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Abstract 8 

Operational and financial constraints challenge effective removal of natural organic matter 9 

(NOM), and specifically disinfection by-product (DBP) precursors, at remote and/or small 10 

sites. Granular activated carbon (GAC) is a widely used treatment option for such locations, 11 

due to its relatively low maintenance and process operational simplicity. However, its 12 

efficacy is highly dependent on the media capacity for the organic matter, which in turn 13 

depends on the media characteristics. 14 

The influence of GAC media properties on NOM/DBP precursor removal has been studied 15 

using a range of established and emerging media using both batch adsorption tests and rapid 16 

small-scale column tests. DBP formation propensity (DBPFP) was measured with reference 17 

to trihalomethanes (THMs) and haloacetic acids (HAAs). All GAC media showed no 18 

selectivity for specific removal of precursors of regulated DBPs; DBP formation was a 19 

simple function of residual dissolved organic carbon (DOC) levels. 20 

UV254 was found to be a good surrogate measurement of DBPFP for an untreated water 21 

source having a high DOC. Due to the much-reduced concentration of DBP precursors, the 22 

correlation was significantly poorer for the coagulation/flocculation-pretreateed water source. 23 

Breakthrough curves generated from the microcolumn trials revealed DOC removal and 24 

consequent DBP reduction to correlate reasonably well with the prevalence pores in the 5-10 25 

nm range. A 3-6 fold increase in capacity was recorded for a 0.005 to 0.045 cm3/g change in 26 

5-10 nm-sized pore volume density. No corresponding correlation was evident with other 27 

media pore size ranges. 28 
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1 Introduction 30 

Granular activated carbon (GAC) is used extensively in drinking water treatment in various 31 

roles, including removal of pesticides, heavy metals and other micro pollutants, and more 32 

recently in wastewater reuse (de Almeida Alves et al., 2019, Hoslett et al., 2018; Sun et al., 33 

2018). The process is also frequently applied downstream of conventional coagulation/ 34 

clarification for supplementary removal of natural organic matter (NOM) and to improve the 35 

bio-stability of the water, through removal of assimilable dissolved organic carbon (DOC) 36 

(Bhatnagar and Sillanpää, 2017; Graf et al., 2014; Velten et al., 2011, Liao et al., 2019). It 37 

may also be employed at the beginning of the water treatment works (WTWs) as a 38 

“roughing” filter to aid with NOM and pesticide removal  (Ratnayaka et al., 2008; Reckhow 39 

and Singer, 2010; Zeng et al., 2019).  40 

One of the key drivers for NOM removal is the reduction of disinfection by-product (DBP) 41 

forming compounds following chemical disinfection (Ndiweni et al., 2019), expressed as the 42 

formation propensity (hence DBPFP). The trihalomethanes (THMs) and haloacetic acids 43 

(HAAs) have been the most extensively studied DBPs since they are usually present at the 44 

highest mass concentration (Gibert et al., 2013; Golea et al., 2017). In the EU, currently only 45 

THMs are regulated, with the maximum permissible combined concentration being 100 µg/L. 46 

Limits of 80 µg/L or 60 µg/L for 9 or 5 HAAs respectively are currently under consideration 47 

in the EU, in alignment with US regulations (USEPA, 2010). 48 

NOM is substantially removed by coagulation/clarification in large-scale potable WTWs, 49 

provided rigorous monitoring and control is applied. However, this process is not always 50 

appropriate at small scale in remotely located sites where low-maintenance processes are 51 
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preferred to reduce labour costs. These include membrane and adsorption technologies, with 52 

GAC sometimes favoured on the basis of cost effectiveness and versatility (Bhatnagar and 53 

Sillanpää, 2017; Iriarte-Velasco et al., 2008). It is known that the high molecular weight 54 

(MW) hydrophobic (HPO) NOM fraction is readily removed by conventional coagulation, 55 

such that the influent NOM to GAC processes in secondary potable treatment stages is 56 

usually dominated by the low MW and relatively hydrophilic (HPI) fractions (Matilainen et 57 

al., 2006). The HPO fraction is generally more reactive with chlorine, with thus a high 58 

DBPFP (Golea et al., 2017). When GAC is used as a roughing filter, the main loading of 59 

NOM is from HPO and high MW organic compounds. In this case, high MW NOM can 60 

block the pores of the adsorbent, preventing other compounds from accessing the adsorbent. 61 

The NOM characteristics and the corresponding required GAC media properties are thus 62 

influenced by the position of the adsorption process in the treatment scheme (Valdivia-Garcia 63 

et al., 2016).  64 

One of the most significant GAC media properties is pore size (dp) distribution; the useful 65 

pore size range for NOM has been shown to be the secondary micropores (1-2 nm) and the 66 

mesopores (2-50 nm), with pores smaller than 1 nm offering negligible adsorption (Dastgheib 67 

et al., 2004; Velten et al., 2011). High MW (1-10 kDa) NOM such as humic substances with 68 

molecular diameters above 2 nm are adsorbed largely within the mesopores. However, 69 

adsorption is not solely governed by bulk physical properties, since physicochemical 70 

properties – and specifically surface charge and hydrophobicity – also impact on adsorption; 71 

HPO NOM is preferentially removed over hydrophilic material. It thus follows that the low 72 

MW hydrophilic fraction, whilst less reactive with chlorine, poses the greatest challenge to 73 
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removal by GAC and may still have a sufficiently high DBPFP to be problematic (Golea et 74 

al, 2017). 75 

Given the above challenge presented by NOM removal by GAC it is of interest to determine 76 

(a) the most effective GAC media for DBP precursor removal from different water sources 77 

and (b) the most effective position of the GAC process in the treatment train. Previous studies 78 

of GAC adsorption of NOM have tended to focus on physicochemical characteristics of the 79 

NOM, rather than those of the GAC (Aschermann et al, 2018; Shimabuku et al, 2017; Velten 80 

et al, 2011), with this work including the key area of competitive adsorption/desorption of 81 

NOM and micropollutants (Aschermann et al, 2018; Piai et al, 2019). However, there have 82 

thus far been few studies quantitatively correlating NOM or DBPFP adsorption with media 83 

characteristics. Those studies that have encompassed GAC media with a range of pore sizes 84 

(Gui et al, 2018) have not quantitatively correlated media capacity with pore-related 85 

parameters.  86 

The current study correlates GAC properties, specifically the media pore size distribution, 87 

with NOM and DBPFP removal from two water sources having differing NOM chemistry 88 

with reference to DBPFP. Tests encompassed both batch adsorption measurements and small-89 

scale media column tests for determining adsorption capacity, and DBPFP both as 90 

trihalomethanes (THMFP) and haloacetic acids (HAAFP). Outcomes can then be expected to 91 

(i) inform decisions regarding GAC media selection for NOM removal, and (ii) direct 92 

developments on novel adsorptive media for maximum NOM capacity. 93 
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2 Methods and materials 94 

2.1 Sampling 95 

Source water was taken from two WTWs of differing process configuration (Fig. 1). WTW A 96 

employs simple media filtration via a pressurised sand filter (PSF) followed by GAC 97 

adsorption. WTW B uses clarification by conventional coagulation-flocculation followed by 98 

dissolved air flotation (DAF), rapid gravity filtration (RGF) and GAC adsorption. The water 99 

used in the current study was sampled from the filtrate, i.e. downstream of the PSF stage at 100 

the WTW A site (Water A) and the RGFs at WTW B (Water B). 101 

 102 

Figure 1. Water treatment flow sheet at the 2 WTWs featuring rudimentary and advanced pretreatment 103 
respectively. WTW A: Pressure sand filtration; WTW B: Coagulation/flocculation, dissolved air 104 
flotation and rapid gravity filtration. 105 

 106 

2.2 GAC media 107 

GAC media sourced from four different precursor materials were used, selected to encompass 108 

a range of specific surface areas and dp values, and comprised: 109 
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 Bituminous coal: COL-L900 (Carbon-Activated LTD, Bristol, UK); Filtrasorb F400 110 

(Chemviron, Tipton, UK). 111 

 Coal: 208 EA (Chemviron); Hydraffin XC30 (Donau Carbon, Frankfurt, Germany).  112 

 Coconut shell: DEO, HT5 (Eurocarb, Bristol, UK); FY5 (CPL Carbon Link, Wigan, UK))  113 

 Bovine bones: Brimac (Inverclyde, UK).  114 

2.3 GAC preparation 115 

For the batch adsorption isotherm tests, the GAC media was crushed and fractionated by 116 

sieving to generate a 38-90 µm size fraction. The media were then washed thoroughly in 117 

ultrapure water, dried overnight at 105°C and kept in a desiccator until use for the adsorption 118 

capacity batch tests. For the rapid small-scale column test (RSSCT), the GAC was crushed 119 

using a hammer mill, and then sieved to between 212 and 300 µm, yielding a column 120 

diameter:grain size ratio of >30:1 and so avoid channelling effects. The media were then then 121 

rinsed and dried as with the isotherm tests (Philippe et al., 2010), then re-wetted prior to 122 

testing by boiling in DI water for 10 minutes. Media preparation in this manner has been 123 

shown to have no significant impact on the internal structural pore features (Ando et al., 124 

2010). 125 

2.4 GAC characterisation using N2 pore size distribution 126 

The total pore volume Vtotal of the dried media was measured as the adsorbed volume of N2 127 

gas near the saturation volume (P/P0=0.98) (Iriarte-Velasco et al., 2008), and the surface area 128 

calculated from Brunauer–Emmett–Teller (BET) theory (Brunauer et al., 1938). The dp 129 

distribution was determined using density functional theory (DFT) for pores sizes quantified 130 

between 0.7 and 36 nm (Velten et al., 2011). The DFT model was employed to provide a 131 
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more accurate interpretation of the isotherm data for non-homogenous liquids on 132 

microporous materials (Lastoskie et al., 1993). Calculations assumed a graphite structure with 133 

slit-like pore geometry (Iriarte-Velasco et al., 2008; Moore et al., 2001) using an ASAP 2010 134 

(Micrometrics, St Andrews, UK) physisorption apparatus. GAC were primarily characterised 135 

by the volume of the secondary micropores (1-2 nm) and mesopores (2-50 nm), since smaller 136 

pores have been shown to exhibit negligible adsorption of NOM (Velten et al., 2011). Further 137 

analysis of the dp distribution was undertaken to correlate specific pore size ranges with 138 

removal of NOM, with a maximum measured pore size of 30 nm.  139 

2.5 Adsorption capacity batch tests 140 

The prepared media were dosed at 0-0.1 g/L, with dose modulated based on the DOC of the 141 

source water, and agitated continuously in an orbital shaker at 200 rpm for 24 hours at 20°C, 142 

which preliminary trials established was a sufficient period for equilibration. The water 143 

samples were then 0.45 µm-filtered prior to analysis. The equilibrium adsorption capacity 144 

(  , mg DOC/g adsorbent) was calculated as the change in solution DOC concentration Ci – 145 

Ce, Ci being the initial and Ce the equilibrium concentration, divided by the adsorbent 146 

concentration Do. Base Do values of 150 and 50 mg/L for Water A and B respectively were 147 

established as being appropriate for removing significant organic matter whilst still leaving a 148 

sufficient (>1 mg/L) residual DOC concentration to permit subsequent THMFP and HAAFP 149 

analysis. All tests were carried out in duplicate.  150 

2.6 Rapid small-scale column tests 151 

1000 L samples of water were taken from WTW A and B and were passed through media 152 

beds of 15 mm diameter and 140 mm height for 14 days. The RSSCT columns were 153 
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undertaken according to the recommendations of Crittenden et al. (2012), following the 154 

proportional intra-particle diffusivity (PD) model: 155                                     Equation 1 156 

            
                       Equation 2 157 

Where EBCTLC = empty bed contact time in full-scale adsorber; EBCTSC = empty bed 158 

contact time for small experimental columns; dG,SC = diameter of GAC particles in small 159 

column; dG,LC = diameter of GAC particles in full scale column; tSC/tFS = time required to 160 

conduct a small-scale test (tSC) relative to the time necessary to conduct a large-scale test 161 

(tFS); MSC = the mass of media in the small column; QSC = the flow in the small column; ρLC = 162 

density of the GAC media in the large column. Equation 2 was used to ensure that the 163 

different GAC media densities were accounted for. 164 

For NOM removal, the PD approach has proven to work well since the relatively high MW 165 

organic matter diffuses significantly faster into the pores of the GAC when compared to 166 

micropollutants (Summers et al., 1995). Scaled from an operational empty bed contact time 167 

of 20 minutes for full scale adsorbers as typically used in Scottish Water (EBCTLC), this 168 

translated to an EBCT in the experimental columns (EBCTSC) of 4.24 minutes for a 25 mL 169 

bed volume. 170 

2.7 Sample chlorination and DBP formation potential determination 171 

250 mL water samples were diluted to a concentration of 1 mg C/L and buffered to pH 7 and 172 

dosed with NaOCl at a Cl2:DOC weight ratio of 5:1. Samples were then sealed and stored in 173 

the dark at a temperature of 25°C for seven days. The chlorine was then quenched with 174 
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excess sodium thiosulphate and the THM and HAA concentrations measured. The total THM 175 

concentration (tTHM) was measured using gas chromatography spectrometry with headspace 176 

injection using the standard USEPA 551 method (USEPA, 1998). The total concentration of 177 

the five most predominant HAAs (tHAA5) was measured using liquid-liquid separation and 178 

analysis by gas chromatography with mass spectrometric detection following the USEPA 179 

method 552.3 (APHA, 2012), with at least seven injections undertaken for each 180 

measurement. 181 

3 Results and discussion 182 

3.1 Source water characterisation 183 

Sample filtrate water quality varied significantly between the two sites (Table 1) due to the 184 

differences in pre-treatment, Water B samples receiving full clarification whereas Water A 185 

which was treated only by sand filtration (Fig. 1). Whilst the pH and conductivity values 186 

were both lower for the Water A samples (6.8 and 166 µS/cm, cf. 8.1 and 569 µS/cm for 187 

Water B), reflecting the reduced chemical addition, the DOC of Water A was double that of 188 

Water B and the UV254 absorption 3.8 times higher. UV254 absorption is recognised as 189 

broadly reflecting the HPO content of the water (Bhatnagar and Sillanpää, 2017), which was 190 

commensurately 3.4 times higher for Water A. Conversely, the HPI content was 2.8 times 191 

lower. The elevated DOC and HPO concentrations of Water A were reflected in THMFP and 192 

HAA5FP values, respectively 1.25 and 4.2 times higher on average for Water A cf. Water B. 193 

These factors increased to 2.4 and 8 respectively under worst-case conditions. No significant 194 

change in the distribution of individual DBP species was observed between the two samples, 195 

with trichloromethane being the predominant THM (85-90% by weight) and the 196 
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dichloroacetic and trichloroacetic acids making up 80-85% of the tHAA5 concentration in 197 

both cases. 198 

 199 

 200 

 201 

 202 

 203 

 204 

 205 

 206 
Table 1: Physicochemical characteristics of the two different water sources. 207 

Parameter Water A Water B 

pH 6.8 8.1 
DOC (mg/L) 5.98 3.12 
UV254 (/cm) 0.254 0.068 
SUVA (mg/L/m) 4.25 2.18 
tTHM  (µg/L) 676.3 282 
THMFP (µg/L per mg DOC) 113.1 90.4 
tHAA  (µg /L) 1006.4 126 
HAA5FP (µg/L per mg DOC) 168.3 40.4 
Colour (mg/L Pt/Co) 33 4.47 
Turbidity (NTU) 0.37 0.1 
Conductivity (µS/cm) 166 569 
HPO (mg/L) 3.44 1 
TPI (mg/L) 1.25 0.71 
HPI (mg/L) 0.37 1.05 

 208 

3.2 Physical media characteristics 209 

Total pore volumes ranged from 0.331 (DEO) up to 0.581 cm3/g (HT5) for the GAC media 210 

investigated. Mesopore volumes measured for the GAC media studied ranged from as low as 211 

0.004 cm3/g (FY5) up to 0.156 cm3/g (XC30). The secondary micropores were between 0.174 212 

cm3/g (DEO) and 0.401 cm3/g (HT5) (Table 2). None of the media had dp values above 27.3 213 
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nm. The media with the highest total pore volume (HT5) had pores that were predominantly 214 

in the 1-2 nm pore size range (0.401 cm3/g). The media with the most evenly distributed pore 215 

sizes was the coal media XC30 with 0.205 (57%) and 0.156 (43%) cm3/g distributed between 216 

micro and mesopores respectively (Fig 2). F400 had a 78:22 distribution of pore volume 217 

between the micropore and mesopore size range. Further examination revealed pore size to be 218 

predominantly below 5 nm, contributing 84.0-99.9% of the total pore volume (Fig 2). The 219 

media with the highest proportion of small pores (<5) nm were the coconut shell media (FY5 220 

and DEO) at 99.8 and 99.9%. Conversely, the GAC with the smallest proportion of small 221 

pores were the coal-based XC30 and the bone char media Brimac, at 83.9 and 85.7% 222 

respectively.  223 

There was good agreement between the specific surface area values measured in the current 224 

study (SBET) and those reported by the supplier (SBET,s) and other researchers (Table 2). The 225 

exception was the SBET for Brimac (bone char). For Brimac, SBET has been previously reported 226 

as being 130-283 m2/g, with a Vtotal of 0.287 cm3/g (Moreno et al., 2010; Nili-Ahmadabadi, 227 

2011), compared to the much higher values of 841 m2/g and 0.430cm3/g respectively 228 

recorded in the current study. For F400, there was a small difference in the Vmicropores 229 

measured in the current study (0.271 cm3/g), a value which was 20-33% lower than the 0.30-230 

0.41 cm3/g range previously reported (Summers et al., 2010, Dastgheib et al., 2004, and 231 

Gibert et al., 2013, Table 2). Differences are likely to reflect the media sample heterogeneity, 232 

a point noted by other researchers (Ando et al., 2010) and differences in the range of pore 233 

sizes quantified during the analysis. The surface area of the Brimac media was nonetheless 234 

the lowest measured of all those investigated. 235 
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Table 2: The physicochemical properties of the media used for removal of NOM from two different water sources. 236 

GAC 

media 

V total 
1 

cm³/g 
dp 

nm 

V  

micropores
2

 

cm³/g 

Vmeso-

pores
3 

cm³/g 

DFT area (m
2
/g)

4 Granu-

lation
5 

mm 

SBET,s 
5 

m²/g 
SBET  

m²/g 

IN 
5,6

 

mg/g 

Precursor
5
 

0.7-
1.7 

1-2 
 

>2 

COL-L900 0.460 ≤26.1 0.347 0.112 444 506 72 0.425-1.70 900-1000 977±5 900 Bituminous coal 
F400 0.442 ≤26.1 0.271 0.073 431 416 49 0.425-1.70 1050 1032±5 1050 Bituminous coal 
208EA 0.517 ≤16.1 0.301 0.120 424 465 67 0.6-1.7 1000 1078±6 1000 Coal 
XC30 0.511 ≤26.1 0.205 0.156 325 340 66 0.6-2.36 1000 986±6 950 Coal 
DEO 0.331 ≤27.3 0.174 0.013 274 285 8 0.6-1.70 800 809±11 825 Coconut shell 
HT5 0.581 ≤27.3 0.401 0.029 621 652 14 0.42-1.70 1400 1419±12 1300 Coconut shell 
FY5 0.400 ≤16.1 0.288 0.004 452 471 3 1.40-3.35 1150 1043±11 1100 Coconut shell 
Brimac 0.430 ≤25 0.246 0.131 334 373 62 0.7-2.38 200 841±3 700 Bovine bones 
1According to DFT (density functional theory), determined to <30nm; 21-2 nm pore size range; 3>2 nm pore size; 4with reference to pore size range indicated; 5Data 237 
sourced from supplier technical sheets; 6Iodine number. 238 
 239 
 240 
Table 3: Volumetric pore size distribution, determined from DFT for pores sizes <30 nm. 241 

Media/pore size:  <0.7nm 0.7-5nm 5-10nm 10-15nm 15-20nm 20-25nm 25-30nm Total 

Col-L900 0.001 0.440 0.011 0.006 0.002 0.001 0 0.460 
F400 0.055 0.375 0.010 0.002 0 0 0 0.442 
208EA 0.096 0.386 0.027 0.008 0.001 0 0 0.517 
XC30 0.115 0.314 0.042 0.018 0.012 0.009 0.001 0.511 
DEO 0.144 0.183 0.001 0.002 0.000 0 0 0.331 
HT5 0.151 0.417 0.005 0.004 0.003 0.002 0 0.581 
FY5 0.108 0.291 0 0.001 0 0 0 0.400 
Brimac 0.053 0.316 0.029 0.016 0.010 0.007 0 0.430 

 242 
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 243 
(a) 244 

 245 
(b) 246 

Figure 2. GAC pore volumes for (a) the micro (1-2 nm) and mesopores (2-50 nm) pore size, and (b) 247 
the full distribution of pore sizes. 248 

 249 

3.3 Batch adsorption isotherms 250 

Batch adsorption isotherms revealed significant differences in DOC capacity across the 251 

different media (Fig. 3), with DEO having the lowest capacity (1.19 and 1.76 mg/g for 252 

Waters A and B respectively) and XC30 the largest (20.7 and 27.1 mg/g respectively). 253 
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The higher capacity for the Water B organic matter reflects the impact of the 254 

coagulation pre-treatment on the DOC characteristics, which similarly accounts for the 255 

difference in THMFP. Increased GAC capacity following coagulation has been noted 256 

by Karanfil et al. (1999), and was attributed to the removal of high MW HPO NOM 257 

which otherwise cause pore blockage and so reduce media capacity. Two-fold changes 258 

in THMFP between raw and treated waters have been previously reported for 259 

predominantly upland water samples (Golea et al, 2017). 260 

No selective removal of THM precursors was observed for any of the media, the 261 

THMFP values all lying between 100 and 113 µg THM / mg DOC for Water A and 75-262 

83 for Water B (Fig. 4a), despite a >10 times change in capacity. THMFP tended to 263 

decrease with increasing media capacity regardless of the media characteristics, a trend 264 

more readily recognisable from the non-normalised THM concentration data (Fig. 4b). 265 

However, no other trend in THM concentration vs bulk media characteristics, 266 

specifically IN and SBET, was evident.  267 

 268 

 269 
Figure 3. Organic carbon capacity (qe) of the 8 media. 270 
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 271 
a                                                                                         b 272 

Figure 4. (a) Normalised THMFP and (b) tTHMs for Waters A and B. Each datum corresponds to a 273 
single GAC media. 274 

 275 

3.4 Rapid small-scale column tests 276 

The breakthrough curves for the individual media inferred relative capacities which 277 

generally followed the trends recorded for the batch tests (Fig. 5). Breakthrough curves 278 

were steeper for Water A due to the higher organic loading for this source water and the 279 

impact of the larger and HPO organic carbon fraction exhausting the GAC surface area.  280 

Overall, the two coal-based media (208EA and XC30) offered the highest capacities, 281 

reflected in shallower breakthrough curves. For Water A, the DOC removal efficiency 282 

for these media progressively decreased from 92-94% to 25-27% after 22,000 BVs (Fig. 283 

5a), the maximum volume reached for this campaign. For Water B, XC30 provided the 284 

shallowest curve, from 92% DOC removal initially to an end value of 50%, with two 285 

other coal-based media (F400 and 208EA) removing 90-91% DOC initially and 286 

progressively declining to 36-38%.  287 

Differences in performance between Waters A and B again reflect the impact of 288 

clarification pre-treatment, which both decreases the DOC concentration and the 289 

proportion of the high MW organic compounds which otherwise block the media pores. 290 
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The lower MW NOM fraction, reported to be in the 0.5-5 nm size range (Dastgheib et 291 

al., 2004; Karanfil et al., 1999; Moore et al., 2001; Velten et al., 2011) can then access 292 

the media pores (Graf et al., 2014; Iriarte-Velasco et al., 2008) with the 2-50 nm 293 

mesopores expected to provide the most accessible adsorption sites for such NOM 294 

macromolecules. This was consistent with the two media having the lowest mesopore 295 

volumes (FY5 and DEO, derived from coconut shell, with mesopore volumes of 0.004-296 

0.013 cm³/g) offering the lowest DOC removal (Fig. 5b) despite their relatively high 297 

surface area (SBET values). Conversely, the mesopore volume of the 208EA and XC30 298 

media were amongst the highest of those tested. The Brimac media performed 299 

comparatively well for both water sources despite its low SBET value due to its high 300 

mesopore volume. 301 

 302 

 303 

 304 

 305 

 306 

 307 



 

19 

 

  
a                                                                                                   b 

  
 c                                                                                                   d  

  
e                                                                                                   f 

Figure 5. Removal of (a-b) DOC and precursors of (c-d) tTHM and (e-f) tHAA for waters A (a, c, e) 308 
and B (b, d, f), for up to 24,000 bed volumes (BVs) of treated water. 309 
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The reduction in THMFP (Figure 5c-d) and HAAs (Figure 4e-f) generally followed the 311 

removal profile of the DOC. There was no indication of selective removal of DBP 312 

precursors from either water by any of the GAC media, a result consistent with that 313 

observed from the batch experiments. 314 

The throughput to 30, 50 and 80% breakthrough (BV30, BV50 and BV80) of DOC (Table 315 

4) confirm XC30 as achieving the highest BV30 for both water sources. For Water A, 316 

XC30 treated almost double the amount of water (2514 BVs) than the next best GAC 317 

(208EA), and respectively three and seven times more water than Brimac and the best 318 

coconut shell-based media HT5. The Brimac GAC performed at a similar level to the 319 

F400 media. Both FY5 and DEO failed to achieve a quantifiable BV30 due to rapid 320 

exhaustion at <267 BVs, the point when the first sample was taken. The same order of 321 

removal was seen when the BV50 was considered, although the differences were less 322 

pronounced, with the best performing media being XC30 with a BV50 of 5059 compared 323 

with only 946 BVs for HT5. The BV80 indicated more significant differences between 324 

the media, with no BV80 value obtained after 23,980 BVs for two of the media (XC30 325 

and 208EA) for Water A indicating removal was always >20%. This compares with a 326 

BV80 of only 503 for DEO. For the other GAC, Brimac treated 40% more water than 327 

F400, while COL-L900 treated the same number of BVs as HT5 (946).  328 

  329 
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Table 4: Throughput to a filtrate DOC of 30%, 50% and 80% of the feed concentration (BV30, BV50 330 
and BV80 respectively) for the GAC media studied by RSSCT, waters A and B, EBCTLC = 20 331 
minutes. 332 

GAC 

media 

WTW A WTW B 

BV30 BV50 BV80 BV30 BV50 BV80 

COL-L900 355 946 10,710 4,467 8,284 >>23,980 
F400 858 1,775 10,030 8,402 12,308 >>23,980 
208EA 1,301 4,704 >>22,194 7,455 13,728 >>23,980 
XC30 2,514 5,059 >>22,194 14,911 23,964 >>23,980 
DEO <<267 <<267 503 <<1,302 <<1,302 1,302 
HT5 355 946 8,047 3,875 7,633 >>23,980 
FY5 <<267 <<267 1,242 <<1,302 2,041 8,284 
Brimac 858 1,775 17,101 5,798 11,657 >>23,980 

 333 

For Water B, XC30 was again the best performing media with a BV30 of 14,911, a value 334 

substantially higher than the next best GAC F400, having a BV30 of 8,402. No BV30 335 

value was recorded for DEO and FY5 since the 30% target was exceeded before the first 336 

sample taken at 1,302 BVs. This was also the case for the BV50 value for DEO, whereas 337 

the corresponding value for FY5 was 2,041. This value was less than 10% of the BV50 338 

values recorded for XC30. All media other than FY5 and DEO removal achieved 339 

removal exceeding 20% throughout the run, thus providing no measurable BV80, with 340 

XC30 maintaining ≥50% removal.  341 

3.5 UV254 for monitoring of DBP formation propensity breakthrough  342 

It is of practical significance to correlate DBP breakthrough with a more readily 343 

monitored water quality determinant, such as UV254 absorbance. UV254 is widely 344 

acknowledged as being a reasonable analogue measurement for DBPFP due to its 345 

association with the more labile HPO organic content of the NOM (Bougeard et al., 346 

2010; Karapinar et al., 2014). Breakthrough data based on number of BVs passed 347 
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recorded for 10, 30 and 50% breakthrough (BV10, BV30, and BV50 respectively) for 348 

Waters A and B (Fig. 6) indicate a consistently better correlation for the former. R2 349 

values range from 0.98 to 1.00 for Water A data, compared with 0.75-0.99 for Water B. 350 

This is a consequence of the increased HPO content of the DOC in Water A compared 351 

with Water B, which was subject to pre-clarification. Similar increases in DBPFP data 352 

scatter for residual DOC following clarification have been reported by Golea et al 353 

(2017).  354 

However, the slope for these correlations varies significantly across the different data 355 

sets, from 0.99 to 1.36 for Water A and 0.52-1.09 for Water B with no pattern evident. 356 

This may reflect the vagarious nature of the reactivity of the organic carbon, as noted by 357 

previous authors (de la Rubia et al, 2008; Golea et al, 2017). Thus, whilst UV254 358 

provides a reasonable representation of DBPFP for both raw and treated waters, and is 359 

apparently unaffected by the GAC media characteristics, the coefficient is dependent on 360 

the DOC characteristics. 361 

 362 

 363 

 364 

 365 
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a                                 b c 

   
d e f 

        366 
Figure 6. Correlation of bed volumes passed until target percentage breakthrough is reached, DBP 367 

precursor concentration vs. UV254 for waters A (a-c) and B (d-f) at 10% (a, d), 30% (b, e) and 368 
50% (c, f) breakthrough. For a single correlation each individual datum relates to a single 369 
GAC media. 370 

 371 

3.6 Correlation of DOC removal with GAC characteristics 372 

A consideration of the impact of media characteristics on the removal of DOC and 373 

THMFP from the RSSCTs (Fig. 7) indicates a reasonable correlation of the BV30 and 374 

BV50 data for both DOC and tTHM concentration with the absolute pore volume density 375 

for the 5-10 nm pore size range Vp,5-10 (Fig. 7a-b). The tHAA breakthrough data also 376 

correlated reasonably with this pore size range (Fig. 7c). Across these 12 data sets R2 377 

values ranged from 0.59 to 0.83 for all but the BV30 data set for tTHM breakthrough, for 378 
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which there was no evident correlation (R2 = 0.20). Against this, all correlations 379 

between the breakthrough BV and pore volume density produced for the other pore size 380 

ranges generated R2 values below 0.27 (Supplementary Information, Table S1). 381 

Evidence therefore suggests that removal of NOM-derived DOC, and subsequently the 382 

THM and HAA byproducts generated from the residual DOC in the treated water, is 383 

primarily a function of the density of 5-10 nm-sized pores in the GAC media. This is a 384 

result consistent with that of Velten et al (2011), who advocated selection of 1-50 nm 385 

pore-sized GAC media for NOM removal. The present research suggests that the key 386 

pore size range to be 5-10 nm. 387 

 388 

   
a b c 
 389 

Figure 7. No. BVs passed to 30% and 50% breakthrough of DOC and tTHMs vs. total volume of pores 390 
within 5-10 nm size range for waters (a) A, and (b) B, and for (c) 10-50% breakthrough of 391 
tHAAs. 392 

 393 

The values of the slopes depicted in Figure 7, i.e. ∆BVbreakthrough/∆Vp,5-10, provide an 394 

indication of the extent to which the practical adsorption capacity of the media is 395 

influenced by the 5-10 nm pore volume. Accordingly, in the case of Water A (Fig. 8), 396 

the volume treated to 50% breakthrough increases by 105-125 BVs per cm3/kg 5-10nm 397 
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pore volume density based on either DOC or DBPFP concentration. The corresponding 398 

range for Water B, for an organic carbon concentration around half that of Water A, is 399 

500-670 BVs per cm3/kg – the difference being attributable to the pore-blocking effect 400 

of the HPO in Water A. In both cases, the tHAA data forms the top of the range.  401 

There is evidently a significant influence of the total 5-10 nm pore volume per kg 402 

material on the media capacity; 3-6 fold capacity changes arise, the precise value 403 

depending on the % breakthrough value, as Vp,5-10 changes from 0.005 to 0.042 cm3/g. 404 

Whilst previous authors have qualitiatively identified the importance of pores above 3 405 

nm in size, specifically for removing humic and fulvic acid-like substances (Gui et al, 406 

2018), the quantification of practical capacity in terms of breakthrough volume against 407 

the total volume provided by pores within a specific size range has not previously been 408 

reported. 409 

 410 

Figure 8. Values of slopes in Fig. 7a and c, i.e. the change in treated volume to breakthrough as a 411 
function of the volume of pores in the 5-10 µm size range (∆BVbreakthrough/∆Vp,5-10) in units of 412 
BV per cm3/kg, for Water A. 413 
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Results are comparable with previous work on NOM removal by GAC, with relatively 414 

low water volumes treated prior to significant breakthrough (e.g. 50% DOC 415 

breakthrough at 5-10,000 BVs for the treatment of water containing ~1 mg/L of DOC 416 

(Li et al., 2007; Velten et al., 2011). In comparison, removal of micropollutants 417 

normally provides higher removal levels for more sustained periods (e.g. 80% removal 418 

of the antibiotic sulfamethoxazole after ~68,000 BVs, Greiner et al., 2018). In the 419 

current study most of the media removed 20-30% DOC after extended run times for 420 

both water sources, with the most effective media removing >50% DOC after >20,000 421 

BVs for water pre-treated by coagulation. This shows potential for continuous precursor 422 

removal, particularly for the two coal-based media and the bone char GAC, provided 423 

20-30% removal is acceptable. However, the relatively fast breakthrough to 50% DOC 424 

and tTHM/tHAA for the higher-DOC, substantially untreated water source (Water A) 425 

indicated limited capacity for long-term bulk removal of NOM for source waters having 426 

a high DBP-FP. Against this, GAC was found to be an effective polishing process for 427 

pre-clarified water (Water B), where longer term reduction in DOC and DBP precursors 428 

was recorded. 429 

4 Conclusions 430 

Granular activated carbon (GAC) media of various origins (coal, coconut shell and 431 

bovine bone), and providing a range of physical characteristics with reference to pore 432 

size, have been appraised with reference to their capacity for natural organic matter 433 

(NOM). Experiments comprised (a) batch adsorption experiments for determination of 434 

equilibrium capacity, and (b) tests on micro-columns to represent capacity under normal 435 
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operating conditions. Two different water sources were tested, a raw water with 436 

rudimentary pretreatment (pressure sand filtration) and one pre-treated by full 437 

clarification. The media capacity both for organic carbon and for chlorinated 438 

disinfection byproduct formation propensity (DBPFP), with reference to both 439 

trihalomethane (THM) and haloacetic acid (HAA) formation, was determined. The 440 

applicability of UV254 absorption as a surrogate for was also assessed. 441 

Results revealed: 442 

a. The 8 media tested were found to have a wide range of pore size distributions and 443 

pore volume densities (Vp in cm3/g), specifically within the key range of 5-10 nm 444 

(Vp,5-10). 445 

b. There was no evidence of any selectivity for DBPFP removal by any of the media 446 

tested: the ratio of THM and HAA concentrations generated from DOC in treated 447 

waters did not change significantly between the different media. 448 

c. In view of (b) above, UV254 provided a reasonable surrogate measurement of both 449 

DOC and DBPFP. 450 

d. Batch adsorption tests provided a good indicator of media performance in terms of 451 

NOM removal: ranking of media capacities from batch testing generated the same 452 

sequence as that from microcolumn testing.  453 

e. The media capacity, quantified in terms of bed volumes treated to breakthrough, was 454 

found to correlate with the pore volume density of the 5-10 nm pores (Vp,5-10), in 455 

terms of pore volume provided per unit mass of media. A 3-6 fold increase in 456 

capacity was recorded for a change in Vp,5-10 from 0.005 to 0.042 cm3/g.  457 
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f. Correlations were stronger for the water with rudimentary treatment than for the 458 

preclarified water due to both its increased organic carbon concentration and the 459 

hydrophobic content, the latter having a higher reactivity. 460 
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Table 1: Physicochemical characteristics of the two different water sources. 

Parameter Water A Water B 

pH 6.8 8.1 
DOC (mg/L) 5.98 3.12 
UV254 (/cm) 0.254 0.068 
SUVA (mg/L/m) 4.25 2.18 
tTHM  (µg/L) 676.3 282 
THMFP (µg/L per mg DOC) 113.1 90.4 
tHAA  (µg /L) 1006.4 126 
HAA5FP (µg/L per mg DOC) 168.3 40.4 
Colour (mg/L Pt/Co) 33 4.47 
Turbidity (NTU) 0.37 0.1 
Conductivity (µS/cm) 166 569 
HPO (mg/L) 3.44 1 
TPI (mg/L) 1.25 0.71 
HPI (mg/L) 0.37 1.05 
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Table 2: The physicochemical properties of the media used for removal of NOM from two different water sources. 

GAC media V total 
1 

cm³/g 
dp 

nm 

V  

micropores
2

 

cm³/g 

Vmeso-

pores
3 

cm³/g 

DFT area (m
2
/g)

4 Granu-

lation
5 

mm 

SBET,s 
5 

m²/g 
SBET  

m²/g 

IN 
5,6

 

mg/g 

Precursor
5
 

0.7-
1.7 

1-2 
 

>2 

COL-L900 0.460 ≤26.1 0.347 0.112 444 506 72 0.425-1.70 900-1000 977±5 900 Bituminous coal 
F400 0.442 ≤26.1 0.271 0.073 431 416 49 0.425-1.70 1050 1032±5 1050 Bituminous coal 
208EA 0.517 ≤16.1 0.301 0.120 424 465 67 0.6-1.7 1000 1078±6 1000 Coal 
XC30 0.511 ≤26.1 0.205 0.156 325 340 66 0.6-2.36 1000 986±6 950 Coal 
DEO 0.331 ≤27.3 0.174 0.013 274 285 8 0.6-1.70 800 809±11 825 Coconut shell 
HT5 0.581 ≤27.3 0.401 0.029 621 652 14 0.42-1.70 1400 1419±12 1300 Coconut shell 
FY5 0.400 ≤16.1 0.288 0.004 452 471 3 1.40-3.35 1150 1043±11 1100 Coconut shell 
Brimac 0.430 ≤25 0.246 0.131 334 373 62 0.7-2.38 200 841±3 700 Bovine bones 
1According to DFT (density functional theory), determined to <30nm; 21-2 nm pore size range; 3>2 nm pore size; 4with reference to pore size range indicated; 5Data sourced 
from supplier technical sheets; 6Iodine number. 
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Table 3: Volumetric pore size distribution, determined from DFT for pores sizes <30 nm. 

Media/pore size:  <0.7nm 0.7-5nm 5-10nm 10-15nm 15-20nm 20-25nm 25-30nm Total 

Col-L900 0.001 0.440 0.011 0.006 0.002 0.001 0 0.460 
F400 0.055 0.375 0.010 0.002 0 0 0 0.442 
208EA 0.096 0.386 0.027 0.008 0.001 0 0 0.517 
XC30 0.115 0.314 0.042 0.018 0.012 0.009 0.001 0.511 
DEO 0.144 0.183 0.001 0.002 0.000 0 0 0.331 
HT5 0.151 0.417 0.005 0.004 0.003 0.002 0 0.581 
FY5 0.108 0.291 0 0.001 0 0 0 0.400 
Brimac 0.053 0.316 0.029 0.016 0.010 0.007 0 0.430 
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Table 4: Throughput to a filtrate DOC of 30%, 50% and 80% of the feed concentration (BV30, BV50 and 
BV80 respectively) for the GAC media studied by RSSCT, waters A and B, EBCTLC = 20 minutes. 

GAC 

media 

WTW A WTW B 

BV30 BV50 BV80 BV30 BV50 BV80 

COL-L900 355 946 10,710 4,467 8,284 >>23,980 
F400 858 1,775 10,030 8,402 12,308 >>23,980 
208EA 1,301 4,704 >>22,194 7,455 13,728 >>23,980 
XC30 2,514 5,059 >>22,194 14,911 23,964 >>23,980 
DEO <<267 <<267 503 <<1,302 <<1,302 1,302 
HT5 355 946 8,047 3,875 7,633 >>23,980 
FY5 <<267 <<267 1,242 <<1,302 2,041 8,284 
Brimac 858 1,775 17,101 5,798 11,657 >>23,980 
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