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broken panicles to get the final panicle number. With extensive experimental results, the MHW-PD has achieved ~87% of 
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Highlights 

 
（1） A counting algorithm is developed for in-field rice panicles with high density. 

 
（2） The appropriate CNN is chosen by analyzing receptive field and panicle size. 

 
（3） A MHW is calculated quantitatively to maximize the richness of panicle 

feature. 

（4） A fusion module is involved to remove the repeated counting of broken 

panicle. 

（5） Stability and robustness of MHW-PD is demonstrated by several experiments. 

li2106
Text Box
Computers and Electronics in Agriculture, Volume 173, June 2020, Article number 105375DOI:10.1016/j.compag.2020.105375



1 MHW-PD: a robust rice panicles counting algorithm based on 

2 deep learning and multi-scale hybrid window 

 
3 Xu Can1, Jiang Haiyan1, 2*, Peter Yuen3, Zaki Ahmad Khan1, Chen Yao1 

 
 

4 1 College of Information science & Technology, Nanjing Agricultural University 

 
5 Nanjing 210095, Jiangsu, China 

 
 

6 2 National Engineering & Technology Center for Information Agricultural, 

 
7 Nanjing Agricultural University Nanjing 210095, Jiangsu, China 

 
 

8 3 Electro-Optics & Remote Sensing, Centre for Electronics Warfare, Information & 

 
9 Cyber (CEWIC), Cranfield University, Swindon, U.K 

 
 

10 Abstract 

 
11 In-field assessment of rice panicle yields accurately and automatically has been one of 

 
12 the key ways to realize high-throughput rice breeding in the modern smart farming. 

 
13 However, practical rice fields normally consist of many different, often very small 

 
14 sizes of panicles, particularly when large numbers of panicles are captured in the 

 
15 imagery. In these cases, the integrity of panicle feature is difficult to extract due to the 

 
16 limited  panicle  original  information  and  substantial  clutters  caused  by  heavily 

 
17 compacted leaves and stems, which results in poor counting efficacy. In this paper, we 

 
18 propose a simple, yet effective method termed as Multi-Scale Hybrid Window Panicle 

 
19 Detect (MHW-PD), which focuses on enhance the panicle features to detect and count 

 
20 the large number of small-sized rice panicles in the in-field scene. On the basis of 
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21 quantifying and analyzing the relationship among the receptive field, the size of input 

 
22 image and the average dimensions of panicles, the MHW-PD gives dynamic strategies 

 
23 for choosing the appropriate feature learning network and constructing adaptive multi- 

 
24 scale  hybrid  window  (MHW),  which  maximizes  the  richness  of  panicle  feature. 

 
25 Besides, a fusion algorithm is involved to remove the repeated counting of the  broken 

 
26 panicles to get the final panicle number. With extensive experimental results, the 

 
27 MHW-PD  has  achieved  ~87%  of  panicle  counting  accuracy;  and  the  counting 

 
28 accuracy just decreases by ~8% when the number of panicles per image increases 

 
29 from 0 to 80, which shows better in stability than all the competing methods adopted 

 
30 in this work. The MHW-PD is demonstrated qualitatively and quantitatively that is 

 
31 able to deal with high density of panicles. 

 

32 Keywords Rice; Panicle counting; Deep learning; Multi-Scale Hybrid window; 

33 Faster-RCNN; 

 

34 1 Introduction 

 
35 The main diet of the population in Asia is predominately rice, thus the monitoring 

 
36 of rice yield accurately is crucially important to the growers for the prediction of 

 
37 harvest and the development of strategic growth plan. The yield of cereal crops, such 

 
38 as rice, is largely determined by three agronomic indicators: the kernel number, the 

 
39 seed setting rate and the 1000-grain weight(Slafer et al., 2014). Previous researches 

 
40 (Ferrante et al., 2017; Jin et al., 2017)have shown that the number of kernels per unit 

 
41 area is the most relevant agronomic traits to grain yield. However, this number of 
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42 grains per unit area not only relates to the seed setting rate, but also it is strongly 

 
43 dependent on the number of panicle per unit area. Therefore, it is desirable for the 

 
44 breeders to obtain the number of panicles per unit area quickly and accurately. At 

 
45 present, this is often achieved through counting manually in most rice cultivation or 

 
46 breeding research, which costs huge amount of time and labor. Furthermore, due to 

 
47 the great morphological similarity between different plants in the field, and also the 

 
48 subjectivity  in individual observers,  it is  very  error-prone for  counting rice panicles 

 
49 manually  particularly  in  large-scale  production  scenarios.  Therefore,  a  fast  and 

 
50 relatively accurate automatic counting method is needed: for both production as well 

 
51 as scientific research needs such as phenotyping work. 

 
52 Automatic counting method based on machine vision technology is considered to 

 
53 be an effective alternative to manual counting, and successful precedents such as the 

 
54 counting of plant leaves(Aich et al., 2017; Barré et al., 2017; Dobrescu et al., 2017; 

 
55 Giuffrida et al., 2016) and fruits(Maldonado Jr et al., 2016; Mussadiq et al., 2015; 

 
56 Stein et al., 2016) have been reported. The effectiveness of this automatic counting 

 
57 method is heavily dependent on the ability of the machine to recognize the targets. In 

 
58 terms of automatic counting of rice panicles, the existing panicle recognition  methods 

 
59 can be divided into two main categories: the segmentation technique which bases on 

 
60 colour and/or textural features and the candidate region-based classification methods. 

 
61 Panicle segmentation method (Cointault et al., 2008; Pound et al., 2017) extracts the 

 
62 colour  or  texture  of  the  panicle,  and  the  rice  panicles  are  segmented  from  the 



63 background  before  they  are  counted.  Zhou  et  al.  (Zhou  et  al.,  2018)  employed 

 
64 principal component analysis to extract representative features of wheat from RGB 

 
65 images such as colour, texture and edge for wheat panicle segmentation, and ~80% of 

 
66 count accuracy by using a trained dual support vector machine has been reported. 

 
67 Fernandez  et  al.(Fernandez-Gallego  et  al.,  2018)  proposed  a  fast  low-cost wheat 

 
68 panicle segmentation algorithm which uses Laplacian, Median and Maxima (LMM) 

 
69 filters to remove clutter backgrounds and had achieved good panicle counting results. 

 
70 The panicle segmentation method is of a low computational complexity algorithm but 

 
71 the result is sensitive to the illumination conditions of the imagery data (Guo et al.,  

72 2015). 

73 The candidate region classification is the method that clusters features over the 

 
74 spatial  domain.  The  key  of  the  algorithm  is  the  generation  of  candidate regions, 

 
75 through features such as color or texture and the candidate regions are subsequently 

 
76 formed by using the hysteresis threshold of the I2 color plane (Duan et al., 2015) and 

 
77 the Laws texture energy over the input image(Qiongyan et al., 2017). This method 

 
78 eliminates  more  of  the  clutter  background  than  that of the segmentation approach, 

 
79 hence it achieves better counting accuracy to some extents. Alternative approach that 

 
80 utilizes  superpixel  technique  for  improving  the  quality  of  the  candidate  region 

 
81 generation  through  better  preservation  of  boundary  information  and  to  reduce 

 
82 boundary  adhesions,  has  been  widely  explored(Lu  et  al.,  2016).  Some  authors 

 
83 employed simple linear iterative clustering for the generation of superpixel and then 



84 classified the region candidates using convolutional neural network (Xiong et al., 

 
85 2017) or classifier trained based on colour feature(Du et al., 2019). Further study 

 
86 using more effective segmentation method that utilize superpixel in different scales 

 
87 and couple with a trained linear regression model for counting different varieties of 

 
88 rice panicles has also been reported(Olsen et al., 2018). 

 
89 The recent work had made the better use of the powerful feature learning 

 
90 capabilities of the CNN (Convolutional Neural Network, CNN). More sophisticated 

 
91 feature  learning  that  utilizes  a  full  convolution  network  for  counting  field wheat 

 
92 spikelet have reported a counting accuracy of about 86%(Alkhudaydi et al., 2019). 

 
93 Other method(Hasan et al., 2018) used the R-CNN(Girshick et al., 2014) for wheat 

 
94 panicle identification counting, for the object detection algorithm focus on solving the 

 
95 composite problem of classification and localization. The latest work(Madec et al., 

 
96 2019)  introduced  the  Faster-RCNN(Ren  et  al.,  2015)  method  into  wheat  panicle 

 
97 counting and got a 91% counting accuracy. For the rice panicles we focus on, they 

 
98 will droop due to their self-weight on the maturity-stage, which means the crowded 

 
99 panicles cram together with leaves and even occluded by leaves locally. Meanwhile, 

 
100 the size of the panicles in the image tends to reduce when high density of panicles, 

 
101 e.g. >50 panicles/image, is captured by the camera. In this case, the very limited 

 
102 information  (color/textural/spatial)  of  the  panicle,  which  is  embedded  closely  in 

 
103 substantial  amount  of  clutter  background,  greatly  reduces  the  feature  learning 

 
104 efficiency of the existing object detection algorithms(He et al., 2015; Liu et al., 2016; 



105 Redmon et al., 2016; Redmon et al., 2017) and inevitably resulting in large counting 

 
106 error. Thus, there is a real need to develop a new auto approach to allow a rapid 

 
107 counting of the scene with large number of small-sized rice panicles per image. 

 

108 2 Principles and designs of the MHW-PD for panicle counting 

 
109 2.1 Analysis of application of Faster-RCNN 

 
 

110 Faster-RCNN is one of the representative detection algorithms based on 

 
111 regions(Han et al., 2018), which features the strengths of algorithmic structures like 

 
112 that of the RCNN(Girshick et al., 2014), the SPP-Net(He et al., 2015) and the Fast- 

 
113 RCNN (Girshick, 2015). As shown in Figure 1, Faster-RCNN has capabilities such as 

 
114 feature  learning,  candidate  region  generation,  target  classification  and  positional 

 
115 frame generation. When Faster-RCNN learns feature based on a CNN, one important 

 
116 point is the receptive field, which is defined by the region in the input space that 

 
117 corresponds to any pixel on a particular CNN’s feature map. In the circumstances 

 
118 when train a model to make classification and location, the receptive field of every 

 
119 position on the feature map have to span over all the anchors that the target/object 

 
120 represents.  Otherwise  the  feature  vectors  of  the  anchors  will  not  have  enough 

 
121 information to make predictions, leading some objects missed by detection model. 

 
122 This is particular true when the target in question is relatively small in physical size in 

 
123 comparison  to  that  of  the  background  objects,  for  example,  the  small-sized  rice 

 
124 panicles here in our scenario. 
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Fig. 1 Outlines the schematic layout of the Faster-RCNN network 

 
 

125 2.2 Overall design of the MHW-PD 

 
 

126 The objective of the paper is to report an adaptive multi-scale hybrid window 

 
127 (MHW) pre-processing technique to enhance the signal to noise ratio of the panicle 

 
128 features in the input image, and to couple it with Faster-RCNN network to achieve 

 
129 robust counting accuracy for the large number of small-sized panicles in image. For 

 
130 the  problem  of  information  loss  in  the  process  of  learning  small-sized  panicles 

 
131 feature,  we  firstly  designed  a  dynamic  mechanism  for  selecting  feature  learning 

 
132 network, which is based on the relationship between the size of the rice panicle and 

 
133 the dimension of the receptive field. Secondly, we dynamically calculated the hybrid 

 
134 windows in different scales by partitioning the image into subsections by quantifying 

 
135 the  relationship  between  the  input  image  size  and  the  feature  learning  network 

Image 

... 
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Num 

136 parameters.  This  helps  to  reduce  the  background  complexity  by  suppressing  the 

 
137 clutter  background  particularly  when  the  number  of  rice  panicles  increases.  The 

 
138 framework of MHW-PD (Figure 2) consists of the following work flow: a) select 

 
139 feature  learning  network  dynamically;  b)  calculate  the  structure  of  the  hybrid 

 
140 windows; c) train the automatic rice panicle counting model based on the Faster- 

 
141 RCNN; d) fuse the same rice panicle which has been partitioned into several entities 

 
142 to remove the multiple counting; e) output the final number of rice panicles count of 

 
143 the test image. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 The schematic layout of the MHW-PD for the robust detection and counting of rice panicles 

 

144 2.2.1 Selection of the feature learning network 

 
145 Feature learning is the technique that iteratively abstracts the semantic and 

 
146 position information of the target from the image data and converts them into feature 
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147 maps. The extracted features are dependent on the layer property and thus the 

 
148 receptive field of a layer can be given by equation (1) (Ren et al., 2018). 

 

149  𝑆𝑅(𝑡) = (𝑆𝑅𝐹(𝑡 ‒ 1) ‒ 1)𝑁𝑠(𝑡) + 𝑆𝑓(𝑡) (1) 

 

150 Where 𝑆𝑅𝐹(𝑡) and 𝑁𝑠(𝑡) are the receptive field size and the step size of the 𝑡𝑡ℎ 

 

151 convolution layer, and 𝑆𝑓(𝑡) is the size of filter of the 𝑡𝑡ℎ convolution layer. The 

 

152 ideal dimension of the receptive field is a delicate balance between clutter noise and 

 
153 the integrity of the extracted feature. In the present Faster-RCNN experiment, the 

 
154 relationship  between  the  receptive  field  of  the  feature  learning  network  and   the 

 
155 object/target has been set as in equation (2): 

 

 

156  
𝑆𝑅𝐹(𝑡) 𝑆𝑜𝑏(ℎ𝑜𝑏𝑗,𝑤𝑜𝑏𝑗) ≈ 1

 

 

(2) 

 

157 Where 𝑆𝑜𝑏𝑗(ℎ𝑜𝑏𝑗,𝑤𝑜𝑏𝑗) represents the size of the object to be detected, and ℎ𝑜𝑏𝑗 and 

 

158  𝑤𝑜𝑏𝑗 respectively represent the length and width of the minimum circumscribed 

 

159 rectangle of the target to be detected. According to equation (2), the ideal dimension 

 
160 of the receptive field is ideally to be about the same as that of the targets (i.e. the rice 

 
161 panicles). According to equation (1), the dimensions of the receptive field of the last 

 
162 convolutional layer of the most popular networks, such as the Alex-Net(Krizhevsky et 

 
163 al.,  2012),  ZF-Net(Zeiler  et  al.,  2014),  VGG16-Net(Simonyan  et  al.,  2014)  and 

 
164 Google-Net (Szegedy et al., 2015) are tabulated in Table 1. The average sizes (length 

 

165 × width) of rice panicles in the image data that have been selected for this work is 

 

166 about 260×180 pixels. Thus the VGG16 network which features a receptive field of 

 
167 212×212 may present a closer match to the average panicle dimensions of the data 



= + 1 𝐴 𝐴 

𝐻(𝑡) 

𝐻 + 𝑆(𝑡) + 2 ∗ 𝑆𝑝(𝑡) 𝑁𝑠(𝑡) 

= 
𝑊 + 𝑆(𝑡) + 2 ∗ 𝑆𝑝(𝑡) 

+ 1
 𝑊(𝑡) 𝑁𝑠(𝑡) 

168 that utilized in this work than other networks. Therefore, the VGG16 network and the 

 
169 classification layer have been selected as the feature learning network in this work. 

170 Table 1. Tabulated the receptive field of different nets for the 800×600 pixels input image 

Net name Reception field of the last layers 𝑆𝑅𝐹/𝑆𝑜𝑏𝑗 

 

ZF-Net 139×139 0.41 

Alex-Net 195×195 0.81 

VGG16-Net 212×212 0.96 

Google-Net 224×224 1.07 
 

171 2.2.2 Design of the Multi-scale Hybrid Window (MHW) Structure 

 
172 Targets are generally regarded as small when they are less than 32×32 pixels or 

 
173 when their length and width are smaller than a tenth of that of the image where they 

 
174 are contained. The construction of a multi-scale hybrid window by partitioning a 

 
175 picture into sub-images will tend to enhance the proportions of the object features 

 
176 with respected to the background within the sub-image, especially when the objects 

 
177 are small. The richer of the target feature will enhance the discrimination ability of the 

 
178 RPN  to  identify/propose  the  anchors  to  be  foreground  or  background  thereby 

 
179 improving the detection efficiency. The design of the MHW structure involves the 

 
180 considerations of: i) the various sizes of hybrid windows needed for a given input 

 
181 image, ii) the number of window layers and iii) the selection of layers that are the 

 
182 most suitable to the ranges of various input image sizes. 

 
183 The largest hybrid window that can theoretically be constructed in each layer of 

 
184 the n-layer feature learning network can be given by equation (3): 

{    185 𝑡 = 1,2,…,𝑛 (3)



186 Where 𝐴𝐻(𝑡) and 𝐴𝑊(𝑡) represent the length and width of the 𝑡𝑡ℎ feature map of the 

 

187 feature learning network respectively, 𝐻 and  �� represent the length and width of 

 

188 the original raw image respectively, and 𝑛 is maximum number of layers in the 
 

189 feature learning network. 𝑁𝑠(𝑡) is the step size of the 𝑡𝑡ℎ convolution layer, and 𝑆𝑓 

 

190  (𝑡) is the size of the filter of 𝑡𝑡ℎ convolution layer , and 𝑆𝑝(𝑡) is the expansion of 

 

191 the 𝑡𝑡ℎ convolution layer. The optimal input image size is given in equation (4): 

 

 
192  { ℎ𝑖𝑛 

 ℎ𝑜𝑏𝑗 𝑇1 

 
 

 
0.1 < 𝑇1 < 1 

 

 
(4) 

𝑤𝑖𝑛 
𝑤𝑜𝑏𝑗 𝑇2 

0.1 < 𝑇2 < 1 

 

193 where ℎ𝑖𝑛 and 𝑤𝑖𝑛 represent the length and width of the optimum input image 

 

194 dimensions; ℎ𝑜𝑏𝑗 and 𝑤𝑜𝑏𝑗 represent the length and width of the smallest rectangle 

 

195 of the object to be detected respectively; 𝑇1 and 𝑇2 represent the ratio of the length 

 

196 and width of the object respected to the dimensions of the input image respectively. 

 
197 The  optimal  dimensions  of  the  multi-scale  hybrid  window  structure  can  then be 

 
198 deduced as shown in equation (5): 

 
199  

ℎ𝐻𝑊(𝑖) = 𝐴𝐻(𝑡) 𝐴𝐻(𝑡)   ∈ (ℎ𝑚𝑖𝑛,ℎ𝑚𝑎𝑥) 𝑤𝐻𝑊(𝑖) = 𝐴𝑊(𝑡) 𝐴𝑊(𝑡)   ∈ (𝑤𝑚𝑖𝑛,𝑤𝑚𝑎𝑥) 

 𝑖 = 1,2,…,𝑝 & 𝑡 = 1,2,…,𝑛 (5) 

 

200 When there are 𝑝 layers of multi-scale hybrid windows, ℎ𝐻𝑊(𝑖) and 𝑤𝐻𝑊(𝑖) 

 

201 represent the optimal length and width of the 𝑖𝑡ℎ layer respectively; (ℎ𝑚𝑖𝑛,ℎ𝑚𝑎𝑥) and 

 

202  (𝑤𝑚𝑖𝑛,𝑤𝑚𝑎𝑥) represent the possible range of the optimal length and width of the input 

= 

= 

{



 

203 images that will produce the best learning and classification performances. 

 
204 2.2.3 MHW fusion 

 
205 One of the drawbacks for partitioning the input image into sub-images is the 



206 panicle  may  be  unintentionally  cut  into  several  parts  in  different  sub-images. To 

 
207 eliminate the repeated counting of the same panicle that resides in various sub-images 

 
208 during the prediction stage, a fusion algorithm is designed to detect the occurrence of 

 
209 the  panicle  that  has  been  subdivided  into  parts.  A  simple  way  to  correct  this 

 
210 unintentional partition of the target object is to check the vicinity of all the predicted 

 
211 boxes. A simple spatial distance monitor algorithm has been implemented to check 

 
212 the vicinity of all the predicted location boxes: if two predicted boxes are adjacent or 

 
213 very close to each other while their sum of size (height× length) is close to the 

 
214 average panicle size, e.g. when they are say <10 pixels apart and sum is between 

 
215 130×90 pixels and 390×270 pixels (from 1/2 to the 3/2 of the average panicle size), 

 
216 the boxes pairs will be merged into one by adopting the largest vertices of the corner 

 
217 coordinate as illustrate in Table 2 and Figure 3. 

218  Table 2. The Mini-Code of the Fusion Algorithm for recombining dissected rice panicles 

Input：(𝑥1𝑛,𝑦1𝑛,𝑥2𝑛,𝑦2𝑛): the coordinates of the left upper and right lower vertices of the panicle detected in 

sub-windows 

Output：(𝑥1 ' ,𝑦1 ' ,𝑥2 ' ,𝑦2 ' ): the coordinates of prediction boxes fused 𝑚 𝑚 𝑚 𝑚 

For(𝑘 = 1;𝑘 ≤ 𝑛;𝑘 ++ ) 

For(𝑡 = 1;𝑡 ≤ 𝑛;𝑡 ++ ) 

If (|𝑥1𝑘 ‒ 𝑥2𝑡| < 10 && |𝑦1𝑘 ‒ 𝑦2𝑡| < 2ℎ) || (|𝑦1𝑘 ‒ 𝑦2𝑡| < 10 && |𝑥1𝑘 ‒ 𝑥2𝑡| < 2𝑤)|| 

(90 < (|𝑦1𝑘 ‒ 𝑦2𝑘| + |𝑦1𝑡 ‒ 𝑦2𝑡|) < 270)||(130 < (|𝑥1𝑘 ‒ 𝑥2𝑘| + |𝑥1𝑡 ‒ 𝑥2𝑡|) < 390) 
(𝑥1 ' ,1 ' ,𝑥2 ' ,𝑦2 ' )=  (𝑚𝑖𝑛 (𝑥1 ,𝑥1 ),𝑚𝑖𝑛 (𝑦1 ,𝑦1 ),𝑚𝑎𝑥 (𝑥2 ,𝑥2 ),𝑚𝑎𝑥 (𝑦2   ,𝑦2 )) 

 
 

219  

𝑚 𝑚 𝑚 𝑚 

m++; 

𝑘 𝑡 𝑘 𝑡 𝑘 𝑡 𝑘 𝑡 



 

 

 
Result before fusing Result after fusing 

Fig. 3 Illustrated the fusion of vertically dissected rice panicles 

 

220 3 Construction of dataset and model 

 
221 3.1 Image data acquisition 

 
222 The rice variety chosen is ‘Nanjing46’ and all images were acquired in Nanjing, 

 
223 Jiangsu Province, China. The field consisted of a widely cultivated rice variety with 

 
224 planting scheme of 3-5 seedlings per hole and 30×12 cm spacing between plants.  The 

 
225 imaging was performed using random viewing angles at objective distances of ~60 

 
226 cm  towards  the  rice  plant  using  a  Canon  EOS  70D  camera  with  resolutions   of 

 
227 4032×3024  pixels.  The  images  contain  various  numbers  of  small-sized  panicles 

 
228 ranging   from   50-90   per   image,   which   have   shown   the   complex  interaction 

 
229 relationship between different rice plants. As shown in Figure 4, there were 141 

 
230 images  and  126  images  acquired  under  normal  (9:00  am)  and  strong  (2:00  pm) 

 
231 illumination conditions respectively. The picture of the rice panicle appears in yellow 

 
232 color, and the full image is filled with large number of light greenish rice leaves 

 
233 together with shadows due to the oblique illumination angle and partially due to the 

 
234 leaf occlusions. The average dimensions (length × width) of panicles in the image 

 

 

 

(x1k,y1k) 

 

 

 

(x2k,y2k) 

 

 
 

 

 

 

 

 
 

  

(x1t,y1k) 

(x2k,y2t) 



235 data is about 260×180 pixels after selecting 200 independent panicles randomly and 

 
236 calculating  the  average  size  (length× width)  of  their  minimum  circumscribed 

 
237 rectangles. 

 

(a) Normal illumination (b) Intense illumination 

Fig. 4 Sample of have been taken under different viewing angles and illumination conditions 

238 3.2 Multi-scale hybrid window dataset construction 

 
239 3.2.1 Calculate the structure of the MHW 

 
240 The average size of rice panicle in the data set is about 260×180 pixels which is 

 
241 less than one-tenth of the image size with occupancy about 0.4% of the full picture. 

 
242 This gives the most appropriate dimensions of the input images ranging between 

 
243 260×180 pixels and 2600×1800 pixels as according to equation 4. As mentioned in 

 
244 section 2.2.1, the VGG16 network has been chosen because it is more effective to 

 
245 learn the features of objects particularly those with physical dimensions like that in 

 
246 our data set. The optimal dimensions of each layer of the multi-scale hybrid window 

 
247 can be assessed through equation 5, which gives the topmost 3 layers to be ideally 

 
248 having   2016×1512   pixels,   1008×756   pixels   and   504×378   pixels respectively. 

 
249 Although theoretically the more of the network layers the richer that the features can 

 
250 be  learned,  however,  it  is  a  balance  between  performance  and  computational 



251 complexity. When the layer with input images of sizes 504×378 pixels, it contains 

 
252 utmost only a few rice panicles which may not be economical in view of the amount 

 
253 of the extra computational and labeling workload involved. Hence, only the two  extra 

 
254 topmost layers have been utilized in this work. 

 
255 3.2.2 Formation of the MHW dataset 

 
256 Among the 267 rice pictures collected, 130 of those (~50%) were randomly 

 
257 selected as the training set, and 57 pictures (~20%) were used as the validation set and 

 
258 the remaining 80 pictures (~30%) was used as the test data set. There is no data 

 

259 overlap among the training, validation and test sets. For the model training, we only 

 
260 construct the MHW dataset for the training set and the validation set. Conventional 

 
261 subsampling using a fixed scheme for altering image dimensions(Ghiasi et al., 2016) 

 
262 may not be desirable when the problem in question consists of targets in various sizes. 

 
263 Here,  for  each  image  in  the  training  and  validation  data  set,  the  raw  image  at 

 
264 4032×3024 pixels resolution (hereafter referred as R1) is divided along the length and 

 
265 width in 4 and 2 equal parts respectively to form a four and sixteen units of sub- 

 
266 images  respectively.  Then  these  4  sub-images  at  2016×1512  pixels  resolution 

 
267 (hereafter referred as R2), and 16 at 1008×756 pixels resolution (hereafter referred as 

 
268 R3)  together  with  the  raw  image  are  collectively  termed  as  multi-scale  hybrid 

 
269 windows (MHW). Alternative MHW partition schemes which select different layers 

 
270 to train the model (such as R1 & R2, R2 & R3) have also been utilized in the 

 
271 experiment. 



272 3.2.3 Target labeling schemes 

 
273 The labeling of MHW images for training and validation dataset has been 

 
274 performed  manually  by  recording  the  coordinates  of  the  minimum circumscribed 

 
275 rectangle of the panicle, using the annotation software named ‘LabelImg’. In the case 

 
276 of  panicles  that  have  been  partitioned  into  several  parts,  all  parts  are  labeled as 

 
277 independent rice panicles. In the case of the rice panicles that are occluded by leaves, 

 
278 only the exposed parts are labeled as independent panicles. For panicles that are 

 
279 overlapping to each other, the front panicles are labeled as independent target while 

 
280 the rear part will be marked only if they are visible. Figure 5 shows some examples of 

 
281 annotation schemes that have been adopted in this work. 

 

(a) Independent panicles (b)   Panicles covered by leaves (c) Overlapping panicles 

Fig. 5 Examples of manual annotations of panicles 

282 3.3 Configuration of test dataset for experiments 

 
283 The remaining 80 raw pictures at resolution of 4032×3024 pixels (i.e. at ‘R1’) in 

 
284 the section 3.2.2 was termed as the ‘Dataset_test’ in this paper. Each image in the 

 
285 Dataset_test was then partitioned equally into 16 sub-images giving a total of 1280 

 
286 pictures   at   1008×756   pixels   (i.e.   at   ‘R3’),   which   is   collectively   referred as 



287 ‘Dataset_test_1’. The number of panicles in the picture of Dataset_test_1 ranges from 

 
288 0-20. By merging two of the adjacent neighboring sub-images of the 16 partitioned 

 
289 images of the raw pictures produces 4×80 of new images at resolution of 2016×1512 

 
290 (i.e.  at  ‘R2’).  All  these  sub-images  were  then  sorted  into  another  two  data  sets 

 
291 (Dataset_test_2 and Dataset_test_3) as according to the number of panicles in the 

 
292 imagery as illustrated in Table 3. These 3 data sets provide a range of different 

 
293 number (and hence different sizes) of panicles as targets for the classifiers to detect 

 
294 (and count) under various degrees of background cluttering. 

 
295 Images of rice panicles collected in real fields are normally exhibit blurring and 

 
296 discoloring  due  to  the  complicated  environment  in  the  rice  field.  Imaging  such 

 
297 complex  scene  by  using  limited  depth  of  view  optical  systems  under  various 

 
298 illumination  geometries,  will  result  in  some  objects  that  are  out-of-focus  and/or 

 
299 discolored due to the variable irradiance and also targets at various depth across the 

 
300 scene. As mentioned image data had been collected at two different solar irradiances: 

 
301 one at 9 am (thereafter referred as ‘normal’ illumination) and also at 2 pm (thereafter 

 
302 referred as ‘intense’ illumination). Another data set, termed as the ‘Dataset_test_4’ 

 
303 which is organized in four categories of a) in-focus & normal illumination, b) in-focus 

 
304 &  intense  illumination,  c)  blurry  &  normal  illumination  and  d)  blurry  & intense 

 
305 illumination. 

306 Table 3. Description of the datasets that have been employed in this study 

Composition of Dataset 
Name of the 

Datasets Category 
Size of Image 

Pictures in Dataset 

Number of Pictures 

in Dataset 



 

 

 

 
 

Dataset_test_2 

 

 

 

 

 

 

 

 

 

 

 
 

Dataset_test_4 

 

 

 

307 3.4 Construct the automatic rice panicle counting model 

 
308 3.4.1 Computational hardware and platform 

 
309 All processing performed in this work was carried out by the AMAX's PSC- 

 
310 HB1X deep learning workstation which consisted of an Intel(R) E5-2600 v3 CPU 

 
311 with clock speed of 2.1GHZ, 128GB DRAM, 1TB hard disk and with a GeForce 

 
312 GTX Titan X graphics card. The operating environment was Ubuntu 16.0.4, Caffe, 

 
313 Python 2.7. 

 
314 3.4.2 Model training 

 
315 The proposed MHW-PD network consists of three parts: the feature learning 

 
316 network, the candidate region generation network and the detection network (Figure 

 
317 6).  The  feature  learning  network  utilizes  the  VGG16  network  but  without  its 

 
318 classification  layer.  The  region  generation  network  traverses  the  feature  map 

 
319 (stride=1) with a 3×3 convolution kernel and a 9 candidate region with three aspect 

 
320 ratios of 1:1, 2:1 and 1:2 to indicate the high probability of target (panicle) presence is 

Dataset_test Original test images 4032×3024 80 

Dataset_test_1 Cut in 16 equal parts 1008×756 1280 

0~10(panicle number in sub-window image) 1008×756 205 

11~20(panicle number in sub-window image) 

21~30(panicle number in sub-window image) 

1008×756 

1008×1512 

108 

70 

31~40(panicle number in sub-window image) 1008×1512 41 

41~50(panicle number in image) 4032×3024 22 

51~60(panicle number in image) 4032×3024 22 

Dataset_test_3 61~70(panicle number in image) 4032×3024 16 

71~80(panicle number in image) 4032×3024 9 

81~90(panicle number in image) 4032×3024 7 

In-focused & Normal illumination 1008×756 67 

In-focused & Intense illumination 

Blurry & Normal illumination 

1008×756 

1008×756 

72 

62 

Blurry & Intense illumination 1008×756 74 



  

+ 𝜆 

𝑖 𝑡 𝑖 

321 generated by the proposal layer. The detection network uses a convolution operation 

 
322 with a convolution kernel size of 1×1 and a sliding step size of 1 to achieve full 

 
323 connectivity. 

 

 
Feature learning 

Proposal 

generation 

 
Detection 
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Note:Conv3_64 represents convolutional layers with 3*3 convolution kernel and 64 channels, 

and so on; pool/2 represents max pooling layer with 2*2 pooling window; Proposal represents a 

predictive box with a fixed size; and Softmax represents a Trainable softmax classifier. 

 

Fig. 6 Schematic Structural configuration of the proposed MHW-PD network 

 

324 The VGG16 network is trained through the optimization of the loss function 

 
325 using the stochastic gradient descent (SGD) method for the identification of panicles, 

 
326 and the location of the targets are obtained through the regression model. We set the 

 
327 batch-size and iteration steps to 128 and 80000 respectively, and the learning rate 

 
328 changes from 0.001 to 0.0001 after iteration steps reaches 50000. The loss function 

 
329 consists  of  contributions  from  the  classification  and  regression  loss  as  shown  in 

 
330 equation (6): 

 

331  ({𝑃 },{𝑡 } =
 1 ∑ 𝐿 ( , ∗ ) 

 1 ∑ 𝑃 ∗ 𝐿 (𝑡 ,𝑡 ∗ ) (6) 𝑖 𝑖 𝑁𝑐𝑙𝑠 𝑖   𝑐𝑙𝑠 𝑖 𝑖 𝑁𝑟𝑒𝑔 𝑖 𝑖 𝑟𝑒𝑔 𝑖 𝑖 
 

332 Where the 𝑁𝑐𝑙𝑠 represents the mini-batch size of training, 𝑁𝑟𝑒𝑔 represents the 

 

333 generated number of candidate regions, 𝑖 is the anchor number, the weighting 
 

334 parameter λ is set as λ=10. The 𝑃𝑖 is the probability of the anchor point being as 

 

335 target, and when the anchor point is predicted as positive the corresponding 𝑃 ∗ 

 

336 value is given as 1 and otherwise it is 0 if the anchor is negative. 𝑡𝑖 and ∗
 

 

337 represent the coordinates of the upper left and lower right vertex of the predicted 



𝑖 𝑖 𝑖 
|𝑡𝑖 ‒ 𝑡 ∗ | ‒ 0.5 |�� – 𝑡 ∗ | ≥ 1 𝑖 𝑖 

338 bouncing box respectively. 𝐿𝑐𝑙𝑠 and 𝐿𝑟𝑒𝑔 are the logarithmic and robust regression 

 

339 loss respectively: 
 

340  Lcls(Pi,P ∗ ) =‒ log [P ∗ P + (1 ‒ P ∗ )(1 ‒ P )] 
(1)  

i i    i i i 

{0.5(𝑡𝑖 ‒ 𝑡 ∗ )2 |�� – 𝑡 ∗ | < 1 
 

 

342 3.5 Performance assessment indexes 

 
343 The counting accuracy and the false detection rate have been utilized as the 

 
344 performance indexes in this work. The counting accuracy (𝑃𝑐) refers to the ratio of 

 

345 detecting the correct number of panicles to the actual number of panicles; while the 

 
346 false detection rate (𝑃𝑒) is the ratio of the detection error (false positive) to the actual 

 

347 number of panicles (ground truth) in the imagery data set: 
 
 

348 𝑃𝑐 = 𝑁𝑐𝑜𝑟/𝑁𝑟𝑒𝑎𝑙 (9) 

349 𝑃e = 𝑁𝑒𝑟𝑟/𝑁𝑟𝑒𝑎𝑙 (10) 

 

350 Where 𝑁𝑐𝑜𝑟 and 𝑁𝑒𝑟𝑟 are the correct (true positive) and wrong (false positive) 

 

351 number of panicles detected by the model respectively, and 𝑁𝑟𝑒𝑎𝑙 represents the 

 

352 actual number of panicles in the test sample. 

 
353 Prior to the accuracy assessment, the repeated counting of the same panicle from 

 
354 the MHW partitioned pictures is firstly evaluated. This is achieved through the 

 
355 assessment of the repetition ratio (𝑃𝑟𝑒𝑝) as shown in the equations (11), (12) and (13): 

 

356  Prep = 
 ∑𝑘 

Nrep 

N 
(11) 

i = 1 subi 

 

357 Nrep = ∑𝑘
 Nsubi ‒ Ncor  

(12) 

𝑖 341 𝐿 (𝑡 ,𝑡 ∗ ) = 
(8) 

𝑟𝑒𝑔 𝑖 𝑖 



i = 1 



 

358 

 𝑃𝑟𝑟𝑒𝑝 = 

∑𝑘 

i = 1 
𝑁𝑠𝑢𝑏𝑖 ‒ 𝑁𝑟𝑒𝑝 𝑁𝑡𝑒𝑟𝑝 

 
(13) 

 

359 where Nrep represents the number of the repeated panicles that has been removed by 

 

360 the fusion algorithm; 𝑁𝑠𝑢𝑏𝑖 is number of the detected panicle in the 𝑖𝑡ℎ sub-window; 

 

361 k is the total number of the sub-windows in the picture; 𝑁𝑐𝑜𝑟 represents the number 

 

362 of panicles detected after image fusion; 𝑃𝑟𝑟𝑒𝑝 is the de-duplication rate and 𝑁𝑡𝑒𝑟𝑝 is 

 

363 the number of the panicles that have been counted repeatedly. 

 

364 4 Results 

 
365 4.1 Parameters that affect the performances of classifier 

 
366 Based on the hardware mentioned in section 3.4.1, it cost about 0.102s to test a 

 
367 sub image for our model. In addition, to testify how the performance of the classifier 

 
368 is affected by the receptive field of the network, the number of layers in the hybrid 

 
369 windows and the effectiveness of the proposed MHW image partitioning method, two 

 
370 different ways of sample preparations have been utilized: 

 

371 A．MHW partitioning method (see section 3.2) 

372 B．Down-sampling method (DS): 

373 a. Each image in the training and validation data sets (i.e. the Dataset_test) is 

 
374 down-sampled by a factor of 2 from the raw resolution of R1 into R2, which 

 
375 is then down-sampled again into R3. The down sampling was done through 

 
376 Laplacian filtering method (Ghiasi et al., 2016). 

 
377 b. This method does not exploit any window partitioning. 

 
378 The experiment was performed using one to three layers of the MHW, two 



379 different networks (ZF and VGG16) which had receptive fields to target size ratio (SRF 

 

380 /Sobj) of 0.4 and 0.96 respectively (see Table 1), and data prepared with (i.e. the 

 

381 MHW method) and without window partitioning processing (i.e. the DS method). The 

 

382 averaged  counting  accuracy Pc over 3 experimental runs using pictures of 

 

383 dataset_test_1 is shown in Table 4. 

384 Table 4. Average panicle detection results under various network configurations 

Number 

of MHW 

 
Resolution of 

MHW layer 

𝑷𝒄/% (Average ± 𝐒𝐓𝐃) 
 

 

Down sampling (DS) MHW 

 

 

 

 

 

 

2016×1512 

 

 

 

 

 

 

 

 

 

 

 

385 Firstly, it is noted that the reduction of the layer resolution from R1 (4032×3024 

 
386 pixels) to R3 (1008×756 pixels), e.g. when the single layer of MHW of the VGG16 

 
387 network is used, the panicle counting accuracy is increased from 38.1% to 61.2%. 

 
388 This  is  an  almost  60%  better  detection  when  the  layer  is  in  lower  (i.e.  at  R3) 

 
389 resolution. This trend of enhancement in panicle counting accuracy is seen regardless 

 
390 whether the data set was prepared with or without window partitioning. Secondly, the 

 
391 detection performance by the VGG16 network is ~5% better than that of the ZF 

 
392 network. This apparent small difference observed from the well matched receptive 

layers  ZF VGG16 ZF VGG16 

1 4032×3024 31.0% ± 0.37% 34.7% ± 0.37% 37.4% ± 1.12% 38.1% ± 0.56% 

1 2016×1512 38.7% ± 0.96% 42.3% ± 0.37% 45.2% ± 0.37% 47.7% ± 0.56% 

1 1008×756 50.2% ± 0.55% 53.5% ± 0.56% 58.4% ± 0.37% 61.2% ± 0.56% 

4032×3024 
2 41.6% ± 1.10% 

 

44.7% ± 1.12% 

 

47.9% ± 0.56% 

 

50.2% ± 0.55% 

4032×3024 
2 53.5% ± 0.56% 

 

56.5% ± 1.17% 

 

63.0% ± 0.92% 

 

66.7% ± 0.56% 

 
 

2 

1008×756 

2016×1512 

1008×756 

 

63.5% ± 0.73% 

 

72.9% ± 0.92% 

 

73.1% ± 0.76% 

 

78.1% ± 0.73% 

 4032×3024     

3 2016×1512 74.8% ± 0.37% 78.5% ± 0.36% 83.3% ± 0.92% 87.2% ± 0.37% 

 1008×756     



393 field of the VGG16 comparing to the very mismatched ZF network, is mainly due to 

 
394 the mixture of panicle densities in the current employed dataset_test_1. The proposed 

 
395 MHW enhances more of detection accuracy when the target sizes are small, i.e.  when 

 
396 the  densities  of  panicles  are  high  (see  section  4.2).  Thirdly,  when  the  image 

 
397 partitioning technique is applied (i.e. the MHW method) there is 14.4% increase in the 

 
398 counting accuracy in comparison to the detection that performed using non-image 

 
399 partitioning technique (i.e. the DS method). This can be seen, e.g. from the 61.2% 

 
400 accuracy given by the single layer of MHW of the VGG16 that uses input data at R3 

 
401 resolution, in direct comparison to that of 53.5% obtained from the down-sampling 

 
402 (DS) method. Note that this ~14% of performance enhancement by using MHW is not 

 
403 a  representative figure  because of  the  mixed  panicle  densities in the dataset_test_1 

 
404 that  has  been  employed  in  this  experiment.  Fourthly,  it  is  well-known  that  the 

 
405 increasing number of the MWH layers improves the detection performance in general, 

 
406 which can be seen from Table 4 that there is over 40% increase of panicle counting 

 
407 accuracy when the number of layers is increased from 1 to 3. Despite of using the 

 
408 image data set (i.e. the dataset_test_1) that contains a mixture of different panicle 

 
409 densities, the results presented in this section indicate that the use of multi-scale 

 
410 hybrid windows enhances the feature learning capacity of the network, particularly 

 
411 when the target sizes in the imagery is closely match to the receptive field of the 

 
412 feature extraction network. 



413 4.2 Effectiveness of MHW-PD for the detection of large number of panicles 

 
414 Followed by the positive results given by the previous section, the experiment 

 
415 here  is  aimed  at  assessing  how  effective  is  the  proposed  MHW-PD  for  the 

 
416 identification of different number (i.e. density) of rice panicles of the scene which is 

 
417 presented by the input imagery data. This section examines the proposed method 

 
418 vigorously by assessing the ability of the proposed MHW-PD method for counting 

 
419 high number of panicles (i.e. small target size), and, to compare its performance with 

 
420 respected to various existing algorithms. Three competing methods: a) the technique 

 
421 that based upon filtering using Laplacian, Median and Maxima (LMM) 

 
422 filters(Fernandez-Gallego et al., 2018); b) the Panicle-Seg(Xiong et al., 2017) which 

 
423 segments  rice  panicles  (i.e.  identification)  using  super-pixel  clustering  and  CNN 

 
424 classification and c) the Faster-RCNN that performs panicles detection without any 

 
425 window partitions; had been utilized here to verify the usefulness of the proposed 

 
426 MHW technique for enhancing the extraction of features particularly those from small 

 
427 targets. Both Dataset_test_2 and Dataset_test_3 had been used as the test data for all 

 
428 classifiers employed in this experiment. All competing classifiers had been trained 

 
429 using the 130 pictures of the training data set which were in R1 resolution (i.e. 

 
430 4032×3024 pixels), while the proposed MHW-PD was trained using the partitioned 

 
431 images in 3 different scales as described in section 4.4.1. All experiments were based 

 
432 on the VGG16 and they were repeated 3 times. The abilities in terms of the averaged 

 
433 counting accuracies and error detection rates of all classifiers to cope with scenes (i.e. 



Panicle false detection rate of different algorithms 
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434 images) which contain various numbers of panicles are plotted in Figure 7. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) The Counting accuracy of the MHW-PD and together with other competing algorithms as a function of 

number of panicle/picture 

 

 

 

 

 

 

 

 

 

 
2.9% 3.7% 5.2% 5.3% 6.1%4.1% 6.5%4.4% 5.1 

2.6% 3.3% 3.5% 3.6% 

 

 

 

 

(b) The false detection rate of the MHW-PD and the other competing algorithms as a function of number 

of panicle/picture 

Fig. 7 The Detection results of the MHW-PD and together with other competing algorithms to demonstrate 

the effectiveness of the proposed method particularly when high numbers of panicles are present in the scene 

435 Figure 7 displays a rather astonished picture which exhibits the robustness of the 

 
436 classifiers to the increasing complexity of the rice field conditions vividly. At a glance 

 
437 there are two rather distinct trends that can be observed: one is the rapid decreasing 

 
438 detection  performance,  in  the  order  of  ~40%,  when  the  number  of  panicles  is 
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439 increased from ~10 to ~50 in the scene. The other obvious trend is the very robust 

 
440 detection performance, with a slight drop of ~8% even when the panicle number in 

 
441 the scene is increased to 70-80/picture. The latter result is given by the proposed 

 
442 MHW-PD method which utilizes a pre-processing technique with the classification 

 
443 unit invariant to other competing methods (e.g. the Faster-RCNN). 

 
444 One point to note is the direct comparison between the performances of the 

 
445 proposed MHW-PD with respected to the Faster-RCNN: in both cases the processing 

 
446 networks  are essentially the  same, however,  the  panicle classification performances 

 
447 between  these  two  seemingly  the  same  network  are  completely  different.  The 

 
448 averaged detection accuracies given by the Faster-RCNN and the MHW-PD for the 

 
449 scenes with panicle number <40 (i.e. when the target sizes are much larger than 

 
450 260×180  pixels)  are  62.6%  and  90.8%  respectively.  This  is  almost  45%  better 

 
451 detection by the MHW-PD when the panicle sizes are relatively large. However, the 

 
452 same two  techniques  for classifying  the  scenes with panicle number between 40 and 

 
453 80 give the averaged accuracies of 41% and 87% respectively. This is over 110% of 

 
454 better  detection  by the  proposed  MHW-PD when the  panicle  sizes are  small   (i.e. 

 
455 smaller than the average size of 260×180 pixels). 

 
456 Figure 8 depicts representative classified images of the rice panicle scenes 

 
457 obtained by using the proposed MHW-PD method. The wide range of target sizes, as 

 
458 depicted by the huge variations of areas of the bouncing boxes from large in Figure 

 
459 8(a) to very small in Figure 8(e), highlights the increasing complexity of the scene 



460 which induces higher clutter background and the increasing difficulties to extract the 

 
461 feature of small targets faithfully as that depicted in Figure 8(d) & (e). This result may 

 
462 give another evidence that the detection capability of the propose MHW-PD method 

 
463 is robust against high number (density) of panicles in the rice field. 

 

(a) 0-10(Numbers of panicles in picture) 

 

 
(b) 11-20(Numbers of panicles in picture) (e) 71-80(Numbers of panicles in picture) 

 

(c) 21-30(Numbers of panicles in picture) (d)   31-40(Numbers of panicles in picture) 

Fig. 8 Sample of pictures to illustrate the effectiveness of the proposed MHW-PD for the detection of  

various sizes of panicles in the scene 

464 4. 3 Robustness of MHW-PD against numbers of panicles in the scene 

 
465 This section highlights how the proposed MHW-PD enhances the detection of 



466 small target in the imagery data over the conventional classification routine. Here, the 

 
467 ‘small’ target in this work is referred to the relative size (in pixel unit) of the target 

 
468 object with respected to the pixel dimension of the input images. Figure 9a illustrates 

 
469 the typical classification result produced by the classifier (Faster-RCNN) in which the 

 
470 dimension of the input test image is at R1 resolution (i.e. 4032×3024 pixels). It is seen 

 
471 that  some  small  panicles  have  been  missed  out  in  this  classification  result.  The 

 
472 classification of the same test image after it is partitioned into 4 sub-windows (at R3 

 
473 resolution) exhibits much better detections as it is illustrated in Figure 9b. After the 

 
474 removal of duplicated counts of dissected panicles at the boundary of sub-windows 

 
475 through the fusion algorithm, the end result as depicted in Figure 9c shows much 

 
476 better detection than that of Figure 9a. At a glance over Figure 9a and Figure 9c, one 

 
477 may notice immediately the distinct difference of the sizes of the panicle bouncing 

 
478 boxes between these two figures: more small bouncing boxes can be spotted from the 

 
479 MHW-PD result (Figure 9c). 

 

 
(a) Result without cutting (b)   Results of HW after cutting (c) Result after fusing 

Fig. 9 Demonstrate the effectiveness of the MHW-PD system 



480 Since the sub-window fusion plays an essential part in the overall performance of 

 
481 the MHW-PD, the robustness of the fusion algorithm over increasing complexity of 

 
482 the  scene  was  investigated  here.  The  experiment  was  designed  to  evaluate  the 

 
483 detection performance of the algorithm for a range of assorted number of panicles in 

 
484 the data set (Dataset_test_3). The repetition ratio (𝑃𝑟𝑒𝑝) is to measure the probability 

 

485 of panicles being counted repeatedly, while the de-duplication rate (𝑃𝑟𝑟𝑒𝑝) represents 

 

486 the ability of the fusion algorithm to remove the repeated counts. It can be seen from 
 

487 Figure 10 that 𝑃𝑟𝑒𝑝 is rather constant in the medium density (number) of panicles 

 

488 and it increases slightly at high number of targets in the scene. The 𝑃𝑟𝑟𝑒𝑝 also 

 

489 exhibits rather steady performance at ~95% removal rate when the panicle number 

 
490 <90, but it tends to decrease slightly to ~92% at high end of >100 panicles in the 

 
491 scene. This result may give another support towards the robustness of the proposed 

 
492 MHW-PD system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10 Highlight the robustness of the 𝑷𝒓𝒆𝒑 and 𝑷𝒓𝒓𝒆𝒑 of the MHW-PD against the number of panicles 
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493 4. 4 Robustness of MHW-PD against illumination and imaging artefacts 

 
494 As shown in figure 8(e), it is observed that the detection results in the top of this 

 
495 image are obviously worsen than the bottom part. During the course of this work, we 

 
496 found that the bottom of images were sharp (in-focused) while the top part were 

 
497 blurry  and  fuzzy.  To  understand  the  robustness  of  our  counting  model  when the 

 
498 quality  of  the  input  images  was  subjected  to  various  degree  of  blurriness  and 

 
499 shadowing artefacts, the Dataset_test_4 had been used as the test data (see Table 3), 

 
500 which  consisted  of  field  images  subjected  to  various  degree  of  blurriness  and 

 
501 shadowing and taken under normal (i.e. weak shadowing) and intense (i.e. strong 

 
502 shadowing)  illumination  conditions.  The  number  of  panicles  per  picture  in  the 

 
503 Dataset_test_4 was <20. The experiments were run 3 times based on VGG16 to 

 
504 obtain the mean detectio2n accuracy and the associated standard deviation errors. 

 
505 Typical images of the classification outputs from the MHW-PD for the detection of 

 
506 panicles from the dataset_test_4 which contains blurry and strong shadowing  pictures 

 
507 are  shown  in  Figure  11.  The  average  counting  accuracies  and  the  average  false 

 
508 detection rates for the panicle detections of this data set are tabulated in Table 5, 

 
509 which reveals that the hard shadowing imposed by the intense illumination does not 

 
510 affect the detection efficiency significantly. However, there is ~24% drop of detection 

 
511 when the input images for testing are blurry. This may indicate that the fuzziness of 

 
512 the input image does affect the extraction of textural features as expected. 



    
 

(a) Distinct samples under normal illumination (b) Distinct samples under intense illumination 
 

 
(c)   Blurred samples under normal illumination (d) Blurred samples under intense illumination 

Fig. 11 To illustrate the Detection of panicles under various illumination and imaging conditions 

513 Table 5. Average detection accuracies for images taken under various illumination and imaging conditions 

Quality of input 

image data 

 
Illumination conditions 

𝑷𝒄/% (Average ± 𝐒𝐓𝐃 

) 

 𝑷𝒆/% (Average ± 𝐒𝐓𝐃) 

 

 
In-focused pictures 

 

 

 

 
 

Blurry pictures 

Normal (weak) illumination 94.5% ± 0.78% 

Intense (strong) illumination 92.4% ± 0.37% 

Mixture of Normal & Intense 
93.4% ± 0.51% 

illumination 

Normal (weak) illumination 70.1% ± 0.89% 

Intense (strong) illumination 68.5% ± 1.08% 

Mixture of Normal & Intense 
69.3% ± 0.46% 

illumination 

1.6% ± 0.26% 

2.0% ± 0.16% 

 
1.8% ± 0.07% 

 
3.3% ± 0.42% 

3.5% ± 0.34% 

 
3.4% ± 0.27% 

 
 

 

514 5 Discussions 

 
515 This work has reported a method (MHW-PD) to count the in-field small-sized 

 
516 rice panicle and function robustly independent of the panicle density. Based on the 

 
517 results given by the series of experiments, it is suggested that the dynamic strategies 

 
518 for network selection multi-scale hybrid windows construction tend to enhance the 



519 feature learning capacity of the small-sized panicles and eliminate the impact of the 

 
520 increase in the number of rice panicles. Compared to the  pure counting method based 

 
521 on thermal imagery (Fernandez et al., 2019), it should be noted that, the individual 

 
522 rice panicle images can be segmented easily since their positions are predicted by 

 
523 MHW-PD. It means more phenotypic traits can be analyzed further in detail, such as 

 
524 the length of panicle, the radian of panicle, the number of panicle grains, the disease 

 
525 spot or the saturation of panicle grains and so on. In addition, the result of 87% is an 

 
526 average accuracy of different clarities, illuminations, occlusions and panicle numbers 

 
527 per image. While most of the current phenotypic studies focus on indoor potted rice, 

 
528 which means more stable imaging conditions (no fuzzy panicles), fewer panicles and 

 
529 less occlusion in the image. Thus, we suppose the MHW-PD can meet the needs of 

 
530 phenotypic  researchers  to  some  extent  for  mining  the  relationship  from  traits  to 

 
531 genotypes,  while  there  are  also  some  limitations  and  practical  issues  we  have to 

 
532 consider when the MHW-PD applied in real situations, which may constitute research 

 
533 directions that will be pursued in the future work. 

 
534 (1) MHW-PD against occlusions. Occlusion has been one of the main factors that 

 
535 affect the performance of panicle counting, which may come from the high plant 

 
536 density and drooping, particularly when the assessment method is based on image 

 
537 recognition technology. In this section, 3 different kinds of occlusions have been 

 
538 studied: a) independent panicle when there is no obstruction, b) occlusion by leaf and 

 
539 c) overlapping panicles. The data set that been utilized in this experiment consisted of 



540 <20  panicles/picture  and  the  training/testing  conditions  of  the  MHW-PD network 

 
541 were the same as the previous experiments. Sample pictures of detection results for 

 
542 the identification of panicles in the data set that consists of these 3 types of occlusions 

 
543 are shown in Figure 12, and their averaged detection accuracies are tabulated in table 

 
544 6.  The  result  has  shown  quite  clear  that  the  detection  is  strongly  affected  by 

 
545 occlusions which causes some ~30% degradation of panicle accuracies with respected 

 
546 to the unobstructed base line, when the target panicle is occluded by leaves. Worse 

 
547 still is a ~60% drop in the detection accuracy when panicles in the scene are self- 

 
548 occluded. This large drop in detection efficiency is the inability of the classifier to 

 
549 discriminate   the   overlapped   panicles   and   in   most   cases,   it   misclassifies  the 

 
550 agglomerated entity as one panicle (see Figure 12b). The occlusion by leaves is not as 

 
551 severe as that of the self-occlusion as long as the panicle sizes are relatively larger 

 
552 than the leaf blades. However, the detection is seen worse when small panicles are 

 
553 occluded by the leaves or when large part of the panicles are covered by leaves (see 

 
554 Figure 12c). The very limited amount of features is not sufficient enough for the 

 
555 classifier to discriminate the leaf and panicle. 

556 Table 6. Results of images with different occlusions 

Types of Occlusions 𝑷𝒄/% 𝑷𝐞/% 

Independent panicles（114 images） 95.5% 1.2% 

Panicles partially covered by leaves 

（52 images） 
62.8% 6.3% 

 
 

overlapping panicles（46 images） 37.8% 29.4% 

557  



   

(a) Detect results of independent panicles 

(b) Detect results of overlapping panicles 

   

(c) Detect results of panicles covered by leaves 

Fig. 12 Illustrate the detection by the MHW-PD for the panicles that are subjected to various occlusions 

 

558 (2) MHW-PD against different imaging heights. Panicle size is the most important 

 
559 factor to consider when we designed the MWH-PD. However, when it comes to the 

 
560 different imaging heights, the main effect is the change of average panicle size. For 



561 example, if the images taken at a higher/lower altitude, the number of panicles will 

 
562 rise/fail sharply while the panicle size become smaller/bigger in the single image. Our 

 
563 ideal is selecting feature learning network which can effectively perceive a complete 

 
564 panicle and constructing the multi-scale hybrid windows which can extract the multi- 

 
565 scale  panicle  features.  Therefore,  in  order  to  ensure  the  application  effect  of the 

 
566 MHW-PD,  we  have  to  design  different  reasonable  image  acquisition  schemes 

 
567 (viewing angles, depth of field, focusing ability and optical aberrations et al.) for 

 
568 different particular imaging heights, which can ensure the panicle size is enough to 

 
569 find a matching feature learning network. At this time, the gap caused by different 

 
570 heights can be filled easily by selecting suitable network and constructing suitable 

 
571 MHW. However, we do not mean the MHW-PD can be applied under any heights 

 
572 because the sizes of the reception fields of the existing network are limited. From this 

 
573 angle, there may be a possibility to extend MHW-PD from the camera images to the 

 
574 high-resolution UAV images in theory, but more issues need to deal with to realize 

 
575 the  application.  For  example,  the  huge  amount  of  labeling  work  and  some  new 

 
576 processing mechanisms for the blur of panicles caused by the propeller wind when the 

 
577 UAV flew at a very low altitude. 

 
578 (3)  MHW-PD  against  different  rice  varieties.  The  shape  of  panicles  has great 

 
579 influence on detection accuracy, which not only comes from the panicles of different 

 
580 rice varieties, but also from the panicles of same variety during different growth 

 
581 periods. In order to realize large-scale promotion application, we have to solve this 



582 inevitable problem, while it is very different to construct a universal model. Firstly, 

 

583 collecting images of all rice varieties/growth periods and labeling them costs a lot of 

 
584 money and time. Secondly, universal model means we need count and identify the 

 
585 species at same time. For deep learning networks, the great difficulty to solve this 

 
586 problem lies in how we can realize the feature representation of several rice varieties, 

 
587 which  have  small  difference  and  even  some  of  the  difference  is  only  local. The 

 
588 features can not only represent the rice panicles but also have enough differentiation 

 
589 to support the effective fine-grained classification for those different subspecies and 

 
590 varieties of rice. The problem may become even more difficult for the field scenarios 

 
591 because of the interference of complex field noise. One possible solution we now 

 
592 have tried is to iteratively build single model for every variety or growth period and 

 
593 cascade a multi-discrimination model for counting and identifying. 

 

594 6 Conclusions 

 
595 Counting small-sized rice panicles efficiently and accurately by using image based 

 
596 technique has been a challenging task. This paper proposes a new, yet simple method 

 
597 termed as MHW-PD to realize the efficacy of rice panicle counting especially when 

 
598 high number (density) of small-sized rice panicles is involved. The main contribution 

 
599 of this work is to introduce a multi-scale hybrid window (MHW) pre-processing     600   

technique for enhancing the richness of the target feature, and then to maximize the   601 feature 

extraction efficiency of the network through matching the target sizes with the 602 receptive 

field of the network. Through experimental design and result analysis, the 



603 conclusions can be summarized as follows: 

 
604 (1) The proposed MHW-PD can significantly improve the counting  accuracy for the  605

 scene where large numbers of panicles in a signal image. The combined effects of 

606 selecting the appropriate feature learning network and constructing the optimal 607

 hybrid window shown that the average counting accuracy of MHW-PD is 87.2%, 

608 which achieves >110% of detection efficiency better  than  that  of  the  Faster- 609

 RCNN for the dense scenes whose number of panicles is between 50 and 80 per 610

 image. 

611 (2)  The MHW-PD has better stability in counting accuracy for the increasing number 612

 of panicle. When the panicle number  increases  from  10  to  80,  the  counting 613

 accuracy of MHW-PD comes down by 7.6%. 

614     (3) The proposed MHW-PD can be used for infield scenes with hard shadowing      615

 imposed by intensified illumination, while the imaging and occlusion artefacts  616

 will affect the detection efficiency significantly. There is ~24% drop of detection 

617 when the input images for testing are blurry. When the panicles occluded by     618

 leaves and self-occluded with panicles crossing each other, the counting accuracy 

619 is ~30% and ~60% degradation respected to the unobstructed base line. 
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