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Abstract 

The mechanical performance of bone is of paramount importance for the quality of life we experience. 

The structural integrity of bone, its hierarchical structure, organisation and its physicochemical 

constitution, all influence its ability to withstand loads, such as those seen occasionally in everyday 

life loading scenarios, which are either above the norm, prolonged, or repetitive. The present review 

explores three interconnected areas of research where significant progress has been made lately: (i) 

The recorded mechanical behaviour of bone and the way it fails; (ii) the inner architecture, 

organisational, hierarchical structure of bone tissue, and (iii) the bone properties at the micro/nano 

structural and biophysical level. Exercising a line of thought along a structure/function based argument 

we advance from ‘how’ bone fractures to ‘why’ it fractures, and we seek to obtain a fresh insight in 

this field. 

Keywords: Bone; Fracture; Mechanisms; Properties; Structure; Hierarchy; Organisation 

* Corresponding author: Tel.. +44 1793 785932; fax. +44 1793 763076. E-mail address: 

p.zioupos@cranfield.ac.uk (P.Zioupos) 

 

 

1. Introduction 

The mechanical performance of bone is of paramount importance for the quality of life we experience, 

as fractures are painful debilitating events. Some fractures are quite obviously due to the fact that bone 

is subject to loads that exceed certain threshold levels (in terms of stress or damage), that may also be 

prolonged (creep), or repetitive (fatigue). Others are caused by bone being structurally compromised 

as a result of disease, ageing, surgical intervention, pharmaceutical treatments, poor diet, lack of 

exercise, and so forth. In all cases some sense can be made by invoking either material/ engineering 

principles to explain the effects of overload, or structure/function relationships1 to grapple with the 

effects of a materially and structurally compromised tissue. 

2. How bone breaks 

There is a consensus regarding the various stages leading to and during fracture of bone, but what is 

still debated is the relative importance of the various phases in determining the final failure outcome2. 

The stress/strain curve (in tension) for bone as a material shows a (macroscopically) linear phase 

followed by a ‘knee’ region where the material yields and then a region of strain hardening (which can 
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be shorter or longer depending on the circumstances) followed by sudden catastrophic failure. This 

applies to tests as seen in the lab on material testing specimens. In terms of  behaviour though the 

description and analysis of the failure of bone is partitioned in 3 domains, as shown in Fig. 1. In phase-

I the material deforms reversibly with little obvious residual damage, while in phase II (the 

elastic-continuum damage mechanics domain) where the material is still structurally integrated but  

absorbs energy by developing diffuse microcracking damage at the expense of stiffness and residual 

strength. In phase III, the fracture mechanics (FM) realm, energy is absorbed at and next to the final 

fracture surface; the amount of energy depending crucially on the properties of the final fracture plane 

and the overall number of such planes and/or fragments. 

The toughness of a material is defined in terms of stress or energy related requirements to run a crack 

through the material. Stress-based criteria, such as the stress intensity factor (Kc) postulate that fracture 

is initiated when the concentration of stress at the crack tip reaches a critical value. Energy-based 

approaches, which either measure the critical strain energy release rate Gc (or J, for non-linear effects) 

or the work to fracture of a specimen Wf, determine critical levels of energy per unit area necessary for 

fracture. In this field it has become quite clear recently that modern composites (and for that matter 

bone3 and other biological hard tissues) show weak interlamellar interfaces4, which are able to absorb 

energy and/or divert a crack and in this way deter the onset and growth of fracture. Further, it is now 

increasingly clear that initiation of cracks in biomineralized tissues is far less important that their 

propagation, since biological tissues utilise a number of tricks like crack diversion/deflection, fibre 

pull-out, crack and/or matrix bridging5, 6 to increase the required amount of energy to fracture. 

Increasingly, nowadays, emphasis is placed in studying the route of propagation of major cracks7-9, 

and the relevant intrinsic toughening mechanisms that are associated with this propagation. 

The stress based fracture mechanics (FM) answer for the increased toughness of some challenging 

biological materials like deer antler10 (which is a low mineralized bone tissue) was the introduction of 

the crack growth resistance curves KR. It consists of quantifying the critical stress intensity factor not 

only at the start (KC) when the macrocrack sets off, but also as it makes its way through the material 

(KR). In brittle materials the KR curve is flat, K is constant and, therefore, there is little to deter the 

crack in its growth. In tough solids, KR increases with the crack length, especially if there is 

microcracking at the crack tip, and the crack finds considerable resistance to its advance. Vashishth et 

al.10 used compact tension specimens from the antlers of red deer to monitor crack propagation via 

gauges attached onto the specimens and used Scanning electron microscopy (SEM) to count the 

number of microcracks, with lengths between 100-250 m. A linear increase of KR with crack length 

was observed and a 20% increase in the length of the crack nearly doubled the stress intensity factor. 

At the same time more microcracks were present in the fracture propagation (KR) specimens than in 

the fracture initiation (Kc) ones. Microcracks were seen both ahead and behind the tip of the 

propagating macrocrack. The authors explained the increase in toughness of antler bone by the 
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nucleation, growth and coalescence of the observed microcracks, which were responsible for the stable 

progress of fracture by absorbing energy away from the main crack itself. Ritchie and co-workers11-16 

(add Koerster references) have carried this approach much further, by a combination of fracture 

mechanics experimentation, modelling and high resolution scanning electron microscopy. What they 

found was that ligament, or crack bridging, by collagen fibrils spanning the width of a propagated 

microcrack, results in a progressively increasing fracture resistance in bone. 

A combination of KC and KR data can explain quite a few naturally occurring variations in bone 

properties. Zioupos & Currey17 showed that the initiation fracture toughness (KC) of human femoral 

cortical bone, measured by single edge notch bending tests, reduced considerably between the ages of 

35 and 92 in healthy male subject (Fig. 2a). Ritchie, Nalla et al.11-16 and co-workers took this a step 

further showing that both the initiation toughness (KC) and the growth toughness (KR) of ageing human 

bone deteriorate in a similar fashion over the same range of age values (Fig. 2b). They made an effort 

to apportion relative importance in the various mechanisms that operate at the crack tip 

(microcracking, fibre pullout, crack bridging etc.) to have the desirable toughening effect. They also 

made a further distinction between two classes of toughening mechanisms. intrinsic, which are 

microstructural damage mechanisms that operate ahead of the crack tip and extrinsic mechanisms, 

which act to ‘shield’ the crack from the applied driving force and operate principally in the wake of 

the crack. 

By means of controlled crack extension experiments at the lamellar level in osteonal bone, Peterlik et 

al.4 looked at the strain energy release rate as a function of crack orientation relative to the collagen 

fibril axis. Using the same sample for repeated loading/unloading measurements enabled directional 

effects on the toughness of bone to be measured. The fracture process is dependent on the direction of 

travel of the crack, being either brittle (in the longitudinal direction) or deflected (in the tangential 

direction) or toughened by microcracking (in the radial direction) (Fig. 3). The microstructural origins 

of this phenomena lie in the progressively varying fibril angles as proposed by the twisted and rotated 

plywood models of lamellar bone (see subsequent sections). These results provide evidence of an 

energy-based understanding of a self toughening (crack growth resistant) fracture process (during 

propagation) similar to the one described for antler bone18. The energy based FM approach of Peterlik 

et al.4 has certain conceptual and practical advantages over the previous FM stress related one. In 

composites science, engineering toughness is increasingly nowadays defined in terms of energy 

absorbing capacity, the methods to determine this being reliable simple and consistent. At the same 

time the unpredictable events at the crack tip, which give rise to the stress field and determine the 

stress intensity factor, can be hardly described in terms of equations that pertain to idealised elastic 

conditions that simply do not exist. 

FM approaches have proved quite popular, but suffer from another quite unexpected effect. they are 

restricted to the quasistatic testing range. Many physiological fractures happen as a result of prolonged 
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loading (creep), repetitive loading (fatigue), or occur at high strain rates (impact). Work of fracture 

measurements (Wf) are carried out by measuring the energy absorbed to fracture a certain cross 

sectional area in tests where the ligament of tissue designed to rupture is in the shape of a chevron 

notch. Because the notch width increase as the fracture front advances the test specimen geometry 

itself usualyl allows the process to stay in the stable mode as long as possible. In this sense one finds it 

is much easier to control the tests even at high strain rates. 

Currey and co-workers looked at two different effects by using Wf and Charpy impact tests. They 

measured the Wf values of human femoral samples and demonstrated a 50% reduction of toughness 

with age19 between 25 and 80 yrs old. Measurements for the energy absorption capacity of similar 

specimens at high speeds were obtained by use of a Hounsfield plastics Charpy impact tester. The two 

data sets showed a very good correlation (Fig. 4a) over a wide range of ages. The young bone in 

particular, which is less mineralised was especially tough in impact. Although the energy consumed in 

impact is overall much higher than the specific energy in Wf tests the two values increased hand in 

hand. This result is reassuring, because it shows that an appreciation of toughening effects at high 

strain rates can result from simple studies by use of much slower test methods. However, more 

importantly the fact the specimens used in the two tests were different, but originating from the same 

individual, showed that the origins of the toughness quantified by either method lie in the intrinsic 

properties of the mineralized matrix itself and is related to age and other deteriorating bone matrix 

material physicochemical events. 

In the second Wf application the same workers examined deformation rate effects in a group of 

different animal bone materials18. Specimens were obtained from a bovine femur (of typical plexiform 

architecture), from the femur of a tiger (of typical osteonal architecture) and from the naturally tough 

material of the antlers of red deer (Cervus elaphus) which in life experiences loading in impact. The 

tests were performed at cross-head speeds varying between 0.05 mm min−1 and 200 mm min−1 in a 

materials testing machine and the data was supplemented by tests in impact. Two aspects of the 

materials' toughness are evident in Fig. 4b. The naturally tough antler bone showed a tendency to 

dissipate more energy to fracture per unit area as the strain rate increased (an order of magnitude more 

energy in impact than in quasi-static loading). On the other hand, the three quasi-brittle 'ordinary' 

bones (human, bovine and tiger) produced similar values for Wf at all deformation rates, including 

impact for those tests that could be completed successfully. One way of looking at this data is that the 

Wf produces a material property constant for the 'ordinary' bones, but it showed a rate depended 

property for the naturally tough bone. A second aspect of toughness was shown by the percentages of 

successfully completed tests, that is tests that failed as they meant to do in a ductile mode. While antler 

bone showed no ductile to brittle transition and was able to fail non-catastrophically even in impact, 

the ordinary bones started showing catastrophic failures at rates above 5 mm min-1 (bovine and 

human) and above 50 mm min-1 (tiger femur). 
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Ductile-to-brittle transition in material behaviour of human femoral cortical bone with strain rate was 

also observed lately in standard tensile and compressive tests to failure by Hansen et al.18. These tests 

on standard material testing un-notched specimens produce  curves and are suitable for 

demonstrating the pre-failure microcracking damage absorbing characteristics of bone (phase I-II, Fig. 

1). Bone mechanical properties are typically evaluated at relatively low strain rates. However, the 

strain rate related to traumatic failure is likely to be orders of magnitude higher and this higher strain 

rate is likely to affect the mechanical properties. Hansen et al.18 tested femoral cortical bone at strain 

rates ranging between [0.14-29.1 s-1] in compression and [0.08-17 s-1] in tension (Fig. 5) and compared 

the results with a broad review of all the related literature. Across this strain range, Young’s modulus 

generally increased for both tension and compression. Strength and strain at maximum load increased 

slightly in compression and decreased (for strain rates beyond 1 s-1) in tension. Stress and strain at 

yield decreased (for strain rates beyond 1 s-1) for both tension and compression. There seemed to be in 

general a relatively simple linear relationship between yield properties and strain rate, but the 

relationships between post-yield properties and strain rate were more complicated and indicated that 

strain rate has a stronger effect on post-yield deformation than on initiation of yielding. The behaviour 

seen in compression is broadly in agreement with past literature, while the behaviour observed in 

tension showed a clear ductile to brittle transition at moderate to high strain rates. 

A combination of methods was employed recently to explore the relative importance of phases I-II to 

phase III (Fig. 1) in bones over a wide range of varying mineral content20, 21. Using a simple technique, 

like adding a notch, which serves to concentrate the stress and check the notch sensitivity of various 

bone analogues, the authors showed that the post yield behaviour of bone is linked to the mineral 

content. They argued that antler is practically notch insensitive and possesses probably the lowest 

mineralisation level in nature, below which no further evolutionary advantage is to be gained or 

needed by reducing the mineral content any further because any further reduction in mineral content 

would reduce the stiffness without much increasing the toughness. The literature on antler bone 

mechanics is very useful because it helps to pose all these awkward questions that have no answer in 

conventional thinking. It also shows that the pre-failure damage tolerance of bone, although more 

difficult to quantify, is the most determinant factor in defining the toughness of the material in health, 

disease and in various exotic bone analogues22-26. 

 

2. Hierarchical structure and composite mechanics 

In order to understand the origins of the high toughness and stiffness of bone, and the reasons for its 

alterations with age and disease, we have to consider the full complexity of the hierarchical 

architecture1, 27 from the macro- to the micro-scale and the mechanical properties of the various 

constituents at each level. The heterogeneity of bone at the meso- and microscale has a direct influence 

on growth of cracks within bone and on the failure process (Fig.6).  
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2.1 Macrostructure: Cortical and Cancellous Bone. 

At the macrostructural level, bone is divided into the cortical (or compact) and cancellous (or 

trabecular) types. The two types are most easily distinguished by their degree of porosity or density28, 

29, true differentiation comes from histological evaluation of the tissue’s microstructure. In an 

intermediate form, compact coarse-cancellous bone30, 31 differentiation between the two types of bone 

is difficult. This tissue consists of cortical bone wrapped around older cancellous bone and has 

irregular, sinuous convolutions of lamellae. 

It is still a matter for debate whether (i) cortical and cancellous bone matrices consist of the same 

material28, 32-34 (only differentiated by variable porosity or apparent density), or (ii) have intrinsically 

different mechanical properties35-39. Nanoindentation studies have shown that on average the modulus 

and hardness of the two tissues types are similar40. However, since cancellous bone material is much 

more active metabolically, is remodelled more often than cortical bone, and is therefore “younger” on 

average than cortical bone41, mechanical measurements at the macroscale deliver slightly lower values 

of moduli for cancellous bone tissue compared to cortical bone. Cancellous bone, can be described in 

terms of structural and material properties38. The first are defined as the extrinsic properties of both 

trabeculae and pores, whereas material properties are the properties of the trabecular struts and plates. 

As different bone types and regions in the same bone organ have differing mineralization level, 

porosity and collagen matrix structure, it is difficult to predict micro-properties in vivo42, 43 by 

measuring mechanical properties at the macrostructural level. Mechanical properties of cortical and 

cancellous bone at the macrostructural level vary from one bone to another as well as within different 

regions of the same bone44, 45. Cancellous bone shows a wide range of apparent density values 

(apparent density is defined as mass of sample / (total volume of sample including both voids and 

tissue). However, 70-80% of the variability in its mechanical properties (in the stiffest direction) can 

be explained in terms of true density variations alone. The variability reduces further when directional 

effects and anisotropy are accounted for46, 47. In all cases technical problems like friction between 

sample and test grips, and accurate load transfer in the testing setup complicate these measurements48-

50. 

However, although cancellous bone has a larger scatter in mechanical properties compared to cortical 

bone, the intrinsic structure at the lamellar level and at comparable degrees of mineralization are 

similar. This underlying common microstructure is examined in the next section. 

2.2 Microstructure: Osteons and Lamellar Structure. 

Haversian Systems. At the level of the entire osteon (Haversian system), our knowledge of the 

mechanical properties comes mainly from the pioneering work of Ascenzi and coworkers, who 

examined the mechanical properties in tension51, compression52, bending53 and torsion54. Differences 

were observed in tension for the osteons classified as “longitudinal” (fibrils oriented parallel to the 
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osteon axis) and “transverse” (fibrils oriented perpendicular to the osteon axis). moduli varied from 12 

(longitudinal) to 5.5 (transverse) GPa and strengths from 120 to 102 MPa51. Rather surprisingly, 

isolated osteons in compression52 were half as stiff (6–7 GPa) but nearly as strong as osteons in 

tension (110–130 MPa). Bending tests gave even lower values53 for stiffness of approximately 2–3 

GPa and bending strength of 350–390 MPa, while torsional tests54 gave moduli of 16–20 and strengths 

of 160–200 MPa. While this dependence of mechanical properties depending on the testing mode may 

be because different deformation processes in the anisotropic bone tissue are activated, based on the 

direction of deformation, the bending results especially should be interpreted with caution. The 

dimensions of the samples used for the bending tests by Ascenzi and co-workers are very short and 

deep, and in such cases shear deformations cross the sample, which was not considered by these 

workers, must be included for accurate results.  

In terms of failure mechanisms, analysis of fracture surfaces by the Ascenzi group shows that in 

compression, cross-hatched fissures at 30o–40o appeared and these were not affected by the kind or 

combination of lamellar architecture, similar to results obtained on compact bone by Mercer et al.55. 

As expected, in tension the transverse lamellae failed first and the osteons were kept together only by 

the longitudinally oriented ones, since clearly fibres are stronger along their main axis than 

perpendicular to them. Marotti56 claims that fibres in general follow two patterns which constitute thin 

and thick lamellae; the thin ones are more oriented and compact, the thick ones are more diverse and 

sparse (somewhat microporous) in their elements, a classification which differs from that of the 

Ascenzi group. We believe that the differentiation of osteons based on fiber orientation (the Ascenzi 

classification) is the correct one, although it has also been recently shown that mineral density can 

vary within a single lamellae, as described in the next section. 

Lamellae. Bone lamellae are ~ 5-8 m thick57, and consist of regular arrays of collagen fibrils. 

Inside a single lamella (as seen in optical and scanning electron microscopy) Giraud-Guille et al.58 and 

Weiner and co-workers57, 59, 60 have observed a helicoidal, twisted plywood structure, where successive 

sheets of sublamellae (with varying thicknesses) have different orientation angles of the fibrils. 

Giraud-Guille pointed out that these structures are characteristic of the cholesteric liquid crystal 

mesophases58, 61. Weiner, Traub and Wagner have extended this model57, 59, 60 to a “rotated plywood” 

structure. In this picture, the mineralized fibril-platelet composite in adjacent sublamellae not only turn 

in pitch (angle of collagen fibril axis to osteon long axis) but also in “roll”, or rotate around the long 

axis of the fibril itself. Such a model would be useful in diverting extremely small cracks at their 

incipient growth stage. The osteonal lamellae are wrapped around a central canal, and sequential 

concentric lamellae have fibre orientations alternating to each other, spiralling around the central 

canal. Lamellae with alternate orientations are seen as alternately bright, dark, or intermediate in cross-

section under a polarized light microscope (PLM) with the intensity of the transmitted light depending 

on the collagen content, on its degree of alignment, on the presence of a mineral fraction, and on the 
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orientation of the section51, 62. The orientations envisaged in this kind of modelling are transverse, 

longitudinal, or oblique. 

Structural information at this level has been obtained using optical microscopy, X-ray diffraction, and 

electron microscopy. Mechanical properties of individual lamellae in several orientations are needed to 

comprehend bone mechanical anisotropy. Some studies which used selective demineralization and 

acoustic methods have come up with most intriguing theories about the complementary role of the 

collagen and the mineral63-65. These workers have suggested that isolated collagen fibrils are more or 

less isotropic and by the impregnation of mineral reaches the anisotropic ratios that are known for 

whole bone (1.7-2.1) in two normal directions. However, their experimental techniques (acoustic 

microscopy) had a spatial resolution of 60 microns, which is much too low to observe regions of 

unixaially oriented tissue. Therefore, conflation of data from tissue regions with differently oriented 

fibrils could be seriously affecting their results Experimental methods that can measure absolute and 

relative (anisotropy) values for the elastic modulus of microscopic bone tissue in different directions 

would be invaluable. However, mechanical data at the sub-micron level were unavailable, until 

recently, when nanoindentation tests were used to measure the hardness and the elastic modulus of 

single lamellae66 and small filler particles in resin composites and other dental restoratives67. This 

technique is able to measure mechanical properties with a resolution of better than 1 m and does not 

require visual resolution of the indentation. Taking into account the microstructural features of bone, 

the nanoindentation technique offers a means by which the intrinsic mechanical properties of the 

individual microstructural components of bone may be measured in a manner which avoids the 

influences of the inherent defects and heterogeneities in the microstructure and also allows the 

mechanical properties to be measured in several different directions at the microstructural level. 

Using a novel combination of X–ray crystallographic texture measurements with microbeam 

synchrotron radiation (1 m beam diameter), Wagermaier et al.68, 69 were able to quantify the fibrillar 

orientation by tracking changes in mineral c-axis crystallographic texture in “alternate” osteons [as 

defined by Ascenzi] with sub-lamellar resolution. They found that the fibril orientation was periodic, 

with a period equal precisely to that of the lamellae, and amplitude of oscillation equal to about 30°-

60° (Fig. 7b). What was surprising was that the mean fibril orientation in a single lamella always had 

the same chirality, indicating that a fine (intralamellar) periodic variation in fibril orientation was 

superposed on top of an average right handed fibril spiralling. Such a helical and modulated fiber 

orientation would make crack propagation across the osteon, from the interstitial to the inner 

Haversian canal, much more difficult and tortuous than the case where all fibers were all parallel to the 

osteon axis. The osteon may thus serve as a fracture resistant barrier, protecting the integrity of the 

Haversian canal and its enclosed blood vessels and cells. 

However, the lamellae in bone exhibit not only structural anisotropy (from fibre orientation) but also 

compositional variation41. By combining scanning nanoindentation maps of osteons (1 m resolution) 
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with quantitative backscattered electron imaging to determine local calcium content, Gupta et al.41 

showed that a clear lamellar level modulation of (nanoindentation) elastic modulus and hardness 

across the osteon (Fig. 7a). Within a single lamella, the variable fiber orientation gives the optical 

impression of “thick” and “thin” sublamellae, with the “thick” sublamellae having fiber orientation 

mainly parallel to the osteon axis, and the “thin” sublamellae having fibers at a large angle to the 

osteon axis. Using position resolved nanoindentation, Rho and coworkers have shown that when only 

the “thick” sublamellae inside a single lamella were considered, there is a statistically significant 

decrease in modulus going from the innermost to the outermost lamella 70. However (using a similar 

loading protocol and sample geometry to Rho et al 1999), Gupta et al found only a statistically 

insignificant decrease as a function of distance, when moduli was measured in both the “thin” and 

“thick” sublamellae, in the form of a 2D map with 1 micron effective spatial resolution across the 

osteon. As the difference between the stiffness of the thin and thick lamellae within a single lamella 

(15 GPa for the thin lamella versus 20 – 25 GPa for the thick lamella) is much larger than the ~ 2 – 3 

GPa variation observed in the thick lamellae across the osteon by Rho et al 1999, it is possible that any 

statistically significant decrease of “thick” sublamellar moduli in Gupta et al 2006’s data was buried in 

the much larger lamellar level mechanical modulation. The difference between the “thin” and “thick” 

sublamellae was also measured by Xu et al.71. Because the mineralized collagen fibrils is anisotropic, 

with an indentation modulus of about 9–11 GPa transverse to the fibril axis and 20–25 GPa parallel to 

it72, 73, one could think that this mechanical modulation arose solely due to the fibril orientation-i.e., 

similarly mineralized, but differently oriented fibrils in a single lamella. However, by correlating 

mechanical properties and mineral content at the same point, Gupta et al.41 showed that regions with 

lower stiffness also had a lower mineral content. Such a periodically mechanically modulated structure 

may be useful in acting as a set of crack stoppers, preventing microcrack propagation from the more 

highly mineralized interstitial bone to the inner Haversian system. Microcracks indeed show a 

tendency to circumvent the osteons along the weak, non-collagenous “cement line” at the border of the 

osteon and to run between lamellae74. A qualitative indication of the modulation of stiffness was 

observed previously in the ultrasonic measurements of Katz and Meunier75, where the quantity (E/)1/2 

was shown to be correlated to the lamellar structure. There is an added difficulty, of course, in 

interpreting these results in that in acoustic microscopy one needs to avoid the conflation of surface 

topography with differences in density. This requires careful polishing and surface preparation.  

Trabecular Bone. Trabecular bone properties are much easier to study in isolation. However, in 

spite of several attempts35, 36, 38, 76 there remains some controversy regarding the value of the elastic 

modulus of single trabeculae (Table 1). Trabecular bone material properties are important for 

characterizing various bone pathologies, and the remodelled bone adjacent to various joint implants, 

because they are affected by disease sooner than cortical bone. In the past it was assumed that 

individual trabeculae, single osteons, and a thin cortical shell possessed the same mechanical 

properties as those of large cortical bone specimens regardless of their type or size75. However, many 
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investigators produced values for the elastic modulus of individual trabeculae, single osteons, and a 

thin cortical shell that were considerably less than that for whole bone35, 38, 76. 

The elastic modulus of cortical bone obtained from micro-bending specimens35, 36, 38, 76 

(dimensions.100×100×1500 m) is considerably smaller (5.4 GPa) than that of large tensile specimens 

tested by others77 (17.1 GPa). The reason for this discrepancy is not clear, but it could arise from 

difficulties encountered in making accurate mechanical property measurements by bending small 

specimens. The possible causes include: (i) the influence of microstructural defects such as cement 

lines and voids (Haversian and Volkmann canals, lacuna, osteocytes, canaliculi) on the measured 

displacements; (ii) uncertainties in specimen geometry, which are often exacerbated at small scales; 

and (iii) problems in properly seating and aligning small bending specimens in small test fixtures. A 

literature survey of measured and estimated values of the modulus of trabecular bone material35, 38, 66, 76, 

78-85 shows that moduli values range from 1 to 20 GPa (Table 1). It has been shown 35, 36, 38, 76 that the 

relationship derived from this data (between elastic moduli and density in cancellous bone material) 

could not be extrapolated from similar data from tests on cortical bone material and its density and 

thus has been concluded that the materials of the two types of bone tissue were intrinsically different. 

The later studies by use of nanoindentation and by finite element analysis (FEA) simulation suggest 

that in fact the elastic properties of single trabeculae are very similar to the properties of nearby 

cortical tissue, though probably slightly lower. 

 

3. Why bone breaks: the biophysical events 

3.1 Bone nanostructure: Collagen fibres, fibril arrays, crystals 

The most prominent nano-structures are the collagen fibres, surrounded and infiltrated by mineral. The 

attachment sites of macromolecules onto the collagen framework are not distinctly known, although 

several immunohistological studies have shown preferential labelling of some macromolecules in a 

periodic fashion along the collagen molecules and fibres86. 

The three main building materials are crystals, collagen, and non-collagenous organic proteins. Mature 

crystals are most likely not needle-shaped, but plate-shaped60. Plate-like apatite crystals of bone occur 

within the discrete spaces within the collagen fibrils, thereby limiting the possible primary growth of 

the mineral crystals, and forcing the crystals to be discrete and discontinuous. The mineral crystals 

grow with a specific crystalline orientation-the c-axis of the crystals are roughly parallel to the long 

axis of the collagen fibrils87. The average lengths and widths of the plates are 5025 nm. Crystal 

thickness is 2 to 3 nm thick88, 89. The nanocrystalline bone apatite has small but significant amounts of 

impurities such as HPO4, Na, Mg, citrate, carbonate, K, and others whose positions and configurations 

are not completely known87. While the X-ray diffraction pattern is that of hydroxyapatite, the near-

absence or absence of the hydroxyl group has been proven repeatedly by chemical methods and FTIR 
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and NMR spectroscopy87. The primary organic component of the matrix is Type I collagen. Collagen 

molecules secreted by osteoblasts self-assemble into fibrils with a specific tertiary structure having a 

67 nm periodicity and 40 nm gaps or holes between the ends of the molecules. Non-collagenous 

organic proteins, including phosphoproteins, such as osteopontin90, 91, sialoprotein, osteonectin, and 

osteocalcin, as well as proteoglycans like decorin92, 93 may function to regulate the size, orientation, 

and crystal habit of the mineral deposits. Through chelation of calcium or through enzymatic release 

of phosphorous from these proteins, they may serve as a reservoir for calcium or phosphate ions for 

mineral formation. However, additional studies are needed to conclusively define their actions and 

mechanisms. 

As regards the relation between the mineral and organic phase, the degree of extra- versus intrafibrillar 

mineral is still a matter of debate57, 65, 94-100. Estimates have ranged from the majority of mineral being 

intrafibrillar100 to the majority being extrafibrillar65, 94, and this is a significant issue when modelling 

the mechanical and fracture properties of the collagen nanocomposite65, 94. Some recent work considers 

the entire composite to be an effective “foam” of mineral inside a collagen matrix65, 94, which blurs the 

distinction between extra- and intrafibrillar mineral. The mineral particles were shown to be platelike 

and associated with the low density “gap” zones in collagen fibrils in mineralized turkey leg tendon57, 

59, 101, 102. More recent bright field transmission electron microscopy of the nanostructure of 

mineralized collagen fibrils from trabecular bone99 have both refined and extended this picture. These 

studies showed that the particles were plate like, consistent with previous work99. However, in contrast 

to the case where mineral platelets are aligned parallel to each other both within as well as between 

fibrils60, 102, the TEM results on human bone showed that the mineral platelet orientation in adjacent 

fibrils is not aligned, and that adjacent fibrils are rotated around their long axis with respect to each 

other. Therefore, it is expected that, on average, the platelet orientation in groups of adjacent fibrils in 

sublamellae would show fibre symmetry around the collagen fibril axis. 

3.2 Deformation mechanisms  

At the time of the previous review in this journal1, relatively little was known about the deformation 

mechanisms of the mineralized collagen matrix itself, although localized elastic moduli and hardness 

values had been reported for trabecular and compact bone using nanoindentation103. Since then, 

advances in experimentation, particularly in the use of synchrotron X-ray diffraction and scattering 

combined with micromechanical testing104-107, as well as single molecule force spectroscopic methods 

[Thompson 2000, Fantner 2005] and nanoindentation with high spatial resolution [Tai Nature Mater 

2007] have begun to shed light on this question.. Synchrotron X-ray diffraction enables the 

simultaneous tracking of deformation in the fibril as well as in the embedded mineral particles, 

concurrently with the application of macroscopic stress and strain. The principle of the methods is to 

use the changes in axial periodicity in the collagen fibrils (D–periodicity of ~ 65–67 nm) as a marker 

of fibrillar strain εF. By acquiring small angle X-ray scattering data in real time combined with 
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microtensile measurements, strain can be followed at the macroscopic and nanoscale levels 

simultaneously, as shown schematically in Fig. 8. Synchrotron radiation is essential due to its high 

brilliance, enabling an X-ray spectrum to be obtained in a matter of seconds compared to hours in a lab 

source. Single molecule force spectroscopy uses a cantilever with an sharp tip (of the order of 

nanometers) to pull on the long, sometimes amorphous, organic molecules that form a significant part 

of biomineralized tissues, enabling thereby an estimate of their mechanical properties, 

Nanoindentation, especially combined with finite element modelling, now can provide models of the 

deformation processes induced by a sharp, localized force in the biomineralized tissue.  

The concept of “sacrificial bonds”, which are nonspecific, weak but reformable bonds within the 

organic component of biomineralized tissues (both bone as well as other materials like abalone nacre), 

is central to the thinking of P. Hansma and coworkers (University of California, Santa Barbara) as to 

how calcified tissues resist fracture. Using a scanning probe spectroscopy setup with the ability to 

measure the force-elongation curve of single long chain molecules on the freshly fractured surface of 

biomineralized tissues108-110, these researchers found that, when pulled, the organic molecules (which 

could be collagen108 or other noncollageneous proteins109, 110 show an initial relatively sharp increase 

of force with pulling length, followed by a long stretch with a characteristic series of drops and 

subsequent rises in force, as if a series of bonds internal to the molecule had yielded or broken. This 

typical force-elongation curve had thus a relatively large area under the curve, corresponding to high 

energy dissipation in the process of pulling the molecule, with minimal increase in force. It was further 

found that the amount of energy dissipation increased with the presence of calcium ions in the sample 

chamber where the pulling experiments were carried out. They also carried out high resolution 

electron microscopy measurements showing an amorphous, apparently organic, coating of material on 

and between freshly fractured fibril bundles and lamellae, Based on these observations, they proposed 

a model with noncollagenous proteins forming an amorphous “glue” layer between the mineralized 

collagen fibrils. The protein backbone of these molecules was proposed to be highly coiled and folded 

back on itself, with connections between different parts of the backbone formed by nonspecific, weak 

“sacrificial” bonds. The molecular level processes of irreversible deformation after bone yield were 

believed to be mainly in these glue molecules. Under stress, some “sacrificial” bonds inside these 

molecules would break and the folded up molecule would elongate, but the protein backbone itself 

would remain essentially unstretched. This mechanism enables a large increase in length (both of the 

molecule and of the tissue) with minimal increase in force, which means a highly energy absorbing or 

tough material. 

To fully incorporate the idea of sacrificial bonds into what is currently known about bone mechanics, 

however, some apparently contradictory points must be reconciled. The main point is that the idea of a 

glue between fibrils which breaks and reforms bonds under external load would mean that even after 

stretching bone past the yield point and subsequently unloading, the stiffness of the bone would be the 

same (as the fibrils remain undamaged while there are presumably plenty of 
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sacrificial bonds left unbroken in the glue layer). However, this is not what is observed in bone, where 

after loading beyond the yield point and subsequent unloading, there is a clear reduction in stiffness 

observed (after correcting for viscoelastic effects), attributed to “microdamage” or “microcracks” 

formed during the post yield deformation. Secondly, as described below, it must be seen whether the 

fibrils themselves are indeed undamaged beyond yielding (as required by the model) or not. Finally, 

on a related note, while this is not a problem for the model as currently proposed, if the critical or load 

– limiting step in bone fracture is not the yielding within the noncollagenous glue layer but debonding 

between the mineral and collagen111, 112, then noncollagenous proteins could indeed exist and have all 

the properties described in the model, but their deformation would not be the critical rate – limiting 

step in bone yielding and irreversible deformation. 

Looking directly at the strain in the fibrils of bone as it is stretched, synchrotron small angle X-ray 

scattering combined with microtensile testing, on bovine fibrolamellar bone showed that the strain in 

the fibrils was always less than that and typically about 0.5 of the tissue strain as measured with video 

extensometry (Fig. 9, open squares)104, 106. Beyond the yield point, where the applied external stress 

results in minimal additional stress (low hardening) taken up, the fibril strain εF was observed to reach 

a constant value. Based on these two observations, Gupta et al.104, 106 proposed a model of interfibrillar 

shearing, where the stiffer mineralized fibrils are loaded mainly in tension and the intervening 

extrafibrillar matrix is in shear. Such a model is effectively an ‘equal stress’ or Reuss model113, where 

the large interfacial contact area between the fibril and the extrafibrillar matrix results in an effective 

load transfer despite the (presumably) weak and ductile nature of the extrafibrillar matrix. These 

results were correlated to the previous independent findings of an organic, “glue” like material 

between bone fibrils104, 106, revealed using high resolution scanning electron microscopy. Such an 

organic glue, containing weak “sacrificial bonds” which may be opened under external force, was 

proposed to play a crucial role in the mechanics of bone108, 109. Interestingly, the fraction of strain taken 

up by the fibrils increased as the (bulk) elastic modulus increased106, which could be explained by 

partial mineralization of the interfibrillar matrix, consistent with both structural observations104, 106 and 

theoretical calculations104, 106. The constancy of the fibril strain beyond the yield point was attributed to 

a stick-slip mechanism where the fibrils decouple from the intrafibrillar matrix beyond a critical 

(yield) stress, at a strain of about 0.5 % in the fibril104, 106. 

The mineral crystallites are believed to have their c-axis parallel to the fibril. By doing both diffraction 

(on the mineral crystallographic lattice peaks) and small angle scattering (on the collagen axial 

periodicity) during micromechanical testing on bovine fibrolamellar bone (Fig. 9, open squares and 

closed circles), a hierarchical pattern of strain was seen in tension. 12 units of tissue strain translated to 

5 units of strain on the fibril εF, which in turn transmitted only 2 units of strain to the mineral particles 

εM
104, 106. While such a hierarchical staggered model104, 106, shown schematically in Fig. 10, is a 

relatively simple and obvious design for a multi-scale composite, this construction enables the 

mismatch between the mechanical properties of the mineral (110 GPa27, 104, 106) and 
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collagen (1-2 GPa104, 106, 114) to work out for the benefit of the whole material. the mineral is loaded in 

tension via shearing stresses transmitted through the much softer collagen matrix. Bone mineral was 

also observed to be much stronger than bulk apatite104, 106, 115, reaching strains of up to 0.3 %, which is 

quite large for a ceramic. This size effect is most probably because mineral platelets below a critical 

size (of the order of 30 nm116) can reach their theoretical strength (E/10 ~ 11 GPa for 

hydroxyapatite113), unaffected by flaws. While the maximum stress observed by Gupta et al.105 = 0.3 

%  110 GPa = 3.3 GPa was lower than this value, it was also higher than the <1 GPa values expected 

from bulk apatite104, 106. On raising strain rates to physiological levels of ~0.2 s-1 (as compared to the 

10-4 s-1 values used by Gupta et al.104-106) it is likely that the proportion of tissue strain taken up by the 

fibrils will increase, since the interfibrillar matrix is most likely highly viscous and would increase its 

effective stiffness with increasing strain rate. 

Applying the same technique to the less mineralized but highly tough deer antler, as well as to 

demineralised fibrolamellar bone has revealed a more complex picture. Fibrils in antler initially stretch 

in linear proportion to the external tissue strain, with the same factor of 0.5 as in bone117. But 

following mechanical yielding fibrils do not stop at a constant strain level of 0.5 %, but there is 

increasing inter-fibrillar heterogeneity. Similar results are observed in EDTA-demineralised bone 

where the onset of fibrillar heterogeneity occurs around fibril strains of 0.5-1.0 %, although inter-

sample variation does exist118. Similar to antler, the mean fibril strain continues to increase linearly. In 

contrast to bone and antler, demineralised bone matrix also shows some degree of fibrillar 

reorientation118-as expected for a more ductile material. In the collagen of demineralised bone, there is 

no transition from elastic to yielding behaviour, and two regimes of low stiffness (low strain “heel” 

part of the stress train curve) and a high modulus region (high strain linear part of the stress strain 

curve) are observed., as seen in to other collageneous tissues119. 

Bone and antler considered together show that, at the nanoscale, events associated with a transition to 

inelasticity manifest themselves as a form of interfibrillar sliding and decoupling. Depending on the 

degree of extra- and intrafibrillar mineralization, this could involve either (a) frictional sliding between 

extrafibrillar mineral platelets and elongation in the less mineralized collagen fibrils, or (b) sliding of 

mineralized collagen fibrils past each other (Fig. 11). Going beyond the general description of post 

yield deformation as due to some form of “damage” at the micron or sub-micron level55, 120-123, it is 

clear that at the molecular level, such damage must correspond to the breakage of bonds and 

restructuring of material under load. Understanding the energetics of this bond breaking process was 

the focus of two recent works124, 125, where the technique of thermal activation analysis was used to 

characterize the energy and volume characteristic of a basic unit irreversible deformation at the 

molecular level. The method treats the bond breakage as an Arrhenius-type rate process, in which the 

strain rate is proportional to exp(-H/kBT). Application of external stress dramatically increases this 

rate, due to the work done by the applied stress over the deformation volume. Such a process can be 
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thus characterized by two parameters. H, an activation enthalpy and v, an activation volume. In this 

picture, the post yield stress level in bone can be reduced by reducing the strain rate ,as seen in Figure 

12. By varying the testing conditions (temperature and strain rate) at which creep or tensile stretch to 

failure experiments124 are done, the two parameters can be calculated to be H ~ 1.1 eV and v ~ 

0.65 nm3 (Fig. 13), suggesting that the weakest link in irreversible bone deformation is due to 

breakage of ionic bonds. This approach, while generally model free, does assume that strain rates as 

measured macroscopically are homogeneous over the micron level in the inelastic regime. Digital 

image correlation measurements of spatial distribution of tissue strains at the micron level126 have 

shown that in bone, strong strain heterogeneities do occur in inelastic loading of bone. However, the 

experimental parameters are expected not to change significantly, due to their logarithmic dependence 

on strain rates124. Enhancement of strain rates by a factor of 3 in regions of highly strained tissue 

would change the activation volume by a factor of ln(3) = 1.1 only. 

Combining the synchrotron and the thermal activation analysis data, we suggest that beyond the yield 

point, mineralized collagen fibrils undergo some form of decohesion, either between fibrils or even 

inside a single fibril, during which ionic bonds are being broken (Fig. 14). Localized clusters of such 

breakage can grow and link up, as in conventional fibre composite materials113, forming clusters which 

can be micron sized or larger and appear as ‘damage’ in confocal and light microscopy. Two 

candidates can be proposed for where this irreversible bond breakage occurs: the bonds between non-

collagenous proteins and extrafibrillar mineral between fibrils (interfibrillar breakage)104, 106, 124, or the 

bond between collagen and mineral within a fibril (mineral-collagen decohesion)55. 

Nonetheless, the fact that the fibril strain starts showing increased heterogeneity at fibril strain levels 

of 0.5-1.0 % even in demineralised bone is intriguing, and suggests that some structural property in 

the collagen matrix itself127, 128 changes beyond the yield point in bone-although, again, we note that 

the macroscopic stress-strain curve of demineralised bone does not exhibit any discontinuity at this 

strain level. In this context, we note that Jäger129 proposed a molecular level model of creep in organic 

materials, by considering the thermally assisted bond breaking of parallel arranged bonds. While the 

model is very general and not specific to bone or any other material, what is intriguing to us is that by 

applying the model to the published data of creep in (unmineralized) Wallaby tail tendons carried out 

by Wang and Ker130-132, Jäger obtained an activation energy of 1.125 eV/atom, which is remarkably 

close to the 1.1 eV obtained by Gupta et al.124 for (fully mineralized) bone. This could mean that the 

irreversible deformation and elongation is indeed occurring inside the collagen fibril, and not between 

fibrils, as originally proposed104, 106. 

 

4. Conclusions 

To develop a clear picture of the structure/function relationships in bone, research follows two paths: 

(i) conventional material characterisation of its performance and (ii) structural 
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analysis of the mechanisms underlying bone fracture. For the latter, we can identify two main current 

challenges, one at the bone material level and one at the microstructural level. At the material level, 

one critical limitation now appears to be the difficulty in developing an accurate quantitative picture of 

the chemical nature of the bone mineral (amorphous or crystalline) and its distribution inside and 

around fibrils (clarifying the nanostructure). With such a structural picture, it would be possible to 

provide a clear model and interpretation of strain in different subphases of bone, and the onset of post 

yield deformation, which are now directly amenable to investigation using in-situ X-ray methods104-106. 

As of now, the models developed for bone deformation at the nanoscale must use (admittedly 

plausible) schemes of interfibrillar and intrafibrillar mineral packing in the collagen matrix obtained 

from complementary techniques like atomic force microscopy and electron microscopy109, 133, 134. The 

second challenge is, assuming a full understanding of bone ‘matrix’ properties, to develop 

computational schemes for predicting failure in both trabecular and compact bone at the 

microstructural and macrostructural level. The issue here is a more general materials engineering 

problem of the failure of partly regular cellular solids135, and could be addressed with analytical, finite 

element and experimental methods. Experimentally, techniques like synchrotron microCT136 and high 

speed photography can be very useful137, in showing the onset of microcracking, damage etc. Such 

applications make it obvious that because of the spatial variations of bone properties, the mineral 

content and architecture in the microscale future analysis will be increasingly using modern 

microanalytical techniques to provide us with the answers we need.  
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Figures 

Fig. 1. (a) Consecutive stages of behaviour: the elastic range (E), the continuum damage mechanics 

range (CDM), and the fracture mechanics (FM) one2. Unfortunately mechanical material tests of bone 

each concentrate on one of these domains with little overlap across them and therefore fail to apply a 

holistic approach to the problem. The relative length (or time spent) on any of the 3 regions can vary 

widely depending on specimen geometry, the applied loading protocol and other conditions, hence a 

wide variety of stress/strain recordings may result. (b) During fracture, energy is dissipated/absorbed 
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in a number of ways, either elastically, or as prefailure damage (microcracks), or in growing a slow 

moving crack with its collateral damage, or into advancing a fast moving fracture plane. 

Fig. 2. (a) Fracture toughness (initiation) values in human cortical bone in SENB samples with age 

with the crack in the transverse to the grain direction17 (bone sector as symbols: A.anterior, 

P.posterior, L.lateral). (b) Initiation and growth fracture toughness values with age and crack length 

redrawn from Nalla et al.14, 15. 

Fig. 3. Crack propagation: (a) The energy required to propagate a crack in the radial (m: 

microcracking damage), tangential (d: deflected crack) and circumferential (b: brittle fracture) 

directions in bovine bone with the crack length. Bone is much tougher in the fracture mode 

accompanied by microcracking damage (m) ahead of it2, 4. (b) The energy required to drive a crack 

across the grain (fibre direction) is an order of magnitude higher than along it4. 

Fig. 4. (a) Work of fracture (slow and controllable mode tests) vs. Impact energy absorption in 

specimens of human cortical bone of various ages ranging from 4 to 82 yrs old (age as symbol; 

R2=0.69). There is a correlation between the two measures, which shows that the underlying cause is 

the ageing process itself, not the way in which the fracture is quantified19. (b) Wf as a function of the 

stroke rate during the test in 4 bone types: human (unpublished data provided by PZ), tiger, and bovine 

femurs; and deer antler material2. With the exception of antler, the three ‘normal’ bones experience a 

ductile-to-brittle transition for stroke rates above 5 mm/min (strain rate: 1.5×10-3 s-1). The percentage 

numbers show what fraction of the specimens achieved a ductile fracture. 

Fig. 5. Ductile-to-brittle transition observed in human femoral bone in tension (single pulls to failure, 

the critical strain rate, for a 10 mm gauge length, is 0.01-0.1 s-1).  Above the strain rate threshold the 

post-yield region, the capacity for energy absorption, and the microcracking damage reduce 

significantly18, 140. 

Fig. 6. The growth of cracks is strongly influenced by the structure39 as shown when the separate and 

added effects of (i) microstructural heterogeneity and (ii) physical characteristics were examined in the 

fatigue strength of cortical bone in 3 modes .tension, compression and shear. The photo shows a large 

surface crack which emanated laterally from the fracture surface (on the right of the photo) and grew 

towards the left advancing naturally between the various bone compartments along boundaries on 

either side of which the composition and architecture changed sharply.  

Fig. 7. Lamellar level modulation of mechanics and fiber orientation in bone osteons (Haversian 

systems) (a) Indentation modulus (stiffness), mapped with 1 m steps along the radius of an osteon 

from the femur of a woman shows periodic variations from 24-27 GPa41. Scanning electron 

microscopy image of a typical osteon is shown on the right, with the dashed rectangle indicating the 

usual width of radial sector used to generate a modulus map. (b) Fibril orientation relative to long axis 

shows a plywood like58 radial periodic variation (dashed rectangle), as quantified by scanning 

microtexture experiments68, 69. On average, fibrils are here observed to spiral in a 
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right handed manner around the central blood vessel. On the right, a polarized light microscope image 

of a typical osteon shows (dashed rectangle) the usual size of the radial sector in which the scans were 

done. Best fit solid lines (sinusoidal in (a) and exponentially damped sinusoidal in (b)) are meant as 

guides to the eye. 

Fig. 8. (a) Schematic view of in-situ tensile testing of bone in the synchrotron 104-106. High intensity X-

ray radiation is used to generate small-angle (SAXS) and wide-angle (WAXD) images of bone 

nanostructure, concurrently with mechanical deformation. (b) Integrated intensity plots I(q) can 

quantify fibrillar & mineral structure. On the right, a typical variation of collagen fibril periodicity (D) 

and width of the meridional reflection (SD) with applied tissue strain is shown. 

Fig. 9. (a) Fibril (squares) and mineral (circles) strain response to applied tissue strain using in-situ 

tensile testing with synchrotron diffraction. N=21, error bars are standard deviations. Initial response 

of fibril and mineral strain is linear, but nonlinearity and plateau behaviour is observed beyond the 

yield point. Line of equal strains given by dash-dotted line. Data from Gupta et al.105. 

Fig. 10. Tensile strain in bone is transferred in successively lower fractions from the tissue to the 

nanoscale level on applied external load105. Shearing in the intervening soft phase accommodates the 

remaining strain at each level: in the interfibrillar matrix at the fibril level and in the collagen matrix at 

the mineral platelet level. 

Fig. 11. Two possible schemes for the post yield behaviour at the nanoscale level, which may be 

different across tissue types and degrees of mineralization: (1) fibrils continue to stretch, possibly 

heterogeneously, and decouple from the (extrafibrillar) mineral. (2) Mineralized fibrils decouple and 

slide past each other, and maintain a constant level of fibril strain. 

Fig. 12. Strain-rate sensitivity of the post yield behaviour of bone. Reducing the stretching velocity 

from 10 m s-1 to 0.5 m s-1 results in a ~ 10 MPa drop in stress124; inset shows that the linear 

hardening slopes at the different strain rates (shown schematically by the dashed lines) are 

approximately the same. 

Fig. 13. (a) Two dimensional view of the variation of yield stress Y with temperature and applied 

strain rate, showing decrease of Y with increasing temperature and decreasing strain rate. N = 63 

samples are shown here. (b) One-dimensional view of the same set of data, averaged over each 

(temperature, strain rate) pair. Data from Fig. 3 in Gupta et al.124. 

Fig. 14. Schematic of ionic bond breaking in interfibrillar matrix of bone, between negatively charged 

polyelectrolyte molecules like osteopontin and divalent ions like calcium124. 

 



Gupta & Zioupos. page 19 of 43 

Table 1. List of methods for determining the elastic modulus of trabecular bone material and the 

resulting estimate values. Modified from the original in Rho et al.1.  

 

Reference Test Method Estimate of elastic modulus (GPa) 

Wolff 78 

Runkle and Pugh 79 

Townsend et al. 80 

Williams and Lewis 81 

Ashman and Rho 38 

Ryan and Williams 85 

Hodgskinson et al. 82 

Kuhn et al. 83 

Mente and Lewis 84 

Choi et al. 35 

 

Rho et al. 76 

Rho et al. 66 

 

Bini et al. 138 

Coats et al. 139 

 

Hypothesis 

Buckling 

Inelastic buckling 

Back-calculation from FEA 

Ultrasound test method  

Tensile testing 

Microhardness 

Three-point bending 

Cantilever bending with FEA 

Four-point bending 

Tensile testing 

Ultrasound test method 

Nanoindentation 

 

Microtensile tests 

Microhardness 

 

17-20 (assumption) 

8.69±3.17 (dry) 

11.38 (wet) 

1.30 

12.7±2.0 (wet) 

0.76±0.39 

15 (estimation) 

3.81 (wet) 

7.8±5.4 (dry) 

5.35±1.36 (wet) 

10.4±3.5 (dry) 

14.8±1.4 (wet) 

19.6±3.5 (along); 15.0±3.0 

(across)  

1-2 

9-11 
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Figures 

Fig. 1. (a) Consecutive stages of behaviour: the elastic range (E), the continuum damage mechanics range 

(CDM), and the fracture mechanics (FM) one2. Unfortunately mechanical material tests of bone each concentrate 

on one of these domains with little overlap across them and therefore fail to apply a holistic approach to the 

problem. The relative length (or time spent) on any of the 3 regions can vary widely depending on specimen 

geometry, the applied loading protocol and other conditions, hence a wide variety of stress/strain recordings may 

result. (b) During fracture, energy is dissipated/absorbed in a number of ways, either elastically, or as prefailure 

damage (microcracks), or in growing a slow moving crack with its collateral damage, or into advancing a fast 

moving fracture plane. 
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Fig. 2. (a) Fracture toughness (initiation) values in human cortical bone in SENB samples with age with the 

crack in the transverse to the grain direction16 (bone sector as symbols: A:anterior, P:posterior, L:lateral). (b) 

Initiation and growth fracture toughness values with age and crack length redrawn from Nalla et al.13, 14. 
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Fig. 3. Crack propagation. (a) The energy required to propagate a crack in the radial (m: microcracking damage), 

tangential (d: deflected crack) and circumferential (b: brittle fracture) directions in bovine bone with the crack 

length. Bone is much tougher in the fracture mode accompanied by microcracking damage (m) ahead of it2, 4. (b) 

The energy required to drive a crack across the grain (fibre direction) is an order of magnitude higher than along 

it4. 
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Fig. 4. (a) Work of fracture (slow and controllable mode tests) vs. Impact energy absorption in specimens of 

human cortical bone of various ages ranging from 4 to 82 yrs old (age as symbol; R2=0.69). There is a 

correlation between the two measures, which shows that the underlying cause is the ageing process itself, not the 

way in which the fracture is quantified18. (b) Wf as a function of the stroke rate during the test in 4 bone types: 

human (unpublished data provided by PZ), tiger, and bovine femurs; and deer antler material2. With the 

exception of antler, the three ‘normal’ bones experience a ductile-to-brittle transition for stroke rates above 5 

mm/min (strain rate: 1.5×10-3 s-1). The percentage numbers show what fraction of the specimens achieved a 

ductile fracture. 
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Fig. 5. Ductile-to-brittle transition observed in human femoral bone in tension (single pulls to failure, the critical 

strain rate, for a 10 mm gauge length, is 0.01-0.1 s-1).  Above the strain rate threshold the post-yield region, the 

capacity for energy absorption, and the microcracking damage reduce significantly18. 
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Fig. 6. The growth of cracks is strongly influenced by the structure 135 as shown in a recent article where the 

separate and added effects of (i) microstructural heterogeneity and (ii) physical characteristics were examined in 

the fatigue strength of cortical bone in 3 modes :tension, compression and shear. The photo shows a large surface 

crack which emanated laterally from the fracture surface (on the right of the photo) and grew towards the left 

advancing naturally between the various bone compartments along boundaries on either side of which the 

composition and architecture changed sharply.  
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Fig. 7. Lamellar level modulation of mechanics and fiber orientation in bone osteons (Haversian systems) (a) 

Indentation modulus (stiffness), mapped with 1 m steps along the radius of an osteon from the femur of a 

woman shows periodic variations from 24-27 GPa40. Scanning electron microscopy image of a typical osteon is 

shown on the right, with the dashed rectangle indicating the usual width of radial sector used to generate a 

modulus map. (b) Fibril orientation relative to long axis shows a plywood like57 radial periodic variation (dashed 

rectangle), as quantified by scanning microtexture experiments67, 68. On average, fibrils are here observed to 

spiral in a right handed manner around the central blood vessel. On the right, a polarized light microscope image 

of a typical osteon shows (dashed rectangle) the usual size of the radial sector in which the scans were done. Best 

fit solid lines (sinusoidal in (a) and exponentially damped sinusoidal in (b)) are meant as guides to the eye. 
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Fig. 8. (a) Schematic view of in-situ tensile testing of bone in the synchrotron 104-106. High intensity X-ray 

radiation is used to generate small-angle (SAXS) and wide-angle (WAXD) images of bone nanostructure, 

concurrently with mechanical deformation. (b) Integrated intensity plots I(q) can quantify fibrillar & mineral 

structure. On the right, a typical variation of collagen fibril periodicity (D) and width of the meridional reflection 

(SD) with applied tissue strain is shown. 
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Fig. 9. (a) Fibril (squares) and mineral (circles) strain response to applied tissue strain using in-situ tensile testing 

with synchrotron diffraction. N=21, error bars are standard deviations. Initial response of fibril and mineral strain 

is linear, but nonlinearity and plateau behaviour is observed beyond the yield point. Line of equal strains given 

by dash-dotted line. Data from Gupta et al.105. 
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Fig. 10. Tensile strain in bone is transferred in successively lower fractions from the tissue to the nanoscale level 

on applied external load105. Shearing in the intervening soft phase accommodates the remaining strain at each 

level: in the interfibrillar matrix at the fibril level and in the collagen matrix at the mineral platelet level. 
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Fig. 11. Two possible schemes for the post yield behaviour at the nanoscale level, which may be different across 

tissue types and degrees of mineralization. (1) fibrils continue to stretch, possibly heterogeneously, and decouple 

from the (extrafibrillar) mineral. (2) Mineralized fibrils decouple and slide past each other, and maintain a 

constant level of fibril strain. 
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Fig. 12. Strain-rate sensitivity of the post yield behaviour of bone. Reducing the stretching velocity from 10 

m s-1 to 0.5 m s-1 results in a ~ 10 MPa drop in stress121; inset shows that the linear hardening slopes at the 

different strain rates (shown schematically by the dashed lines) are approximately the same. 
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Fig. 13. (a) Two dimensional view of the variation of yield stress Y with temperature and applied strain rate, 

showing decrease of Y with increasing temperature and decreasing strain rate. N = 63 samples are shown here. 

(b) One-dimensional view of the same set of data, averaged over each (temperature, strain rate) pair. Data from 

Fig. 3 in Gupta et al.121. 
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Fig. 14. Schematic of ionic bond breaking in interfibrillar matrix of bone, between negatively charged 

polyelectrolyte molecules like osteopontin and divalent ions like calcium121. 
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