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A B S T R A C T

In this study, we demonstrate the feasibility of using miniaturised optical particle counters (OPCs) for under-
standing AQ in Sub-Saharan Africa. Specifically, the potential use of OPCs for high-density ground-based air
pollution networks and the use of derived data for quantification of atmospheric emissions were investigated.
Correlation and trend analysis for particulate matters (PM), including PM10, PM2.5 and PM1 were undertaken on
hourly basis alongside modelled meteorological parameters. Hourly averaged PM values were 500 μg/m3, 90 μg/
m3 and 60 μg/m3 for PM10, PM2.5 and PM1, respectively and Pearson's correlation coefficient ranged between 0.97
and 0.98. These levels are in the agreement with range of PM emission reported for these types of environmental
settings. PM was locally associated with low wind speeds (<¼ 2 ms�1) and was closely linked to anthropogenic
activities. This study provides a benchmark for future AQ and demonstrates the feasibility of the current gen-
eration of OPCs for AQ monitoring in environments typical of large parts of West and Sub Saharan Africa.
1. Introduction

Air pollution is a major environmental risk globally to health with
more than 90% of the world's population living in regions where AQ
levels do not meet the 2017 World Health Organization (WHO) recom-
mended thresholds (Health Effects Institute, 2019). Different compo-
nents of air pollutants and their contribution to premature deaths have
been documented by WHO (World Health Organization, 2006). The
species with the strongest health-damaging effects were found to be, in
order, particulate matter (PM), ozone (O3) and nitrogen dioxide (NO2)
(World Health Organization, 2006). PM is identified globally as a risk
indicating factor and often used as a key indicator of urban AQ (Cohen
et al., 2005). Across Africa, 520 million children are reported to be
exposed to polluted air (UNICEF, 2016). Additionally, global climate
change is projected to have a significant adverse effect on Africa and is
intrinsically linked to air pollution (Ramanathan and Feng, 2009). This
implies that AQ policies would be most effective if they are linked to
climate change policies. Understanding atmospheric emission sources in
urban settings across Sub-Saharan Africa is important for understanding
and moderating short to medium term AQ dis-benefits as well as for
modelling climate change (Melamed et al., 2016). Of particular interest
in this study are the relatively high levels of PM emissions resulting from
combustion (including vehicular) as identified by the Ghana
lon).
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Environmental Protection Agency (GhEPA) as the main pollutant of in-
terest in Ghana (GhEPA personal communication, 2018). In Ghana
similar to other parts of SSA, major sources of air pollution are
traffic-related associated with increased vehicle fleets, use of solid fuel,
improper waste management practices and the slash and burn agricul-
tural practices (Health Effects Institute, 2019; Schwela, 2012; Dionisio
et al., 2010).

Many sub-Saharan African (SSA) countries, including Ghana, have
limited capacity for undertaking AQmonitoring and a significant number
lack AQ standards (Petkova et al., 2013). Where available monitoring is
undertaken by countries such as Ghana rely on conventional monitoring
approaches which require significant infrastructure, routinemaintenance
and periodic calibration (Schwela, 2012). AQ monitoring (AQM) is
therefore undertaken sporadically or at a very limited number of sites
(Schwela, 2012). Additionally, a large number of AQmonitoring projects
initiated in SSA are discontinued after approximately 1 year due to
maintenance and operational issues (Schwela, 2012). For example,
GhEPA has previously partnered with a number of international orga-
nisations and academic institutions since 2005 to undertake AQ studies.
However, most of these studies did not include any training of staff and
the sustainability of these programmes was often overlooked with
limited long-term planning for operation beyond the life of specific
projects (GhEPA personal communication, 2018). For example at Cape
020
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Coast (study area), no regulatory air quality monitoring network or
preliminary air quality campaign has been established on the applica-
bility of new technologies for AQ monitoring similar to other parts of
Ghana (i.e. as at the period of deploying the two AS510 static
multi-sensor nodes; see Table 1 in sub-section 2.1) except Accra the
capital city where some LCS have been deployed (GhEPA personal
communication, 2018). Main background activities in these areas include
traffic, roadside food vending including use of solid fuel for cooking,
unpaved road networks, commercial markets (Figure 1).

Depending on instrument siting and network operational cycle actual
local ambient levels of pollutants can vary significantly spatially and in
time when compared to hourly measured levels at nearby sites (e.g. Mead
et al., 2013; Moltchanov et al., 2015; Kumar et al., 2015; Broday et al.,
2017). GhEPA undertakes routine AQ monitoring at a limited number of
sites. Its network is made of 16 sites in the capital city of Accra (the
largest urban area in Ghana). All sites measure ambient particulates using
gravimetric samplers. The instruments used (one at each site) are a high
volume cascade impactor (Andersen Impactor, Tisch Environmental Inc.,
USA) and a mini volume sampler (MiniVol Portable Air Sampler. Air-
metrics, USA). These are used to manually sample AQ data for PM10 and
PM2.5 species respectively. Each site produces a single 24 h averaged
sample once every 6 days. This limited approach is not statistically suf-
ficient to analyse and assess daily variation of PM and does not provide
information on other important species such as O3, carbon monoxide
(CO), the oxides of nitrogen (NO þ NO2 ¼ NOx) or volatile organic
compounds (VOCs) (e.g. Moltchanov et al., 2015; Kumar et al., 2015;
Broday et al., 2017). Greenhouse gases such as carbon dioxide (CO2) are
also not monitored. This lack of speciated or appropriate resolution data
in Ghana and wider SSA limits accurate assessment of human health
exposure to air pollution in the region. Limited local AQ data limits un-
derstanding of local pollution levels. As a result, development, imple-
mentation and evaluation of location-specific, targeted air pollution
control measures are limited if not unattainable (Petkova et al., 2013).

The low-cost sensor offers the opportunity to solve some of these is-
sues by providing a valuable AQ monitoring capability in resource-
constrained settings (Mead et al., 2013; Snyder et al., 2013; Castell
et al., 2017). Most current-generation commercial low-cost sensor nodes
from recognised manufacturers are user-friendly have low power re-
quirements and will routinely telemeter data from site to remote data
repositories. Most are capable of collecting high spatiotemporal resolu-
tion data making them suitable for detailed quantification of the spatial
and temporal variability of ambient air pollutants (Mead et al., 2013;
Snyder et al., 2013; Castell et al., 2017). In SSA and other developing
regions, minimal additional infrastructure including security and tech-
nical training are needed to deploy low-cost sensor nodes for AQ studies.
However it should be noted that there is still the requirement for skilled
development of optimised deployment strategies and back end analysis
of collected data, particularly for the scale of data this class of sensors are
capable of generating (Snyder et al., 2013; Seto et al., 2014; Kumar et al.,
Table 1. Summary of technical characteristics of the AS510 static multi-sensor node

Measurands/Activity

Particle size distribution

CO, NO, NO2 and O3

VOCs

CO2

T and RH

Timestamp and location

Data telemetry

OPC-N2 details Particle range

Data bins

Flow rate

Sample flow rate
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2015). Critically this class of sensor nodes have been shown to require
site-specific calibration techniques and approaches. In the majority of
case, their utility is linked to the availability of local reference data.

In this proof of concept study, the applicability of emerging low-cost
air sensors in Ghana as a widely applicable case study for the wider SSA
was investigated based on an 8-week field deployment. Specifically, the
extent to which the deployed devices can be used to provide independent
high-level resolution speciated data for PM and inform decision making
on AQ in such resource-constrained settings was investigated. The study
relied on the inbuilt data correction algorithms developed by the sensor
manufacturer to test the potential these types of sensors offer expanding
ground-based spatial AQM in these types of environments. No further
data correction mechanisms were applied though temperature and
relative humidity have shown to introduce inconsistencies in the LCS
reported data (see e.g. Hagler et al., 2018; Malings et al., 2019; Snyder et
al., 2013; Moltchanov et al., 2015). This work seeks to bridge the huge
scientific knowledge gap on the feasibility of LCS specifically under a
wide variety of climate regimes such as those encountered in SSA,
ranging from humid climate in the tropics to arid and semi-arid climate in
the sub-tropics.

2. Methods

In this study, we focused on testing the utility of LCS to understand
the extent to which factory calibrated Alphasense OPC-N2 to provide
reliable ground-based air quality data in environments previously
unachievable due to cost and logistical requirements. As a proof of
concept approach, no data correction mechanisms were applied to
improve or evaluate the accuracy of the selected LCS. The study, how-
ever, showed that LCS in their current form are capable of quantifying
atmospheric emissions and the high-resolution data could provide
meaningful insights for air pollution management tasks such as devel-
oping, implementing and tracking air pollution mitigation strategies
though further research is required to confirm this.

2.1. Instrumentation

Two AS510multi-sensor nodes (Atmospheric Sensors, UK), were used
for this study. These nodes measure: CO, NOx, O3, VOCs, PM and key
environmental parameters relative humidity (RH) and temperature (T).
Table 1 lists the species measured and the technologies used for these
measurements.

The resolution of the nodes used in this study for all measured species
was 60 s for the duration of the study. This study is focused on particu-
lates and details of the Optical Particle Counter (OPC) component of the
node is also presented in Table 1. The OPC (Alphasense, UK OPC-N2)
measures scattered light from particulates from the sampling beam to
reconstruct particle mass levels (Hinds, 1999). For a detailed description
with details of the OPC-N2.

Technology

Optical particle counter (OPC)

Electrochemical (ECs)

Photo ionization (PID)

Non-dispersive infra-red (NDIR)

Capacitive

Global positioning system (GPS)

General packet radio service (GPRS)

0.38–17 μm
16

1.2 L/min

220 mL/min



Figure 1. Typical Ghanaian setting showing the complex and varying emission sources.
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of the OPC design and operation see Alphasense reference note (OPC-N2
Monitor, Alphasense Ltd UK, 2015).
2.2. Site selection and data acquisition

Both AS510 multi-sensor nodes were co-deployed at a central site at
Cape Coast, Ghana. This site was selected as being typical of expanding
urban settings outside of Accra with a broadly similar composition as
other urban areas of this type. Co-deployment was for 6 weeks (August
9th to September 18th, 2018; Figure 2) and provided a baseline for
comparison of data between the sensor nodes. Cape Coast is situated in
Figure 2. Overview of the deployment area at the University of Cape Coast (UCC) (
nearby the UCC). The green circle shows the location of the two co-deployed nodes
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the South of the country on the Gulf of Guinea with a population of
approximately 170000 (GSS, 2012). The region is relatively humid with
mean monthly relative humidity (RH) ranging between 85% and 99% as
compared with a range of 77%–85% in Accra. The predominant wind
direction at Cape Coast is from the south which has the potential to
transport pollutants from across the region to Cape Coast as well as for
onshore relatively clean air masses to be transported. Nodes were
mounted 10 cm apart at a height of 4 m above the ground. Typical
sources in the area include unpaved roads (re-suspended dust), road-side
food preparation (biomass and gas combustion), taxi ranks (vehicular)
a. overview of the central region location; b area covered by UCC; c. street view
~10 cm apart (05�060N 01�150W).

https://tools.wmflabs.org/geohack/geohack.php?pagename=Cape_Coast&amp;params=05_06_N_01_15_W_region:GH_type:city
https://tools.wmflabs.org/geohack/geohack.php?pagename=Cape_Coast&amp;params=05_06_N_01_15_W_region:GH_type:city
https://tools.wmflabs.org/geohack/geohack.php?pagename=Cape_Coast&amp;params=05_06_N_01_15_W_region:GH_type:city
https://tools.wmflabs.org/geohack/geohack.php?pagename=Cape_Coast&amp;params=05_06_N_01_15_W_region:GH_type:city
https://tools.wmflabs.org/geohack/geohack.php?pagename=Cape_Coast&amp;params=05_06_N_01_15_W_region:GH_type:city


Figure 3. Overview of the Dansoman-Accra site deployment (a. overview of the greater Accra region; b area of the Dansoman police station; c street map overview
nearby the Dansoman police station; Green circle: location of the node collocated ~10 cm apart with the GhEPA monitoring reference device) GhEPA
(5�3202800N 0�160800W).
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and roads used by private vehicles as well as heavy trucks and com-
mercial vehicles.

After completion of the initial 6 weeks co-deployment measurement
period, one node was relocated to central Accra (approximately 147 km
north of Cape Coast) alongside the GhEPA reference high volume sampler
used for monitoring PM10 is located (Figure 3). The purpose of this
collocation is to understand the precision of the selected OPC-N2 for PM
monitoring and potentially develop data correction mechanisms for their
use in subsequent publications. This data is therefore not presented but
reported LCS data from the two nodes at Cape Coast as an experimental
study. Accra covers approximately 225.67 km2 with a population of 2.5
million (GSS, 2012) and is the economic and industrial capital of Ghana.
The node was moved there as a study investigating the potential for
cross-validation of sensors or radically different operational cycles. This
type of low resolution, low technical overhead PM monitoring is more
widespread than online routine PM monitoring across the region (Health
Effects Institute, 2019). The site is a residential area close to the relatively
high use Dansoman Highway, a local open market (including open food
preparation), a fuel station and more dispersed road-side food vendors.

Due to the limited availability of local meteorological data, modelled
wind data from the Global Forecast System (GFS) repository was used for
Figure 4. Schematic overview of novel reproducible protocols developed and employ
AQ monitoring capabilities.
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source apportionment in this study (NOAA, 2019; Fern�andez-L�opez and
Schliep, 2019). The GFS is a dataset from the National Oceanic and At-
mospheric Administration (NOAA) and the National Centers for Envi-
ronmental Prediction (NCEP) (Fern�andez-L�opez and Schliep, 2019).
Within this database, wind data since 2011 is saved at 3-hour intervals
daily in velocity vector format with a resolution of 0.5� and ~50 km.

A step by step approach adopted in this study for data acquisition and
analysis is presented in the chart in Figure 4. All analysis was performed
using the “openair” package including sectorial plots in the function of
wind components, trend and cluster analysis as well as Pearson's corre-
lation analysis. In-depth information on these packages used are not
provided in this study but further details can be found here Carslaw
(2019).

3. Results and discussion

Though there are still questions regarding the accuracy of low-cost
sensors (Lewis et al., 2016), their ability to obtain high-resolution
spatiotemporal data makes them suitable for extending air quality
monitoring networks. For Crilley et al. (2018) reported that the consis-
tency between the current generation of OPCs make them applicable for
ed for use of factory calibrated miniaturised OPCs in environments with limited
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understanding the spatial variability of PM species. On data quality,
relative humidity beyond 85% has been found not to significantly affect
the reported OPC data (Crilley et al., 2018). Spinelle et al. (2017) also
found no impact of temperature and relative humidity on reported
OPC-N2 data. The reported data used in this study met these preliminary
requirements making it useful for air pollution management strategies.
For example, Snyder et al. (2013); Rai et al. (2017), Jerrett et al. (2005)
and Castell et al. (2017) have shown that the reported data can be used to
establish the link between atmospheric exposure to human health,
emergency response management, community's awareness of air pollu-
tion and complement regulatory air quality monitoring stations. The
results presented in this publication is based on a proof of concept study
and to bridge the huge scientific knowledge gap on the utility of LCS for
AQM in Ghana and wider SSA. As briefly stipulated in the introductory
part of this study, ground-based AQM is rudimentary in SSA but the
emergence of LCS offers a unique and alternative approach. Air pollution
studies using LCS in advanced countries e.g. Europe and Americas have
reported some caveats, for example, poor data quality due to the impacts
of environmental variables such as temperature and relative humidity
(Barron ad Saffel, 2017; Malings et al., 2019; Snyder et al., 2013; Kumar
et al., 2015; Hagler et al., 2018) and the impacts of hygroscopic growth
on PM species quantification (Malings et al., 2019). A number of studies
Figure 5. Hourly time series and corresponding Pearson correlation plot of da
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have also shown that machine learning approaches and sophisticated
mathematical models for example regression can be used to improve LCS
data quality. In some cases, commercial data mining and improvement
tools have been developed for end-users (e.g., Advanced Normalization
Tool for AirVision, 2020; Hagler et al., 2018). None of these applications
has been used in this preliminary study but to rely on inbuilt data
correction mechanisms thereby selecting temperature corrected values
from the reported LCS data deployed in Ghana. Key considerations that
influenced the approach documented here is whether LCS in their current
form will function under the harsh environmental conditions coupled
with complicated emission sources in Ghana to obtain reliable AQ data
when deployed under field conditions in these types of environment as
well as how the reported data can be used to spur regulatory action. The
results of this field campaign though not corrected have shown that
low-cost PM sensors are capable of providing background information on
PM levels specifically in highly polluted environments as echoed by
Castell et al. (2017) and are capable of providing a high-density network
to understand spatial and temporal variability of PM species. For example
in an experimental study by de Souza et al. (2017) and the use of
Alphasene OPC-N2 for monitoring traffic pollution by Pope et al. (2018)
similar findings were observed. It is deduced from this preliminary
finding in Ghana that the homogeneity of these environments (Ghana
ta from Node 79 versus Node 5 at UCC: (a) PM1, (b) PM2.5, and (c) PM10.



Table 2. Mean and standard deviation of PM in μg/m3 with t and p-values showing the statistical difference between the two nodes at UCC.

Species Node 5 Node 79 Statistical difference

Mean SD Mean SD t p-value

PM1 11.4 8.9 12.9 10.1 17.3 <2.2e-16

PM2.5 24.7 19.7 26.8 21.3 11.4 <2.2e-16

PM10 149 175.1 156.6 179.2 4.2 1.9e-5
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and wider SSA) presents a unique opportunity for further studies to
develop a generalized data correction mechanism for the use of the
selected sensors in these environments.

3.1. Sensor intercomparison (PM)

Hourly averaged PM (PM10, PM2.5 and PM1) data from the selected
two nodes during the deployment at Cape Coast (i.e. UCC site) showed
that the reported data from the nodes are highly reproducible as the
signal acquisition of the two nodes is similar (Figure 5a, b and c) with
corresponding Pearson's correlation analysis (R) of 0.97, 0.97 and 0.98
for PM1, PM2.5 and PM10, respectively. The first 3 weeks of deployment
have not been included in this analysis as issues with data telemetry led
to limited data for the study.

The mean PM values of the two nodes are significantly different.
Comparing the mean values of each of the PM categories from the two
devices and their corresponding t-values it can be seen that this statistical
difference (see Table 2) reduces for PM categories in the order of PM1,
PM2.5 and PM10. Additionally, since PM10 values > PM2.5 values > PM1
values as demonstrated in the statistical difference between the PM
species indicates that low-cost PM sensors are suitable for coarse particle
monitoring in these types of environments as compared to fine particles
but further studies are required to support this preliminary claim. This
finding, however, is in agreement with previous reports using these types
of sensors, for example, Castell et al. (2017).

3.2. Wider comparisons (PM)

These findings are in agreement with the assertion that current OPCs
require optimisation (e.g. application of machine learning/post data
correction with sophisticated mathematical models) for measuring fine
particles since they measure particles lager than 0.3 μm. Also, the sta-
tistical difference between the two nodes from the same manufacturer
with p-value <0.05 echoed the challenges on the use of low-cost sensors,
for example, depending on inbuilt correction algorithms which is mainly
influenced by time and resources invested by the manufacturer (Baron
and Saffell, 2017).

PM10 concentrations peak at 500 μg/m3. This is in agreement with
levels recorded in other polluted environments (Wang et al., 2015) and
Figure 6. Calendar plot of PM at UCC for September 2018 showing potentials of co
mean values (25 μg/m3 for PM2.5 and 50 μg/m3 for PM10) if validated. Dark orange
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SSA (Brauer et al., 2012; Health Effects Institute, 2019). Though these
pilot findings are in agreement with levels of PM pollution recorded in
such environments specifically Ghana, limited studies are using these
types of low-cost sensors for comparison and justification. Studies with
emerging low-cost sensors have shown that low-cost sensor technologies
suffer environmental artifacts namely relative humidity and temperature
thereby affecting the measured data and do not agree well with mea-
surements from instruments using different measurement technologie-
s/principles (Watson et al., 1998; Chow et al., 2008). For example, Zheng
et al. (2018) found that low-cost PM2.5 sensor Plantower model PMS3003
corresponds very well with a scattered light spectrometer (r of 0.8) versus
low correlation with a beta attenuation monitoring (r of 0.5). These
findings, however, provide a benchmark for future studies with these
types of low-cost sensors especially in developing data correction/vali-
dation and calibration procedures for the use of low-cost sensors for AQ
monitoring in Ghana and similar environments.
3.3. Using LCS data for tracking location-specific air quality standards

The reported data plotted in a calendar format demonstrate the po-
tentials LCS offer in reporting high-resolution routine and site-specific
data suitable for tracking air pollution regulations (Figure 6). Compari-
sons can be drawn using data from these types of sensors if the reported
data is improved/validated. Rai et al. (2017) has reported that LCS does
offer the opportunity to increase a community's awareness of air pollu-
tion and help track exposure to human health as well as support emer-
gency responses. The capability of LCS to obtain routine site-specific data
which can be quantified with data mining approaches as demonstrated in
this calendar plot is useful for air pollution control specifically in envi-
ronments with limited knowledge on air pollution and its adverse health
impacts such as Ghana and wider SSA.

Here, we experiment this approach by comparing the reported data to
current WHO AQ guideline values of 25 and 50 μg/m3 for PM2.5 and
PM10, respectively for September 2018 (Figure 6). These thresholds were
exceeded. Even though the reported data from the AS510 nodes used in
this study is not validated with data from site-specific reference equip-
ment, the PM levels reported are in agreement with levels expected and
recorded previously in SSA (Amegah, 2018; Health Effects Institute,
2019) and have shown that high-temporal data from low-cost PM sensors
mparing reported data to location-specific regulatory standards e.g. WHO daily
values represent days where the daily guidelines were exceeded.



Figure 7. Trends of PM1 and PM2.5 (top) and PM10 (bottom) by hour and day of the week (left), by weekday (centre) and by hour of the day (right) at the UCC
sampling site.
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are suitable for tracking air quality guidelines and inform decisions.
Further to this, this type of analysis is currently unachievable with the
GhEPA monitoring regime as only 24-hour averaged data can be
collected roughly 5 times a month.
3.4. PM trends

Trends of PM species showed peak levels in the mornings which are
attributable to typical sources such as unpaved roads (resuspended dust),
road-side food vendors (biomass and hydrocarbon combustion), taxi
ranks (tailpipe) and roads used by heavy trucks and commercial vehicles
(Figure 7). Urbanisation coupled with increasingmotorization is indeed a
major source of air pollution in SSA (Petkova et al. (2013) Schwela,
2012a; Amegah and Agyei-Mensah, 2017). A drop in PM level was
observed on Friday which is attributable to reduced human activities and
peaks again on Sundays (Figure 7 left bottom and top panel) due to
increased anthropogenic activities. Though this is not documented,
Ghanaians are identified as highly religious people hence the high specks
of PM levels on Sundays is attributable to motorization for religious ac-
tivities specifically church activities. This does require further studies as
meteorological parameters are influential in atmospheric emissions.
These findings are unachievable with conventional and sparsely
distributed AQ monitoring stations (e.g. in Ghana, data is averaged 24 h
and collected every 6 days). Also, understanding the complexity of
emission sources in urban areas requires monitoring at fine scales (Jerrett
et al., 2005; Karner et al., 2010; Eeftens et al., 2012) and ability to
Figure 8. Primary source apportionment of PM; left panel PM1, middle panel PM
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potentially establish a dense network without huge infrastructure.
Low-cost sensors offer these opportunities and can be used in
resource-constrained settings (Snyder et al., 2013; Mead et al., 2013;
Castell et al., 2017).
3.5. Local pollutant sources

Polar plots were used to identify the sources of monitored species
based on the high-resolution data from the low-cost devices (Figure 8) for
this period. The trend between PM1 and PM10 suggests that an important
source of particulate matter is located towards the NNE. This source is
either biased towards lighter particles or that larger particles are
removed before arriving at the monitoring site. The data also potentially
points towards a more local source of lighter particulates nearer to the
monitoring site which has an important role in composition at lower
wind speeds. Under still conditions, it seems there is no significant local
source. Overall PM levels were relatively high (20 μg/m3 for PM1, 35 μg/
m3 for PM2.5 and 220 μg/m3 for PM10 as compared to the recommended
25 μg/m3 and 50 μg/m3 limits of the WHO for PM2.5 and PM10 respec-
tively). Locally PM1 and PM2.5 concentrations were high while high PM10
concentrations were experienced at higher wind speed.

These results reflect that both nodes were installed (at the UCC site) a
few meters away from the main road and in a traffic dominated area. The
region to the NNE is a mostly unpaved flat area close to the Gulf of
Guinea. The nature of the deployment site (unpaved roads with associ-
ated resuspended wind-blown dust) coupled with the topography of the
2.5 and right panel PM10 using hourly bivariate polar plot at the UCC site.



Figure 9. Trend plots for PM1 at Dansoman-Accra and UCC-Cape Coast: left panel – day of week, middle panel – by weekday and right panel – hour of day.
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area (a relatively flat field) would be expected to have contributed to
higher PM10 levels with increased wind speed. Especially considering
that the area to the NNE is dominated by unpaved road, win-blown dust
and sea salt from the nearby coast. As it has been shown that coarse PM
dispersion is linked to higher wind speed (Carslaw and Ropkins, 2012)
we would expect a reduction in the PM10 signal at lower wind speeds
(2–5 m/s) and higher levels were observed at higher wind speed (6–8
m/s).

3.6. PM trend between two socio-economic settings

In Accra, peak values of PM1 were observed on Monday which then
drastically reduced to a concentration below 50 μg m-3 (Figure 9). This
preliminary finding could be linked to emissions from background ac-
tivities such as garbage burning, vehicular emissions or linked to the
functionality of the deployed device. In a study to understand the pat-
terns of air pollution in the neighbourhoods of Accra, it was observed that
poorer households are highly exposed to air pollution. This in part is due
to the use of biomass and/or solid fuel as a source of energy for heating
and cooking (Dionisio et al., 2010).

Apart fromMonday and Friday, PM1 concentrations remain relatively
high at Cape Coast (Figure 9), a relatively poor socio-economic setting is
potentially linked to this assertion; energy source (use of biomass and/or
solid fuel as a source of energy for heating and cooking) as compared to
Accra. Though higher PM level is expected because of the nature of the
deployment site; near the Dansoman Highway and a residential area and
mini refuse damp (e.g. garbage is sometimes burnt during cleaning ac-
tivities including car tyres), further research is required to provide a
better understanding of this finding since the peak occurs on a single day
(Monday). Mondaymorning peaks (rush hour) were not observed at Cape
Coast as compared to Accra, the concentrations remained moderately
higher for the rest of the period except for Friday.

4. Conclusions and recommendations

This study has shed light into the feasibility of factory calibrated OPCs
for quantifying and understanding sources of PM species and highlighted
how low cost sensors can assist countries fromWest Africa and wider SSA
in establishing a high density of ground-based AQ networks to under-
stand spatial and temporal variability of PM species. It has demonstrated
the applicability of the high-resolution data for air pollutionmanagement
and community engagement by developing analytical tools for data
management, visualization, analysis and interpretation. It further
showed that low-cost devices are suitable for air quality monitoring in
environments with limited or no regulatory air quality monitoring sta-
tions. They can be used to track and evaluate exposure levels, understand
emission trends, define pollution level at varying locations with different
background activities and suitable for providing reliable high-resolution
data for source identification. Future studies need however additional
focus on data correction/validation when using these types of sensors in
these types of environments.
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