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Abstract

Purpose Suspended sediment (SS) transport in rivers is highly variable, making it challenging to develop predictive models that
are applicable across timescales and rivers. Previous studies have identified catchment and hydro-meteorological variables
controlling SS concentrations. However, due to the lack of long-term, high-frequency SS monitoring, it remains difficult to link
SS transport dynamics during high-flow events with annual or decadal trends in SS transport. This study investigated how
processes driving SS transport during high-flow events impact SS transport dynamics and trends observed over longer
timescales.
Methods Suspended sediment samples from the River Aire (UK) (1989–2017) were used to (i) statistically identify factors
driving SS transport over multiple timescales (high-flow events, intra- and inter-annual) and (ii) conceptualize SS transport as a
fractal system to help link and interpret the effect of short-term events on long-term SS transport dynamics.
Results and discussion Antecedent moisture conditions were a dominant factor controlling event-based SS transport, confirming
results from previous studies. Findings also showed that extreme high-flow events (in SS concentration or discharge) mask
factors controlling long-term trends. This cross-timescale effect was conceptualized as high fractal power, indicating that
quantifying SS transport in the River Aire requires a multi-timescale approach.
Conclusion Characterizing the fractal power of a SS transport system presents a starting point in developing transferrable
process-based approaches to quantify and predict SS transport, and develop management strategies. A classification system
for SS transport dynamics in river systems in terms of fractal power could be developed which expresses the dominant processes
underlying SS transport.
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1 Introduction

Suspended sediment (SS) transport in rivers is extremely var-
iable in space and time. The amount of SS in a river is con-
trolled by a complex system of geomorphological and

hydrological processes and process interactions over multiple
scales (McDonnell et al. 2007; Onderka et al. 2012; Bracken
et al. 2015; Vercruysse et al. 2017). This complexity makes it
challenging to adequately quantify and predict SS transport
(Phillips 2003; Gao 2008; Raven et al. 2010; Rickson 2014;
Ahn et al. 2017). Yet, quantifying and predicting SS concen-
trations (SSC) in rivers has become a necessity, because, de-
spite being a fundamental part of river systems, anthropogenic
activities have altered sediment transport processes in most
rivers leading to significant management problems. Excess
fine sediment in rivers can cause ecological degradation, water
quality decline (with higher associated water treatment costs),
increased flood risk, and infrastructural damage (Owens et al.
2005; Bilotta and Brazier 2008; Horowitz 2009; Taylor and
Owens 2009; Bilotta et al. 2012). Prediction of SS transport is
essential to develop well-informed management policies but
requires a thorough understanding of the timescale
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dependency of erosion and transport processes operating in
the catchment and river network.

The SS in rivers represents a mixture of fine (< 63 μm)
organic and inorganic particles originating from land, caused
by soil erosion (e.g. rill or gully erosion) (Morgan 2005), mass
movements (e.g. riverbank erosion or landslides)
(Vanmaercke et al. 2016), and/or human activity (e.g. road
construction, sewage treatment works) (Taylor and Owens
2009). Therefore, the average SSC at a point in the river de-
pends on hydrological, topographical, geological, climatic,
and land cover characteristics of a catchment (Vercruysse
et al. 2017). For example, these factors determine the vulner-
ability of the soil to erosion (e.g. degree of vegetation cover),
the risk of mass movements (e.g. combination of topography
and saturated soils), the contribution of different sources (e.g.
agricultural versus urban land), and the sediment connectivity
of a catchment (i.e. the degree to which the efficiency of spa-
tial sediment transfer is limited due to catchment characteris-
tics and transport processes) (Fryirs 2013; Bracken et al.
2015). Simultaneously, SSCs vary over time due to the inter-
action of hydro-meteorological processes, sediment source con-
tributions, and landscape disturbances (natural and human;
Vercruysse et al. 2017), by controlling surface runoff (e.g.
increased soil erosion due to decreased soil infiltration
capacity; Seeger et al. 2004; Smith and Dragovich 2009), sed-
iment connectivity (e.g. connecting distant SS sources to the
river after prolonged rainfall; Croke et al. 2013), sediment sup-
ply (e.g. exhaustion of supply or riverbank collapse; Aich et al.
2014), and/or sediment production (e.g. seasonal vegetation
growth protecting soil from erosion; Sun et al. 2016).

Following identification of a range of factors and processes
underlying spatiotemporal variation in SSCs, process-based
models have been developed which are able to predict SS trans-
port at different spatial and temporal scales, by combining
mathematical expressions that represent both hillslope process-
es (soil erosion and delivery to the river channel) and in-channel
processes driven by streamflow (Gao 2008). Nevertheless, it
remains challenging to link processes controlling variation in
SS transport across multiple timescales (Blöschl 2006;
Vercruysse et al. 2017). This challenge is mainly related to
the difficulty of representing processes producing SS from
point sources (e.g. bank erosion and channel beds) and the
complex interactions and feedback mechanisms between hy-
drologic and erosion processes (Gao 2008; Ahn et al. 2017).

To this end, concepts such as sediment connectivity (Fryirs
2013; Bracken et al. 2015) or landscape metrics (Van
Nieuwenhuyse et al. 2011) have been used to synthesize dom-
inant processes underlying soil erosion and sediment transport
over multiple spatial scales. At the temporal level, the idea of
“effective timescales of connectivity” has been used to define
the timeframe over which sediment (dis)connectivity occurs,
whereby parts of the catchment are “switched on and off” as a
response of events with varying frequency-magnitude

relationships (e.g. rare storm events versus land use change)
(Harvey 2002; Fryirs 2013). Similarly, “characteristic time-
scales” are used in different scientific disciplines to address
variability across different scales, which involves identifying
lengths of time that are representative for particular processes
(Skøien et al. 2003).

These concepts provide excellent frameworks to under-
stand temporal variability and identify relevant timescales
for sediment transport, but do not unify the underlying mech-
anisms for temporal variability in SS transport (Blöschl 2006;
Vercruysse et al. 2017). The complexity and scale dependency
of processes driving SS transport stress the need to decipher
how sediment generation, storage, and transport are linked
across different timescales, i.e. to assess and predict the spa-
tiotemporal impact of short-term events (e.g. bank collapse)
on long-term (annual to decadal) trends in SS transport. To
this end, we argue that it may be useful to consider SS trans-
port as a fractal system (Halley et al. 2004). Fractals are used
to describe and predict patterns over different spatial or tem-
poral scales in scientific disciplines such as catchment hydrol-
ogy, (fluvial) geomorphology, geography, and ecology
(Rodriguez-Iturbe and Rinaldo 2001; Sivakumar 2001;
Skøien et al. 2003; Halley et al. 2004; Van Nieuwenhuyse
et al. 2011; Jiang and Brandt 2016; Medina-Cobo et al.
2016), but have not been specifically applied to describe dy-
namics in SSCs. By approaching SS transport dynamics as a
fractal system, it is assumed that patterns of variation in SS
transport exist over different timescales (Fig. 1), while link-
ages across those temporal scales are expressed as fractal pow-
er. Fractal power represents the ratio of large-scale variability
and small-scale variability and implies that if the small-scale
variability in time is very high, it strongly affects the observed
large-scale variability and trends (Skøien et al. 2003). In sys-
tems with low fractal power, the long-term driving processes
are dominant and are visible at smaller scales (e.g. overall
higher SSCs as a result of deforestation; Walling 2009), while
in systemswith high fractal power, long-term variation is muted
by processes over shorter timescales (e.g. SS transport driven
by storm events in badland region with a high sediment supply;
Francke et al. 2008, Francke et al. 2014). Insights into the
degree of fractal power of a SS transport system may provide
a useful basis to evaluate and develop the most appropriate
predictive models and management strategies.

A better understanding of the mechanisms driving variation
in SS transport and how these mechanisms link across tempo-
ral scales is essential to the development of transferable
process-based approaches to quantify SSCs and, in turn,
targeted management strategies. Therefore, this study investi-
gated how processes driving SS transport over short time-
scales (i.e. high-flow events) impact SS transport dynamics
and trends observed over longer timescales. The catchment
of the River Aire (UK) was used as a case study to (i) identify
dominant factors and mechanisms driving SS transport at
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three timescales (high-flow events, intra-annual, inter-annual)
and (ii) conceptualize SS transport as a fractal system to help
link and interpret the effect of short-term events on long-term
SS transport dynamics.

2 Materials and methods

2.1 Study area

The River Aire rises in North Yorkshire (200 m AOD) and
continues for 70 km until it reaches the city of Leeds (26 m
AOD) (Fig. 2). Upstream of Leeds, the River Aire has a total
catchment area of 690 km2 and is composed of three main
Carboniferous geologies: limestone and shale formations in
the upper part, Millstone Grit (sandstone) in the middle part,

and coal measures (siltstone, mudstone, and sandstone)
in the lower part (Morton et al. 2011) (Fig. 2). The
soils are predominantly loamy to clayey with a diversity
that includes raw oligo-fibrous peats and stagnohumic
and stagnogley soils in the upper catchment and brown
earths and pelo-stagnogley soils in the middle and lower
parts (Carter et al. 2006). Land use in the catchment is
dominated by grassland (59%) and urbanized areas
(25%), while the remaining part of the catchment is
characterized by heath with peat bogs in the highest
parts (12%) and scattered arable land (4%).

Median daily flow (Q50) of the River Aire in Leeds
is 10 m3 s−1, while there is a 10% probability of dis-
charges exceeding 40 m3 s−1 (Q10). Annual precipitation
rates vary between 600 and 1500 mm, with a mean of
1050 mm for the available data.

Fig. 1 Temporal variability in
suspended sediment transport
exhibits different degrees of
fractal power: low fractal power
means that processes at the intra-
annual and event timescales do
not mute the long-term processes;
high fractal power means that
seasonal and event dynamics sig-
nificantly impact variations at the
inter-annual scale. Numbers 1, 2,
and 3 represent individual years
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2.2 Data

2.2.1 Suspended sediment data

To capture SS transport dynamics at multiple timescales
(events, inter- and intra-annual), two data sources of SSCwere
used. First, SS samples were collected with a depth-
integrating SS sampler during 14 precipitation events (200
samples) between June 2015 and March 2017 at a single lo-
cation within the city centre (Fig. 2, Table 1). Second, SSCs
were obtained from three monitoring stations within the city
of Leeds from the Environment Agency (EA) (1989–2014;
after 2014 no monitoring data for the same locations is avail-
able) (Fig. 2). The EA dataset is based on discrete monthly
samples (i.e. 1 sample per month) collected as part of routine
water quality monitoring. In both cases, sediment samples
were obtained by filtration of a measured volume of water
on pre-dried and pre-weighed filters. Event-based samples

were filtered through pre-weighed glass/quartz fibre filters
(pore size = 1 μm), then dried for 2 h at 105 °C before being
weighed. The SSC datasets of the three EA monitoring sta-
tions contain gaps in the time series. To fill these gaps, SSC
values from the three stations were averaged to construct a
single SSC time series for further analysis (Table 1).

2.2.2 Hydro-meteorological data

River discharge time series were obtained from the closest
monitoring station (Fig. 2) to the manual SS sampling point:
mean daily discharge data were downloaded from the
National River Flow Archive (NRFA) (1961–2015)
(National River Flow Archive 2017), and instantaneous dis-
charge (15 min) was provided by the EA (2007–2017). From
the same location, monthly precipitation measurements were
obtained from NRFA (1961–2015). Additionally,

Fig. 2 The River Aire catchment (UK): geology, urban land cover, and
locations of monitoring and sampling (MT Malham Tarn, EM Embsay,
PH Proctor Heights, SK Skipton, SR Silsden Reservoir, LL Lower

Laithe, TR Thornton Reservoir, FH Farnley Hall, HD Headingley, KS
Knotstrop) (land cover data derived from LCM 2007 (Morton et al.
2011))

J Soils Sediments



instantaneous precipitation data (15 min) were obtained
(2015–2017) from 10 EA loggers across the catchment (Fig.
2).

2.3 Data analysis

The SSC and hydro-meteorological data were analysed over
three timescales (i.e. high-flow event, intra-annual, and inter-
annual) to assess patterns and trends in temporal variation and
identify timescale-dependent factors controlling SSC.

2.3.1 High-flow events

The SSCs during high-flow events are known to be
highly variable depending on variations in river dis-
charge and rainfall conditions. To investigate how vari-
ation in discharge and precipitation influence SSCs in
the River Aire, two approaches were used. First, hyster-
esis patterns between SSC and discharge were visually
inspected in terms of shape (clockwise, counter-
clockwise, or complex) to assess the variable relation-
ship between SSC and discharge during different high-
flow events, which provides a simple means to evaluate
the presence of potential factors controlling SS transport
(Tananaev 2015; Lloyd et al. 2016; Sherriff et al. 2016).

Second, a more complex multivariate approach was ap-
plied to (i) identify hydro-meteorological variables that are
significantly correlated to the SSC and (ii) investigate the
relationship between those variables and SSC over time.
Precipitation and discharge data are often highly collinear,
making a multiple linear regression unsuitable without an
initial variable selection step. To address this, advanced
data-mining techniques, e.g. fuzzy logic (Lohani et al.
2007) and artificial neural networks (Cobaner et al.
2009), have been successfully used to estimate SSCs as
function of a range of variables. An alternative approach
based on partial least squares regression (PLSR) was used
in this study, which is able to handle data with strongly
collinear variables, while also providing additional statis-
tics on variable importance (Martens and Martens 2000;
Wold et al. 2001; Karaman et al. 2013). The method
works by projecting the data onto a new set of variables
(components) similar to principal component analysis
(PCA), but, instead of maximizing the variance within

one dataset as in PCA, PLSR maximizes the covariance
between two datasets based on the respective scores
(Stevens and Lopez 2015). The multivariate dataset was
divided into two parts: 75% for calibration and 25% for
validation, randomly selected by a Kennard-Stone sam-
pling algorithm. Leave-one-out cross-validation in the cal-
ibration phase was applied to determine the optimal
amount of components based on the amount of compo-
nents with the lowest root mean squared error (RMSE)
(Martens and Martens 2000; Wold et al. 2001; Poulenard
et al. 2009).

The PLSR scores and loadings were used to examine the
importance of different hydro-meteorological variables in
explaining the variation in SSC and how these vary over time
(Martens and Martens 2000; Wold et al. 2001; Karaman et al.
2013). First, variables with large loadings (between − 1 and 1)
on a component are more correlated to that component.
Therefore, the squared PLSR loadings (SSL) were used as a
measure to evaluate which hydro-meteorological variables de-
fine the model components and thus are most significantly
correlated to the SSC. Second, observations (measured
SSCs) with a high score on a particular component are better
explained by that component, so that the variation in scores
can indicate how the importance of different components
changes over time.

Previous studies that applied multivariate statistical tech-
niques to quantify SSC based on hydro-meteorological data
included variables such as antecedent soil moisture, rainfall
intensity and duration, and air temperature, to account for the
process interactions controlling SS transport in rivers (Kisi
2005; Lohani et al. 2007; Francke et al. 2008; Cobaner et al.
2009; Onderka et al. 2012). In this study, variables were se-
lected based on the high-frequency (i.e. sub-daily) data
sources available (instantaneous and antecedent discharge (1
h; 1, 7 and 21 days) and antecedent precipitation (1, 7 and 21
days)) from all monitoring stations (Table 2) and previous
studies that used antecedent precipitation and discharge (7
and 21 days) as proxy variables for antecedent moisture con-
ditions in the catchment (Lawler et al. 2006; Tena et al. 2014;
Dominic et al. 2015; Perks et al. 2015; Lloyd et al. 2016;
Zeiger and Hubbart 2016). The data of all ten rainfall gauges
were used as individual variables, creating an extensive
dataset of spatially distributed precipitation variables to inves-
tigate the impact of rainfall distribution across the catchment.

Table 1 Suspended sediment
concentration datasets: period,
resolution, number of samples
and source

Event-based dataset EA dataset

Period June 2015–March 2017 1989–2014

Sample frequency Hourly/30 min during high-flow events Discrete monthly

Number of samples 200 300

Source This study Environment Agency (UK)
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2.3.2 Intra-annual

Seasonal variation in SSC is often attributed to annual cycling
in sediment transport and storage as a result of the interaction
between changing hydro-meteorological conditions and veg-
etation (Vercruysse et al. 2017). To identify potential intra-
annual patterns, both the EA and sampled SSC data were
merged into a single dataset to extend the EA dataset to
2017 (Table 1): average monthly SSCs were calculated along
with average monthly discharges (measured on the days for
which a SSC measurement is available) and average total
monthly precipitation. The relationships between discharge
and SSC, and precipitation and SSC, were assessed by visu-
ally examining mean monthly hysteresis patterns in terms of
shape (clockwise, counter-clockwise, or complex) (Rovira
et al. 2015; Sun et al. 2016).

2.3.3 Inter-annual

Finally, SSC can also vary or change over longer time-
scales (annual, decadal) as a result of gradual land use
or climatological changes within the river catchment
(Vercruysse et al. 2017). Therefore, mean annual SSC
and discharge and total annual precipitation were also
calculated based on the EA data (Table 1). To identify
trends in each dataset, and to assess whether similar
t rends are present in both the annual hydro-
meteorological data and the SSC, the annual time series
were analysed using (i) Pettitt’s change point analysis to

detect abrupt changes (Pohlert 2015; Sun et al. 2016)
and (ii) a non-parametric Mann-Kendall test to detect
the presence of gradual, monotonic trends (Zhang and
Lu 2009; Zhang et al. 2009; Fan et al. 2012; Zhang and
Mao 2015; Sun et al. 2016).

3 Results

3.1 High-flow events

The mean discharges of sampled high-flow events ranges from
9.4 to 72.3 m3 s−1 and the SSCs from 15.9 to 179.4 mg L−1, and
are characterized by different hysteresis patterns between dis-
charge and SSC as illustrated for three events in Fig. 3. The
events in June 2015 and September 2016 had a similar
hydrograph with peak discharges of approximately 40 m3 s−1

and both were characterized by counter-clockwise hysteresis
between discharge and SSC. However, SSCs were significantly
different; the September 2016 event reached an exceptionally
high SSC peak of 1007.5 mg L−1 (Fig. 3b), compared with that
of 151mg L−1 in June 2015 (Fig. 3a). In November 2016, SSCs
were comparable with that in the June 2015 event, but dis-
charges were twice as high and the hysteresis pattern went in
the opposite direction (i.e. clockwise; Fig. 3a, c).

The PLSR analysis performed on the event-based hydro-
meteorological and SSC dataset produced a PLS regression
model with the lowest RMSE consisting of four components
(RMSE = 70 mg L−1, R2 = 0.41; Fig. 4; Supplementary

Table 2 Sediment and hydro-meteorological variables per temporal scale

Scale Data Variable Unit Description

Event EA (2015–2017) Q m3 s−1 Instantaneous discharge (time of sampling)

Q1h m3 s−1 Discharge 1 h prior to time of sampling

Q1d m3 s−1 Discharge 1 day prior to time of sampling

Q7d m3 s−1 Discharge 7 days prior to time of sampling

Q21d m3 s−1 Discharge 21 days prior to time of sampling

P mm Instantaneous precipitation (time of sampling) (*)

P1d mm Precipitation 1 day prior to event (*)

P7d mm Precipitation 7 days prior to event (*)

P21d mm Precipitation 21 days prior to event (*)

Sampled (2015–2017) SSC mg L−1 Instantaneous SSC

Intra-annual NRFA + EA (1961–2014) Q m3 s−1 Mean daily discharge per month (on days of SS samples)

NRFA + EA (1961–2014) P mm Average total monthly precipitation

EA (1989–2014) SSC mg L−1 Mean monthly SSC

Sampled (2015–2017) SSC mg L−1 Mean monthly SSC

Inter-annual NRFA + EA (1961–2014) Q m3 s−1 Mean daily discharge per year

NRFA + EA (1961–2014) P mm Total annual precipitation

EA (1989–2014) SSC mg L−1 Mean annual SSC

*Variables calculated for each precipitation logger (10 in total, Fig. 2)
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material). The high RMSE was influenced by outliers caused
by exceptionally high SSCs during an event in September
2016 (Fig. 3b). The four components explain 43% of the total
variance in the SSC (15.5%, 14%, 8%, and 5.5%,
respectively).

The squared PLSR loadings provide insights into which vari-
ables are most important in defining the PLSR components (Fig.
4a). The first component is mainly determined by P1d (from all
gauging stations), Q, and Q1h, while the second component is
related to P21d (from all gauging stations), Q1d, and Q7d. The
instantaneous precipitation variables from all gauging stations
(P) are generally included in the third component, and the fourth
component is characterized by P7d and P21d (from all gauging
stations).

Furthermore, the scores of the individual observations on the
components quantify which component explains the most var-
iation for a particular observation over time (Fig. 4b–d). In
general, peak SSCs correspond with high scores on the first
component (P1d and Q). The second component (P21d) appears
to be important throughout events, but especially at the start.
The third component (P) appears to vary strongly during
events, suggesting a more episodic pattern. At the start of the
first event in June 2016, the second and third components are
most important in explaining the SSCs, while gradually the first
component becomes dominant. In the November 16 series of
events, the third component becomes more important towards
the third SSC peak. Finally, on February 17, the first

component is dominant during the first event, while the second
component becomes more important afterwards. The fourth
component is not discussed, given the low explained variance
(5.5%).

3.2 Intra-annual

Considerable intra-annual variation was observed in mean
monthly discharge, precipitation, and SSC (Fig. 5a). In general,
the mean monthly SSC fluctuates around 12–16 mg L−1, while
the highest mean SSCs are observed in October, November,
and December (mean 23 mg L−1). Similarly, mean monthly
discharges are around 10 m3 s−1 from May to September and
highest from October to March (on average 20 m3 s−1).

The relationship between meanmonthly discharge and SSC is
expressed as a clockwise hysteresis pattern, while a figure-8 pat-
tern was observed between the mean monthly precipitation and
SSC (Fig. 4b, c). The SSC increases with increasing discharge
and precipitation from August to December, while from January,
SSCs and precipitation drop, and discharges remain high until
March. From March to May, both SSC and discharge further
decrease until July, while precipitation remains relatively con-
stant. Based on this discharge SSC hysteresis pattern, four periods
can be identified: (i) October–December with high discharge and
high SSC; (ii) January–March with similar discharges but de-
creasing SSCs; (iii) April–June with low discharges and low

Fig. 3 Discharge (Q in m3 s−1) and SSC (in mg L−1) of selected high-flow events in a June 2015, b September 2016, and c November 2016
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SSCs; and (iv) July–September with low discharges but increas-
ing SSCs.

3.3 Inter-annual

Discharge and precipitation exhibited strong inter-annual var-
iation between 1961 and 2017 (Fig. 6). A significant change
point in discharge was identified in 1980 (p = 0.039), marking
a shift to a higher discharge period (1980–2017) in which the
annual mean, maximum, and minimum discharge increased
by 8%, 5%, and 25%, respectively, compared with that in
1961–1980. No change points were observed in the precipita-
tion time series data, and no monotonic trends were detected
in the annual discharge or precipitation data.

The SSC time series also shows strong inter-annual varia-
tion between 1989 and 2014. A significant change point is
present in the SSC time series in 2006 (p = 0.006), whereby
the mean SSC decreased by 14% between the pre- and post-
2006 period (Fig. 6). The Mann-Kendall test showed a signif-
icant decreasing trend in SSC (p = 0.05).

4 Discussion

This study analysed SSCs in the River Aire over three time-
scales to uncover dominant processes and process interactions
controlling temporal variation in SS transport. In what fol-
lows, the results are discussed in terms of the driving factors
for temporal variation in SSCs during high-flow events, and

Fig. 4 PLS regression statistics: a squared PLS loadings for four components (C1 to C4). Observed SSCs and associated PLS scores on the first four
components for a sequence of events in b June 2016, c November 2016, and d February 2017
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what those results imply for the interpretation of SS transport
processes monitored over longer timescales. Finally, a con-
ceptual framework is introduced to illustrate how sediment
transport processes can be linked across timescales to improve
the transferability of SS transport quantification and
prediction.

4.1 Mechanisms for temporal variation in suspended
sediment transport

4.1.1 High-flow events

The detailed hydro-meteorological data available at the event
scale was used to identify variables that are correlated to SSC.
In general, the results emphasize the importance of timing,
frequency, and magnitude of precipitation events in control-
ling SSC in the river.

Consistent with previous research that demonstrated the
importance of antecedent soil moisture conditions in control-
ling SSCs (McDowell and Sharpley 2002; Seeger et al. 2004;
Smith and Dragovich 2009; Onderka et al. 2012; Tena et al.
2014), the results of the PLSR model suggest that discharge
(Q) and antecedent precipitation (1 and 21 days) explain the
most variance in SSC (Fig. 4a). More specifically, antecedent

precipitation (a proxy for antecedent soil moisture) and dis-
charge at the time of sampling explain the most variance in
SSCs (PLS component 1; Fig. 4a) but changes in the dominant
component during and between events indicate important
changes in the process interactions controlling SS transport.
While PLS component 1 explains the most variance in SSC
overall, other components explain more variance at different
stages in the flood hydrograph. In most of the monitored
events, component 2 correlates more strongly with SSC at
the beginning of the flood hydrograph. Component 2 is mostly
associated with precipitation 21 days prior to the event,
reflecting the time required for sediment generation and trans-
port overland caused by persistent rainfall before sediment
particles are delivered to the river (Sherriff et al. 2016).
Additionally, higher discharges within the channel after
prolonged rainfall can also increase the shear stress of the
river, resulting in (re)mobilization of bed material (Cao et al.
2007). A more episodic pattern in the importance of compo-
nent 3 (precipitation at the time of sampling) was observed,
which may indicate the impact of variations in rainfall inten-
sity and/or patterns (Lexartza-Artza and Wainwright 2011).
For example, the peak in component 3 in June 2016 on 10/
06 at 15:00 h corresponds to exceptionally high precipitation
intensities at TR and EM (5.4 and 3.6 mm/15 min). Similarly,

Fig. 5 Monthly sediment and
water dynamics: a mean
discharge (m3 s−1) (Q), mean
suspended sediment
concentration (mg L−1) (SSC),
and precipitation (mm) (P); the
relationship between b mean
monthly Q and SSC and c mean
monthly P and SSC
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the peak in component 3 in November 2016 on 21/11 at
18:15 h corresponds with precipitation intensities of 4.2 mm/
15 min at SK and 3.2 mm/15 min at EM.

The patterns in component importance are illustrated well
in the sequences of high-flow events in June and November
2016 (Fig. 4b–d). High-flow events in June 2016 were char-
acterized by moderate peak discharges, but relatively high
SSCs. During the start of the first event (Fig. 4b), PLS com-
ponents 2 and 3 are most strongly associated with observed
SSCs, indicating the importance of the interaction between
antecedent moisture conditions and precipitation at the time
of sampling. The drier period prior to the events in June 2016
could have led to drier soil surfaces that tend to repel water
(hydrophobicity) and crust formation (surface sealing) at first
rainfall impact. Soil crusting, in combination with possible
soil compaction due to livestock (Bilotta et al. 2007), can
reduce infiltration and lead to the generation of overland flow,
which can (re)mobilize the sediment stored within the catch-
ment, as well as increase the likelihood of interrill and gully
erosion (Onderka et al. 2012). Furthermore, during the drying
period, more urban street dust could have been built up on the
streets and then washed away during the event (Old et al.
2003). This hypothesis is supported by findings from a

sediment fingerprinting study applied to the SS samples col-
lected during this event, which suggest that urban street dust
and eroding grassland from the upper part of the catchment
were dominant SS sources during the event (Vercruysse and
Grabowski 2019). As the event progressed, component 1 be-
came the dominant factor controlling SSC. This change can be
an indication that soils were increasingly saturated, causing
saturation excess overland flow to become the dominant pro-
cess for erosion and SS transport to and into the river, and is
supported by an increase in SS contribution from eroding
grassland less connected to the river due to scattered urban
areas (Coal Measures area, Fig. 2) (Vercruysse and
Grabowski 2019). Similarly, prolonged precipitation in
November 2016 (Fig. 4c), and associated saturation excess
overland flow, may have caused more soil erosion and the
connection of more SS sources to the river (Bracken et al.
2015). These findings also correspond to the sediment finger-
printing results, which indicate a decrease in contribution from
eroding grassland from erodible areas (Limestone area) and an
increase in contribution from less connected areas (Coal
Measures area) as the events progressed (Vercruysse and
Grabowski 2019).

Fig. 6 Annual time series of a
discharge (Q), b precipitation (P),
and c suspended sediment
concentration (SSC). Grey dotted
lines represent a linear regression
and the vertical lines the Pettitt’s
change points in Q (UQ) and SSC
(USSC)
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However, threshold behaviour appears to be present, in
which increasing antecedent moisture conditions do not lead
to linearly increasing SSCs. In February 2017 (Fig. 4d), com-
ponent 1 is dominant at the start of the first event, while com-
ponent 2 gains importance as the events progress, coinciding
with a decrease in SSCs towards the second event (while
discharges remain similar). This result could indicate a de-
crease in sediment supply (on the river bed and/or within the
catchment) with increasing antecedent precipitation (i.e. soil
saturation) (Krueger et al. 2009; Onderka et al. 2012).

The changing interplay between hydro-meteorological fac-
tors over time indicates that there are processes controlling
SSC that operate over longer timescales than individual
high-flow events, emphasizing the importance of monitoring
intra-annual (seasonal) variability in SSCs.

4.1.2 Intra-annual

In general, the varying monthly SSC-discharge relationship
(i.e. hysteresis; Fig. 5b) uncovers the interplay of natural and
anthropogenic processes that control changes in catchment
sediment supply and transport, which vary during and be-
tween events.

The excess or deficiency in SSC relative to discharge (i.e.
deviation from a linear relationship between SSC and dis-
charge) observed in the monthly hysteresis pattern helps to
identify potential driving factors for seasonal variation in SS
transport (Fig. 5). Similar to observations made in previous
studies, the monthly hysteresis pattern suggests that the rela-
tionship between average discharge and SSC is not constant,
which could be attributed to annual cycling of sediment con-
trolled by seasonal variations in driving factors (Huisman et al.
2013; Park and Latrubesse 2014; Dominic et al. 2015; Rovira
et al. 2015; Sun et al. 2016). From April to July, average SSCs
are lowest (Fig. 5), which suggests that surface runoff and dis-
charge are not sufficient to transport eroded material from the
catchment towards and within the river. As a result, the readily
available sediment (e.g. eroded material due to for example
cattle trampling; Bilotta et al. 2007) is built up within the catch-
ment and river network. When average discharges increase
from August onwards, this material is mobilized, resulting in
high SSCs with relatively low discharges. In October–
December, average SSCs are highest, which could potentially
be linked to increased soil erosion due to a decreased vegetation
cover in autumn (Alexandrov et al. 2007). From January to
March, average SSCs decrease while discharges remain high.
This decrease in average SSCs could be caused by exhaustion
of the sediment supply as the winter progresses into spring
(Rovira et al. 2015; Sun et al. 2016) and/or changes in the
sediment supply and connectivity of the catchment (Bracken
et al. 2015) due to the growth of vegetation in spring in both
agricultural and natural systems (i.e. protecting the soil from
rainfall impact and enhancing infiltration) (Fryirs 2013).

4.1.3 Inter-annual

Besides variation in SSC during individual high-flow events
and throughout the course of a year, many studies have also
reported on long-term changes in SS transport caused by a
range of factors such as land use change, climatic changes,
dam construction, and other human activities within the catch-
ment (Gregory 2006; Walling 2009; Belmont et al. 2011;
Wohl 2015; Sun et al. 2016).

A previous study on the River Aire catchment estimated SS
loads based on sediment cores and concluded that land cover
has played an important role in controlling long-term variation
in SS transport (Walling et al. 2003b). Between 1930 and
1950, an increase in SS load was attributed to the conversion
of pasture to arable land during and shortly afterWorldWar II,
while an increase since the mid-1970s was attributed to the
conversion of moorland to pasture (Walling et al. 2003b).
Those land use changes would have made the soil more vul-
nerable to erosion due to agricultural practices (e.g. tillage),
the removal of a permanent vegetation cover, and soil com-
paction by livestock (Collins et al. 2010; Franz et al. 2014;
Janes et al. 2017). Furthermore, urban areas in the catchment
expanded by 9% (62 km2) between 1990 and 2007, with the
loss of heath (− 6%) and grassland (− 3%) (Wyatt et al. 1993;
Morton et al. 2011).

The annual variations based on the monthly EA mon-
itoring data suggest a similar dominant impact of land
use over hydro-climatic factors. A significant decreasing
trend was observed in the mean annual SSC between
1989 and 2014, while mean annual discharge slightly
increased, especially in the period after 1980 (Fig. 6).
The different patterns in mean annual SSC, discharge,
and precipitation could suggest that hydro-climatic fac-
tors are not the dominant driving force for long-term
variation in SS transport.

Urbanization is the most significant land use change that
occurred in the catchment from 1990. Despite the fact that
urban street dust and other particles (e.g. from sewage treat-
ment works) can make-up a significant part of the total SS
load (Old et al. 2003; Walling et al. 2003a; Carter et al.
2003; Vercruysse and Grabowski 2019), increased urbaniza-
tion could have caused a decrease in SSCs due to a decrease in
the connectivity of eroding land (i.e. fragmentation of un-
urbanized land) and riverbanks (i.e. increase in concrete bank
protection) to the river system.

In this context, the change point in 2006 could potentially
be explained by soil and water conservation efforts within the
catchment or major improvement works to the Esholt waste-
water treatment works upstream of the point of sampling
(Feather et al. 2008). However, SSCs measured during high-
flow events have shown that individual events can cause SSCs
that are significantly higher than the annual averages (e.g.
September 2016, Fig. 3b). Therefore, given that the long-
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term analysis is based on average SSCs measured monthly
throughout the monitored period, it is likely that these trends
and change points are influenced by individual events with
high SSCs.

4.2 Linking temporal scales of SS transport

4.2.1 Fractal power of SS transport

The high temporal variability in SS transport makes it essen-
tial to develop transferable process-based approaches to quan-
tify and predict SSCs. This study illustrates that variations in
SS transport at different timescales correlate to different fac-
tors. Long-term variation in SSCs reflects changes in land use
and also incorporates many processes and interactions be-
tween catchment and hydro-meteorological factors occurring
at small spatial and temporal scales.

For example, based on the findings of this study, the
change point observed in 2006 can be attributed to processes
acting over different timescales. When considering only inter-
annual variation in SSCs, these change points can be attribut-
ed to land management or other human activities (e.g. sewage
treatment works improvements). Alternatively, the change
point could also have been caused by a high-flow event flush-
ing (bed) sediment out of the system (exhaustion) (Lexartza-
Artza and Wainwright 2011) or a change in channel-

floodplain or channel-hillslope connectivity (Harvey 2001;
Wohl et al. 2019), after which SSCs built up again over sev-
eral years. Additionally, extreme events in terms of SSC such
as September 2016 can strongly influence the annual average
SSC (Fig. 7).

Following the results, the SS transport system in the River
Aire can be characterized by high fractal power: potential
long-term trends appear to be strongly influenced or masked
by interactions and feedback mechanisms between catchment
characteristics and hydro-meteorological conditions over
shorter timescales. Even though further research will be re-
quired to explicitly model the fractal power of a SS transport
system, this study has illustrated that, conceptually, the fractal
approach provides a useful framework to characterize the
dominant mechanisms controlling SSCs in rivers.
Furthermore, the fractal power of a SS transport system has
important implications for predictive modelling and transfer-
ability of methods across river systems and temporal scales.
From consistent analysis of the SSCs measured in the River
Aire over different timescales, it is clear that while some
timescale-specific variation can be identified, the interpreta-
tion of these results in terms of driving processes is extremely
difficult when only focusing on a single timescale. Individual
events can be very important in controlling the annual aver-
ages, and thus, a single sediment rating curve between SSC
and discharge is likely insufficient to take into account the

Fig. 7 Suspended sediment
concentration (SSC) in the River
Aire over three timescales: a an-
nual (EA data; 1989–2014), b
seasonal (EA and sampled data), c
high-flow events (sampled data)
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scatter around the regression line caused by temporal variabil-
ity. In other words, a single rating curve would ignore the high
fractal power of the SS transport system. This observation
supports previous studies that have shown that SRCs based
on least squares regression and monthly data underestimate
sediment loads by 10–70% (Ferguson 1985; Asselman 2000;
Horowitz 2008; Skarbøvik et al. 2012). Therefore, insights
into the degree of fractal power can form a useful basis to
evaluate and develop the most appropriate predictive models
and management strategies.

4.2.2 Future research needs and uncertainties

It is recognized that the results and interpretation of the pre-
sented data in terms of driving processes and fractal power are
constrained by the specific study design and data sources.
First, SS samples were not taken continuously during high-
flow events, due to site constraints that prevented deployment
of a turbidity logger or autosampler, meaning important vari-
ations during the hydrograph might have been missed. This is
a common limitation for SS transport research. Few monitor-
ing networks capture high-quality, high-frequency, and long-
term SSC data in rivers (i.e. water samples or calibrated tur-
bidity at an hourly frequency or less); most collect discrete or
daily SSC (e.g. USGS 2020). The authors are not aware of any
high-frequency (i.e. sub-daily), continuous records that span a
sufficient length of time for a multiple timescale fractal anal-
ysis. Moreover, even when autosamplers are used, the limited
number of sample containers in the autosampler and the var-
iable length of flood peaks make it difficult to consistently
capture rising and falling limbs, especially over long events
(Horowitz et al. 1992). The lack of a complete dataset in this
study might also be an additional reason for the high predic-
tive error associated with the PLSR model.

Second, no specific information is available on the EA SS
sampling sites and the conditions during which samples were
taken (e.g. change in method, change in bank protection), so
that interpretation of potential change points in the data due to
these changing conditions is limited. The EA datasets are the
only significant collection of long-term water quality records
available in the UK with nationwide coverage, but they were
not designed to quantify SSC at high-flow events; the discrete,
monthly samples are averaged on a rolling 3-year basis (36
samples) to characterize average water quality. Therefore, in-
terpretation of results is affected by these uncertainties and
lack of alignment between the purpose of water quality sam-
pling and our research aims in SS transport. Again, these lim-
itations apply to the historical water quality records of most, if
not all, countries. These points emphasize the need for well-
documented, long-term, continuous SSC data in order to ap-
ply the fractal power of a SS transport system, beyond a con-
ceptual framework, towards actual testing and modelling.

5 Conclusion

The SSC in the River Aire exhibits considerable inter- and
intra-annual variation. By systematically comparing the vari-
ation in SS transport over multiple timescales with hydro-
meteorological data, the scale dependency of temporal vari-
ability in SS transport, in terms of controlling variables and
mechanisms, was demonstrated. Intra- and inter-event and
inter-annual variation in SSC were strongly influenced by
the interplay of catchment characteristics and hydro-
meteorological variables. The effects of individual high-flow
events on high SSCs can also influence annual variation in
SSCs, thereby having a potential muting effect on factors
causing long-term change in SS transport dynamics such as
land use change.

To make these linkages across timescales of SS transport
more explicit, SS transport in rivers can therefore be consid-
ered as a fractal system, consisting of different timescales
controlled by a set of interacting processes. A fractal approach
can provide a useful framework to identify the dominant
mechanisms controlling SSCs in rivers and to characterize
the effect of processes controlling SSC at the event scale on
observed SS dynamics over longer timescales. Identifying the
fractal power of a SS transport system could therefore be an
appropriate starting point in developing transferrable process-
based approaches to quantify and predict SSCs, as well as to
develop targeted management policies. Towards this purpose,
a possible road for future research would be to develop a
classification system for SS transport dynamics in river sys-
tems in terms of fractal power based on the dominant process-
es underlying SS transport.
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