1

dt
= −

1

R1 �C1
V 1 +

1

C1
IL: ð14Þ

The model parameters VOC, RO, R1 and C1 are defined

as a function of the battery SoC. The input of battery

model is the total power demand for propulsion and aux-

iliary devices that takes into account the energy losses

along the powertrain. On the other hand, the outputs of

the model are battery terminal voltage and current

obtained by the following equations:

VBat_Pack =VCell �NCells_series, ð15Þ

IBat_Pack = ICell �NCells_parallel, ð16Þ

where NCells_series and NCells_parallel are the number of

cells in series and in parallel respectively, VCell and

TABLE 3 List of the main electric vehicle auxiliaries42,43

Subsystem

Operation

mode

Power

(W)

Air-conditioner Continuous 500

Audio Continuous 35

Driving control Continuous 150

Energy management system Continuous 150

Head and tail lamps Continuous 120

Parking, turn and interior lamps Intermittent 50

Horn Intermittent 10

Power steering Continuous 400

Power windows Intermittent 80

Window defroster Continuous 250

Wipers Continuous 40

FIGURE 8 Battery energy output on the New European

Driving Cycle for different auxiliaries loads [Colour figure can be

viewed at wileyonlinelibrary.com]

FIGURE 9 Battery electrical circuit model (Thevenin model)
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VBat_Pack are the single cell and the battery pack termi-

nal voltage in (V) and ICell and IBat_Pack are the single

cell and the battery pack's current (A). The battery

model developed in MATLAB/Simulink is shown in

Figure 10.

The single cell power demand PCell,dem is derived by

dividing the total power demand Pdem by the number of

cells NCells. Thereafter, the single cell current demand

ICell,dem is derived from PCell,dem as follows:

ICell,dem =
VOC−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VOC
2−4 �RO �PCell,demð Þ

p

� �

2 �RO
: ð17Þ

The single cell current demand is calculated con-

sidering a power limitation to protect the battery con-

sidering the cut-off voltage of the battery cell. The

current demand is positive in traction mode while it

is negative in regenerative mode. After being derived

from the power demand, as explained above, the

current demand is adjusted according to the charg-

ing/discharging battery efficiency. Subsequently, the

Thevenin model has been modelled in MATLAB/

Simulink based on Equations (11) and (12) as shown

in Figure 10.

The battery SoC is updated at each time step using

the current integration method, also known as “Coulomb

counting,” presented in Equation (16). Although this

method is not useable in a real application (because of

measurement noise, etc.), it is quite useful and accurate

in simulation environment.

SoC=SoC0−

ðt

t0

ICell,dem τð Þ

Ccell
dτ

� �

, ð18Þ

where SoC is the battery state-of-charge in (%), SoC0 is

the initial battery state-of-charge in (%), Ccell is the single

cell capacity in (Ah) and ICell,dem is the single cell current

demand in (A).

FIGURE 10 A, Battery model and B, single cell model (Thevenin model) built in MATLAB/Simulink
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2.2.6 | Transmission model

Transmission system aims to transfer the torque between

the motor and the driving wheels. Efficiency of the trans-

mission system affects the EV energy consumption and

is defined in both traction and regenerative modes, as

follows:

ηg_traction_mode =
Twheels �ωwheels

Tmotor sð Þ �ωmotor sð Þ
, ð19Þ

ηg_regenerative_mode =
Tmotor sð Þ �ωmotor sð Þ

Twheels �ωwheels
, ð20Þ

where ωwheels and ωmotor(s) are the wheels and the motor

speed respectively in (rad/s), Twheels is the torque at the

driving wheels in (Nm) and Tmotor(s) is the motor torque

in (Nm).

The transmission model is derived based on the fol-

lowing equation:

FT =
Tmotor sð Þ �G �ηG

rd
, ð21Þ

where FT is the tractive force in (N), G is the single

speed gear ratio, rd is the dynamic tyre radius in (m) and

ηG is the transmission efficiency that is assumed to be

97%.38,45

2.2.7 | Longitudinal vehicle dynamics

The following opposing forces are considered in the pro-

posed model as a common technique in the literature37

as shown in Figure 11:

• Gradient Resistance Force Rθ due to the road inclina-

tion with regard to the horizontal plane.

• Rolling Resistance Force RR mainly due to the friction

between the tyres and the road.

• Aerodynamic Drag Force RA due to the friction

between the vehicle body and the air.

• Inertia Resistance Force RI related to the forces required

for the linear acceleration of the vehicle RIa and the

increase of the rotational speed of the rotating compo-

nents RIε.

• Transmission Resistance Force RT related to the losses

between the motor and the wheels due to the transmis-

sion efficiency ηG.

Thereafter, the power required at the wheels PWheels

to overcome the opposing forces is derived as follows:

PWheels = Rθ +RR +RA +RI +RTð Þ �VVehicle, ð22Þ

where:

Rθ =MVehicle �g � sinα, ð23Þ

RR =CRR �MVehicle �g � cosα, ð24Þ

RA =
1

2
�ρ �AF �Cd � VVehicle−Vwindð Þ2, ð25Þ

RI =RIa +RIε = δ �MVehicle �a, ð26Þ

RT = RR +RA+Rθ +RIð Þ �
1−ηGð Þ

ηG
: ð27Þ

In the above equations, VVehicle is the vehicle speed

in (m/s), and Vwind is the wind speed that has a positive

sign when it is tailwind and a negative sign when it is

headwind. CRR is the coefficient of rolling resistance,

MVehicle is the vehicle mass in (kg), g is the acceleration

due to gravity (m/s2), α is the angle of inclination of the

road in (�), ρ is the air density in (kg/m3), AF is the vehi-

cle frontal area in (m2), Cd is the drag coefficient, a is

the vehicle acceleration in (m/s2) and δ is the coefficient

of rotary inertia that is assumed to be around 1.15 (typi-

cal value). CRR can be approximated as a linear function

of vehicle speed for a passenger car on concrete roads

for most of the tyre inflation pressure. This approxima-

tion provides a satisfactory estimation for speeds up to

128 km/h.29

CRR =0:01 � 1+
VVehicle

100

� �

: ð28Þ

3 | VEHICLE MODEL
VALIDATION

In this section, the proposed model is validated against

published values in the literature. For this purpose,

energy consumption values on NEDC and Environmen-

tal Protection Agency (EPA) cycles are used as explained

in the following.

3.1 | Tests characteristics

NEDC and EPA test procedures consider a combination

of urban and extra-urban driving patterns to take into

account the vehicle behaviour under different driving

conditions. Both tests are performed indoors on a chassis
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dynamometer, so there is no wind or variation in the

slope of the road.36,46

3.1.1 | NEDC procedure

The NEDC is the former cycle used for EU homologation

tests. It was replaced by Worldwide Harmonised Light

Vehicle Test Procedure drive cycle that is more represen-

tative of real driving conditions. However, the homologa-

tion of the 2014 BMW i3 60Ah REx was carried out on

the NEDC as it was still applicable before 2014. NEDC is

a combined five-cycle test with four elementary urban

cycles and an extra-urban cycle as shown in Figure 12.

Before testing, the vehicle is fully charged and is then

run twice over the cycle. Among the auxiliary devices

listed in Table 3, only the driving control device and the

energy management system are assumed to be activated

during the NEDC test because only the auxiliary devices

necessary for normal day-time operation of the vehicle

shall be activated.36

3.1.2 | EPA procedure

The US homologation is based on the EPA test proce-

dure. For this purpose, the vehicle is fully charged

the day before and then it is driven over the cycle during

the test until battery is fully discharged.46 The test con-

sists of a combination of 4 cycles shown in Figure 12:

Federal Test Procedure-75 (FTP-75) (city cycle), Highway

Fuel Economy Test (HWFET) (highway cycle), SC03 Sup-

plemental FTP (use of air-conditioning) and US06 Sup-

plemental FTP (high speeds and accelerations).

Tests on FTP-75, HWFET and US06 cycles are run

without activated auxiliary devices, except those required

in the US for usual day-time operation: head and tail

lamps, driving control device and energy management

system. For the SC03 test, air conditioning is activated in

addition to the other devices to measure the impact of air

conditioning on the vehicle energy consumption.46

3.2 | Energy consumption calculation

In the NEDC test procedure, energy consumption Econs is

calculated using Equation (27).36

Econs =
E

Dtest
, ð29Þ

where E is the energy consumed in (Wh) and Dtest is the

distance covered in (km) during the test.

In the EPA test procedure, combined energy con-

sumption, CombinedFC, is calculated as a combination of

the city and the highway energy consumption, CityFC
and HighwayFC, respectively

46:

CityRunningFE =0:82 �
0:89

FTP
+

0:11

US06

� �

+
0:18

FTP

+0:133 �1:083 �
1

SC03
−

1

FTP

� �

, ð30Þ

FIGURE 11 Forces acting

on the moving vehicle [Colour

figure can be viewed at

wileyonlinelibrary.com]
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CityFC =
1

0:905
�

1

CityRunning_FE
, ð31Þ

HighwayRunningFE =1:007
0:79

US06
+

0:21

HWFET

� �

+0:133 �0:377
1

SC03
−

1

FTP

� �

, ð32Þ

HighwayFC =
1

0:905
�

1

HighwayRunning_FE
, ð33Þ

CombinedFC =0:55 �CityFC +0:45 �HighwayFC, ð34Þ

where FTP, US06, SC03 and HWFET are the energy

consumption values for the corresponding cycles in

(Wh/km), and CityRunning_FE and HighwayRunning_FE are

the city and the highway fuel economy values

in (km/Wh).

3.3 | Simulation results and model
validation

According to the literature, the combined energy con-

sumption of 2014 BMW i3 60 Ah REx is 135 Wh/km on

the NEDC31 while it is 117 mpg (179 Wh/km) on EPA

cycles.32 In this study, simulation case-studies are per-

formed considering five different drive cycles: NEDC,

FTP-75, HWFET, SC03 and US06. For each cycle, two

cases are simulated:

FIGURE 12 Speed profiles used in the simulations47
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• Case 1 No auxiliary device is activated.

• Case 2 Some auxiliary devices are activated as described

in Section 3.1, based on the devices activated during

each driving test which is described by the homologation

procedure.36,46

The energy consumption values obtained from the sim-

ulations are compared to the above values found in the lit-

erature as presented in Tables 4 and 5. For NEDC cycle,

the error between simulation and experimental results is

about 3% when auxiliary devices are not included in the

model whereas the error increases up to 5.9% when the

power consumption of the auxiliary devices is assumed to

be 300 W. When the auxiliary devices are included in the

model, the vehicle energy consumption from the simula-

tion model becomes higher than the actual value from

the test. The increase of the error may be due to the fact

that the auxiliary load is overestimated in this study and

was less than 300 W during the NEDC test. Besides, the

approximation is not precise as it is based on the power

consumption of usual auxiliary devices which might be dif-

ferent for the BMW i3. For EPA cycles, the error between

the simulation and experimental results decreases signifi-

cantly from 10.6% to 1.1% when auxiliary devices are

included in the model, which leads to a higher accuracy of

the model. As aforementioned, EPA cycles are run with

some auxiliary devices turned on such as air-conditioning

and lamps, which explains the significant error between

simulation and experimental results when those devices

are assumed to be turned off.46 Overall, the model demon-

strates a satisfactory level of accuracy in view of NEDC

and EPA simulation results.

4 | CONCLUSIONS

The main purpose of this study was to develop an accu-

rate computer-based model to estimate EV energy con-

sumption along with a given driving cycle. The BMW i3

was selected to be modelled as a case-study to prove the

concept. A forward vehicle simulation model was devel-

oped in MATLAB/Simulink, including the powertrain

system and the longitudinal vehicle dynamics. The

powertrain model was implemented using accurate effi-

ciency maps of both the electric motor and the inverter.

The powertrain system also includes transmission and

battery where the Thevenin equivalent circuit battery

model was used. Moreover, the resistance forces opposed

to the vehicle motion were modelled in the longitudinal

vehicle dynamics. A driver model was developed using a

PI controller to control the vehicle's speed. In addition, a

regenerative braking strategy that models the behaviour

of a real braking controller was developed to distribute the

braking torque demand between the friction and regenera-

tive brakes. Finally, the model was validated using the pub-

licly available data from BMW and other reliable sources

in the literature. As a novelty of this work, power

TABLE 4 Simulation results on NEDC and EPA cycles

Energy consumption Case 1 Case 2

NEDC Cycle

NEDC 130.67 142.66 Wh/km

EPA Cycles

FTP-75 114.58 130.95 Wh/km

SC03 111.69 147.42 Wh/km

US06 191.69 201.93 Wh/km

HWFET 139.99 146.28 Wh/km

EPA city

1/City running FE

(fuel economy)

118.44 137.52 Wh/km

City FC (fuel consumption) 130.87 151.96 Wh/km

EPA highway

1/Highway running FE 176.30 187.18 Wh/km

Highway FC 194.81 206.83 Wh/km

EPA combined

Combined FC 159.6 176.6 Wh/km

Abbreviations: EPA, Environmental Protection Agency; FTP-75,

Federal Test Procedure-75; HWFET; Highway Fuel Economy Test;

NEDC, New European Driving Cycle.

TABLE 5 Comparison between experimental and simulation results on EPA and NEDC cycles

Tests

Simulation

Case 1 Case 2

NEDC Energy consumption (Wh/km) 135 Energy consumption (Wh/km) 131 143

Error (%) −3.0 +5.9

EPA Energy consumption (Wh/km) 179 Energy consumption (Wh/km) 158 176

Error (%) −15.6 −2.2

Abbreviations: EPA, Environmental Protection Agency; NEDC, New European Driving Cycle.
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consumption of the auxiliary devices was also estimated

from average values found in the literature to be included

in the proposed model as they can have a significant

impact on energy consumption. In addition, the powertrain

efficiency is estimated with better accuracy compared to

other studies, which only consider the electric motor effi-

ciency. In this study, the inverter efficiency is calculated

from an available efficiency map of the BMW i3 inverter.

This more accurate estimation of the powertrain efficiency

leads to an improved estimation of the EV energy con-

sumption. The model has demonstrated a satisfactory level

of accuracy with less than 6% error between the simulation

results and test data for both EPA and NEDC tests.

As a perspective to future research of this study, the

proposed model can potentially be used as a base for EV

range estimation. For this purpose, additional information

about the road such as traffic and weather conditions and

also driver's characteristics should be added. In addition,

the battery model can be improved by considering the

effects of battery SoC and state-of-health (SoH) which

have a major impact on battery efficiency and energy con-

sumption. In addition, the inertia of the vehicle's rotating

components such as the wheels, brakes and rotor can be

also calculated and included in the model to improve its

accuracy.
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