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Abstract  

Consumers increasingly desire ready-to-eat avocado fruit, yet if suppliers fall short of customer 

expectations, complaints follow incurring considerable cost and waste. In the avocado sector, 

wastage due to destructive testing and inaccurate assessment of firmness is significant. The aim 

of this study was to evaluate whether non-destructive laser Doppler vibrometry (LDV) was 

capable of assessing avocado ripeness. Data were sourced from two trials using preclimacteric 

imported 'Hass' avocado fruit originating from Chile and Spain, ripened at 12 and 18 °C, 

respectively. Standard force-deformation measurements, and either single or simultaneous dual 

vibration time signals were recorded during shelf-life, and assessed against respiration and non-

structural carbohydrate content. Resonant frequencies measured of fruit by means of LDV 

decreased two- to four-fold during ripening and this corresponded with a concomitant decrease 

in firmness (253 N to 2 N).  The capability of the LDV system to non-destructively discriminate 

between ripeness stages was demonstrated.  
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1. Introduction 

The Organisation for Economic Co-operation and Development (OECD, 2004) recommends 

that quality of avocado fruit is rated according to size, estimated oil content, absence of defects 

and fruit firmness. However, it has been shown that avocados often do not soften uniformly 

due to physiological gradients (Landahl et al., 2009). The inherent heterogeneity within a fruit 

and between fruit in a consignment (Donetti and Terry, 2012) provides a challenge for 

distributors. At present up to 10-30% of avocado fruit are wasted due to destructive testing 

during grading and other packhouse activities and a further 5% is lost at retail (Terry et al., 

2011).  The introduction of LDV systems to non-invasively assess avocado firmness, and 

indeed firmness  of other fruit types where the industry is still reliant on destructive firmness 

testing as part of routine quality control, may help to reduce waste by as much as 10%. 

Consumers in the UK prefer ready-to-eat fruit and typically, eating firmness is achieved at 4.4 

to 6.7 N according to Arpaia et al. (2015).  Standard firmness evaluation by penetrometer 

(Magness-Taylor firmness) is inadequate in terms of accuracy, and its destructive nature. To 

avoid fruit waste due to destructive testing, many studies have reported on attempts to predict 

firmness by non-destructive techniques (Arzate-Vázquez et al., 2011, Magwaza and Tesfay, 

2015). A number of non-destructive techniques have been developed to assess avocado quality 

in a broader sense. For instance, near infrared spectroscopy (NIRS) has been shown with 

variable success to predict maturity or oil content in avocado (Olarewaju et al. 2016, Ncama et 

al., 2018). Impulse response techniques (vibrometry) has been used to evaluate texture of 

several other commodities e. g. pear and grape, (Oveisi et al., 2014, Zhang et al., 2015, Trnka 

et al., 2016). In this study, non-destructive laser Doppler vibrometry (LDV) was investigated 

as possible technique to assess firmness in the packhouse before fruit are shipped to 

supermarkets. 



LDV has been used to evaluate fruit quality (Terasaki et al., 2001, Blahovec et al., 2008, 

Landahl and Terry, 2012, Zhang et al., 2015), and is based on the Doppler-effect which 

encompasses the frequency shift of back scattered light from a moving surface. Changing the 

optical path length per unit of time manifests itself as the Doppler frequency shift. 

Displacement measurement is better suited for low frequency measurements than velocity 

measurement and therefore should lend itself to evaluating fruit. LDV counts the bright-dark 

fringes on the detector. The resonant frequency (RF) of objects is measured when energy is 

applied to an object (e.g. a tap, or a sound sweep). RF is influenced by shape, mass and structure 

of the object, and in the case of fruit can relate to softness.  

The aim of this study was to evaluate whether non-destructive LDV was capable of assessing 

cv. ‘Hass’ avocado firmness as model fruit. To demonstrate that laser vibrometry is capable of 

providing fast, robust and reliable information to implement industrial screening strategies for 

the assessment of firmness and damage detection in fruit and vegetables. To develop the 

excitation, detection and signal processing requirements for the measuring system.  This will 

include assessment of the discrimination capabilities of the system, integrating appropriate 

physical measurements and statistical techniques to determine the level of sensitivity of the 

technology. 

The objective of experiment 1 was to demonstrate on different sized fruit an impact device that 

is driven automatically, which provides a sharp impact to yield a signal easy to process into 

significant data. The objective of experiment 2 was to show that ripeness differentiation can be 

found by means of calculating fruit signals throughout ripening, in order to predict the ready-

to-eat stage measured by means of physiological and physical methods.  



2. Materials and methods 

2.1 Plant material and physical tests 

Imported avocado fruit cv. ‘Hass’ were supplied by M. W. Mack Ltd. (Kent, UK). Fruit were 

not treated with 1-methylcyclopropene. Fruit were supplied from Chile (experiment 1) size 

codes 18 (diameter mean=68.55mm SD=1.815mm, mass day 0 mean=237.7g SD=9.139g) and 

22 (diameter mean=62.36mm SD=1.815mm, mass mean=187.2g SD=8.362g) and Spain size 

code 18 (mass range 203 to 243g). Fruit from Chile usually take 30 days to ship to the UK in 

containers with cool chain applied. Size 18 fruit were supplied by grower 826, Quillota 

province, Quillota, pack# 34948, lot 143285 and size 22 fruit were from grower 627, Quillota 

province, La Cruz, pack# 34958, lot 143289. Thirty avocados of each size were initiated to 

ripen at 20 °C for 24 h in their transport trays and then were kept at 12 °C in a 2 x 3 m laboratory 

cool room in the dark for slow ripening. Repeated non-destructive LDV measurements were 

taken on days 0, 1, 3, 5, 7, 9, 11 from all fruit resting in the space between two commercially-

used transport brushes (Fig. 1). A single point laser Doppler vibrometer was used to record 

signals repeatedly (CLV 700, Polytec UK Ltd., UK) from four impacts by a revolving wheel 

impact device. Impact and measurement were done around the equator of the fruit at 

approximately 90 ° angle to each other. A self-fabricated little hammer consisting of a cable 

tie and a solid nylon ball (1 cm diameter) was attached to a motorized revolving wheel and 

used as the impact device (1.6 rpm at 24 V. Fig. 1). On day 3 and on the last day 12 fruit each 

were assessed destructively for firmness. Fruit flesh firmness was measured on two opposite 

sides of carefully knife-peeled fruit (Meyer and Terry, 2010). All texture tests were performed 

on a uni-axial testing machine (model 5542, Instron, MA) equipped with calibrated 500 N load 

cell. The machine was programmed (Bluehill 2, version 2.11, Instron) such that the probe 

indented the sample to a depth of 8 mm with the crosshead speed set at 20 mm/min. A flat 

cylinder probe of 8 mm diameter was used (Meyer and Terry, 2010). The mean value of two 



replicate measurements was calculated for each fruit. Firmness was expressed as the force 

required for tissue failure detected as bioyield (N) in the force-deformation curve.  

Spanish fruit from Malaga arrived in the UK within a week after picking (experiment 2). A 

cool chain was applied at 5-6 °C during lorry transport. On day 0 (baseline) fruit were 

randomised and labelled and allowed to warm up to ambient temperature. Treatment “box 

Ethyl”: One hundred and forty avocados were transferred into gas tight boxes (ca. 325 L) to be 

treated with ethylene for 24 h in a separate 18 °C room. Controlled ripening was initiated using 

exogenous ethylene provided as a ready-made mix (100 µmol/mol balanced with air; BOC 

Gases Ltd., Surrey, UK). Treatment “box air”: One hundred and forty fruit were kept in boxes 

untreated and treatment “tray air”: another one hundred and forty were kept untreated on open 

trays in a temperature controlled 18 °C room, so that controls within and outside gas tight boxes 

were produced in case the 24 h period inside a confined box raised respiration. All fruit were 

ripened on trays in the cool room at 18 °C for six days and during this time destructive and 

non-destructive tests were performed. Destructive assessment occurred on 8 fruit per treatment 

in sequence: firstly non-destructive LDV was recorded (details below), then firmness was 

measured destructively on two opposite sides of the fruit as previously described and last 

mesocarp tissue was snap frozen in liquid nitrogen for subsequent sugar analyses (thin slice cut 

across longitudinal axis of fruit). Destructive measurements were performed on days 0, 2, 3, 4 

and 6 (n = 104) with only 8 fruit measured in total on day 0, since no treatment was present at 

this time, therefore these fruit were labelled as “tray air”. Sugar samples were only analysed 

from fruit tested on days 0, 2, 3 and 6 (n = 80). In addition, one hundred fruit per treatment 

were measured repeatedly by means of LDV on every test day (n = 300). Non-destructive 

measurements were carried out using two LDVs simultaneously, positioned along the 

longitudinal axis of the fruit: one LDV pointing closer to the stem end and one LDV pointing 

closer to the seed end of the fruit (CLV 700 and CLV 2534, Polytec UK Ltd., UK). Differently 



from experiment 1, avocados were manually impacted with nylon-ball hammer and positioned 

on a moulded sponge. The fruit were impacted at three equidistant spots around the equator. 

Those three signal-pairs (10 ms each) were saved and processed.  

2.2 Physiological tests on Spanish avocados 

Two avocados each were held in four 3 L jars for 3 h on days 0, 2, 3, 4 (section 2.1), so the 8 

fruit were paired into 4 replicates during this measurement. Gas samples were removed with 

repeated full withdrawal-injection displacements of a 50 mL plastic syringe (Meyer and Terry, 

2010). Ethylene concentration was quantified using a gas chromatograph (GC 8340, Carlo Erba 

Instruments, Herts., UK) fitted with an EL 980 flame ionisation detector and DP800 integrator 

(Thermoquest, Herts., UK). Oven and detector temperatures were set at 100 °C. The 2 m long 

stainless steel column was packed with Porapak (Jones Chromatography, Mid Glamorgan, 

UK). Carbon dioxide was quantified using the same GC system with hot wire detection. The 

hot wire detector was operated at 120 °C and the oven at 50 °C. The GC was calibrated with 

certified gases by BOC (British Oxygen Company, Surrey, UK). 

Non-structural carbohydrates (NSC) were extracted and quantified as previously described 

(Landahl et al., 2009). In summary, the recovered residue powder (150 mg) was mixed with 3 

ml of 62.5% (v/v) aqueous methanol, placed in a water bath with shaker, and then left to cool. 

Then the samples were filtered through a syringe driven filter unit (0.2 μm, Millipore Corp., 

MA), and the clear extract analyzed. Briefly, NSC content in the avocado extracts was 

determined using a high performance liquid chromatography (HPLC) system, where extracts 

were injected onto a Rezex RCM-Monosaccharide Ca+ (8%) column, 300 x 7.8 mm size (00H-

0130-K0, Phenomenex, CA). Eluted NSCs were detected by an evaporative light scattering 

detector (ELSD 2420, Waters, MA) and mixed standards were used and presence of each NSC 

quantified by comparing sample peak areas to the standards. 



2.3 Laser Doppler vibrometry data processing 

Vibration time signals were acquired using a simple algorithm written in Labview© (v. 9.0, 

National Instruments Corporation, Austin, TX). In experiment 1, sampling frequency was 20 

kHz. Resonant frequencies were calculated using Matlab© software (7.12.0.635 R2011a, The 

MathWorks Inc., MA) as follows:  An exponential window was applied, Fast Fourier 

Transform (FFT) performed, and a high pass filter applied. Then all four frequency spectra 

were multiplied to reduce influence of noise and reduce peaks that were only detected in one 

of the signals. The first peak was recorded as RF of the first spheroidal mode for all fruit 

(Kadowaki et al., 2012). Stiffness S was approximated according to the formula for spheres. m

is mass.:  

S = RF2 * m2/3 Eq.1  

The data in experiment 2 with Spanish fruit were acquired with a sampling frequency of 40 

kHz. The three signals per laser were multiplied and the RF of the first peak recorded. One 

signal was calculated for each laser, so that two results per fruit were obtained.  

In order to evaluate damping data processing consisted of: a band pass filter was applied, then 

the absolute value of the time signal was calculated to obtain all vibration lobes in the positive 

domain. An exponential function was applied as a vibration signal-envelope to obtain a 

coefficient describing the attenuation of the vibration time signal. This corresponds to the 

power-law frequency dependent acoustic attenuation: 

P ( x + Δx ) = P ( x ) e-α(ω)Δx , α(ω) = α0ωη Eq.2 

ω is the angular frequency, P the pressure, Δx the wave propagation distance, α(ω) the 

attenuation coefficient, α0 and frequency dependent exponent η range from 0 to 2.  

The acoustic attenuation of a wide range of viscoelastic materials can be expressed as this law. 

The coefficient corresponding to P(x) in equation 2 was forced to one, in order to analyse only 

one damping value regarding the attenuation. 



In order to obtain RF, an exponential window was applied, a FFT was performed on data with 

band pass filter applied and frequency spectra were smoothed with the ‘mssgolay’ function  

then peak detection was carried out. The first spheroidal mode, which was at least 40 % of the 

highest amplitude, resonant frequency at the highest amplitude, damping and the standard 

squared error (SSE) of damping were saved to a file. Before statistical analysis, damping values 

with an SSE higher than 1 were rejected. Stiffness, which is a structural property and dependant 

on geometry / shape was not calculated and mass and shape of the fruit have been neglected 

when comparing RFs, since the whole batch was one size grade and assumed of similar shape. 

A previous test on one avocado, which was measured 32-times in normal position and back to 

front regarding the two laser positions, had shown it was best to use the first spheroidal mode 

for consistency of resonant frequencies collected from one fruit. In addition, it was shown that 

it did not matter which laser was pointed at the stem end or the seed end (Student’s t-test 79.6 

% for the first frequency). 

2.4 Statistical analyses 

Analysis of variance (ANOVA) was carried out using Genstat for Windows, version 15 (VSN 

International Ltd., Herts., UK). Factors were day of test and size grade (experiment 1), or 

treatment and LDV measurement position (experiment 2). F-test required to be below 5 %. For 

LDV data of the Spanish fruit were used as blocks, since paired values of the same sample 

existed. Outliers were removed according to software’s outputs for destructively measured 

samples (residual analysis).  

A partial least square regression (PLS) was calculated and with this model a prediction was 

performed on repeatly measured fruit by means of Unscrambler© (X, version 10.5.46655.794, 

CAMO software, Norway). For the model , thirteen cross validation segments were chosen 

with 8 samples each, in order to recreate groups of days shelf life (n=5) and treatments (n=3).  

Factor 1 explained 95% of the variability and factor 2 explained 5%. The parameters describing 



the goodness of fit between predicted and measured values within this model during calibration 

and validation are indicated in Table 1. The two sets of RF values of the repeatedly measured 

fruit (n=300) were used to perform a prediction of those fruit’s firmness with the above 

described model as calibration model. 

3. Results and discussion 

3.1 Physiological changes in the Spanish avocados 

As expected, the climacteric peak indicated by respiration (Fig. 2a) and ethylene production 

(Fig. 2b) was found early after removing the fruit from cool storage. This indicates the initial 

stages of ripening. Highest peaks were produced from fruit kept in a gas-tight box without 

ethylene treatment. Respiration was lowest for fruit held on a tray, these fruit were also firmer 

initially. Ethylene production was lower and its peak delayed in fruit which were treated with 

exogenous ethylene at the start of the experiment. Destructively measured fruit, which were 

held in a box and treated with ethylene exogenously, showed higher frequencies on days 3, 4 

and 6 (Table 2b), which corresponded to the observation of a slightly delayed ethylene peak. It 

appears that the exogenous ethylene application slightly delayed the endogenous ethylene 

production. Ethylene removal has been shown to modulate internal ethylene response pathways 

and affect abscisic acid concentration (Meyer, Chope, & Terry, 2017). 

Sucrose showed no significant differences over storage time or between treatments (mean=8.5 

g/kg DM SD=2.1 g/kg DM). This was found in contrast to mannoheptulose and its sugar 

alcohol perseitol. Mannoheptulose (Fig. 2c) and perseitol content (on average from 20.2 to 6.8 

g/kg DM l.s.d.=2.4 g/kg DM) decreased significantly during ripening. Liu et al. (2002) 

suggested a role of mannoheptulose as a ripening inhibiting factor. It was suggested that past a 

certain threshold-value ripening occurs in avocado fruit. Therefore, it was expected that 

mannoheptulose concentration decreased while the fruit soften. Work by Donetti and Terry 



(2014) supported a role for mannoheptulose in the ripening process of avocados and pointed to 

a strong relation between concentration of this compound with fruit origin, which in turn might 

influence the consistency of fruit ripening within a batch.  

3.2 Analyses of LDV Spanish avocados 

It is common practise to destructively measure avocado fruit firmness to inform ripening stage 

and storage release. Fruit measured destructively showed that they were at eat-ripe stage on 

days 3 (Fig. 2d). Values of first spheroidal mode showed a wide range for predicting firmness 

of each fruit (Fig. 3a and b). When the fruit were soft (from day 4 onwards) the detection of 

the first resonant frequency became more difficult, yet these fruit would usually already have 

been sold at retail and thus not be sorted at the packhouse. The disconnection of the avocado 

skin as previously discussed by Landahl and Terry (2010) could account for the difficulty in 

measuring RF. In addition, the specific challenge with cv. ‘Hass’ avocado compared to other 

fruit is the often irregular surface of the skin, which could scatter a percentage of laser light, so 

it might not be detected. 

All fruit that were measured showed a significant decrease in RF during ripening (Fig. 3a and 

b). According to the prediction values (Fig. 4) ready-to-eat stage would have been achieved on 

the same days as the destructively measured fruit from the same batch (Table2b).  

A significant difference was found on day 3 between stem-end and seed-end of the 300 

repeatedly measured avocados and a similar trend was found for the 24 fruit also measured 

destructively, where the values at the seed-end were 85 Hz higher. Ripened avocado flesh 

(mesocarp tissue) is visco-elastic, in contrast to the seed, which is rigid and elastic only, this 

influences the resonant frequency at this position. Otherwise, this would be in contradiction 

with previously found results, which found apical mesocarp tissue was firmer than distal tissue 

near the seed (Landahl et al., 2009). This was thought to be due to the suggested role of 

mannoheptulose as a ripening inhibitor (Liu et al., 2002) or the possible involvement of the 



seed in ethylene evolution and responsiveness to ethylene during ripening  (Hershkovitz et al., 

2008). 

On days 0 and 6, damping values measured repeatedly at the stem-end of the Spanish fruit were 

higher than at the seed-end (Fig. 3c). As mentioned above the seed is firmer and more elastic 

than the fruit flesh. Significant differences between treatments were found for the 24 fruit later 

destructively measured, where at first the avocados held in boxes under air showed the highest 

values (Table 2b), but damping did not reveal a clear course of change. Damping values are 

used to describe the visco-elastic properties of the avocados. Eat-ripe avocado tissue has a 

creamy texture, which should correspond to higher attenuation. Only a small trend for higher 

values around day 3 show the potential predictive value of damping, but this test needs 

improvement.   

LDV is dependent on structure of the measured object and this makes it a useful tool to assess 

texture of the fruit regardless of the origin, harvest practice or storage treatment of a batch; it 

has been related to cell wall polysaccharide changes in the past (Terasaki, et al., 2001). 

Research at cell membrane level to understand the mechanisms to reduce avocado batch 

heterogeneity have been explored to synchronise fruit ripening (Hernández et al., 2015, 

Defilippi et al., 2018).  

3.3 Comparison of destructive and non-destructively measured values and prediction 

Studies on consumer preferences have shown the importance of evaluating different quality 

aspects, e.g. dry matter content and firmness (6.5 N), in relation to discouraging factors, e.g. 

bruises or high price (Harker et al., 2019). The study described herein, focused on predicting 

firmness non-destructively to avoid wastage during grading. It is well accepted that 

benchmarking before shipping the fruit to retail markets is good commercial practice and 

improves acceptability of the final commodity. 



The average mass of the Chilean avocados in experiment 1 decreased linearly during slow 

ripening as expected due to water loss and respiration (day 0 (18) mean=237.7g SD=9.139g, 

day 5 (18) mean=228.4g SD=9.062g, day 11 (18) mean=219.6g SD=9.128g, day 0 (22) 

mean=187.2g SD=8.362g, day 5 (22) mean=179.3g SD=8.126g, day 11 (22) mean=171.5g 

SD=8.106g, respectively). In this experiment 1, destructive measurements were only taken on 

two occasions and the firmness decreased significantly (Table 2a). The calculated stiffness 

values showed an approximately exponential decrease, even though only three measurement 

points were taken (Table 2a). This is a similar course as the exponential decrease in bioyield 

shown in experiment 2 (Fig. 3a). This shows the automated impact device was successful in 

providing meaningful signals that could be interpreted as expected. Experiment 1 was designed 

with a smaller amount of fruit to inform points of focus for experiment 2, where two LDV were 

used, more destructively obtained data were collected and a large amount of fruit were 

measured repeatedly.  

Avocados are climacteric fruit and usually a rapid decrease in firmness is initiated at the 

beginning of the respiration and ethylene production peaks (Arpaia et al., 2015). It has been 

shown by other authors that postharvest water loss has no effect on mechanical properties, but 

on the non-destructively measured impact responses (Harker et al., 2019). However, in the trial 

on Spanish fruit this could not be the major influencing factor, since the percentage of water 

content in the avocados showed no clear trend (Table 2b). The resonant frequency of the 

Spanish fruit decreased steeper until day 4 and decreased gentler thereafter (Fig. 3a and b). 

Usually, firmness of avocados decreases rapidly under shelf life conditions (Meyer and Terry, 

2010) as seen herein, therefore a linear correlation between the resonant frequency and 

firmness is not expected. A model was created by PLS, which compared 104 avocados from 

the same batch measured non-destructively by LDV and destructively by means of uni-axial 

test. PLS is routinely used to interpret spectroscopy data, and in this study it was used to 



evaluate the ability of the non-destructively measured variables to predict ripening (Magwaza 

et al., 2014): The load at break of 300 repeatedly measured fruit was predicted with the 

calibration model. The result indicated a credible firmness development (Fig. 4). The external 

prediction had 90.7% variability explained in factor 1, where the stem end RF contributed 

mainly to the model and seed end RF contributed mainly to the residuals. It has been shown 

previously that LDV measurements outperform other impact based techniques to evaluate 

firmness (Landahl and Terry, 2012). However, it remains to be investigated how robust a 

calibration is needed for good predictive performance over several seasons.  This study 

concentrated on one batch as described, but used easily obtainable input values, i.e. RF and 

damping. Variability due to season and orchards is inevitable (Arpaia et al., 2015), therefore 

LDV is an effective tool to predict ripening at the grading step. 

The study herein demonstrated that LDV is capable of differentiating between fruit of different 

firmness values and suggest RF threshold values for ready-to-eat fruit (Fig. 4). It is necessary 

to choose fruit of similar shape and mass (or weigh them to calculate the stiffness factor), in 

order to predict firmness of the fruit. Due to the heterogeneous ripening of mesocarp tissue 

within a fruit (Landahl et al. 2009) it was examined if the measurement of RF at opposite ends 

of the avocado fruits would give a differential value that could indicate fruit ripeness (Fig. 3a). 

This hypothesis was later abandoned, since the difference showed no clear trend and the RF 

values were in contradiction with former measurements of tissue stress-relaxation (Landahl et 

al. 2009), so that the RF values at the seed end of the fruit were interpreted as a result from 

mesocarp tissue and seed in combination (Landahl and Terry, 2012). 

Avocado ripening has a dramatic effect on fruit rheological properties (Ortiz-Viedma, 2018). 

It is common practice to study these with quasi-static methods on a rheometer or uni-axial 

testing machine. LDV delivers rheological data in a fast and non-destructive way and can 



measure elasticity dynamically. The results herein confirmed the ability of LDV to describe 

temporal and spatial visco-elastic changes within fruit. 

4. Consclusion 

In conclusion, this study has shown that LDV is capable to non-destructively discriminate 

between ripeness stages of avocados and since this fruit is particularly challenging it is likely 

to be capable to be utilised on other fruit types as well. This study has not focussed on the 

comparison of fruit origin, size or treatment, but it has been shown that exogenous ethylene 

application after cold storage did not accelerate ripening as measured by firmness. A simple 

automated impact device for tapping the fruit in order to provoke vibration was developed and 

tested during this study. This will need further refinement to make it suitable for an industrial 

sorting line. 

Several common inventory practices exist to hold and ripen avocado fruit until needed for 

retail. All these practices could be enhanced if the ripening stage of fruit could be non-

destructively examined. In the current study, RFs measured non-destructively using LDV 

decreased in parallel with the firmness and physiological changes within avocado fruit. Thus, 

LDV could be applied to avocado and indeed other fresh produce types where firmness or 

structural integrity is vital in defining shelf life and consumer acceptability. Implementation on 

a commercial packing line and a robust calibration method will require further investigation. 

Typically a traffic light system would be envisaged, where fruit are sorted as ‘right for 

marketing’, ‘not ready yet’ / ‘need to check again’, or ‘discard’. For a system like this, a large 

database has to be established or frequent calibration has to be performed to define thresholds 

in line with the commercial requirements.  
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FIGURES 

Fig. 1 Experiment 1, schematic of device to impact the Chilean avocados to perform RF 

measurement. 
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Fig. 2 Experiment 2 a) Indicator for CO2 respiration measured after incubating two size code 

18 avocados per jar (8 fruit per point = 4 measurements per point). Error bar indicates l.s.d. 

p<0.05. b) Indicator for ethylene production measured after incubating two size code 18 

avocados per jar (8 fruit per point = 4 measurements per point). Error bar indicates l.s.d. p<0.05. 



c) Log.10 mannoheptulose concentration measured of avocados from Spain (8 each point). 

Standard error bar p=0.074. d) Log.10 force at break of destructively measured avocados from 

Spain (8 each point).   The ready-to-eat firmness range is 4.4 to 6.7 N (=100.643 to 

100.826). Error bar indicates l.s.d. p<0.05. 
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Fig. 3 Experiment 2 a) Average RF values of repeatedly measured avocados from Spain (100 

each point). Main effect of stem end and seed end of fruit indicated separately. b) Main effect 

of treatment as grouped values. c) Log10 damping / attenuation values and error bar indicates 

l.s.d. p<0.05. 

Fig. 4 Plot of predicted log10 force at break values related to 300 avocados repeatedly 

measured by means of LDV. Prediction achieved with PLS model from separately measured 



fruit from same batch (see section 2). Shelf-life days indicated. Grey box indicates ready-to-

eat range. 

Table 1 PLS calibration model goodness of fit relating to avocados (n=104) measured by 

means of LDV and uni-axial testing machine. In this case, two RF from first peak (seed and 

stem end) were used to create a model to predict log10 force at break / firmness values. 

Slope Offset R-square RMSE Bias 

Calibration 0.78 0.19 0.78 0.30 0 

Validation 0.68 0.24 0.72 0.36 -0.028 



Table 2 Mean values of avocado measurements during two different shelf-life trials as described above (exp.1 12 °C and exp.2 18 °C) . l.s.d. = 

least significant difference p<0.05. * same fruit as repeatedly measured. 

A 

RF [Hz] repeated stiffness [104 Hz2 kg2/3] force at break [N] 

Experiment  

store time 

[days] size 18 size 22 size 18 size 22 size 18 size 22 

1 0 1315.5 1249.6 65.07 * 51.59 * 

1 1 1140.0 1137.1 

1 3 930.0 915.1 237.5 218.6 

1 5 740.3 788.4 21.37 * 19.82 * 

1 7 664.1 641.3 

1 9 539.4 602.2 

1 11 497.4 560.6 9.24 * 9.94 * 3.3 * 8.1 * 

1 l.s.d. 69.4 4.9 14.1 

1 30 fruit per point 12 fruit per point 

B 

RF [Hz] once log10 damping value, once RF [Hz] once water content 

box air box Ethyl tray air box air box Ethyl tray air seed end stem end 

percentage 

FM 

2 0 1666.4 2.737 1674.4 1658.4 67.9 

2 2 1130.4 1178.9 1216.0 2.730 2.693 2.669 1219.8 1130.3 71.3 

2 3 856.2 955.3 839.4 2.848 2.771 2.774 926.3 841.0 68.8 

2 4 597.8 638.5 603.7 2.697 2.720 2.682 628.7 597.9 

2 6 457.7 507.2 455.0 2.567 2.677 2.649 464.6 482.0 68.4 

2 l.s.d. 57.9 0.061 81.9 

2 8 fruit per point 

24 fruit per point except day0 

= 8 

12 fruit per 

point 


