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Abstract

A three phase interpenetrating continua model for the numerical simulation

of water waves and porous structure interaction is proposed in this work. In

contrast with one-fluid formulation/multi-component methods, each phase has

its own characteristics, density, velocity, etc and each point is occupied by all

phases, this model requires additional closure laws to describe the interfacial mo-

mentum exchange, e.g., via the Ergun’s equation. First, the porous structure

is modelled as a phase of continua with a penalty force adding on the momen-

tum equation, so the conservation of mass is guaranteed without source terms.

Second, the adaptive unstructured mesh modelling with P1DG-P1 elements is

employed here to decrease the total number of degree of freedom maintaining

the same order of accuracy. Several benchmark problems are used to validate

the model, which includes the darcy flow, classical collapse of water column and

water column with a porous structure.
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interaction problem.

• The porous structure is modelled as a phase of fluid so that the conserva-

tion of mass is automatically satisfied in the porous region.

• Adaptive anisotropic mesh in space is employed to reduce the computa-

tional cost.

1. Introduction

The design, maintenance, and protection of the offshore and coastal infras-

tructures is widely recognised as critically important at national and worldwide

levels. Porous structure exert resistant forces on the flow, generate flow en-

ergy dissipation in coastal and offshore engineering. Understanding the detailed5

physical processes of wave interaction with the porous structure and the accu-

rate prediction of the flow processes within and around the porous structure is

required. There are many experimental and numerical works on the water wave

impact on rigid structures [1, 2, 3, 4, 5] and the deformable structure [6], and

articulated multibody [7]. There is few experimental work for the porous struc-10

ture found on the literature [8, 9, 10]. Most of the works for the porous structure

and water wave interaction is obtained via numerical modelling [11, 12, 13].

For mathematical modelling the water waves, the most common used Eule-

rian model is the so-called ‘one-fluid’ approach [14]. The computational mod-

elling of the water wave is carried out in a similar way to that of the single-phase15

flow, apart from the consideration of the interface evolution. The interface is

fully resolved by interface tracking or capturing methods. The most popular ap-

proaches of capturing interface are established by Volume of Fluid [15, 16, 17]

and the Level Set method [3, 6]

Another approach worth mentioning is the particle-based methods, Smoothed20

Particle Hydrodynamics (SPH) [18, 19] or Moving particle semi-implicit (MPS)

[20, 21, 22], that has been recently applied to coastal engineering [18, 23]. This

approach solves the flow in a Lagrangian framework, solving the kinematics of
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each particle and its interaction with neighbouring particles. The Lagrangian

nature of SPH makes it well suited to simulate free surface flows with rapid25

changes of the flow field.

There are also simplified wave models, such as non-hydrostatic wave model

[24] or the potential flow model [25]. The Navier-Stokes equations are greatly

simplified, resulting in an explicit equation for free surface evolution. However,

this model is not able to simulate the discontinuous free surface, such as breaking30

waves

The presence of flow through a porous structure is often modelled as a drag

and inertia terms with empirical parameters on the macroscopic scale [11, 12,

13]. On the other hand, the microscopic approach can fully resolve the flow

within the porous structure with the flow resolution being at the pore scale35

[26]. However this requires large computational resources and is impractical for

offshore and coastal engineering.

Works prior to the one-fluid approaches include the interpenetrating con-

tinua approach which uses an averaged mixture fluid model. Such methods are

used extensively in n[27], chemical reactors [28, 29] and combustion modellings40

[30]. Different phases or components in a multiple-fluid flow have different fluid

properties (e.g. density, viscosity etc.), and as a result, they move at different ve-

locities, causing relative motions between phases or components. We introduce

an interpenetrating model for simulating water wave and porous structure, in

which the distribution of different phases or components is represented by their45

volume fractions and does not rely on continuous tracking of interfaces. The

porous structure is fixed by a large penalty drag force added on the structure’s

inertia term. Another advantage of using the interpenetrating continua model

are that the movement, fracture, and break of the porous structure, porosity

changes can be easily embedded for further complex studies.50

The structure of this paper is organised as follows. Section 2 introduces

the classical Eulerian conservation laws (conservation of linear momentum and

mass) for multiple mixtures of fluids, by considered each fluid separately. Sec-

tion 3 describes the details of numerical discretisation of the multiphase flow
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governing equations. An efficient P1DG-P1 scheme set in an Eulerian unstruc-55

tured mesh is chosen for the spatial discretisation in conjunction with a well

established fractional step method for the fluid-pressure decoupling. Section 4

presents numerical problems, illustrating the capability of the proposed method.

2. Governing equations

Derivation of the interpenetrating continua model can be found in [31]. In60

the following, we will write the equation governing the evolution of the mass

factions αi, i = 1, ..., n.

2.1. Conservation of mass

If there is no mass transfer between each phases.

∂

∂t
(αiρi) + ∇ · (αiρiui) = 0, 1 6 i 6 n. (1)

Assuming the three phases are all incompressible, we have mass conservation

equation
∂αi
∂t

+ ∇ · (αiui) = 0, 1 6 i 6 n. (2)

Adding up all phases, we have

∇ · (
n∑
i

ui) = 0 (3)

which is the global mass conservation equation.

2.2. Conservation of linear momentum65

For multiphase problem, the conservation of linear momentum equation can

be written as

αiρi
∂ui
∂t

+ αiρ(ui ·∇)ui = −αi∇pi + ∇ · σ′i + f i + αiρig (4)

where ∇ ·σ′ = µi∆
2ui+

1
3µi∇(∇ ·ui) is the viscous force and p is the pressure,

f i is the drag force between phase i and j and will be discussed in section 2.4.
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2.3. Equation of State

In general, to complete the sets of governing equations, it is necessary to

introduce an equation of state relating density to pressure. However, in the70

proposed wave and porous structure interaction model, the three phases are

assumed to be incompressible with a constant density.

2.4. Inter-phase momentum transfer

The interfacial momentum transfer is crucial to the modelling of multiphase

flows. Considered as sources or sinks in the momentum equations, this interfacial75

force density generally contains the force due to the viscous drag as well as

virtual mass and turbulent dispersion which are lumped together as non-drag

forces. These interfacial force densities strongly govern the distribution of the

volume fraction. The drag forces between the multiple phases are the most

important coupling forces.80

Σlg =
3

4
CD

αlgαglρl|ug − ul|
dp

α−2.65lg (5)

The interfacial drag force components can be modelled according to the

interfacial drag force vector f , where ug, ul and us are unknown variables

f =


Σlg(ug − ul) + Σsl(us − ul) liquid phase

Σlg(ul − ug) + Σsg(us − ug) gas phase

∞ solid phase

(6)

Assume the liquid and solid phase is a continuous phase and gas are particulate

phase, the inter-facial drag coefficients are (from Ergun equation [32, 33, 34]),

where the first terms is linear with the velocity, corresponding to the viscous

effect, the second term in quadratic form of velocity represents the inertia effect:

Σsg = 150
α2

gsµg

αgsd2p
+ 1.75

αgsρg|ug−us|
dp

,

Σsl = 150
α2

lsµg

αsld2p
+ 1.75

αgsρl|ul−us|
dp

,

Σlg = 3
4CD

αlgαglρl|ug−ul|
dp

α−2.65lg

(7)
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where dp is the effective mean particle diameters.For the interfacial drag between

liquid and gas phases, the interface drag coefficients based on the correlations

by Ishii and Zuber [35] for different flow regimes are normally employed for gas-

liquid flows. The drag curve CD can be correlated for individual bubbles across

several distinct bubble Reynolds number regions:

CD =

 24
αlgRelg

[
1 + 0.15(αlgRelg)

0.687
]
, if αlgRelg 6 1000 viscous region

0.44 if αlgRelg > 1000 turbulent region

(8)

Relg =
ρl|ug − ul|db

µl
(9)

The average bubble diameter is calculated using

db =
Weσ

ρl(ug − ul)2
, (10)

The normalised volume fraction is calculated as,

αij =
αi

αi + αj
(11)

where αij is the normalised volume fraction of phase i in phase j.

3. Numerical scheme

The spatial discretisation is based on the control volume finite element

method. The details of the numerical finite element discretisation and solution

of these equations are given [16]. Here, triangular meshes (2D) tetrahedral (3D)85

are used to mesh the domain as illustrated in Fig. 1. In summary, we use the

linear discontinuous between elements velocity and linear continuous pressure

(P1DG-P1) for spatial discretisation. This model has been incorporated into

the general purpose CFD code FLUIDITY. A high order discretisation in time

is used based on Crank-Nicholson time stepping. The Courant-Friedirichs-Lewy90

(CFL) condition is adopted for determining the time step.
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Figure 1: Finite element used to discretise the governing equations. The central position of

key solution variables (velocity and pressure) are indicated here for the P1DG-P1 pairs in 2D.

7



4. Numerical examples

In this section, the numerical algorithm and implementation is benchmarked

with the experimental data.

4.1. Fluid flow through a porous media95

We first benchmark the solver through Darcy flow problem with uniform

mesh, where the closure laws for inter-facial momentum is from the Darcy equa-

tion. We consider a pipe with the fluid flowing from the inlet (left) to the outlet

(right). Half of the pipe is filled with porous media. Geometric parameters are

labelled in Fig. 2 and Specific properties used for the model are listed in Table100

1.

Figure 2: Schematic of fluid flowing from the void space to the porous media with constant

velocity.

Density Viscosity Porosity Permeability Outlet Pressure Inlet Velocity

1000 kg/m3 1.0 cp 0.5 0.1 105 Pa 10−5 m/s

Table 1: Physical properties used for the modelling.

Since the slip boundary condition is applied to the void space section, the

pressure drop is neglected. The analytical pressure drop in the porous media is

calculated using the Darcy equation:

q

A
= v = −κ

µ

dp

dx
(12)

where q is the volumetric flow rate and A is the area of cross section. v is the

Darcy velocity, k is the permeability and µ is the viscosity, p is the pressure and

x is the coordinate.
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The comparison results of the axial pressure with different mesh refinements105

are shown in Fig. 3. It can be seen that the axial pressures of different grid sizes

are similar, and the modelling results show good agreements with the analytical

solution. Thus, the proposed approach can give relatively accurate results for

the modelling of a free flow into the porous media.

Figure 3: Comparison between the results of mesh refinements and analytical solution.

4.2. 2D collapsing water column110

The second numerical example verifies the capability of multi-fluid model

for the numerical simulation of free surface flow. The dam break problem is a

well documented example at experimental [36] and numerical [6] level, which

simulates the sudden collapse of a square shaped column of water onto a hori-

zontal surface as a result of the effect of gravity. The general description of the115

problem is presented in Figure 4. For the numerical results presented herein,

the side of the (square) water domain is initially prescribed as a = 1 m (see

Figure 4). The water phase is fully embedded inside a rectangular domain of

base length b = 5 m, height was chosen as h = 1.25 m. Non-slip boundary
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Figure 4: Schematics of the initial conditions for the collapsing water column (a = 1m;

b = 5m).

conditions are considered for all the sides of the rectangular domain. The fluid120

properties of both phases (water and air will be referred by the subscripts w

and a, respectively) are listed in Table 2 below.

water density air density water viscosity air viscosity

ρw = 1000 kg/m3 ρa = 1 kg/m3 µw = 10−3 Pa s µa = 10−5Pa s

Table 2: Physical properties of water and air for collapsing water column problem.

Figure 5 illustrates a sequence of snapshots of the free surface position as

a function of time. Note that an interpenetrating continua model is used, so

we take the contour line of volume fraction showing the implicit interface. The125

predicted heights and the surge front location of the collapsed water are plot-

ted against the dimensionless time τ = t
√
h/g, as reported in [36]. In Figure

6, very good agreement can be observed between the numerical simulation ob-

tained using the proposed algorithm and the experimental [36] available in the

literature. As can be observed, with mesh refinement, the presented results130

converge extremely well to the latest experimental data.

Overall, the comparison between the numerical results, the interpenetrating

fluid numerical formulation and the experimental date indicate that the present

numerical model is capable of simulating the hydrodynamics of water and air.
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(a) τ = 0.0

(b) τ = 0.6756

(c) τ = 1.4503

(d) τ = 3.8403

(e) τ = 4.7086

Figure 5: Predicted free surface evolution at different dimensionless time steps τ obtained for

a adaptive mesh. (a) τ= 0.0; (b) τ = 0.6756; (c) τ = 1.4503; (d) τ = 3.8403; (e) τ = 4.7086.

The material parameters are as follows: water density ρw = 1000 kg/m3, air density ρa = 1

kg/m3, water viscosity µw = 10−3 Pa s, air viscosity µa = 10−5Pa s (refer to Figure 4 and

Table 2). 11



(a): surge front position

(b): water column height

Figure 6: Comparison of the surge front location and the water column height with exper-

imental data and numerical results. The corresponding dimensionless time refinement is as

follows: ∆τ = 8 × 10−4, ∆τ = 4 × 10−4 and ∆τ = 2 × 10−4. The material parameters

are as follows: water density ρw = 1000 kg/m3, air density ρa = 1 kg/m3, water viscosity

µw = 10−3 Pa s, air viscosity µa = 10−5 Pa s (refer to Figure 4 and Table 2).

12



4.3. 2D porous structure and water wave135

The second numerical example is performed to verify the drag force by com-

paring the computational results with the experiment. Lin [8] tested a dam

break wave through different porous materials. The tank is 0.89 m long and

0.555 m height, in the middle there is a porous block of 0.29 m, as shown in Fig.

7. Initially the ground water is 3 cm depth and the water column ext has a 2 cm140

gap to the left porous wall. Two different baffle materials were used, crushed

rocks and glass beads. In case 1, the porous block is composed by crashed rock

with an averaged porosity of 0.49. In case 2, the glass beads has a porosity of

0.39. The conservation of the mass is guaranteed. There is no ‘lose mass’ com-

pared with the ‘one-fluid’ formulation. The pore-based Reynolds number for the145

crushed rock experiments is Rep = 325, while for the glass beads experiments

it is Rep = 9.6.

Figure 7: Schematics of the initial condition for the dam break problem.

Fig. 8-9 show representative snapshots for the two cases. The computed and

measured free surface time evolution agrees very well for the two porous media

tested.150
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case 1 (crashed rock) case 2 (glass beads)

domain size (m) 0.89× 0.58× 0.1

water density (kg/m3) 1000

air density (kg/m3) 1

water viscosity (Pa s) 1× 10−3

air viscosity (Pa s) 1× 10−5

baffle position (m) 0.3

baffle thickness (m) 0.29

average grain size (m) 1.59 ×10−2 0.3 ×10−2

initial dam height (m) 0.25 0.15

porosity 0.49 0.39

Table 3: Computational details of the dam break through a porous structure problem.

(a) (b)

(c) (d)

Figure 8: Comparison of free surface shapes for dam break through crush rock: (a) t = 0.00

s. (b) t = 0.02 s. (c) t = 0.04 s. (d) t = 0.12s. Triangle markers is from the experimental

data by Liu et al [9].
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(a) (b)

(c) (d)

Figure 9: Comparison of free surface shapes for dam break through glass beads barrier: (a)

t = 0.00 s. (b) t = 0.02 s. (c) t = 0.04 s. (d) t = 0.12 s. Triangle markers is from the

experimental data by Liu et al [9].

.

5. Conclusions

The contribution of this paper is to bring the interpenetrating continua

model for modelling the breaking water wave and porous structure interaction.

On the basis of the continua framework, separate transport equations governing

the conservation laws are solved for each phase and exchanges that take place at155

the interfaces are explicitly account for, the dynamics of the interaction between

the individual phases can be effectively described via suitable correlation models.

These correlation models is well-suited to simulate the macroscopic behaviour

of large-scale flows, which do not resolve all the relevant length and timescales.

The key success to the application of this model is the reliance on the proper160

correlation of the inter-phase terms. Several validated cases have been provided
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in the numerical examples to prove the accuracy of the proposed numerical

method.
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