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SUMMARY

An attempt has been made, in this work, to design an 

efficient, lineat—elastic and elasto-plastic, fracture 

mechanics package based upon fin ite  and boundary element 

methods. The package contains many useful fa c ilities  such 

as, pre- and post-processors, dif ferent types o f  loading 

including inertial and thermal loading, and different  

types o f  fin ite  and boundary elements. New crack-tip  

elements, and efficient algorithms for the analysis o f  

J-integrals, have been derived. Elasto-plastic boundary 

element programs with dif ferent types o f  loading, and 

using a new subregion facility  have also been developed. 

The package was employed for fracture mechanics analysis 

o f some case studies with elastic, thermo-elastic, and 

elasto-plastic conditions, and with one and two modes o f  

fracture. The resu lts  have proved that the package is  very 

reliable and controllable, and new fac ilities  and 

techniques, developed in this work, can provide useful 

tools fo r  fracture mechanics analysis.
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INTRODUCTION
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1.1 G e n e r a l  I n t r o d u c t i o n ;

In many engineering problems, fallure of loaded structures is 

frequently caused by the growth of cracks or crack-like flaws 

in the structure. For complex structures and loading 

conditions, no analytical solution is available for failure 

prediction due to  the difficulty encountered in evaluating the 

field parameters a t  the crack tip. Therefore, numerical methods 

such as the finite element method CFEMl and the boundary 

element method CBEM} are more likely to be considered for such 

situations.

The usefulness of linear-elastic fracture mechanics CLEF Ml and 

the elasto-plastic fracture mechanics CEPFM5 has become widely 

recognized in the current trends towards the design of large 

and small size structures, with the increasing use of high 

strength materials, and with the development of welding 

techniques.

Fracture mechanics parameters such as s tre ss  intensity factors, 

./-integrals, and crack-opening displacements have become 

important parameters when evaluating the strength of a cracked 

structure, since they can represent the strength of the s tre ss  

field a t the crack tip and have critical values which determine 

whether or not the crack will propagate.

In the past, fracture mechanics parameters had been calculated 

for some geometrical shapes of cracks by using various 

analytical and experimental methods. However, such resu lts are 

limited to geometrically simple shapes of cracks and 

structures.

Engineering problems with more complex shapes and boundary 

conditions may require investigation by means of methods 

offering greater flexibility than existing analytical and 

experimental techniques. The major two of such methods are the 

finite element method and the boundary element method, and
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their accuracy and efficiency for the s tre ss  analysis of two 

and three dimensional problems are now undenied.

1.2 O b j e c t i v e s  o f  t h e  W ork;

Using the finite element method and the boundary element method 

to solve fracture mechanics problems may require special

elements and additional facilities. These elements and

facilities are not fully recognized in most of the commercial

packages available on the market, especially the boundary

element packages. Therefore, the main objective of this work is 

to develop an efficient finite element and boundary element 

package specially designed to deal with s ta tic , elastic and 

elasto-plastic, two-dimensional, problems of fracture 

mechanics. Other complementary objectives are summarized as 

follows:

x. Special isoparametric finite and boundary crack-tip 

elements are to  be developed and implemented in the

package.

2 . Facilities for efficient meshing, such as transition

elements and transition blocks are to be included in the

programming package.

3 . The package would be capable of dealing with different 

types of loading, such as concentrated, pressure, 

inertial, centrifugal and thermal loading.

4 . Efficient solvers such as the frontal solver are to be 

employed in the package.

5 . Due to the sensitivity of the BEM to the geometrical shape 

of the problem and the applied loading and boundary

conditions, an attempt should be made to  improve the



accuracy of the boundary element elastic and

elasto-plastic solutions. A subregion technique is to be 

employed for both elastic and elasto-plastic analyses. 

Efficiency measures aiming a t  reducing computer CPU time 

and/or human being effo rt should also be considered.

<5. Methods for the calculation of fracture mechanics

parameters will be thoroughly investigated so as to 

improve their accuracy, and new ideas should also be

explored.

7. Relevant pre- and post-processing facilities are to be

developed for efficient mesh generation, plotting and

useful graphical representation of results.

8 . Developed programming facilities must be thoroughly 

validated so as to  assure the reliability of the 

programming package.

p. Some case studies will be analyzed aiming at, evaluating

the efficiency of the package developed, and making a

useful comparison between finite element and boundary 

element techniques.

1.3 L a y o u t  o f  t h e  T h e s i s :

This work is based upon three basic aspects, finite element 

methods, boundary element methods, and their applications to 

fracture mechanics. The thesis s ta r ts  with a general 

introduction and a summary of the basic objectives of the work. 

A detailed literature  review of the development of different 

fracture mechanics aspects is summarized in the next chapter.

For the completion of the thesis material, the basic principles 

of s tre ss  analysis, linear-elastic fracture mechanics, and
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elasto-plastic fracture mechanics are reviewed in chapter 3. 

However, a separate chapter, chapter 4, is devoted to  the 

discussion of a generalized derivation for the .J-integral 

parameter, and some interesting ideas will be introduced there.

A review of the basic theory of the finite element method for 

linear-elastic, and elasto-plastic, fracture mechanics analysis 

is presented in chapter 5, together with the derivation of some 

efficient crack-tip finite elements.

Chapter 6 contains a summary of the theory of the boundary 

element method for elastic and elasto-plastic analyses. Some 

accuracy measures, together with the subregion technique will 

be explained.

The use of the finite element and boundary element results for 

the calculation of various fracture mechanics parameters is 

investigated in chapter 7. Some interesting new ideas for 

improving the accuracy of those parameters are also introduced.

It was not possible to describe the details of the programming 

package developed in this work without exceeding volume limits. 

Hence, i t  was decided to present a brief description of the 

basic programs constituting the package, in chapter 8.

Different validation cases and other case studies are described 

in chapter 9, together with their results obtained by means of 

the package compared, according to  each case, with 

corresponding solutions available in the literature.

Finally, the major conclusions and recommendations for future 

work are summarized in chapter 10.



C H A P T E R  2

LITERATURE REVIEW
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2 .1  G e n e r a l  R e v ie w  i n  F r a c t u r e  M e c h a n ic s :

The earliest, investigation into fracture mechanics would appear* 

to be th a t of Leonardo da Vinci, in his study mentioned in 

Ref .Ell. The study dealt with the variation of the failure 

strength of iron wire, using different lengths of wire with the 

same diameter.

I t was mentioned in Ref .123, th a t in 1835 Lloyd and Hodkinson 

studied the same effects but for the case of iron bars. I t was 

until 1939, when i t  was explained by Weibull, using s ta tis tica l 

analysis, th a t those effects were due to flaws in material 

under te s t  CRef.3J.

The f ir s t  attempt a t applying a mathematical approach to 

fracture was carried out by Inglis in 1913 CRef.43, followed by 

Griffith in 1920 CRef.53, and then Westergaard in 1939 CRef.63.

The main work of Inglis lies in the determination of the s tre ss  

around a hole in a plate, the hole being elliptic in form. He 

claimed th a t the results obtained were exact and consequently 

applicable to the extreme limits of the form which an ellipse 

can assume.

Griffith CRef.53 formulated the well-known concept th a t an 

existing crack will propagate if  thereby the to ta l energy of 

the system is lowered. He assumed th a t there is a simple energy 

balance, consisting of a decrease in elastic stra in  energy 

within the stressed body as the crack extends, counteracted by 

the energy needed to create the new crack surface. His theory 

allows for the estimation of the theoretical strength of 

b rittle  solids and also gives the correct relationship between 

fracture strength and defect size.

Westergaard CRef.63 treated  crack problems by employing the 

complex variable technique. He used a complex s tre s s  function 

which satisfied the nominal requirement of compatibility 

Chi—harmonic equation} in order to  determine the displacements 

and s tresses  in the immediate neighbourhood of a crack in an
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infinite plate subjected to a remote bi-axial stress.

Griffith's concept was f ir s t  related to  b rittle  fracture of 

metallic materials by Zener and Hollomon in 1944 CRef.73. Soon 

afte r, Irwin ERef.83 pointed out th a t a Griffith-type energy 

balance should exist between the stored strain  energy and the 

surface energy plus the work done in plastic deformation. Irwin 

also recognized th a t for relatively ductile materials the 

energy required to  form new crack surface is generally 

insignificant compared to  the work done in plastic deformation, 

and he defined a material property G as the to ta l energy 

absorbed during cracking per unit increase in crack length and 

per unit thickness. This parameter was called the ’energy 

re lease  rate* or * crack, dtrixring farce*.

In the middle of 195Gs Irwin CRef.93 contributed another major 

advance by showing th a t the energy approach is equivalent to 

the s tre ss  intensity approach, according to which fracture 

occurs when a critical s tre ss  distribution ahead of the crack 

tip is reached. The material property governing fracture may 

therefore be sta ted  as a critical s tre ss  intensity K , or in 

terms of energy as a critical value Ĝ .

Demonstration of the equivalence of G and K has provided the 

basis for the development of disciplines for linear-elastic 

fracture mechanics CLEF Ml. This is because the form of the 

s tre ss  distribution around and close to a crack tip is always 

the same.

The beginning of elasto-plastic fracture mechanics CEPFMcan 

be traced to the early development of LEFM, notably Wells's 

work on crack opening displacement CCODJ), which was published 

in 1961. However, the greater complexity of the problems of 

analysis has unavoidably led to somewhat slower progress. EPFM 

is still very much an evolving discipline.

During the seventies numerical methods such as the finite 

element method CFEM5, and later on the boundary element method 

CBEM5 have provided greater flexibility than the existing
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analytical techniques in analyzing engineering problems with 

more complex shapes and loading conditions. For fracture 

mechanics problems special finite and boundary element 

formulations have been developed. The development of such 

formulations as well as the development of fracture mechanics 

techniques will be reviewed in the following sections.

2 .2  R e v ie w  o n  t h e  D e v e lo p m e n t  o f  S i n g u l a r  C r a c k -T ip  E le m e n t s ;

The implementation of the finite and boundary element methods 

in fracture mechanics problems is difficult due to the s tre ss  

field singularity which exists a t the crack tip. The two most

successful methods of approach to solve this problem, would 

appear to  be the so-called energy technique and the singularity 

function formulation.

To overcome the necessity for excessive mesh refinements,

several elements containing the proper form of singularity have 

been developed during 1971 to  1987.

In 1971, Tracey CRef.103 introduced a new type of finite

element, which embodied the inverse square root singularity 

present near a crack in an elastic medium. He selected the

displacement function of the element such th a t the

displacements are continuous everywhere and the near-tip 

displacements are proportional to  the square root of the 

distance from the crack tip.

Blackburn CRef.113, in 1973, developed special singularity 

elements with square root displacement variation radiating from

the crack tip and they conformed with adjacent standard

displacement elements. These elements were extended to three

dimensions by Blackburn and Hellen in 1977 CRef.123.

In 1973, an alternative procedure to achieve the singularity 

has been introduced by Henshell and Shaw CRef.133, as well as 

Barsoum CRef.143. These two references showed independently
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th a t the quadratic isoparametric elements can possess the 

required singularity by moving the mid-side nodes on the two 

sides meeting a t  the crack tip to the quarter points. This 

movement will be carried out in the cartesian plane without any 

effect on element intrinsic shape functions. Hence, Henshell 

and Shaw concluded th a t special finite elements for crack tips 

are not necessary for plane s tre s s /s tra in  analyses, since the 

whole structure can be analyzed using absolutely standard 

8-node elements, where the elements adjacent to the crack tip 

are to  be distorted to  produce the proper singularity.

Barsoum carried out a comparison between two types of those 

elements, and showed numerically th a t the crack-tip 6-node, 

triangular element gives better results than the crack-tip 

8-node, quadrilateral element, because, as he claimed CRef.143, 

th a t the strain  energy of the la ter element is unbounded.

In the same year, Hibbitt CRef.153 offered a possible 

explanation for such behaviour based on the proof th a t the 

strain  energy and hence the stiffness of such a quadrilateral 

element is unbounded.

Tracey and Cook CRef.163, in 1977, described a finite element 

formulation with a special 3-node triangular element encircled 

the singularity and focused to share a common node a t the 

singular point. The shape functions of the element have the 

appropriate r n variation mode «Kn<l> and a smooth angular mode 

expressed in element natural coordinates. The conditions of 

continuity, low order solution capability, and numerical 

integration of the singularity element have been discussed.

In the same year, Barsoum ERef.173 showed th a t the triangular 

and the prismatic quadratic Isoparametric elements, formed by 

collapsing one side and placing the mid-side nodes near the 

crack tip a t the quarter points, contained the 1/Vr singularity 

of elastic fracture mechanics and the 1/r singularity of 

perfect plasticity. He concluded th a t the proposed elements 

have wide applications in fracture mechanics analysis of 

structures where ductile fracture is investigated.
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In 1978, Gallagher Ref .1183 reviewed the past, developments in 

finite element calculation of- design parameters for linear 

fracture mechanics. The component aspects of singularity

element development were identified as stiffness formulation

based on classical-solution displacement fields, polynomial 

displacement fields, and isoparametric concepts as well as

hybrid formulations.

In the same year, Stern and Becker published a paper CRef.193, 

in which the shape functions for a 6-node triangular element 

with Yr displacement field were given. Also numerical results 

were presented, as well as the shape functions for a 15-node 

three-dimensional element.

Also in 1978, i t  was shown CRef.203 tha t, for a 12-node 

quadrilateral isoparametric element, the inverse square root 

singularity of the stra in  field a t the crack tip can be

obtained by collapsing the quadrilateral element into a 

triangular element around the crack tip and placing the two 

nodes of two sides of the triangle a t  1/9 and 4/9 of the length 

of the side from the tip. This was analogous to placing the 

mid-side nodes a t  the quarter points in the vicinity of a crack 

tip for the quadratic isoparametric elements. The authors of 

this reference concluded th a t with this method the displacement 

compatibility is satisfied throughout the region, and there is 

no need for special crack-tip elements.

In 1979, the use of 8-node parabolic isoparametric element as a 

crack-tip element was tested  by Fawkes and Owen CRef.213, who 

demonstrated the use of a hybrid element as a special case for 

the boundary integral method.

In the same year, Heymann CRef.223 reviewed the usefulness of 

the standard elements for fracture mechanics with most emphasis 

being placed on linear elastic plane analysis. He concluded 

tha t the iterative method used by Swedlow in 1978 would still 

be used due to  the inability of linear elastic methods to  

account for the changing of singularity surrounding the crack
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tip, and i t  was an interesting alternative to  use high order 

elements, and to  place nodes iteratively to obtain the correct 

order of singularity.

Also in 1979, Morris and Wait CRef.233 showed how the standard 

transformation for singular isoparametric elements can be 

combined with non-standard reference elements. Such reference 

elements may have nodes which are not symmetrically placed 

along the sides, and they may have curved sides.

Lin and Tong CRef.243, in 1980, formulated special notch 

elements to  account for the singular s tre s s  around the tip of a 

sharp V-notched plate. They concluded th a t the special notch 

elements could be matched compatibly with the standard 

isoparametric elements outside the notch-tip region.

In 1981, Blanford CRef.253 presented a multi-domain boundary 

element formulation for the analysis of general two-dimensional 

plane s tre s s /s tra in  crack problems. The analysis was performed 

using traction singular quarter-point boundary elements on each 

side of the crack tip  with and without transition elements. 

Blanford concluded th a t the use of transition elements in 

conjunction with the traction singular quarter-point elements 

gives improved results with coarse meshes for the mixed mode 

crack problems, while the use of transition elements for mode I  

problems yields approximately the same results as obtained 

without transition elements for both tension and bending crack 

problems.

In 1982, the boundary integral equation method CBIEM5 was used 

for the analysis of centrally cracked plate CRef263. The 

authors concluded th a t a further development and validation 

were necessary before the BIEM could be applied with complete 

confidence to the treatm ent of s tre s s  singularities.

In the same year, Smith and Mason CRef.273 presented a general 

formulation of the boundary element method for applications of 

both straight and curved crack problems in two dimensions. A 

technique was adopted, in which the region was subdivided along
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the line of the crack, and traction singular quarter-point 

elements were used to provide an accurate crack-tip 

representation of displacement and traction. The authors 

concluded th a t the BEM could be applied successfully to  curved 

crack problems, with a recommendation to use traction singular 

quarter-point elements.

Reference C281, presented in 1984, a historical overview on the 

use and development of crack-tip isoparametric elements. Also a 

recommendation was made, concerning the use and installation of 

such elements when modelling a crack tip.

In the same year, Banks-Sills and Bortman CRef.291 re-examined 

the quarter-point 8-node isoparametric serendipity element. 

They concluded th a t the s tresses  were square-root singular in a 

small region adjacent to  the crack tip, and th a t the strain  

energy, and hence the stiffness of the above element were 

bounded. Also they recommended the use of quarter-point 

quadrilateral elements, and claimed th a t these elements yields 

excellent results without any poor behaviour.

In 1985, Wahba CRef.303 investigated special displacement 

crack-tip elements. These elements are based on 6-node 

quadratic triangular isoparametric elements, and have a 

singular s tre ss  proportional to  the reciprocal of the square 

root of the radial distance from the crack tip. The singular 

elements were used in the region surrounding the crack tip, for 

a problem of , an infinite isotropic plate containing . a 

straight-through crack, subjected to  a constant out-of-plane 

bending. Wahba concluded th a t the singular elements have 

satisfied the essential convergence criteria, namely, 

continuity of displacements, inter-element compatibility, 

constant-straln modes, and rigid-body motion modes.

Helien CRef.313, introduced, in 1986, a new approach to match 

the classical crack-tip behaviour of displacements in the 

vicinity of a crack tip. In his approach, instead of using 

special elements containing the tip node and the required 

displacement variations, as given by the classical crack-tip
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equations of elasticity, generalized constraints were specified 

to relate individual degrees of freedom along rays emanating 

from the tip. He concluded th a t the developed relations have 

reflected the classical behaviour and could be extended to  

include a secondary term due to  such effects, as thermal 

strains.

In 1987, Al-Edani ERef .323 studied the use of three types of 

singular isoparametric crack-tip elements using the finite and 

boundary element methods. Also he introduced a new crack-tip 

element, the Lagrangian 9-node quadrilateral element with 

mid-side nodes of two adjacent sides moved to  the quarter 

points. The new element was tested  and a conclusion was drawn, 

th a t the results obtained by using such an element are more 

accurate than those obtained by using the 8-node and the 6-node 

isoparametric crack-tip elements.

2 .3  R e v ie w  o n  t h e  M e t h o d s  o f

C a l c u l a t i n g  S t r e s s  I n t e n s i t y  F a c t o r s ;

Stress intensity factors represent very useful parameters in 

linear-elastic fracture mechanics, since they can be used for 

the description of the s tre ss  field in the vicinity of a crack 

tip. They can also be compared with material critical values to 

assess i ts  strength against b rittle  or sudden failure. During 

the past years, several methods have been developed to 

calculate such parameters.

In 1971, Tracey ERef.101 used the finite element method with 

the inverse square-root singularity elements to calculate the 

s tre ss  intensity factors. He showed th a t by using the above 

elements near the crack tip in two typical crack 

configurations, s tre s s  intensity factors within 5% of the 

accepted values had been obtained, with meshes having as few as 

25 degrees of freedom.



- 1 3 -

Cartwright and Rooke CRef.333, in 1974, developed a 

’compounding* method for* calculating s tre ss  intensity factors 

a t the tips of cracks in structures having complex geometrical 

configurations. This method was based on the systematic 

evaluation of the effects on one particular crack tip  in the

presence of other cracks, holes, and structural boundaries.

In 1977, Mendeison CRef.343 presented a boundary integral 

equation method to calculate the s tre ss  intensity factor 

directly. This BIEM included the crack-tip singularities, so 

tha t the s tre ss  intensity factor became ju s t one more unknown 

in the se t of boundary unknowns, so i t  could be calculated 

directly to avoid the uncertainties of plotting and 

extrapolation. The method was applied to  problems of notched

beams in tension and bending.

Takao and ICawata CRef.353, in 1979, applied the boundary 

collocation procedure to the plane elastic problem of a

rectangular tensile cracked plate with ends being considered as 

free from shear and constrained to  a uniform vertical 

displacement. They concluded th a t for the calculated s tre ss  

intensity factors, i t  seemed th a t there were two characteristic 

effects of the specimen length/width ratio.

Vainshtok ERef.363, in 1980, proposed a procedure of virtual 

crack variation technique for calculating s tre s s  intensity 

factors for mixed mode cracks. He pointed out th a t this

technique was based on curvilinear crack theory developed by 

Cherepanov in 1974 and Hellen in 1975. Also he concluded th a t 

the above procedure had yielded similar results compared with 

the energy method of calculating s tre ss  intensity factors for 

mixed mode cracks.

In 1982, a method for the determination of s tre s s  intensity 

factors of a cracked body using a conic-section simulation 

model of the crack surface was presented in Ref .1373. The 

authors claimed th a t this method has improved the accuracy of 

the s tre ss  intensity factor values, and they mentioned th a t i t  

is simple enough to  be used with most standard isoparametric
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finite element, programs, and it, eliminates the necessity of 

extrapolation to  estimate the s tre s s  intensity factors a t the 

crack tip.

Rooke and Hutchins [Ref .383, introduced, in 1984, an integral 

transform technique to  evaluate s tre s s  intensity factors for a 

crack a t  the edge of a hole subjected, on i ts  perimeter, to  a 

localized force, either radial or tangential. These s tre ss  

intensity factors can be used as numerical Green's functions to  

obtain both K and K s tre ss  intensity factors. They concluded 

th a t th is Green's function technique involves simple summation 

methods which do not require large expensive computing 

facilities and the developed technique and similar techniques, 

have been used successfully to analyze experimental data on 

crack growth under fre tting  conditions.

In 1985, a constrained finite element for the two-dimensional 

crack problems in common with other elliptic problems 

containing a boundary singularity was introduced [Ref .393. The 

method has been summarized such th a t the singularity was 

surrounded by a super element containing a refined mesh whose 

interior nodal values were constrained to agree with the f i r s t  

few terms of the known expansion for the solution. The authors 

claimed th a t the calculation yields the expansion coefficients 

directly, and the method has been applied to determine s tre s s  

intensity factors for a variety of configurations and the 

results are in excellent agreement with those obtained by other 

methods.

In the same year, Walsh and Pipes [Ref .403 used the finite 

element method and the energy release ra te  principle for the 

determination of mode I  s tre ss  intensity factors for selected 

crack configurations. This approach relates the change in the 

strain  energy resulting from crack advancement, to  the change 

in the stiffness matrix of the structure containing the crack. 

The method was tested  and the generated solutions were compared 

with analytical solutions.
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In 1986, Ref .1413 presented a finite element technique to 

calculate mode I  s tre s s  Intensity factors within the framework 

of plane linear-elastic fracture mechanics. Also i t  has been 

shown th a t the ratio  of K for two separate crack problems can 

be approximated by the ratio  of crack opening displacements 

near the crack tips, as obtained from conventional finite 

element solutions.

In the same year, a comparison between three methods for 

calculating s tre ss  intensity factors was shown in Ref.C423. 

These methods were the displacement extrapolation, the 

./-integral and Griffith's energy calculations, and the 

stiffness derivative technique. The authors observed th a t the 

stiffness derivative method yields the most accurate results, 

whereas displacement extrapolation is the easiest method to 

implement and still gives reasonable accuracy.

Also in 1986, Baker and Parker CRef.433 used the boundary 

element method with several methods for calculating s tre ss  

intensity factors in linear-elastic fracture mechanics, the 

methods were based on utilizing the classical crack-tip 

solutions for s tresses  and displacements. They concluded th a t 

the methods based on the displacement values are more accurate 

than the s tre ss  methods, and the displacement extrapolation 

method is consistently accurate for two-dimensional and 

axisymmetric fracture mechanics problems.

2 .4  R e v ie w  o n  t h e  D e v e lo p m e n t  o f  J - I n t e g r a l

a n d  C r a c k  O p e n in g  D i s p la c e m e n t  A p p r o a c h e s ;

The crack opening displacement CCOD5 approach was f ir s t  

introduced by Wells CRef.443 in 1961. The philosophy behind the 

approach is tha t, in the regimes of fracture-dominant failure, 

the s tresses and stra ins in the vicinity of a crack or defect 

are responsible for failure. For practical engineering problems 

the s tresses  always exceed the yield strength a t crack tips and
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plastic deformation occurs. Thus failure is brought about by 

stresses and hence plastic strains exceeding certain respective 

limits CRef.73.

In 1966, Burdekin and Stone CRef .453 provided an improved basis 

for the COD concept. They used Dugdale's s trip  yield model to  

find an expression for the crack opening displacement.

The path independent ./-integral proposed by Rice CRef.463, in 

1968, has been used as a fracture criterion, and as a technique 

for calculating s tre s s  intensity factors, since under LEFM 

conditions, the J  value may be equated to the s tra in  energy

release ra te  G, which can be related by a simple expression to 

the s tre ss  intensity factor K. This technique has now been 

widely recognized and used for both linear and nonlinear

fracture mechanics.

In 1975, Knott CRef.473 discussed the problems in applying LEFM

to the fracture of metals. He mentioned tha t the crack opening

displacement and the ./-integral approaches could be employed to  

characterize fracture in some ways which may be open to  

discussion, but should be tested  by experiment, also the 

calculation of the COD or J  could be carried out using finite 

element techniques, but a part of the assumption is tha t, if  

failure is controlled by fracture in a te s t  piece, i t  is 

controlled by a similar type of fracture in the structure.

In the same year, Turner CRef .483 mentioned th a t the crack 

opening displacement, 6, and the J -integral are two proposals

for describing the s tresses and deformation a t the tip  of a

sharp crack embodied in a region of a yielding material. Also 

he showed tha t the two concepts can be related in the form 

J ■ MY6, where Y is the uniaxial yield s tre ss  of the material, 

and M a factor with value between about 1.0 to 2.5. Finally, he 

concluded th a t either COD or J  offers a reasonable one term

description of the conditions a t the tip of an elasto-plastic

crack.
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In 1979, Ref .1493 presented the path independent ./-integral as 

the energy release ra te  during crack extension, also i t  showed 

the usefulness of the J-integral in fracture problems, where 

numerical values of the ./-integral in the presence of body 

forces, thermal strains, inertia effects, and preloadings were 

evaluated using the finite element method.

In ^the same year, Miyoshi and Shir a t  or i CRef .503 described a 

finite element analysis, which showed the correlation between 

the ./-integral and the crack opening displacement.

Again in 1979, the authors of Ref .1513 investigated 

experimentally and numerically Ct>y means o f the fin ite  element 

method5 the calculation of crack opening displacements from 

crack-mouth opening displacement CCMODD by measuring i t  a t 

different distances from the crack tip, and then by 

extrapolating the results to the crack tip.

In 1980, a method for estimating the dynamic s tre ss  intensity 

factor by using the finite element method and the path 

independent ./-integral was developed CRef.523. The authors 

concluded th a t the results of the computation for the s tre s s  

intensity factors of pure and mixed modes have agreed well with 

analytical solutions published, also they recommended this 

method because i t  does not require neither a fine mesh near the 

crack tip nor an element of special type.

Dodds, Read, and Wellman CRef.533, presented,in 1983, some 

experimental and finite element results for the ./-integral and 

the CMOD response for tensile panels containing short 

single-edge cracks. The experimental ./-integral values were 

obtained by integrating strain  and displacement quantities 

measured along an instrumented contour. The authors concluded 

th a t the short cracks Ca/w<0.25> in tensile panels have a 

radically different ./-integral behaviour than th a t observed in 

te s ts  with more traditional specimen geometries Ca/w>0.5>. Also 

they claimed th a t conventional finite element and limit load 

approaches for ./—integral prediction are inadequate for short
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cracks commonly encountered In practice.

In the same year, Sladek and Sladek CRef .543 formulated 

boundary integral equations, which give the relation between 

the crack opening displacement and the traction on the surface 

of a crack embedded in an infinite isotropic elastic body. The 

integral equations were transformed into spherical and 

cylindrical surfaces respectively, so as to be converted into a 

system of algebraic equations. Also the dependence of the 

s tre ss  intensity factor on the curvature of the cracks has been 

numerically calculated for a spherical crack with a circular 

contour under a constant load.

In 1984, Ref .1553 examined, in preliminary studies, the 

accuracy of solutions obtained by the boundary element method 

based on direct and indirect formulation. Also a formulation of 

the ./-integral calculation by using the indirect method was 

performed, and applications were made on the analysis of a 

number of typical crack problems. The authors concluded th a t 

the ./-integral method has given excellent accuracy for the 

selected problems.

Dodds and Read CRef .563, in 1985, repeated the same study 

carried out by them in 1983 CRef .533, with the introduction of 

a small stiffened zone near the crack tip, and by using 

plane-strain elements. They concluded th a t the results of the 

finite element ./-integral and CMOD values are in a close 

agreement with experimental values, and the large geometry 

changes near the crack tip have a negligible effect on the 

finite element ./-integral and crack-mouth opening displacement 

values.
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2 .5  R e v ie w  o n  t h e  D e v e lo p m e n t ,  o f

Elasei.o-PJLaset.ic Fracture Mechanics Concepts:

In ±969, Zenkiewicz, Valliappan, and King CRef .373 presented a 

general formulation of the e las to-plastic matrix for evaluating 

s tre ss  increments from those of s tresses  for any yield surface 

with an associated flow rule, also an *i.ntial stress*' 

computational process was proposed, which, as the authors

claimed, showed to  give a more rapid convergence than other 

approaches, to permit large load increments without violating 

the yield criteria , and to  establish lower bound solutions. 

Several solutions demonstrated s tre ss  distribution, stra in  

development, and growth of plastic enclaves were presented for 

both von Mises and Coulomb CDrti&erO type yield criteria.

In 1971, the use of the finite element method applied to

elas to-plastic analysis of a cracked plate was demonstrated

CRef.583. In this demonstration , f ir s t ,  the effect of the 

plate thickness on the growth of the plastic zone and the

s tre ss  distributions along the leading edge of the crack tip  

were studied, second, the cyclic behaviour of the element near 

the crack tip and the deformation of the crack surface were

analyzed for pulsating and completely reversed loads.

Tracey CRef .393, in 1976, carried out an incremental plasticity

finite element formulation for the analysis of a complete field 

problem including the extensively deformed eJLasto-plastic 

region near the crack tip, and the remote elastic region. He 

claimed th a t the formulation has general applicability and can 

be used to solve small scale yielding problems for a se t of 

material hardening exponents. The distribution of the COD a t  

the crack tip and through the elas to-plastic zone was presented 

as a function of the elastic s tre ss  intensity factor and

material properties.

In 1979, Ref.C603 presented some results of an elas to-plastic 

finite element analysis on a centrally cracked plate. A 

comparison was made, on features like crack tip plastic zone,
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intensities of plastic s tra in  near the tip, the major principle 

s tre ss  in the crack tip region, crack opening displacements, 

values of the ^-integral, and crack separation energy rates, 

all corresponding to  different biaxial s tre s s  sta tes.

In the same year, Hammouda and Miller CRef .613 showed an 

elasto-plastic analysis of notches. The authors concluded th a t 

i t  is possible to  predict the effect of notch plasticity on the 

behaviour of short propagating cracks, and a crack may 

initially propagate a t  a decreasing ra te  until i t  generates 

crack tip plasticity which is greater than the elastic 

threshold s tre ss  intensity condition.

Pilcer and Ohlson CRef .623, carried out, in 1983, experimental 

and numerical investigations to discuss the relation problems 

between fracture toughness parameters CCOD, J , K I t was found 

tha t generally known relations valid in linear elasticity, can 

be extended into the elasto- plastic range through the use of 

certain factors, which take into account the stra in  hardening 

exponent. The authors concluded th a t the numerical evaluations 

together with the experimental investigations showed th a t the 

measured and calculated plastic components of the clip gage 

displacements suggested a presence of plane-strain during 

experiments, even when some of the requirements of recommended 

testing procedure in the COD testing were not fulfilled.

In 198S, Ref.C633 introduced an elas to-plastic finite element 

analysis for a three-point bend specimen geometry. The 

elas to-plastic parameters, such as CTOD and J, were determined 

from results of 2D and 3D finite element analyses. Analytical 

CTOD values were determined from the finite element model 

displacements. The authors concluded th a t the .7-integral values 

determined from the 2D finite element results using direct 

contour integration were used in conjunction with the 

corresponding CTOD values to develop an improved correlation 

between J  and CTOD for a wide range of material 

characteristics.
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In the same year, a new alternative to  subincrementation

technique for the analysis of solid media with ra te  independent 

elasto-plastic material behaviour was presented CRef .643. The 

new procedure was called the £-method. The authors concluded 

tha t the numerical results obtained for an assortment problems 

by the finite element method had showed an improved numerical 

efficiency.

Again in 1985, Ref.C653 demonstrated the applicability of the 

selective reduced integration/penalty function method for the 

analysis of two and three dimensional fully-plastic fracture

problems. The fully-plastic solutions for cylinders with a 

circumferential through-wall crack, and plates with a 

semi-elliptical surface crack subjected to  remote uniform 

tension were calculated as a function of the hardening

exponent.

Cruse and Polch CRef .663, also in 1985, extended the boundary 

integral equation method of 2D elastic fracture mechanics to 

the elasto-plastic problems. The formulation is based upon a 

special elastic Green's function for the crack, thereby

eliminating the need to model the crack itself. Application of 

the general formulation was made to  problems of localized or 

limited plasticity. The authors concluded th a t, in those

problems, the elastic s tre ss  intensity factor still provides a 

useful characterization for cyclic crack growth predictions.

In 1986, Ref .1673 presented an incremental implicit mechanical 

formulation for elasto-plastic problems, and two numerical 

resolution algorithms of the equation system. The authors 

concluded tha t the solutions obtained with the two algorithms 

are the same, since the mechanical formulation is separated 

from the resolution algorithms, also this method requires less 

computer time than the initial s tre s s  method in the case of 

elasto-plasticity with work hardening, and i t  is easy to 

implement in an elasto-plastic program based on the initial 

s tre ss  method.
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In the same year*, Cruse and Polch CRef.683 republished the work 

they carried out in 1985 CRef .663 with the use of a new 

algorithm for crack-tip plasticity modelling. This algorithm 

was explored for small and large-scale plasticity conditions.

Also in 1986, they presented a paper in two parts. Part one of 

this paper CRef.693 deals with the formulation of a boundary 

integral equation model for fracture mechanics analysis of 

cracked plates, subjected to  elasto-plastic behaviour or other, 

related body force problems. The basis of this formulation 

contrasts with other boundary integral equation elasto-plastic 

formulations, in the use of the Green's function for an 

infinite plate containing a s tre ss  free crack. Part two 

CRef .703 covers the numerical implementation of the developed 

algorithm. An iteration  solution scheme was adopted which 

eliminated the need for recalculation of the boundary integral 

equation matrices. The stability and accuracy of the algorithm 

were demonstrated for an uncracked, notch geometry, and a 

comparison with finite element results was made for a centrally 

cracked panel.

Cruse CRef.713 presented, in 1988, a fundamental treatm ent of 

the boundary integral equation method and its  application to 

fracture mechanics problems. Two and three dimensional, 

elastic, and elasto-plastic formulations and applications were 

presented. He concluded th a t the treatm ent includes of the

past as well as the current boundary element applications to 

fracture mechanics problems.

2 .6  G e n e r a l  D i s c u s s i o n s  a n d  C o n c lu s io n s :

I t is clear from this literature review th a t a great amount of 

experimental, and finite element analyses have been carried 

out, and a variety of approaches and methods have been 

developed to estimate or to find valid relations, which can 

describe or relate certain fracture parameters such as s tre s s
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intensity factors, ^-integrals, crack opening displacements, 

and fracture toughness. Also i t  is clear th a t there is no 

general relation, method, or criterion which can be valid for 

all fracture problems, because of the influence of other 

parameters such as plasticity, yielding, loading conditions, 

crack configurations, and material behaviour. Hence i t  can be 

concluded th a t f  urther investigations and te s ts  whether 

experimental or numerical are s till necessary and required.

Other conclusion remarks can be summarized as follows:

а. A small amount of work for the solution of fracture

problems by the boundary element method, has been carried 

out, compared with th a t based on the use of the finite

element method.

б. A variety of singular crack-tip finite elements have been

developed. The boundary crack-tip elements and the higher

order elements need to  be considered and tested. Singular 

elements with shape-function singularity may be 

advantageous to be developed, since they do not require 

any distortion in the mesh used.

c. The energy method for calculating s tre ss  intensity factors 

ought to be reviewed and tested  against different crack 

configuration and loading conditions.

d. The v/-integral technique should be generalized and applied

to different crack problems with different loading 

conditions, such as inertial loading, thermal strains, and 

elasto-plastic behaviour, with the use of finite and

boundary element methods, because no clear derivation or 

implementation of this technique to the finite or boundary 

element methods has been given in the literature.

e. The use of crack opening displacement technique in finite 

and boundary element methods requires further 

investigations and testing.
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/. Finally, the elasto-plastic fracture mechanics approach 

with the use of finite and boundary element methods 

requires more attention and development, and further 

investigations to  improve the applicability and the 

accuracy of such an approach is s till very much valid and 

required.



C H A P T E R  3

INTRODUCTORY 
CONCEPTS OF FRACTURE MECHANICS
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3.1 I n t r o d u c t i o n :

In the process of designing structural or machine components 

one of the important steps is the selection of the material in 

such a way th a t under given loading and environmental 

conditions the component will perform its  function properly. 

This is usually carried out by applying a ** failure criterion” 

which is in general a comparison of a critical load intensity 

of the component with the characteristic strength parameter of 

the material. I t  is, therefore, clear th a t in order to  predict 

failure of engineering structures, i t  is necessary to 

understand the basic concepts of s tre ss  analysis, 

linear-elastic fracture mechanics, and elasto-plastic fracture 

mechanics, and to  link these via physical principles. Some of 

these concepts are summarized in this chapter.

3 .2  B a s i c  C o n c e p t s  o f  S t r e s s  'A n a ly s is :

3.2.1 Stress:

Consider a three-dimensional body in equilibrium under the 

action of external forces F Cn * 1,2,3,...} as shown inn
Fig.<3.1}. Suppose th a t the body be sliced a t a cross section 

C, with actual internal forces being kept on the surface of the 

cut to maintain equilibrium. Confining the attention to a small 

area 6 A on one of the cut surfaces, the proportion of the to ta l 

internal force over the cross section acting on 6A may be named 

(5F. The force 6F may be resolved into two components, one <5P 

normal to the area, and the other 6Q in the plane of the area 

as shown in Fig.<3.2}. The intensity of these forces Cforce per 

unit area) a t a point is termed the ” s tr e s s ”. There are 

stresses associated with both the normal and the tangential 

components of the force 6F, and these are given by:

direct s tr e s s , a « ZLm, -=-?
(5A-.0 6A

<3.1}
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shear s tre s s , Zim,
i5A-+0

6 Q
6A <3.2)

In general, an infinitesimal prism element within a 

three-dimensional body has both direct and shear s tresses 

acting on each of i ts  six faces. In order to  form a coherent 

reference system i t  is necessary to  resolve the s tre ss  on 

each face in accordance with the coordinate system. This 

produces nine s tre ss  components, which may be represented by 

the following matrix:

a  t  tx xy  xz

t  a  t
yx y yz

T T O'
z x zy  z

where a single subscript indicates a direct s tre ss , and a 

double subscript indicates a shear s tre ss , and from moment 

equilibrium of the element, i t  can be deduced that:

T SB T , T 
zx xz zy

T , T 
yz yx xy <3.3)

For some cases of configurations which possess geometrical or 

loading symmetries i t  may be advantageous to use cylindrical 

polar coordinates as shown in Fig.<3.3). The corresponding 

s tre ss  matrix is given as follows:

O' T T
r r o  r z

T0r ae Qzc.

T T O'z r z o  z

with
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T ® T , T m T , T * T <3.4)
r0  o r 0z z0 2r rz

3.2.2 Equations of Equilibrium:

Consider an infinitesimal element, with sides of lengths 6x, 6y, 

6z, respectively, being subjected to a general s tre s s  system in 

which increments of s tre ss  may occur. If only the forces in the 

x-direction have been considered, then the s tre s s  system is as 

shown in Fig.<3.4). Considering body forces, the equilibrium in 

the x-direction is satisfied by:

do1 dr &r
x + + X m Q C3.5)dx dy dz

Similarly y- and z-directions equilibrium is satisfied by:

da dr dr
y . yz . yx

dy &z dx
<3.6)

da dr dr
z + + Z « 0dz dx dy

where X, X, Z are the body force intensities C/orce per- unit 

uolume) in the x-, y-, and z-directions, respectively.

3.2.3 Boundary Equilibrium:

Consider a structure subjected to  surface loads. Let AA be an 

infinitesimal surface area a t a point on the boundary of the 

structure and A? be the part of the external surface load which 

acts through AA. The traction vector ^ a t  such a point is 

defined as follows:

f  m Zim, <3.7)
AA-,0 AA dA

and i t  can be expressed in terms of i ts  components in the x-, 

y-, and z-directions as follows:
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f  ■ T i + T A + T A C3.8)x y z

Hence, at, any part, or the boundary where there is no acting 

load, i t  can be deduced that:

T -  T m T = 0 <3.9>
x y z

Employing equilibrium conditions between external surface load 

and internal surface s tresses, i t  can be proved that:

T ■* I a + fU, T + 47, T 
x x xy zx

T *= ■£ t  + (Tv o’ + rt r C3.10)
y xy y yz

T =* I t  +  -m, t  + o- o
z zx yz z

where I, n, are the directional cosines of the outside normal

to  the surface a t the considered point.

3.2.4 Strain:

There are many different methods for the definition of the 

direct strain. The simplest and oldest measure for direct 

strain  is the Cauchy's engineering strain , which is defined as 

the ratio of the change of length to the original length, i.e.

AS - AS
£ = -------—----- C3.ll)

1 A S
o

Alternatively, the Green's strain  is defined as follows:

2 2 

AS - AS
£ «    C3.12)

2 2

2 AS
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Considering the different components of strain , a s tra in  matrix

[ £..] can be defined such that:
'-J

2 2

AS - AS - 2  AS1 [ £ 1 AS <3.13>o o tj o

where

£ £ £ 
x xy xz

£  £  yx y yz

£  £  £  
zx zy z

AS ■{ Ax Ay Az V ,

and Ax, Ay, Az are the components of the vector with 

infinitesimal length AS .o

Green's strain  matrix can be defined explicitly in terms of the 

following components CRef.723:

&u,
dx

dy 2

do?

xy

yz

t [ [ £ )  

i [(S)  
i [ ( S ]

1 r do dU; "3
2 [ dx dy J

1
2 [ dy dz J

1 r du do? i
2 [ dz dx J

( £ ) '

m

( £ )

[
[
[ &IL d\L do do

dz dx dz dx

( £ ) ■ ]

( » n

( £ ) ■ ]
du, dti do do do?
dx dy dx dy dx

dii, d̂ x + do do do?
dy dz dy dz dy

do? do? 
dz dx

do? "j
dy J

do? *1
dz J 

]
where xl, o, o? are the displacement components in x-, y~, and

z-directions, respectively.
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Due to the symmetry of -the stra in  matrix [ > it* can be

represented in terms of an engineering 6-component vector £, 

where:

£ { £ £ £ Y y Y \— x y z xy yz zx

and

Y ■ 2 £ ,Y  ■ 2 £ , and y m 2 £xy xy yz yz zx zx

For the special case of two-dimensional problems, the strain  

vector may be reduced to:

£ m \ £ £ y Y C3.14D
— x y xy

and by neglecting the high-order terms, the small-strain or

Cauchy's strain  components may be defined as follows:

d\L do d\L . do
*x = dx * £y ** dy * ^xy * dy dx

Since the three components of strain  are derived from two 

components of displacement for two-dimensional problems, some 

restrains must be placed on ** allowable** strains, the strains 

must be compatible. By differentiating the' components of 

equation <3.14>, the following can be obtained:

d*£ dZ£ dV
* +  y- -  W „ o <3.15>

dy2 dx2 dxdy

The above equation is the compatibility requirement expressed 

in terms of strains.

3.2.5 Stress-Strain Relations:

The relationship between s tre ss  and s tra in  for an elastic 

homogeneous, isotropic material, termed generalized Hooke's 

law, is well known, and for a three-dimensional case i t  is 

given by:
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i> da + a  )  
y z

i> da + a )
z X

1+V
E Tyz >

<3.16)

£ ■ i  T az L i z
v  da + a  )  

x y

where E Is Young's modulus (modulus? o f  elasticity), and i> Is 

Poisson's ratio.

3 . 2 . 6  Plane Deformation:

The problem of evaluation of s tre sses  and displacements a t 

points within a loaded structure is considerably simplified if  

i t  can be assumed, th a t there is no change along the 

z-direction in the distribution of either s tre ss  or strain , 

over the x-y plane. In other words, the displacement components 

\l and v are functions of oc and y only, whilst the displacement 

component u> is either negligible or dependent on xl and v. Such 

cases will be denoted here as "plane? de? formation" cases, and 

the two familiar cases of plane deformation are as follows:

Ca) Plane? srtr-osrs:

This is the s ta te  of s tre ss  which may be assumed to  exist in a 

thin sheet, or plate, which is considered incapable of 

supporting s tresses  through the thickness Cthe s-cfir-ectiori). 

Thus any s tress  having a ■& subscript may be ignored, yielding:

C f hz T  H  t  *  0  < 3 . 1 7 )

which reduces the s tress-s tra in  relationships, equations 

<3.16), to:

z zx zy
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£  ■ ^  " V (7 )x bs x y

1
£ «■ = <c - u o' ) <3.18)

y fc, y  x

1
£? m — <1 + v) r

xy t  xy

Cb) Plans strain:

This case models a plane-symmetric structure which is

sufficiently thick to  prevent through-the-thickness strains. 

Thus with appropriate loading and boundary conditions any 

strain  having a z  subscript may be se t to  zero, giving:

£ wt £ » £ ■ 0 <3.19)
z zx zy

and reducing the s tre ss-s tra in  relationships, a fte r  some

manipulation to:

A 21-y V N
£  a  C<y - ---------  a  )

x E x  1— y y

1- 2
£ « -=¥- <.a - 2—— o' ) <3.20)y E y 1-V x

. 2
1“V ^  . v x£  a  <1 +  --)  T

xy b l~y xy

These equations can be obtained from plane s tre ss  equations

<3.18), if E is replaced by E/<l-v2) and v replaced by iVXl-u).

3.2.7 Elasto-Plastic Behaviour:

The actual elasto-plastic behaviour of a material is usually 

investigated experimentally for uniaxial s tre ss  conditions, 

whilst fundamental criteria, based often upon some experimental 

evidence, are employed so as to predict the behaviour of the
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material under* multiaxial s tre s s  conditions. A typical cr-e 

diagram Tor* annealed mild steel is shown in Fig.<3.5>, and i t  

is clear* th a t the material s ta r ts  yielding a t point C, a fte r  

which a permanent plastic deformation will be generated with 

the increase of the applied force.

Most metals and alloys do not show such a clearly marked 

initial yield as th a t seen in Fig.C3.5>. For such materials, 

the change form elastic to elasto-plastic s ta te  is gradual and 

i t  is common practice to use a s tre s s  broadly equivalent to the 

yield s tre ss , known as the proof s tre s s  which represents a 

s tre ss  value corresponding to a permanent s tra in  Cor* plasrtic 

str-ain} equal to  a specified percentage of the original gauge 

length, as shown in Fig.C3.6X Some examples of a-c diagrams 

for useful engineering materials are giv4n in Fig.<3.7> 

CRef.883.

3 .3  L i n e a r - E l a s t i c  F r a c t u r e  M e c h a n ic s  C o n c e p t s :

3.3.1 Introductory Concepts:

CO The Energy Balance Concept:

In an elastic solid such as th a t considered by Griffith 

CRef.53, if  W and U respectively refer to  the work done by the 

external forces and the elastic energy, and if  is the

specific surface tension energy of the solid, then according to 

the energy balance concept adopted by Griffith the necessary 

condition for fracture propagation may be expressed as:

^r- (W-U) » u C3.2i>
dA y

where A is the surface area of the crack.

In equation C3.21> the left-hand side is the specific energy 

available for fracture, and the right-hand side represents the



resistance of the solid to  fracture and for a given system of 

loading, the stability of Cquasi-static} fracture propagation 

may be determined from:

Ci£} G riffith  Energy Balance Approach:

For an infinite plate with unit thickness containing a

through-thickness crack of length 2 a and being subjected to  a 

uniform tensile s tre s s  a, applied a t  infinity, as shown

approximately in Fig.<3.8>, the to ta l energy x the cracked

plate may be written as:

* ss u  + U + U - W <3.23}
O  C l Y

where,

U ss elastic energy of the loaded uncracked plate CaO
constant},

U a change in the elastic energy caused by introducing
CL

the crack in the plate,

=s change in the elastic surface energy by the formation 

of the crack surfaces,

W a work performed by external forces.

Griffith showed th a t for the plate with unit thickness the 

value of U is given by:

> 0 unstable fra c tu re .

U -
2 2 n a a

<3.24>
a E

Moreover, the elastic surface energy, Û , is equal to  the 

product of the elastic surface energy of the material, y , and 

the new surface area of the crack:
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U « 4 a r  <3.25}r *

For the case where no work is done by external forces, the 

so-called fixed grip condition, W — 0, the to ta l energy x

the cracked plate can be written as:

2 2

X “ U - ^ -ff- °  ■ + 4 a y  <3.2 6}O £i 6

Since U is constant, dU /da is zero, and the equilibrium
o o

condition for crack extension is obtained by setting d^/da 

equal to  zero, i.e.

The above equation shows tha t, when the elastic energy released 

due to  a potential increment of crack growth, da, outweighs the 

demand for surface energy for the same crack growth, the 

introduction of a crack will lead to  i ts  unstable propagation. 

From the equilibrium condition, the following can be obtained:

22 7i O' a . _
 =------ « 4 y <3.28>Ci 6

which can be rearranged to:

[ 2Ey i/2
I <3.29}

The above equation indicates th a t crack extension in ideally 

b rittle  materials is governed by the product of the remotely 

applied s tre ss  and the square root of the crack length and by 

material properties. Because E and y material properties,

the right-hand side of equation <3.29} indicates th a t crack 

extension in such materials occurs when the product ov| a reaches 

certain critical value.
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CiiO Irwin's? Modification to G riffith Theory:

In 1948 Irwin suggested that, Griffith theory for ideally

b rittle  materials could be modified and applied to both b rittle

materials and metals th a t exhibit plastic deformation. The

modification recognized th a t material" resistance to  crack

extension can be measured in terms of the elastic surface

energy and the plastic stra in  work y accompanying crack
p

extension. Consequently, equation <3.28> may be modified to:

2

71 a- m 2 <r + y > <3.30>b e p

For relatively ductile materials y » y .
P ©

CiuD Modes o f  Fracture:

All s tre ss  systems in the vicinity of a crack tip may be 

derived from three modes of loading as illustrated in 

Fig.C3.9>. These modes are as follows:

CcO The Opening Mode:

The crack surfaces move directly apart under a tensile s tre ss  

perpendicular to these surfaces.

CfcO The Sliding Mode:

The crack surfaces move normal to the crack front and remain in 

the crack plane under a shearing s tre ss  parallel to  this plane.

Cc3 The Tearing Mode:

The crack surfaces move parallel to the crack front and remain 

in the crack plane under a shearing s tre s s  perpendicular to 

this plane.
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3.3.2 The S tress Intensity Approach:

Irwin's second important, contribution was on providing the 

technique for the calculation of the ra te  of the energy <W-ID. 

He observed th a t the symmetric crack solutions given by 

Wester gaard and Sneddon may be generalized to  include 

asymptotic expressions for all crack problems in which the 

plane of the crack is a plane of symmetry and showed tha t, by 

introducing a constant <3, for small values of the distance r  

from the crack tip the cleavage s tre ss  and the crack surface 

displacement in the plane of the crack may be expressed as 

CRef.743:

C3.31> 

<3.32>

* - [ & ■ !  r >

p = E/2<1+u>,

s <3-iO/’<l+;uO f o r -  plane ■stres's1.
A BS J

v <3-4v) far- plane? stra in .

and <r,0) are the polar coordinate with the origin a t the crack 

tip.

For a small crack extension da in the plane of the crack, in a 

symmetric problem, the strain  energy release under fixed grip 

conditions can be calculated through the crack closure energy 

as follows CRef.743:

da

dCW-U) b 2 f % a <r,0> 4Xda-r,rr) dr <3.33)
J Z t y 

O

a <r,0> ^
y 42F

) K 42r

where,
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which, by subsbibubing from <3.31> and <3.32>, gives:

<W-U> -  G <3.34>da

Hence, it, is clear bhab bhe energy available for fracbure per 

unib crack exbension may be direcbly relabed bo bhe parameter K 

which Irwin called bhe **stre&s-±nt&ns\ty> factor**.

In bhe middle of 1950s Irwin made a major advance by developing 

bhis sbress inbensiby approach. Using linear elasbic bheory he 

showed bhab bhe s tresses  in bhe viciniby of a crack bip may be 

expressed in bhe form:

where <r,0> are bhe polar coordinabes of a poinb wibh respecb 

bo bhe crack bip, as shown in Fig.<3.10>, and K is bhe sbress 

inbensiby facbor which can define bhe elasbic sbress field ab 

bhe crack bip.

Then, ib can be seen bhab if  bhe elasbiciby solubion of bhe 

crack problem is available, bhe sbress inbensiby facbors may be 

evaluabed by means of expressions of bhe form:

K ■ lUtv C 2 Cx-a>1/2 a. Cx,0> 1 <3.36>x*ta vj

If bhe problem has symmebry wibh respecb bo loading and 

geomebry, bhen bhe following expression can be obbained:

G m K2 <3.37>

Then bhe parameber governing bhe fracbure process may be

expressed as a cribical sbress inbensiby value, K , insbead of

a cribical energy value Q̂ . For bensile loading condibions bhe

relabionship bebween K and G may be sbabed as:c c
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K 2

Gc “ -TET C3-38>

where,

E * E fo r  plane s tr e s s t

E s= E/<l-v } /o r  plane strain.

From equations <3.37} it- is clear th a t under mode I  condition 

the specific energy available to  create a unit crack surface is 

G . Irwin has designated the corresponding “critical strength, 

parameter** of the material by G and called i t  the **fracture 

toughness** of the material. For mode I  fracture, the necessary 

condition for fracture (failure criterion} may be expressed as:

G «b ^  K2 b G <3.39}
X . 8jLI X IC

Since G is a material constant, the stability of fracture

propagation can be determined by the sign of dG^/da, where a 

positive sign corresponds to  an unstable fracture condition.

The critical value of K can now be expressed as Ki r ic
Ccorresponding to G 5 which is called the **critical s tr e s sIC
intensity factor**. Therefore, the failure criterion equation 

<3.39) can be replaced by:

K se K = <Q±jr G >1/2 <3.40>i ic 1+& ic

Again, since is a material constant, the sign of dK^/da

determines the stability of fracture propagation.

3.3.3 Elastic Field Equations around Crack Tins:

The elastic field equations around the crack tip for a 

plane-loaded infinite plate containing a crack CFig. 3.11} can 

be written in terms of cartesian coordinates [Ref .753, as 

follows:
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<271 rO 

K
i i

i  re'
------------ COS I ̂1/2 12

 ̂ 4 4 f301 ~ sin j —I sin )]
<27ir>1/2

sin

O' as

C2fir*>

K
i i

1/2

(I] [ 

8 3 1

2 + cosl^-J cos

1 + sinful sin

F ) ]

F)1
<2rrr>

re j . r e i  f3 e 'cos =71 sin I pr-1 cos I 1/2 121 12 1 12

K

xy <2rrr>

K11

rei . rej  cos I ̂ 7 j sin I 1 cos
1 /2  12 1 121 ( ?)

<2tTr>1 /2
cos

0  [ -
. re'i . rae 

sln 2 sin 2 )]

XL ’ ( 4̂  ) ( 27 ) [ C2A~1> cos(l) " COS(F) ]

- ( ] [ 2? )1X2[ c2A+3> si"(f] - sl"(r] ]

" “ ( 4ji ) ( 2S ) [ <2A+1> Sin(l] - Sln{?) ]

+ ( 4jr ) ( 2  ̂ ) [ C2A_3:> cos(l) + cos[=r] ]

where <r,0) are -the polar coordinates of the crack tip 

the right-hand crack tip as shown in Fig.<3.il).

3.3.4 Fracture under Combined Loading:

<3.41)

<3.42)

<3.43)

<3.44>

<3.4S>

based on

Engineering structures subjected to a combined loading of 

tension, shear, and torsional loading usually experience mixed
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mode crocking. The combination of in-plane tension and shear*

gives a mixture of mode I  and mode II. I t is clear* th a t under*

mode I I  condition only the fracture failure takes place when

K reaches a critical value K . With mixed mode loadingII IIC
conditions, failure may occur when the value of certain

combination of the two s tre s s  intensity modes reaches a 

critical magnitude.

Using the elastic energy balance criterion, the to ta l energy 

release ra te  G can be written as follows:

G a G + G + G C3.46)i ii in

For J-JJ mixed loading condition G = 0 , and:h i  9

a = k2 , a = § ± i k2i 8 fj i ii Qfj ii

An equivalent s tre ss  intensity factor K can be defined 

CRef.753 such that:

K2 a (G + G ) <3.47>
e  & +1 v i  u r

Hence, fracture may occur when the following condition is 

satisfied:

KZ + K2 » KZ <3.48>
I II E

Comparing K with only K may provide a conservative solution,
El IC

since usually K > K .
E I

In practice K p4 K , therefore, the fracture failure
IC IIC

condition can be modified as follows:

- K 2̂ _ K . 2

( r -  ) + ( i r -  ) “ 1 <3-49>
IC v IIC J

Since ^IIG is difficult to predict, i t  can be approximated 

CRef.763 as follows:
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K ^ 0.75 K <3.50>nc ic

Equation <3.49} is the locus of an ellipse, and fracture 

failure fakes place wh< 

fulfill such an equation.

failure takes place when K and K reach values sufficient to
i ii

3.3.5 Crack-Tip Plasticity:

The elastic s tre ss  field in the vicinity of a crack tip, as

given by equation C3.35}, shows th a t as r  tends to  zero the 

s tresses become infinite Ci.e. there i s  a stress* singularity at 

the cr-ach tip). Since many structural materials deform

plastically above the yield s tre ss , there will be in reality a 

plastic zone surrounding the crack tip, and the elastic 

solution is no longer applicable for such situations, which may 

require modification to some of the linear-elastic fracture 

mechanics concepts.

The two physically acceptable yield criteria  for metals and 

alloys are the well-known Tresca and van Mises yield criteria. 

The Tresca criterion s ta te s  th a t yielding will occur when the 

maximum value of shear s tre ss  approaches a critical value. In 

terms of principal s tresses  da >o* ><y }, Tresca's criterion1 2  3
predicts yielding when:

I o' - o’ I ** Y C3.51)
1 1 3 1

where Y is the uniaxial yield s tre ss  of the material.

The von Mises criterion requires th a t the distortion energy per 

unit volume approaches a critical value. This criterion can be

expressed in terms of principal s tresses  as follows:

da - a >2 + da - o' >2 + da - a >2= 2 Y2  <3.52>
1 2 2 3 3 1

In order to apply a proper yield criterion, the crack-tip
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s tre ss  field equations <3.41-3.43), should be deduced in berms 

of principal s tresses, and since mode I  is bhe mosb predominant 

sbress sibuabion in many pracbical cases, bhen bhe sbress field 

equations for this mode can be deduced as follows:

KiCf ** --------------- cos1 ^  xl/2<2frr)

Ki
a  m  -------------------- COS
2 _  Ni/2<2n:r)

( i )  [ - - ( I ) ]
( |  ] [ l - „!»( |  ] 1 £3.53)

f x>Ca - 

{ « ‘

i>C<y +<y ) for- plane str-ain.
a '

for- piano s tre s s 1.

By substituting bhe above equations into Tresca and von Mises 

criteria  equations <3.51, 3.52), expressions for bhe plastic

zone boundary as a function of 0, can be obtained. Considering 

bhe derivation given in Ref.C761, these expressions can be 

stated  as follows:

For Tr-esca cniter-ion:

K2 2
r_<0) «s cos2 £ J Jl+sin^ — plane s tre s s , <3.54>

p 7.UY2

K.2 2
r^<0) »  — cos2£ ^ j |l-2v+sin£ Jj plane strain. <3.55)

For xjon Mises cr-iter-ion:

K2
K  r  3 . 2r  <0) ■  -— I 1 + sin"0 + cos0 j plane s tre s s , <3.56)

p A n Y 2  L z

K.2
r <0) « -----— sinZ0 + <1-2l>)Z<1+cos0) | plane str-ain. <3.57)

p ^ y 2 L2 J
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3 .4  E l a s t o - P I a s t i c  F r a c t u r e  M e c h a n ic s  C o n c e p t s :

The concepts of linear-elastic fracture mechanics can be used

satisfactorily with b rittle  materials and may be safely applied

to ductile materials as long as the plastic zone is small

compared to the crack size. This usually occurs a t s tresses

extremely below the yield s tre ss  of the material in use. In

such a case the fracture can be characterized by K or G .ic ic
If, however, the plastic zone is large compared to the crack 

size, linear-elastic fracture mechanics can no longer be valid, 

and elasto-plastic fracture mechanics should be considered 

instead. The basic approaches to  elasto-plastic fracture 

mechanics are summarized in the following sections.

3.4.1 The Crack Opening Displacement Approach:

The crack opening displacement CCOD5 approach which was f ir s t  

introduced by Wells CRef.441 in 1961, has been used as a 

criterion to characterize failure of cracked specimens in the 

presence of moderate plasticity. By using the Dugdale s trip  

yield model, an expression for the COD, 6, can be found as 

follows [Ref.753:

Expanding the above equation in series form, the following can 

be obtained:

[ S6C( ^ ]  ] <3.58>

A reasonable approximation to  6  can be deduced by using a 

remote load of a < 0.7 Y, as follows:

2rr a a <3.60>E Y

and since K ■ o<7ia}1/2, then 6  ■ KZ/1EY.i i
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In general, a critical crack-opening displacement, 6 , can bec
defined as follows:

KZ

6C “ x lF  <3-6i>

where X is a constraint factor CRef.763.

3.4.2 The J -Integral Approach:

The path independent ^/-integral concept has f i r s t  been 

introduced by Rice CRef.463 in 1968. This concept is based on 

the energy balance approach discussed earlier in this chapter. 

Considering the energy balance given in equation <3.23>, as 

long as this energy balance remains valid, an instability 

condition can be derived as follows CRef.73:

dU
~  CW-U > > -=—— C3.62>da a. da

Hence, a nonlinear elastic parameter equivalent to <3 can be 

defined as follows:

J m 5?_ <w-U > <3.63>da a

where for elastic behaviour J  « G.

Referring again to equation C3.23>, the potential energy U can
P

be defined as:

U * U + U - W <3.64>
P  O  CL

which means that:

<3.65>
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Equation <3.64>, shows th a t U contains the basic energy terms
p

th a t may contribute to nonlinear material behaviour. Since UO
is a constant, differentiation of U gives:

P

dU d dCU -W> -  -  cw-u > <3.66>do do a. do a

Thus, from equation C3.63> i t  can be shown that:

dU
P <3.67>do

Now consider a line integral along a contour r  surrounding the 

crack tip, starting  from the lower crack surface, and moving 

anti-clockwise to  the upper surface, as shown in Fig.<3.12>, J 

can be redefined as:

J m £ W dy - Tl [“§="-] ds J C3.68>

r

where,
£

\ /  E J* o' d£ 
o

or «s S tress vector,

£ as Strain vector,

T *b Traction vector, 

u as Displacement vector.

Rice has shown th a t in case of a closed contour ABCDEF as shown 

in Fig.C3.13>, J « 0. Since no contribution is gained from CD

and AF on the crack surface <T *= 0, dy as Q>, the integral along 

ABC must be equal and opposite to  th a t along DEF. Therefore, 

the wf-integral taken along an unclosed anti-clockwise contour 

between unloaded crack surfaces is path independent CRef.763.

The path independency of the ^-integral allows its  calculation 

along contours remote from the crack tip. Such contours can be 

chosen to contain only elastic s tresses  and displacements. Thus



an elasto-plastic energy release ra te  can be obtained from an 

elastic expression in terms of s tresses  and displacements.

For a cracked structure , the J  values may be compared to a

critical value, J  , which is a characteristic of the material,c
analogous to Ĝ  in linear-elastic fracture mechanics. Finally, 

a number of expressions relating J and 6 can be found in the 

literature, most of these expressions take the form:

J m M 6  Y <3.69>

where M varies from 1.15 to  2.95 CRef.73.
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6A\

Fig.<3.1> T h r e e - d i m e n s i o n a l  b o d y  u n d e r  g e n e r a l  l o a d in g  s y s t e m .

Fig.C3.2> Normal and tangential force components.
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z r

Fig.(3.3) Cylindrical polar' s tre ss  system.

ZX

y x

FigX3.4) S tress equilibrium in the x-direction.
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Eiostic

PortioM y p to ttic

Fig.C3.5  ̂ Typical tensile test- curve for mild steel.

For O. p roof s tr o a s  
O.OOl

Fig.<3.6) Proof s tre ss  representation.
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Nichel cnrome steel

Medtom carton trM -htat treated
•200

Te
N.

I CoU rolled steel

MeOum ccrton steel - 
annealed

Hard bronze600

900

0 0 20 50 40 50

Slrcxn, %

Fig.<3.7> Tensile test, curves Tor various metals.

Fig.C3.8> A through-thickness crack in an in fin ite  plate.
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CRACK TIP

O

Fig.<3.10> Crack-tip coordinates system.
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C r a c k

Fig.<3.12) Unclosed contour around the crack tip.

Fig.<3.13) Closed contour a t the crack tip.



C H A P T E R  4

DERIVATION OF GENERALISED J-INTEGRAL 
FOR 2D FRACTURE MECHANICS PROBLEMS
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4.1 Ini.roduct.ioni;

It, is clear from the literature th a t Eshelby CRef.753 was the 

first, to derive a number of contour integrals including the 

so-called ./-integral. Cherepanov CRef.763 and Rice CRefs.46, 

773 were apparently the f i r s t  to  apply such an integral to 

crack problems.

The basic advantage of the ./-integral is th a t i t  is independent 

of the integration path, and hence i t  can be evaluated over 

contours which are far from a crack tip so as to  avoid 

singularities and nonlinearities often encountered in the 

vicinity of the crack tip. Unfortunately, many of the 

algorithms suggested in the literature , for the estimation of 

./-integral values are either crude or lack the generality.

In this work an attempt is made to derive the ./-integral 

expressions for cases with general loading conditions. Some 

useful ideas for saving computer CPU time and/or improving the 

accuracy of the J -integrals are summarized. A new procedure for 

the calculation of ./-integrals, based upon boundary element 

characteristics will be introduced in chapter 7.

4.2 Introductory Definitions and Relations:

Consider a two-dimensional structure defined in terms of a 

domain Q in the x-y plane and a thickness t in the z-direction.

At any point Cx,y> inside Q, the following parameters can be 

defined:

x. Displacement vector-:

U B U ■ < u o  >
I  V  j

<4.1>
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s;. Domain loading in ten s i ty  vector-:

<4.2}

3’. S t r e s s  v e c t o r ;

O' a < O' a  T > —  x y xy <4.3}

4. Strain vec tor:

£ = < £ £? V }—  x y xy <4.4}

5. Traction v e c to r :

T la + m/rX X xy
T It + met

y xy y
<4.5}

4.3 E n e r g y  P r i n c i p l e s  a n d  R e la t io n s :

Consider a domain as th a t shown by Fig. <4.1}. This domain can 

be divided into an equivalent system of subdomains, if  each 

subdomain has i ts  contribution of internal loading to  be acting 

as external loads on the subdomain boundary together with i ts  

share of existing boundary and loading conditions. This 

consideration has been used successfully in the finite element 

method and i t  has been pointed out th a t the subdomain should 

obey the same physical principles and constitutive 

relationships as the parent domain.

From the f ir s t  law of thermodynamics:

£  = K + D + U + V = s ta tion ary .
E E

<4.6}
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where,

X = Total energy of the subdomain,

K = Kinetic energy of the subdomain,
El

D « Dissipation energy of the subdomain,
E

U ■ Strain energy of the subdomain,

V = Potential energy of the subdomain.

For a subdomain Q with boundary T, the following parameters can 

be defined:

r. Kinetic Energy:

K sb i  f C i lZ+ o'2 > dm
E 2 "

= |  J J  t < U2+ v 2 ) p dA C4.7)

O

Strain Energy:

U *= JJJ  W dvol 

where,
£

W as J* o '1 d e  
o

3'. Potential Energy:

In the absence of magnetic, electric,...., fields, the

potential energy is equal to minus the work done by external 

loads, and can be defined as follows:

CO Due to surface traction:

An increment of force due to surface traction can be written 

as:

C4.8>

C4.9>
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<# = $ t ds

where, ^=s T i + T i f and the corresponding increment of the
x y

potential energy due to the above force is given by: 

dVj_ = - u . d? 

where, u = \l i + jo £

Therefore, the to ta l potential energy due to traction can be 

evaluated as:

Vp ■ ■ |  u . df ■ |  i ( } . u ) ds

r  r

Using matrix notation, can be rew ritten as:

Vp a - |  t T1 u ds <4.10>

r

CrO Due to domain loading:

The ra te  of force due to domain loading can be expressed as: 

dP = It dvol

where, Ifc. = X i + Y j. Then the ra te  of change of potential 

energy due to such force is equal to:

dV̂  = - u . d? as - u . St dvol

i.e.

vo = '  I f  f < S • * > dA
O

and by using matrix notation:
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VQ “  -  I I  * - 1 -  dACl
Cl

4 . E n e r g y  D & n s \t± e s :

The stra in  energy density W can be defined as:

W ■ -7̂ -  C4.12>dvol

or for two-dimensional problems:

w ■ 7 <4.13>t dA

i.e.

« -  n  t 1/ dA <4.14>
Cl

Other similar energy densities can be defined as follows:

CO Kinetic energy density.* 

dK
SC « C4.15)dvol

i.e.

9C «= ^ p u1 u C4.16)

where u represents the vector of velocity components, then:

: = S S  t ' SC dA C4.17>
O
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CrO Sur-face work donsrity:

dCSurface Work)w o --------------------------------dCSurface Area)

The surface work can be defined as:

u

V * J t ( J Tl du > ds <4.18>

t,herefore,

u

y/ m J  Tl du <4.19}

i.e.

Vp .■ J  t y ds <4.20}

r

For surface forces being independent, of u:

Ay/ **» T1 Au <4.21}

<ivO Body u>ork d&nsi.ty;

_ (work done by body forces)
2 “ -----------------------d ^ i ----------------------

Since t,he work done by body forces is:

u

V0 " J J   ̂ C J  -  d-  } ^  <4-22>
O -  

it, can be deduced t,hat,: 

u

5 * J X1 du <4.23}
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i.e.

<4.24 >

Cl

If 'the domain forces are independent of u, then:

AS = X1 Au <4.25>

4 .4  D e r i v a t i o n  o f  t h e  J - I n t e g r a l  E x p r e s s i o n s ;

4.4.1 The Physical Concept:

Gonsider a two-dimensional structure which contain a crack of 

original length a . The to ta l energy of the structure may beo
expressed as follows:

n *s u  + V as defined before,

S = energy required to form the crack.

Now, if the crack grows by A a, then from energy conservation:

*<a+Aa> = Cn+ATD + CS+AS) + <K +AK > + CD +AD >E E  E E

Hence, from energy balance:

where,

114Tb

Aa-»o

<a+Aa> - £<er> ^-----------------    BS (J
A a

i.e.



- 6 3 -

Arr a c . A K  AD». A ll  „ .  AS . .  e  e
Z i ,471 -7  + Z a, n t  -r  +  Z a,4Tl----------—7--- + Zi,4Th--------—-- SB 0a Aa . A a . A a . AaAa-to Aa-*o Aa-to Aa-»o

Thus,

*1 + as + + _ „
da da da da

or

dS f dn A dKE ̂  d°E 'J
da “ ~ I da “da "da I <4'26:>

If the changes of kinetic and dissipation energies can be 

ignored, then:

d£ _ dn
da — da 

or for two-dimensional problems:

I d S 1 dn
t j— “ ” t j— C4.27)t da t da

1 dSFor linear-elastic analysis, j  represents the energy release

ra te  G, and i t  can be shown th a t IRef.783:

G o CK2 + K2 y + K <4.28>i ii E iiiE

where,
4

E = E /o r  plane str-&ss,

= —— /o r  plane strain.

1 dS'For elas to- plastic analysis, j  s till represents the energy

release ra te , and i t  will be denoted by J. Although J m G, 

equation C4.28> is only valid for linear-elastic fracture 

mechanics.
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4.4.2. Change of Coordinates:

If <£>??> are used such that, their origin is located a t a crack 

tip which has a length a, and is growing in the x-direction, as 

shown in Fig.<4.2), where:

x « a + £

C4.29)

y =* 7)

The x-y coordinates system is always independent of the crack 

growth, i.e. x, y, and a are independent or:

<4.30)£ 1 = ^ 0 0  da da

From equations <4.29) and C4.3Q), i t  can show that:

d£ dx . . . .m — - i m -i <4.31 >
do do

d£ . da .-  1 - — ■ 1 <4.32)dx dx

Consider a function /<a,x,y> which is continuous and has a 

continuous f ir s t  order partial derivatives in the reference 

domain. From,

-  % do + U  ^  *y

i t  can be deduced that: 

df dfCa, x,y>
da da

df a dfCa , x,y> 
dx dx

By using x ■ cr+£, then /<a,x,y) -► /<a,£,y), and,

da + d? + dy

<4.33)

<4.34)
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then, i t  can be shown that:

d f  m d/<a,ff ,y) + d/<a,£,y) df 
da da df da

and

d f  dfCa, f ,y) df
dx df dx

From equations <4.31) and <4.32), the above equations can be 

reduced to:

d f  m d/<g,f,y) _ d/<a,£,y) 
da da df

d / _ * /<«?,y> 
dx df

Comparing equations <4.35), <4.36) with <4.33) and <4.34), i t

can be proved that:

d / eftcL,£ ,y) _ d/<q,x,y) 
da da dx

4.4.3. Case of a Closed Contour:

Consider a domain Q, with a closed contour r  Cthe domain is? 

actually a srubsrtr-uctuire o f  a crached structure as described  

be/oreJ, Fig.<4.1). Hence,

dK dD
i  « i  r d U + = + ^ + dV + d £ ]  = o
t da t L da da da da da J

Neglecting the ra te  of the change of the dissipation energy, 

then:

Hkf
I d S 1 f dlJ e , dV 1

Using the expressions in terms of energy densities, i t  can be 

shown that:
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^ = - [ n c ^  + ^ > d A - # ^ d s - i ' j ^ dA]
ci r  a

Substituting from equation <4.37) into <4.39), i t  can be 

deduced that:

J = - J + J  <4.40)a x

where,

i r r / db f d3*C . ,, r dyj . pr dJB ,. ., .
J a “ n < a? + 5 ? :>dA- # ^ d s - J J 5 ? dA <4-415

ci r a

and

j *  -  n  < j z  +  g  > "  -  §  %  * *  -  j j  § §  "
a  r  a

Comparing equations <4.41) and <4.42) with equation <A.6) 

[Appendix A3, i t  is clear that:

J = J = 0a x

Equation <4.42) has an interesting reduction, as follows:

j x  = if h  w+so "  - '§ %43 - if §1 •** c4-43>
o  r  ci

Using integration by-part theorem <A.l) [Appendix A3, i t  can be 

shown that:

J m J^ m <j> <l/+90 dy - <j> ds - <£ ,$ dy = 0 <4.44)

r  r  r

The above reduction is only possible if  the contour r  does not 

contain any singularity Ci.e. derivation o f  W% 9C, and 3$ are 

continuous over T) which is not the case of a contour 

containing a crack tip.
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Consider next a domain with contour r  which does not contain a 

crack tip, as shown in Fig.<4.3>, where:

r  * abc + cd + def + fa

and define T and T such that: 1 2

r  = abc , r  = fed 1 2

From equation C4.44), i t  can deduced that:

J  « <j> OZ+SC-#) dy - <p ^  ds = 0

i.e.

J rn J  CIZ+SK-JB) dy + J* CIZ+̂ C-̂ ) dy + J CIZ+SC-JB) dy + J OZ+SC-#) dy

cd def fa

- r ^ d s - r  S E ' a s -  r ^ d s -  r ^ asi  dx J dx J dx J dx
cd def fa

Now, for small crack opening, dy -+ 0 over cd and fa, i.e.

J  OS+9C-&> dy -  J  OZ-W-S) dy -  0 <4.45>

cd fa

and on the crack surfaces cd and fa, T «■ T m Q i.e.
x y

J ^  43 -  J ^  ds -  0 <4.46>

cd fa

and

J / ds - J  /  ds -  - J / ds C4.47)

def fed
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Hence, from equations <4.45), <4.46), and <4.47), i t  can be

deduced that:

J  CW+SK-&) dy - J  ^  ds - J  0/+9C-;8) dy + J  ds * 0

r  r  r  r1 1 2  2

Defining:

j  m J  <{/+5X-̂ ) dy - J  ^  ds

r  r1 i

Jz m $ dy - J  ds
r  r2 2

gives, ,7 - J  = 0 , i.e.1 2 '

J = J <4.48)1 2

This interesting result shows th a t such integrals over contours 

from lower surface of the crack to the upper surface of the

crack are independent of the integration path. Since the

contour is not closed, then for any open contour T Csimilar' to
o

r  , or- T O the following integral can be defined:

J  « <J> <l/+9<-£) dy - <£ ds <4.49)

r  ro o

From equation <4.48), i t  is clear tha t such quantity is

independent of r  .
o

Taking r  very near to the crack tip, i t  can be shown that:O

CO fo r a crack, urlth blunt edge CFig. 4 .4 ).*

Jo Um. £ <p CW+SK.-&} dy - ^ ~  ds J -♦ <fc/+fK-5) dy <4.50)

t r  r  ro o t
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CiD /o r  a crack. with, shar-p ed^e CFxg. 4 . 5 J>.- 

.7 « Zxm £ J  CI/+9C-.S} dy - J  ds J

*V ° f ro o

- Z\m J  ds C4.51>
r  -+oo 1o

Using polar coordinates such that:

£ = r  cos© , x =s a + r  cos© 

r? = r  sin© , y = r  sin©

Ignoring crack edge and angle, then:

tt rr
J ^ Zlm, f  f 0 /+ 9 C - J B }  r  sin© d© - f r  d© ] C4.52>

o  r  -tO I J  J  d X  Jv -n -n J

It is clear th a t up till now J  has not yet been related with
1 0 the term  ̂ ds/da.

4.4.4. Case of a Blunt Crack:

It there is a crack with a smooth blunt edge, as shown in

Fig.<4.6>, then there is no singularity related to  surface

tractions, which means th a t T = T = 0 C /o r  old and developed
x y

crack su r/acel, then:

y Ax “ II | <J/+AkO + C9C+A90 - CB+AS) | dAt J T  [  W + A U O  +  C 9C +A 90 -  C B + A S )  j  

O+AO

- JJ CW+SfC-Ŝ  dA - J Ay/ ds +  ̂ AS = 0
O

Dividing by Aa, and taking the limit Aa -* 0, the following can

be obtained:
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JT ( t ?  + ^ - ^ ] dA- " m h  TT ««*-*> "
Aa-° O.AO Aa*° An

r ^  . . 1 ds rt
- f ^ d3 + i ^ m0

r
i.e.

ld S  r p f dl/ dSK cLS 1 JA
t s r  = TT I dsr + 35- ‘ a? I dA

O

- T 3x ^  ha J J  US+'X-X.y dA
r Ao-*0 °  AO

From equation CA.6) [Appendix A3, it- can be deduced that:

JJ(£*£-S§]“ -*2>-»
a r

Hence,

1 dS „ 1 rr*r “5— = U4TV T— ff <W+<X-&> dA t da . Aa JJAa-to ÂO

“ Zl4Th Za JT <f/+S"C-̂ > da dy « J  <I/+SK-;B) dy
Aa-to AO r t

where r is the crack tip boundary.

Comparing this result with equations 04.50} and <4.38), i t  is

clear that:

J •  J -  7 ^  <4.53)o t da

which means tha t J  is not zero on a contour which contain a

crack tip and i t  can be evaluated a t any open contour TO
starting  from lower crack surface up to the upper surface of 

the crack.
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4.4.5. Case of a Sharp Crack:

Initially,

1 * « 1 S' + J J  <W+9C-&> dA - J  y/ ds 

o r
o

where r  represents the free surface of the boundary T, asO
shown in Fig.<4.7>.

If the crack is very sharp and grows by Aa, without any change 

of Cl, then:

C.W+AhO + CSK+A30 - CB+A-S) J dA

Cl

- J* <y/+Ay/> ds

r o

Dividing the difference of the above equations by Aa, and

taking the limit A a -+ 0, i t  can be deduced that:

I d *  1 dST r r  f  d l /  dSK c l S ‘1 JA r  dy/
t 35 " f 35 + I f  [ 35 + 35 ~ 35 J dA ~ I  55 " 0

a r
o

If only the tractions are assumed singular a t the crack tip, 

then from equation <A.6> [Appendix A3:

ci r

i  1 CS+AS) + J J  f

i.e.

dS
da

r
ds - r dy/ 

J da ds 0
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or

1 dS  r  dyj 
t d 5  + S £ dsm0

r

Since the tractions are zeros on the surface of the crack, 

then:

J m i  m - Zim r dst do . J da
Ar"° Ar

Now, at, the crack tip, -t , therefore, comparing with

equation <4.S1>, i t  can be shown that:

j  B  j  a  _  n m  < £  d s  < 4 . 3 4 )
o _  «r <7xi -»o _o 1

o

4.4.6 Energy Changes Due to Crack Growth:

Let the effect of a crack growth A a on displacement, s tre ss , 

and traction vectors be Au, A a, and AT respectively. Hence,

AU -  JJ t C a + a. Aa_ )t A£ dA

Cl

AV ■ - J t C T + /3 AT )l Au dsr
r

AVo  -  JJ t  x 1 Au dAa
Cl

where, 0< a <1 , 0< ft <1.

Neglecting second order terms, then:
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AU £ JJ t a As dA 

O

AVp = J i Tl Au ds

r

therefore,

dU AU rr  ̂ t d--r— « -r— «* [ i t  a —— dA C4.SS)da . Aa JJ — daAa-*o ^

dV AV
*3---- « -7- ■ f t Tl -r= ds <4.56)da . Aa J — daAa-to P

dV _ AV.
^    m ff t X1 -3= ds <4.57 )da . A a J J — daAa->o ^

Substituting from equations C4.SS) and <4.56> into C4.38) and 

employing the previous approximation, i t  can be deduced that:

d£.
da

a r a
J “ - [ JJ 2 %  - J £  §  ^  - JJ £  §  <«A ] «.58>

An interesting CsimilarO result can be obtained by applying the 

following theorem:

Theorem:

Consider th a t u, v are functions of a parameter £, then:

dU
dC § t  ( T x ^  + T 

dC y
dv  ^

dC J ds

I f '  ( x  a r  +  y  a r  )  ^  d y
<4.59)

Cl
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4.4.7. The J-Integral as a Contour Integral:

From equation <4.58), i t  can be shown that:

J  -  - JJ  %  “v + J  ( + Ty as  ) *■
o r o

+ J J
a

Hence, from previous analysis < Equ. 4.49), i t  can be deduced 

that:

J - § V *y - J  ( Tx £  -  r y §£ ] da

r  r o

-  XT
Cl

If the crack is taken as explained before, then dy -+ 0 over r
c

< r_ is1 the crack ^ur/ace), i.e.

<j> 1/ dy = J* fc/ dy  + J* W dy -* J* W dy

r  r  r  ro c o

which leads to:

X p  +da
do )
da J dx dy

J  -  I  v  dv - J ( T x
dn
da + T do )

da J ds

r

- JT ( *  £  + y ^
Cl

<4.60)



4 .5  U s e f u l  E x p r e s s i o n s  f o r  D o m a in  L o a d in g  T e r m  i n  J - I n t e g r a l :

4.5.1 Reduction of Domain Integrals for* Special Cases: 

Defining the domain loading term as:

DL - n ( * § £  + i' ^ ) dA
a

then, from the equations of equilibrium:

da dr  ̂  ̂ dr da

r { S  L
a

{ -do* dr dr da -,

«  [ j s  * T ?  ] * £  ( - &  * Sy” ) }

Using integration by-parts theorems [Appendix A3, i t  

proved that:

D -  - (E f T + |^  T I d s  
L. J  ̂ dX x dx y J

r

rr ( dz\L . f dz\L . dzv 1 ^ dzv 'IJT  \  °x ^ 2  Txy [  dxdy dx2 J ay J
i.e.

ds

K  m - $ [ £  Tx + S F  T y )  + SI i
r o

which can be written as follows:

r dW r f d\L , d-t> 'I
■ X t o  d y  ‘  f  I  S  T .  + S  Ty  J  113

r ro

where r  is the complete boundary contour for O.

<4.61>

dA

can be

dA

<4.62>

Special cases of symmetric cracks can be considered as follows:
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CaJ> Case o f  One Cr-ach Tip:

For- the case shown in Fig.<4.8>, i t  can be shown that: 

i  J  = /  (/ dy - J \ (  r x fH + Ty §£ ] ds

r  ro o

■  n  ( *  § £ + x  § £ )  * * * d y
n

Hence, from equation C4.62), i t  can be written that:

j '  s  ♦ % £ ) - * # (  ^  ^  S } -
r  r

o

i.e.

I J = /  ( Tx £  + Ty £  ) ** <4-63>
The above equation is a simplified expression for J , but i t  

contains a singular point Oi.e. the crack tip}.

Cb} Case o /  Tu>o CracA Tips:

Using Fig.<4.9>, for crack tip x, i t  can be shown that:

= J ^ dy - J Tl |=  ds - JJ X1 |=  dx dy
r  r  o± i i

For crack tip x is in the opposite direction, and hence the 

contour should be in the clockwise direction, i.e., i t  can be 

proved that:

- ^  “ J ^ dy - J §  ds - JJ X1 g* dx dy
r  r  Q

2 2 2

Therefore, i t  can be deduced that:
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J r J z = J v  - J ^  ^  ^  '  I f  ^  f=  dx dy
r +r r +r o +o1 2  1 2  1 2

or*, it, can be writ,ben bhab:

J C J z = J ^  dy -  J l l |=  ds -  JJ X1 |=  dx dy C4.64>

r r o

For* bhe special case of symmetric crack J^ *= J  , and it, can be 

proved bhab:

J  1/ dy -  J  Tl ^  ds - JJ  X1 |=  dx dy .* 0 <4.65>

r r d

Now, bhe following results can be deduced:

CO Result CrJ:

Since for a closed contour T enclosing a domain O:

j. A ds
JJ X1 §  dx dy = - J  Tl §  + JJ  3= dx dy

o r o

ss~ ^ T t ^  + <pt/dy C4.66)

r r

Generally speaking, ib is clear from equabion C4.64) bhab bhe 

resulb obbained by equabion C4.65} is only correcb if  bhere is

no crack bip inside T. For bhe special case of a symmebric 

crack inside bhe closed contour T, equation C4.66D should be 

valid.

CIO Result CO-

For symmebric crack, surrounded by symmebric conbour T, ib can 

be proved bhab:
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J W dy = 0, J T1 ^  ds a o, JJ xl ^  dx dy = 0 <4.67>

r r a

since, J W dy = - J W  dy,
r ri 2

and J W dy = 0 = J W dy , etc.
' r +r r1 2

4.S.2 F irst Integration of Domain Loading Term:

Using integration by-parts theorems C Appendix A3, equation

<4.61> can be written as:

DL +  d y - J T  [  I f  u  + I f  °  ]  d x  d y  C4-685
r a

For domain loading due to translational or rotational inertia, 

i t  can be shown that:

X = a + a x + a yO 1 2

y = b + b x + b yo 1 2

<4.69>

Hence, using the above equations, i t  can be deduced that:

° L = ; (  x xl + y  v  ) <*y - IT ( xjl + b̂  a j J dx dy <4.7Q>
r  Oo

The domain integration is evaluated in terms of integration

cells within the whole domain, including the crack tip. For 

most cases, the stra in  parameters dxiSd'x. and do/dx are singular

a t the crack tip, whilst xl and o  are not. Hence, i t  is clear

th a t using equation <4.70> for the calculation of domain

loading term does not involve any singular parameters and 

should lead to more accurate values.
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Note also tha t for the special case of translational inertia, 

or rotation with respect to the x-axis, aL± m the domain

integral term in equation <4.70} vanishes, leading to  a simple 

contour integration, i.e.

D
S [

x  xl + y
• )

dy <4.71}

4.5.3 Domain Loading Term for Rotational Inertia around Z-Axis:

For the special case of a structure rotating around the z-axis, 

the corresponding domain loading intensities can be expressed 

as follows:

X = a + a xo 1
<4.72}

Y = b + b yo 2

Hence, from equation <4.61} and by using Integration by-parts 

theorems CAppendix A3, i t  can be shown that:

J J x ^ d A" # y < J d y _ /J’ " § £ dxdy
a r  ci

and from equation <4.72}, its  clear th a t QYS&x. - 0, which

means:

n y l £i d A m § y o d y  <4.73}
ci r

The remaining problem is to reduce the term JJ* X dA.

Cl

Considering the equilibrium equation in terms of displacements 

CRef.793, then:
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__2 a i a r tfu x i A x „
dx < dx dx J ( j  m

where,

l>' « \> for- plane? strain,

= l>/1+v /or p lan e  stress.

/j a E/2C1+V}

Define a function /<x> such that:

"  Xdx

The simplest form of such function is:

/<x> a a x + a x2 
o 2 1

Hence,

.2 .2
vt2 1 f d u d v } , 1 df  _ .

^  l-2i>' < ^ 2  dxdy J f j  dx ”*

i.e.

2<l-iV > d2u, ^ d2u ^ 1 d24j ^ 1 df--------------   +   +     + — —— s 0
1-2l>' . 2 . 2 1-2v' dxdy u dxdx dy

or

d2u, i-2 v ' d2u  1 d2o i -2 v ' d /
^ 2  2<1-L># > ^ 2  2<l-v# > dxdy 2<1- l>' )p dx

For more simplifications:

^ 2  dxdy  ̂ 2 dxdy J dxdy

<4 .74>

<4.75>

<4.76>

Now, the equilibrium equation may be rew ritten as follows:
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d2\L

dx2 2C1

1 d ^ ^ , dv 1 i - 2 p ' af »T X" I y + 2l>' —  I + — -- — —  -̂ - m o~l> > dy |_ ' xy dx J 2C1-V dx

Defining,

£ 1-2l>' 1-2l>' 1+v>
i

C
2

c

4d-v '

l-2v'
2C1-V' >

3 l~ l> *

Hence, -the equilibrium equabion can be expressed as:

- ^  „ + C - 1 + 2 C  ~ ^“ 0 <4.77>2 dy 2 xy 3 dx J ± dxdx

Considering /Cx> bo be a weighbing funcbion, bhen:

I T / 0 0  [  £ r  +  ( c a ^ xy +  c s  §  ]  +  2  c * M  ]  <«* d *  -  0

i.e.

JJ /<X> TT dX dy + JJ /<X> ^  ( C2 + C3 S  ) dX dy

+ JJ Ci [ /<X5 ] ** dy “ °
o

Using inbegrabion by-parbs bheorems [Appendix A3, ib can be 

deduced bhab:

§  /< *>  § £  dy -  JJ %  § £  dx dy - §  /<x> [ C2 yxy + Cs * £  ]  dx

r  o r

- JJ [ C2 rxy + c 3 i? ] dy ♦ # c t -^Cx:> dy - 0 
c  r
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Now, by using equations <4.7S>, i t  can be proved th a t the 

expression may be reduced to:

# dy " JJ * O* dy " # /<X> ( C2 x̂y + C, )
r  o r

+ § Ci dy -  G
r

i.e.

If * dX dy = # /CX> dy ‘ § ( C2 x̂y + Ca %
o r  r

+ § c± i 2*** dy
r

or

n  ***dy ■ # f<x> [ + c i / o °  ] dy
o r

- § /Cx> ( C2 ^  + Ca §£ ] dx

r

Hence, from equations C4.61}, <4.73> and 04.78), i t  can

that:

I I  "  ■ I  /Cx> [ 1R + c! 1 dy
a r o

- § /<x> ( Cz r xy + C9 %  ) dx

r

+ <j> y dy

r

above

dx

J dx

04.78)

shown

04.79>
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4 .6  G asses w i t h  T h e r m a l ft P l a s t i c  S t r a i n s :

4.6.1 Case with Thermal Strains:

Consider* a case with a thermal loading represented by £ ,—O
where,

£ ’ T ‘
X

£ ■ £ ■ ci* T—o y
r 0

L xy J U -1

<4.80}

and

a' * a for- plane s tre s s 1,

* '<1+lOc* for- plane strain ,

a « Coefficient of thermal expansion, 

T a= Temperature difference.

For such a case, the strain  energy term in the integral 

equation, may be written as follows:

ds
J v  dy -  JT Z ^  dy
r  ci

<4.81>

Where s  represents the to ta l strain  vector.

From the elastic s tress-stra in  relationship, i t  can be shown 

that:

where,

£  SB £  -  £

i.e.
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ds  = ds + ds— —e —o

Hence, it, can be deduced that,:

d s  -  d s  d s  .

/ /  2 1 ^  d y " i j  4  b  m  +  ] ■ « * « *
a a

which can be rearranged as follows: 

d s

II  £;1 ^  dx dy = 2 I I  & i [ u  £ £«, ] <** “y
a a

d s

+ I I  4  B dy
Ci

The above expression can now be written as follows:

d s

II s:1 ai dx dy ■ s JT a* ( e \ £. ] *« dy

a a

d s

+ I I  ^  ai° ** dy
O

Using integration by-parts theorem, then i t  can be shown that:

d s  d s

II  Z a i dy " I  ^  dy + II  5:1 di° ^  dy C4-82>
Q r Oo

where,

1/o
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4.6.2 Case with Plastic Strains:

For this case the change in strain  energy can be defined as 

follows:

dW a o' d£ a o' d£ + o’ d£ <4.83>

where,

d£ a Elastic strains component,
—

d£ m Plastic strains component.
—P

Now, the stra in  energy ra te  W, can be written as:

W « W + W <4.84>
e p

where,

1 ta — a £

£ 
—P

W a f <yl d£
D  J  —  —

p o

Hence, the to ta l stra in  energy can be deduced as follows: 

d£ „ dW QW

-§z dy -  1
Cl Cl

Finally, the following can be deduced:

d£ f  dW dW .

H  i . gj ** dy  m JT ( + asr ] dy <4 8S>

d£
S S  <yl dx dy a <£ CW +W > dy C4.86>

Cl r

The plastic work intensity W can be calculated withinp
incremental finite or boundary element analysis.
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Fig.(4.4) Crack with Blunt Edge.

Fig.(4.5) Crack with Sharp Edge.
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C H A P T E R  5

THE FINITE ELEMENT METHOD 
FOR FRACTURE MECHANICS PROBLEMS
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5.1 In t.ro d u c t.io r> :

There are many engineering problems which may be considered as 

boundary value problems CBVP5. A -typical boundary value problem 

is governed by one or more * cliffer'enttal* or 'i.ntegr'dV 

equations within a specified domain, together with some 

conditions over the boundary of the domain.

For complex boundary value problems or complex boundary

conditions an analytical or closed-form solution might be 

difficult to discover, and there is therefore no other choice 

but to employ an approximate procedure for the solution of such 

problems.

With the advent of high-speed digital computers, approximate 

numerical procedures have become very accurate and reliable for 

the solution of linear and nonlinear boundary value problems.

Currently, the most dominant numerical techniques for 

engineering analysis are the finite element method CFEM5, and 

the boundary element method CBEM5.

The finite element method is based upon integral formulations 

for the governing equation of the given BVP. Discretizing the 

problem domain piecewise into a number of subdomains, or finite 

elements, the governing equations for each element can be 

obtained by means of variational or weighted residual

approaches. Assembling the subdomains equations together, a 

simple algebraic system of equations can be obtained and 

solved.

In this chapter the procedures of linear-elastic and 

elasto-plastic finite element analyses are reviewed together 

with different types of loading conditions. New formulations of 

the standard crack-tip finite elements are presented, also new

crack-tip singular finite elements are developed in this work.
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5.2 Finite Element. Analysis of Linear-Elastic 2D Problems;

5.2.1 Outline of the FEM for 2D Problems:

The process of solving a two-dimensional linear-elastic 

fracture mechanics problem by the finite element method can be 

conveniently summarized into the following steps for the

so-called *displacementf or 'stiffness*  formulation.

S t e p  <1>:

D iscretization of th e  Domain CPiecewise discretization).

In this step the whole domain is divided into subdomains

C fin ite  elements) which are connected together a t specified

nodes. The field variables on the finite element model is 

lumped on the specified nodes, i.e. the infinite number of 

system degrees of freedom is substituted by a finite number of 

degrees of freedom which represent the values of the field 

variables a t the nodes.

Fig.CS.l) shows the discretization procedure for a plate

subjected to an in-plane tensile load a t one end and fixed a t

the other end. Fig.C5.l-a) shows the whole domain as global

while Fig.C5.1-b) shows the discretized domain with two finite 

elements connected by nodes.

The essential points which should be taken into consideration

in this step are:

Ca) The ra te  of change of the field variables.

Cb) The boundary and loading conditions.i
Cc) The discontinuity in the geometry and material.

The above points affect the selection of the shape, size,

number, and configuration of the elements, which consequently 

affect the accuracy of the results, and the computer CPU time.
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Step <2>:

S e l e c t i o n  of" F i e l d  V a r ia b le  M odels: C P o in t w is e  d i s c r e t i z a t i o n } .

After discretizing the domain into subdomains, each subdomain 

will be treated  separately. The field function over the 

subdomain is represented in terms of i ts  values a t the given 

nodes and of element shape functions. The shape functions are 

used for the interpolation of the field variables and may be 

linear, quadratic, cubic, etc.

For the case shown in Fig.CS.l}, the field variable is the 

displacement component, so a t any point the displacement 

component is expressed in terms of nodal displacements and 

shape functions.

The displacement vector u a t any point <x,y} can be expressed 

as follows:

n

uCx,y> ■

i = 1

= Displacement vector, 

as Element shape functions,

*■ Number of nodes, 

m 1> 2, 3, ......

The function chosen to describe the field variable pattern  

within a specified element must meet certain criteria, usually 

the same function is used for all of the elements over the 

discretized domain, but if  more than one type of elements is 

used in the same domain, i t  will be clear th a t these functions 

will need to be different for different types of elements.

where,

uCx,y>

ty<x,y>

n

i

I u N. Cx,y>X. L <5.1>
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Step <3>:

Formulation of Element S tiffness Matrices and Vectors.

In this step the relation between the source and the field 

variable is obtained Ci.e. between the applied force acting on 

the nodes* and the nodal displacements.

The element stiffness matrix for two-dimensional elasticity 

problem is given in Ref.1803 as follows:

<5.2>

where,

K. . —<e>
B

D

Element stiffness matrix,

The matrix which relates the stra in  vector to  the 

nodal displacement vector Cmatrix containing the 

derivatives o f  the element shape functions urith 

respect to the cartesian coordinates>,

The s tre ss -s  train  matrix C matrix containing the 

element properties such as, Young's modulus and 

Passion's ratioS,

Thickness in the z-direction.

Since the shape functions N are expressed in terms of the 

intrinsic coordinates <£,»}, i t  is useful to  deduce the 

derivatives with respect to cartesian coordinates in terms of 

the intrinsic derivatives. This is possible by means of the 

chain rule of partial differentiation with the following 

result:

---
-1

SB . 
i ■

SB —
J

L

-  J
dx

dN dNL i
W dy"

<5.3}



- 9 8 -

where J is the Jacobian matrix which can be defined as:

dx
w

dx
&ri

dy

dy
dy?

dN dN x y1 2 l i
d£ d£

dN dN x y1 2 2 2
dr? dr? * -

<5.4}

The area relationship between the cartesian coordinates and the 

intrinsic coordinates is expressed as follows:

dx dy = |J | <% dr? <5.5}

Thus, equation <5.2} can be rew ritten in terms of the intrinsic 

coordinates coordinates <£,r?} as follows:

^Ce> -  ;  J a1 a  a  |J | t d? dr,

r? ? .

<5.6}

Step <4}:

Assembly of the  Element Matrices and Vectors.

In this step all of the subdomains are assembled together to 

build the whole domain, the procedure of the assembly is based 

on the requirement of *Compatibility* a t element nodes. For the 

case of s tre ss  analysis, two conditions must be satisfied, 

which are:

«} To satisfy the equilibrium condition, the global load on a 

node is equal to the summation of all element forces 

joining a t th is node.
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CvO To satisfy the continuity condition, the global 

displacement of each node has the same value for- all the 

elements joining a t this node.

Hence, the nodal stiffness and nodal loads for- each of the 

elements sharing the same node are added to each others to  

obtain the net stiffness and the net load a t the specified 

node, so the global stiffness matrix can be expressed as:

Step C5>:

Application of th e  Boundary Conditions.

The overall system of equations for the domain can be written 

as follows:

where U is the global displacement vector.

In order to solve the above system of equations the following 

boundary conditions are applied:

n

C5.7>

e=±

and the global force vector as:

n

<S.8>

e=±

where,

. = Element force vector, ~“<e>
n « Number of elements.

K . U « F C5.9>
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Ci.5 At, loaded nodes the displacement. Is unknown and the

applied force is known.

CiO At, restrained nodes the load is unknown and the

displacement is known.

After applying the above two boundary conditions the system of 

equations can be partitioned as follows:

‘ K K 1 ‘ U " r f iUu -up —u —u
<5.10>

K K U F—pu PP —p “P

where,

» Unknown displacement vector,

U ■* Prescribed displacement vector,
P

F »* Prescribed force vector,u
F ■ Unknown force vector.
“ P

Hence, from the above equation i t  can be show that:

K U + K Uuu u up p

k u + k upu —u pp p

<s.ii>

i.e.

K Uuu u - K U
—up —p

<5.12>

which represents a reduced system of equations.

Step <6):

Solution of the Resulting Reduced Equations.

To solve equation <S.12>, one of the following solvers can be 

employed:
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Cor 3 Gauss elimination ordinary solver.

CfcO Gholeski factorization ordinary solver.

Cc3 Banded Gauss or Gholeski solver.

Cdty Gauss elimination frontal solver.

The above solvers are available in the finite element package 

developed in this work.

Step <7>:

D e t e r m i n a t i o n  o f  n o d a l  S t r a i n s  a n d  S t r e s s e s .

Once the nodal displacements have been determined from the 

above step, the element strains and s tresses  can be calculated 

using strain-displacement, and s tress-s tra in  relations, such 

as:

£ = B U <5.133

and

a «* D £ <5.143

Hence, i t  can be shown that:

<5.15}

The D matrix can be expressed for plane s tre ss  and plane stra in  

linear-elastic conditions as follows:

For* plane s tress:

0

D
1-v

x>

0

0 

1 -v

<5.163
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For- plane strain.-

D <1+iO<1-2lO

1-v

x>

0

V 0

1-v 0

l - 2 v

<5.17>

where,

E « Young's modulus of elasticity, 

v » Poisson's ratio.

The B matrix for linear-elastic conditions is defined as 

follows:

B

dN
X .

0dx
dN

o
X .

dy

dN. dN.
t i .

dy“ dx

<5.18>

Using intrinsic coordinates, the following can be deduced:

dN dN.
X . i

dx

-  i
■ J

dN dN
L X .

dy w

<5.1£»

The stresses are then obtained by means of Hooke's law, and 

since they are proportional to  the derivatives of the 

displacements they will not be as accurate as the displacements 

themselves. Accurate values for s tresses  can be obtained a t 

gaussian quadrature points as suggested by Ref.C801.
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5.2.2 Library of Two-Dimensional Elements:

The library of the two-dimensional elements, available in the 

developed finite element module, consists of two families as 

follows:

Cay The Standard Family;

x. The 4-node Isoparametric Quadrilateral Element, 

a. The 6-node Isoparametric Quadrilateral Element.

3 . The 8-node serendipity Quadrilateral Element.

4 . The 9-node Lagrangian Quadrilateral Element.

5. The 8-node Isoparametric Quadrilateral Element. 

d. The 10-node Isoparametric Quadrilateral Element.

7 . The 12-node Serendipity Quadrilateral Element.

8 . The 3-node Isoparametric Triangular Element, 

p. The 6-node Isoparametric Triangular Element, 

xo. The 10-node Lagrangian Triangular Element.

Cby The Transition Family;

xx. The 5-node Quadrilateral Element, 

xa- The 6-node Quadrilateral Element.

1 3 . The 11-node Lagrangian Quadrilateral Element.

1 4 . The 13-node Lagrangian Quadrilateral Element.

1 5 . The 10-node Quadrilateral Element. 

id. The 12-node Quadrilateral Element.

X7 . The 4-node Triangular Element.

1 8 . The 8-node Triangular Element.

The above families of elements are shown in Fig.C5.2> and 

Fig.<5.3> respectively. Also the shape functions of the 

elements are given in Appendix CBI.
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5.2.3 Initial and Domain Type Loading:

The to ta l potential energy of a two-dimensional subdomain under 

general loading conditions can be written as follows:

^ " I  -  [ J /  - l ~ ~ t *** dy ] ~ " -  -  <5.20X
Ei ement

The to ta l force vector F can be expressed as follows:

F s F + F + F <5.21>— —e —£ ~a

where,

F  ̂ * JJ* B1 D t dx dy

E L emen t

-< y m  -  J T  - 1 * *** d y
Element

where £ and a are the initial stra in  and s tre ss  vectors, and— o — o
the above loading vectors are defined as follows:

F « A nodal loading vector equivalent to initial and/or 

thermal strains.

«b A nodal loading vector equivalent to  initial 

stresses.

F sb A nodal loading vector equivalent to any otherIt
type of loading such as body forces, pressure, etc.

In the presence of body forces the problem can b£ solved by 

obtaining the nodal loading vector which is equivalent to a 

given force field, represented by the following intensity 

vector:



where Cco ,co >. are the components of the body force intensity
* y 1 thCforce per unit areaX a t the i node.

Now, if  the equivalent nodal loading vector is written as:

Cl ■ \  Cl Cl Cl Cl .... a  Cl \  <5.23>— I x y  x y  x y Iv i  2  2 n n J

then, i t  can be shown th a t CRef.803:

n

\ - ZCl *= ) Q.. coVJ X.
j=*

n

Cl ™ ) Q.. co
Z_, ^ Yi

J=i

where,

Q.. m ff N. N. dx dy
X.) j j I. J

& I omen1

For the special case of a uniform body force, i.e.

0) a  (o S3 __ asX X  X1 2

CO ■  CO *3 . . . .  «  CO
y  y  y1 2

i t  can be deduced that:

<5.24 >



- 1 0 6 -

w h e r e ,

Qi “  X f  Nt ^  d y
E l e m e n t

Now, from t r h e  definition of F , it, can b e  deduced that*:

Cl = F— —E

i.e.

F ■ Cl + F + F C5.26>
—  —  — s  —a

Applying the minimum to ta l potential energy -theorem, such that: 

X< U > ■ minimum

or

.  0
du -

leads to  the same system of equations, as shown by Equ.C5.9>.

5.2.4 Pressure Type Loading:

Consider a two-dimensional finite element having a side under a 

pressure P which is uniform in the thickness direction 

Ciz-direction}, i.e.

P «a PCx,y> C5.27>

The force acting on an infinitesimal length As of the loaded 

side of the element can be expressed as follows:

A? m - p As t n C5.28>
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w h e r e ,

t * The thickness of the element, 

n «* The outward unit vector* normal to As.

Writing the outward normal unit vector as:

n ** I i + m, J

where I *» dy/ds and m, = - dx/ds, i t  can be shown that:

A? ** P t <- Ay i + Ax <5.29}

Hence, the increment of the change in work done by A? due to  a 

virtual displacement can be expressed as follows:

6CAW} ■ A? . Sq, « P t <- <5u, Ay + t5u Ax> <5.3Q>

In order to model geometrically the loaded boundary of the 

finite element a compatible one dimensional pressure (boundary} 

element should be used, such th a t the number of nodes of this 

element is equal to  the number of nodes on the loaded side of 

the parent finite element.

From the properties of two-dimensional shape functions, the

choice of compatible pressure elements will lead to  the same

interpolation of the field functions over the loaded boundaries

(This is  due to the Co continuity o f  tu>o dimensional

interpolation expressions}.

The equation of the pressure element in the x-y plane can be 

represented in terms of the following parametric equations:

n

i = ±
<S.31>

n

i = i
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w h e r e ,

N.<f> - £"<?> - n" f <n~i:>? Cr—i) 1 <3.325m  l 1 - r J

The displacement components can be interpolated over the 

pressure element, as follows:

n

6 xl ■ S\l  ̂ N. C£>

i = i
<5.33>

n

6° " ^  SVi NiĈ > 
i = i

Hence, the increment of the work done by pressure forces due to  

Sq, can be obtained form equation C5.3G> as follows:

c5W ■ J P t (- S\l dy + So dx> CS.34>

P r e s s u r a  
E I  e m a n t

Now, substituting from equations C5.33> into <5.34>, i t  can be 

shown that:

n

I  [ i
<5W ■ > i r  p  t  n. <- S\l̂ dy + So. dx> I <S.3S>

i  = 1 P r e s s u r e
E  L o m e n  t

The work done by the equivalent nodal forces due to Sq, can also 

be written as follows:

n

<5W ■ ) J F Sxl. + F So 1 C5.36}M  xi  1 y i  1 Ji = i

Comparing equations C5.35} and <5.36>, i t  can be proved that:
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F rn - r p t N.Ĉ > dy
X .  J  I

i
<5.37>

Using equations <5.31}, the above equations can be rewritten 

for a pressure element in the intrinsic system <0<£<1>, as 

follows:

The resulting vector F is acting on the nodes of the pressure 

element and i t  can be added to  the global nodal loading vector 

by means of the topology array of the pressure element, in the 

usual way.

5.3 Crack-Tip Finite Elements:

5.3.1 Basic Concept of Singular Isoparametric Elements:

The geometry of an isoparametric two-dimensional element can be 

mapped into a normalized element <0<^<l,0<r) l̂) in the intrinsic 

£-7) space, through the following transformation:

i

o

±

<5.38>

o

n

i = i
C5.3SO

n

i = l
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where,

n « Number of element, nodes.

^<£,7)) « The shape functions In the Of ,7)) space.

Cx^y.) ■ The nodal cartesian coordinates.

Displacement components a t any point within the element are 

interpolated in terms of the corresponding nodal values as 

follows:

n

XL ■ ) N,<£,7)) u.

i = i
<5.40)

n

V  m N.<£,7))

i = l

The form of N <£,t>) in all isoparametric elements are algebraic 

polynomials [Ref .143, and hence, dN./d£, dN /Vhf), are

non- singular.

On the other hand, the stra in  in equation <5.13) can be written 

by combining equations <5.13), <5.18) and <5.19>, in the

following form:

A . A

£ rn j  1 B<£,7?) U <5.41)

where B<£,t>) is the B matrix with respect to  the <£,r>) system,
—±

and J is a 3x3 matrix formed from J .

Therefore, a crack-tip singularity could be achieved by making 

the Jacobian matrix J singular a t the crack tip, or in other 

words, if  the determinant of the Jacobian IJI vanishes a t the 

crack tip, where from equation <5.4):

i t | .  <5 42>

It was found [Ref .13,14,25,27,293 th a t by placing the mid-side
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node of the appropriate elements a t  the quarter point of two 

sides, the Jacobian matrix J become singular, a t the common 

corner between those sides. Consequently, the values of stra in  

and s tre ss  vectors go to infinite values, a t such a corner, 

which should, of course, be se t a t the crack tip.

5.3.2 The Quadratic-Side Crack-Tlp Elements:

CaJ> The Eight-Node Quadr-Hater-al Singular- Element:

This element is an eight-node quadrilateral with the mid-side 

nodes of two sides being placed in the x-y plane a t the quarter 

points as shown in Fig.C5.4-a>.

Using CQ<£<1,G<t)^1> system, the shape functions for this 

element are the same as those used for standard serendipity 

element and can be expressed explicitly as follows:

N
l

= Cl-- £ >  Cl-?>> Cl-2^-2r)>

N
2

m 4 K  Cl-£> ci-r?>
N

s
B K Cl-T)} C - 1 + 2 £ + 2 y)>

N
4

“ 4 K rt Cl-y>>

N
5

B K 7) C - 3 + 2 £ + 2 y>>

N<5 B 4 K v
N7 « Cl- £ >  7 )  C-l-2^+2

Na
B 4 Cl-?> 7 )  Cl-»>

For simplicity, the strength of the singularity will be found 

along the line 1-3, as shown in Fig.C5.4>.

The shape functions along the line 1-3 can be evaluated by 

setting r) ■ 0, as follows:

« Cl-£> Cl-2£>

n ■ 4 £ ci-£>
2

Na -  £ C2£-l>

C5.44>
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Using equations: <5.39}, i t  can be shown that:

x<£} -  <!-£} <l-2£} x̂ + 4 £ <!-£} x2+ £ <2£-l} xg <5.45}

For the quarter-point element in the x-y plane, the cartesian 

x-coordinates or nodes 1, 2, and 3 are:

x ■ 0, x » L /4 , x « L
i 2 x 3 x

Substituting the above values in equation <5.45}, i t  can be 

deduced that:

Now, i t  is clear from equation <5.49}, th a t the Jacobian matrix 

becomes singular a t < x « 0, £ ■ 0 }.

Considering only the nodes 1, 2, and 3 the displacement xl along 

the line 1-3 can be written according to equations <5.40} as 

follows:

x<£} ■ L <l-£} + L £ <2£-l>
X  X

<5.46}

and by rearranging the terms, i t  can be proved that:

2 <5.47}

therefore,

<5.48>

In the Jacobian matrix the term dx/d£ will then be given by:

X
<5.49>

u, m <!-£} <l-2£ > XL±+ 4 £ <!"£} ^2+ £ <2£-l> u,3 <5.50>
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In terms of x, equation C5.50> will be as follows:

u ■ £ 1 - 3 ■] x/L^+ 2
X xj 1  ̂ X X J 2

+ f 2 x/'L - -j x/L 1 u 
I * x J 3

<5.51>

Since the stra in  in the x-direction can be expressed as 

follows:

Measuring x from the crack tip as r , i t  is clear from the above 

equation tha t the stra in  singularity along the line 1-3 is 

\ / \ r t which is the required singularity for linear elastic

fracture analysis.

Cb> The Sioc-Noda Triangular- singular Elamant:

This is an isoparametric element with the mid-side nodes of two 

sides being placed a t the quarter points, as shown in

Fig.C5.5-a>.

Using Argyris theorem CRef.803, the shape functions for the

element can be expressed in terms of area coordinates CL , L^t

L > as follows:

therefore,

C5.52>

3
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N m L C2L -1}
■ i
N m

1 1 
4 L L2

N m
1 2 

L <2L -1}3
N m

2 2 
A L LA

N
2 3

L <2L -1}5
N<s -

3 3
A L L3 1

<5.53}

Alternatively, they can be expressed in terms of the intrinsic 

coordinates <£,??} by using the following relations:

L± -  I-?-*

L m Z <5.54}
2 N

La m „

Hence, the shape functions with respect to  the <0<̂ <1,0<T7̂ 1} 

system, can be expressed as follows:

N ■ <l-£-rp <1-2 -̂2r)}
Nz ■ 4 ( <l-£-r>}

Ng ■ £ <2£-l}
-  4 Z r) <5.55}

N -  7) < 277-1}5
N -  4 7) d~^-T)}

<5

For this element, the singularity can be investigated along the 

side 1-3 <Fig.5.5} in the same manner as shown in section 

<5.3.2-a}.

5.3.3 The Nine-Node Lagrangian Crack-Tip Element:

This element has been derived by the current author and i t  has 

been used, for the f ir s t  time, as a crack-tip element. The 

element has mid-side nodes of two adjacent sides a t the quarter 

points, as shown in Fig.<5.6}. The inside node of the element 

has been deduced, using the equations of the intersected lines, 

as follows:
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x ■ a

where Ca,b) are the coordlnat.es of node 1, and for

quarter-point, element, a * 1/4.

The type of singularity for this element can be investigated

using the <0<£<1,0<77<1} system by applying equations <5.39} to

the element, and using the coordinate system described in

Fig.<5.7}, i t  can be deduced that:

At the crack tip, <£«0, 7)»»0}, the derivatives with respect to £ 

and 7) can be found as follows:

<5.56}

similarly, i t  can be proved that:

2

<5.57}

dx
w

-  L <4a-l> ,
X

<5.58>

dy
& 0

« L <4a-l} ,
y

Now, from equation <5.4}, i t  can be shown that, a t the crack 

tip:



It, is clear from equation <5.59> that, for a quarter-point 

element, <ot"l/4> the Jacobian matrix J vanishes, which gives the 

required singularity.

The explicit shape functions for th is element cam be written as 

follows:

N
l

B <1-0 <1-20 Cl-rp <l-2r>>

N
2 - 4 £  <1-0 <1— <l-2r)}

N
a

B K <2£-l} <i~7)> <1-2Y)>

N
4

B 4 ?  <2£-l> r> <l-rp

N5
B K <2£-l> V <2r)-l>

N
<5 « 4 £  <1-0 7) <2r)~l>

N
7 « <1~0 <1-20 Y) <2r)-l>

Na - 4 <1-0 <1-20 7} <l-r}>

N
p

B 16 z <1-0 r) <l-r?}

Now, from equations <5.60} i t  can be proved th a t the strength 

of the singularity along the line 1-3, is i / \  F , which is the 

required singularity for linear-elastic fracture mechanics.

5.3.4 The i/\2. Singular Crack-Tip Element:

One of the disadvantages of standard isoparametric crack-tip 

elements is tha t the distortion should be carried out in the 

x-y plane by the package user. Hence, an alternative family of 

crack-tip isoparametric elements, in which the distortion is 

only in the intrinsic %~7) plane would be more useful.

This element, which also has been derived by the current author 

for the f i r s t  time, is one of such a family of elements, and i t
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is based upon the 9-node Lagrangian isoparametric element.

Consider a one-dimensional element on the £-line, as shown in 

Fig.C5.8-a>. Using the Lagrangian multiplier as:

£ ~ K
<0 -  nn f *-------̂  1 C5.61>»■=* r = i I £ Jv. r •*

the shape functions for th is element can be deduced as follows:

N ■ £ 3 <0 -  -  <1-0 Cd-O1 i N d N

N ■ 45s <0 -   pi—T £ <1“0  <5.62>
2 2 d <l“d> s s

N « £s <0 « - 3^- £ <d~0
3 3 1 -d  N N

Now, consider the same element on the x-line, as shown in 

Fig.C5.8-b>. Using the isoparametric transformation given by 

equations <5.39>, and assuming th a t x̂*= a, x̂ ® a + L/2, and x̂ = 

a + L, i t  can be deduced that:

x -  o +  ----------   £ <1-0 - £ <d~02 d <l-d> 1-d s

By rearranging the terms, i t  can be shown that:

x « a + 2 d  < l-d >   ̂ [  <1"‘2c*2> + <2d“!> £ J <5.63>

The condition for having the coefficient of £, in the above 

expression, equal to zero is:

1 - 2 d2 « 0

which gives,
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oi -  1X^2 <5.64}

Substituting back in equation <5.63}, and setting a « 0, i t  can

be shown that: 

x ■ L £2

Comparing equation C5.65} with 

tha t equation C5.65} gives the 

analysis of linear elastic fracture

<5.65}

equation <5.47}, i t  is clear 

singularity required for the 

mechanics.

Now, a t a ■ 1/^2 the shape functions for the one-dimensional

element are deduced as follows:

N̂ « <!-£} Cl-^2 £}

Nz « 2 C|2 +1> £ <l-£} C5.66}

N3 « -  Cj2 +1} £ a - 4 2  £}

In order to check the element shape function derivations the 

following condition should be satisfied:

n

I N. <£}

i= ±

C5.67}

Substituting equations <5.66} in the left-hand side of equation 

C5.67}, i t  can be shown that:

N + N + N ■ 1 <5.68}1 2 a

Hence, equations <5.66} represent the correct shape functions 

for an element on the £-line. Notice also th a t the above shape 

functions can be used for a crack-tip boundary element from the 

same family.
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Similarly, for an element, on -the r)“llne the shape functions are 

as follows:

N Cy>> -  C1-y>> Cl-^2 r)>

N2Cr>> -  2 Ĉ 2 +1> y> C1-y>> C5.69>

NgCT>> -  - C|2 +1) Y) Cl-<|2 Y)>

Now, consider a nine-node element, in two-dimensional plane as 

shown in Fig.C5.9>. The shape functions for* this element can be 

deduced as follows:

N4Ĉ,Y)> ■ N±C NaCy)>

N2C?,yP - n2ĉ > n±cy)>

N3C?,Y)> - N C£> a N N4Cy)>

Nj1Ĉ ,y)> ■i NC?) a N N2Cy>>

n c^r))5
■ N C£> a N N3Cy»

N Ĉ ,y»O - N C£> 2 N3Cy?>

NC?,Y)> a i^co N3Cy»

NC^Yp a NC?> N2CY7>

a n2ĉ > N2Cy»

CS.70>

Substituting from equations C5.66} and C5.69> into C5.70>, the 

shape functions for the 9-node singular crack-tip element

can be deduced in explicit form as follows:

2 CJ2 +1> % Cl-£> Cl—>7) Cl-42 Y7>

- C|2 +1} £ Cl-^2 Ci-Y)> Cl-^2 Y)>

- 2 Cj2 +1>2 £ Cl-<|2 Y) Cl-Y)>

C<|2 +1>2 £ Cl-<|2 Y? Cl-<|2 Y?> CS.71>

- 2 C|2 +1>2 £ Cl-£> Y) Cl-42 Y)>

N1
a

N2
a

Na ■
N4 *
N5

a

N<5
a

N7 ■
Na -
NP

- C|2 +1> Cl-£> Cl-42 1? Cl-  ̂2 Y)>

2 Cj2 +1> Cl-?) Cl-<|2 Cl-Y7>

4 C|2 +1>2 K Cl-?} Y) C1-y?>



5.3.S The Collapsed Six-Node Triangular Crack-Tip Elements:

The collapsed triangular crack-tip elements given in the 

literature are based upon distorting the quadrilateral elements 

in the cartesian x-y plane such th a t one of their sides

triangular elements can be generated by collapsing the 

quadrilateral elements in the £-77 plane.

Collapsed 6-Node triangular crack-tip elements have been 

derived in this work using different transformations, one of 

these elements is generated and described in th is section, 

whilst the derivations of other collapsed elements can be 

reviewed in Appendix CB3.

Consider an 8-Node isoparametric element in the ,77 > system 

as shown in Fig.CS.10-a>. This element can be collapsed to  a 

6-Node triangular element, FigXS.10-b> using the following 

transformation:

diminishes CRefs.13,17,20,873. Alternatively, singular

CS.72>

Hence, the shape functions for this collapsed element can be 

written as follows:
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Now, substituting from equations <5.43> and equation <5.72> 

into the above equations, the shape functions for this element 

can be deduced explicitly, as follows:

fi± m 77 <2rri>

Nz ■ 4 7) <i“£-77>

N ■ Cl-£-7>> Cl-2r)> - 2£ + <5.74>

4*f2N ■ 4£ - P —
* 1-0 *

2 ?  2N m <1+2r?> + P —s s ' 1-77
N -  4 £ 77O

Notice th a t some of the shape functions and their derivatives, 

for such an element, are singular a t 77 ■ 1, which should be se t 

a t the crack tip.

Another crack-tip element can be deduced from the previous one 

by locating the mid-side nodes of two sides a t quarter points, 

as shown in Fig.<5.10-c>.

5.3.6 The Cubic-Side Crack-Tip Elements:

Two singular cubic crack-tip finite elements can be generated 

from the standard 12-node quadrilateral and 10-node triangular 

elements, by moving the two internal side nodes of two 

intersecting sides in both elements to  1/9 and 4/9 locations 

with respect to the length of the side CRef.203. These elements 

can be derived for the <0<£<1,G<77<1> system as will be shown in 

the following subsections.

Ccr> The 7weit»e-Node Quadrilateral Singular Element:

The shape functions of this element along the line 1-4 <77=0),

as shown in Fig.C5.ll), can be written explicitly as:
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n4 -  <i-e> [ i - |  e < i-o  ]

N -  |  f <1-0 <2-302 iS

N « - |  ? <l-£) Cl-3?)3 4U

N4 -  f [ 1- !  f  <1-0 ]

C5.75)

Using the isoparametric transformation equations <5.39), and 

setting x m 0, x « 1/9 L , x ■ 4/9 L , and x = L gives:1 2  X 3 x 4 x &

x<£) « |  £ <l-£) <2-3£) L + 2 £ <l-£) <3£-l) L
2* X X

+ ? <1 - |  ? + |  e2> Lx <5.76>

which leads to,

x<£) -  £2 C5.77)

where,

J c <5.78)

Now, from equations C5.77) and <5.78), i t  can be shown that:

dx
- 2 <1* Lx <5.79>

Comparing equation <5.79) with equation <5.49), i t  is clear 

tha t the element can produce the same order of singularity 

required for linear-elastic fracture mechanics, which is the

1/4  F  .
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Cb} The jo-Kode Triangular- Cr-ach-Tip Element*

This element, is again derived by the current author as a crack

tip element for the f i r s t  time. The shape functions of this

element in the £-line Cr)“0> for the line 1-4, as shown in

Fig.<5.12}, are as follows:

N » % <1-0 <2-30 <1-301 a

N ■ |  £ <1-0 <2-302 Z
<5.80}

N3 -  -  |  f  < l-? >  < 1 - 3 0  

N " i f  < 2-3?>  < 1 - 3 0

Now, setting x « 0, x = 1/9 L , x = 4/9 L , x =L and using
1 2  x 3 x'  4 x

equations <5.39}, the following can be deduced:

x<0 ■ % % <1-0 <2-30 L + 2 f <1-0 <3£-i> L
Z  X  X

+ i   ̂ <2-30 <l-3£ } L <5.81}z  x

which leads to,

x<0 “ Lx <5.82>

Comparing equation <5.82} with equation <5.77}, i t  is obvious 

th a t this element can generate the same order of singularity 

required for the analysis of linear-elastic fracture mechanics.
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5 .4  F i n i t e  E le m e n t. A n a l y s i s  o f  E la s  t o - P l a s t i c  2D P ro b lem s;;

The complexity of elasto-plastic fracture mechanics problems 

has necessarily led to the use of a numerical method such as 

the finite element method to  determine the field parameters 

Ci.e. displacements, s tre sse s , etc.} required to  evaluate 

fracture mechanics parameters such as the ./-integral, and the 

crack-opening displacement COD.

The elasto-plastic behaviour of any engineering material can be 

modelled for a multiaxial s tre ss  s ta te  from a uniaxial s tre ss  

s ta te  by means of the following conditions:

Cx} An initial yield canditian which defines the elastic limit 

o f  the material.

A flow rule which relates any plastic strain increment to 

s tr e s se s  and s tr e s s  increments.

Cjl A hardening rule to define the subsequent yield condition 

from a plastic state.

5.4.1 Derivation of Elasto-Plastic S tress-S train Matrix:

In general, the yield surface of many engineering materials can 

be expressed as follows:

FC a , ft ) ■ 0 <5.83>

where ft is a measure of the degree of work hardening.

The hardening vector ft is generally a function of the plastic

stra in  e and a history parameter ft. Thus, equation <5.83> can
—P

be written as:

<5.84>
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The Drucker's postulate s ta te s  that, the work done hy an 

external agency during a complete cycle of loading and 

unloading must be non-negative. Hence, the following 

requirements must be satisfied CRef.803:

Ci) The instantaneous yield surface is  convex with respect to 

the origin in the s tr e s s  space.

The plastic strain increment vector is  on the outward

normal to the instantaneous yield surface.

The second condition is known as the normality principle, which 

provides a means by which a constitutive relationship may be

obtained. This constitutive relationship, known as the flow  

rule, can be written for materials with associated plasticity 

as follows:

d£ « dX ■ dX a C5.85>—p act

where,

dF f dF dF dF ^
— " do m do do   dr J— x y z x

Now, from equation <5.84> i t  can be shown that:

^  -  ( §£ J1*?: + ( H  ) %  + m  dA -  0 <5-87>

The above equation can be simplified by grouping hardening 

terms as follows:

A m ~  [  (  ) %  + m  dA ]  x  ^  < s-885

Hence, equation <5.87> can be written as:

dF® ^ | ^ J d o ; - > i d X - 0  <5.89>
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The to tal strain  vector can be expressed in two parts, elastic 

and plastic, as follows:

d£ ** d£ + d£ C5.90)

where,

d£ m D 1 do*

and

dc = dX a
—P

Hence, equation <5.90> can be written as:

ds « D 1 do* + d\ a C5.91>

Now, from the above equation i t  can be shown that:

da ■ D de ~ dX CD a> <5.92>

tMultiplying both sides of equation <5.92 > by a. and

substituting A dX for a1 

following can be obtained:

substituting A dX for a1 da as deduced by equation <5.89>, the

A dX -  a1 D d£ - dX (a* D a) <5.93>

from which, i t  can be deduced that:

a1 DdX « ------=—=------ d£ <5.94>
A + a1 D a

Hence, equation C5.92) can be expressed as follows:

. r* j CD a> CD a>1 _da m D de - -■-----------—=r - d£ C5.95)
“ ~ A + a1 D a “
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do ■ D ds <5.9 6>
—®p

where,

D a D
—op —

D
~P

and

CD a> CD a> 

A + 2k D a

t
<5.97>

The D matrix is known as the elasto-plastic s tre ss-s tra in
—®p

matrix.

5.4.2 Hardening Rules:

Cay Euler's? Theorem-

Euler's theorem on homogeneous functions s ta te s  th a t if  F(x) *s 

homogeneous and of degree n, then:

For a homogeneous yield surface in a and A , F( a , A ) « 0, 

and:

Given the uniaxial s tre ss-stra in  diagram of a material, as
#

shown in Fig.C5.13>, the parameter H is defined as follows:

<5.98>

t t
<5.99>

Cby H Definition:
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H ■ da/d£ <5.100>

The to ta l stra in  is defined as:

where,

£ = a/E
6  O

and E is Young's modulus of the material, defined as theO
tangential modulus a t  a « 0, £ ■ 0.

Thus,

£ ■ £ - a/E
p o <5.102>

Now, differentiating the above equation with respect to  £„ i t  

can be deduced that:

d£
_ p  ■  i  _  i  ^
d£ E d£ C5.103>

Hence, from equation <5.100>, i t  can be shown that:

H do d£ do /  d£ do /  d£
d£ d£ d£ /  d£

p
. 1_ do

E d£

<5.104>

Defining the tangential modulus Ê  such that:

, _ do
't d£ <5.105>

Now, the hardening parameter H can be written as:

H 1 - E /E
t o

<5.106>
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Cc} Isotropic Hardening:

The theory of isotropic hardening s ta te s  th a t during plastic 

flow the instantaneous yield surface expands uniformly in the 

s tre ss  space around the origin, maintaining the same shape, 

centre, and orientation as the initial yield surface. The 

subsequent yield surface equation may be written as follows:

F( a , YCA> ) * 0 <5.107}

where,

A m A hardening parameter,

YC&} ** The instantaneous, uniaxial yield s tre s s  of the 

material.

In order to define the hardening parameter A, one of the 

following two hypotheses may be used:

CO The Work.—Hardening Hypothesis:

This hypothesis considers th a t the amount of hardening depends 

only upon the to ta l plastic work, and i t  is independent of the 

stra in  path. i.e.

dA m dW -  o’ ds <5.108}± p — —p

where, W is the to ta l plastic work. 
P

Oil} The Strain-Hardening Hypothesis:

This hypothesis employs an expression, known as the effective 

plastic strain  as a measure of work hardening, i.e.

dA m ds <5.109>
2 P

For the case of the von Mises yield criterion the above two 

hypotheses are equivalent.
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Since the work hardening hypothesis is the more general one 

from thermodynamics point of view, a useful expression between 

the uniaxial and the multiaxial cases arises if  the following 

assumption is made:

dW «■ <yl ds m Y ds 
P — —p  P

or

dW -  Y ds m Qds <? m dX a <y <5.110}
P P —P — “  —

<dJ> The Relation between A and H :

For isotropic hardening, where dF/ds ■ 0, equation <5.88}
—P

reduced to:

- ( « ) &
which can be written as:

_ dF ay %  «
A dY ds dA dX <t>.nz.>

—p

With further reduction to the above equation, the following can 

obtained:

where,

<5.113}

H -  £ds
P

For the special case of /<o} - Y « 0, the following can be

deduced:

E t
A “ * ■ 1 - EXE <S114>t o
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5.4.3 Outline of the Finite Element Elasto-Plastic Theory:

Cal Formulation o f  Finite Element Equations:

The minimum energy theory s ta te s  that:

X ** U - W ■ Minimum

where,

U a Strain energy,

W a Work done by external loads.

thus,

dx a dU _ dW a 0 

The to tal stra in  energy U, can be defined as follows:

U a J’J'J’ ( J  o;1 ch; ) dv 

Then, the variation of the stra in  energy can be written 

dU a J'J'J' d<£1 o’ dv 

Similarly, i t  can be shown that: 

dW a dc5l F 

where 6  is the nodal displacement vector.

Hence, equation <5.115} can be rew ritten as follows: 

dx m J'J'J' ds1 o  dv - d<51 F a o 

The strain-displacement matrix B is defined such that: 

ds a B d6

<5.115}

<5.116}

as:

<5.117}

<5.118}

<5.119}

<5.120}
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Thus, equation <5.119> can be restated  as follows:

dx m d̂ 1 ( JXf —1 £ dv “ F ) “ 0 <5.121>

Hence, for an arbitrary variation d6, i t  can be deduced that:

The above equation represents, a generalized equilibrium

equation, which is valid for both linear and non-linear 

situations.

Cby Linearisation o f  Non-Linear- equations:

Let a vectorial function yt be defined such that:

and yj ■ 0 when 6  = the exact solution.

For non-linear cases, an approximate solution 6  may be found

i n  Bl £ dv - p -  o

i.e.

C5.122)

<5.123 :>

--O
such that:

was y m rrr b 1<s  y ac& > dv - f  -  - r
— —o J J J “ —o — —o

<5.124 >

where R is a residual vector or error vector."o

In general, the residual vector can be expressed as follows:

,t <5.125 >

Now, let an incremental vector A6  exist such that:
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y/<<5 + A6) * 0 

Defining:

y/<6 + A6) « y/<6 ) + Ay/

Bl<6 + A6) « Bl<6 ) + AB*

c<«5 + A<5) *s c<<5 ) + Ac

then, it, can be shown -that,:

WC6o> + Ay/ = - R̂ + JJJ B1 Ac dv + JJJ ^  2 dv ■ 0

For "the case of small deflection,

ABl ■ 0 and Ac = D B A&— -  — “ op —

Then from equation <5.128), it, can be stated  that:

C JJJ KP B dv ) A6 -  Ro

or

K A6  m Rop — o

where K is the elasto-plastic stiffness matrix.
—op

Thus, for a finite element mesh:

n
o

k ■ y  (k )—op “ep e
e=i

where,

<5.126 >

<5.127)

<5.128)

<5.129 >

<5.130)

<5.131)
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El I o m e n  t

and
n

R -  F"o Y  n j B 1B* a dv <5.132>

e=± EI amort t

The summations can be carried out, using ordinary finite element, 

assembly rules.

CcJ> Solution Algorithms:

Before applying the f irs t/n ex t load increment, the following 

vectors are assumed to be known from the previous increment, or 

they are zeros.

e m The to ta l strain  vector, a t every Gaussian point. O
a m The to ta l s tre ss  vector, a t every Gaussian point.—O
6  ■ The to ta l nodal displacement vector.—O

The load increment vectors are defined as follows:

AF̂  a The increment of equivalent nodal loading vector.

i. Inter-polative > "Newton—Raptvson** Scheme:

Step <13: In itiation .

The vector of initial and thermal strains, during a 

given load increment, a t  the s tre ss  points.
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S t e p  < 2 > : I n c r e m e n t a l  s o l u t i o n .

CxJ> Calculation of the elas to-plastic s tre ss-s tra in  matrix a t

all of the s tre s s  points.

D * D Cc ,£ )
O  “ iB p  — O  — O

Czt5 Calculation of the element stiffness matrix for every

element in the mesh.

—oCe> ■ SSS 6l K B dv
Elft tnent

C3O Assembly of the stiffness matrix for the whole structure, 

n&

K  = £
e=i

C4 y Solution of the following incremental equation.

K AS * AF“o —1 —1

C5O Calculation of the resulting stra in  increment a t each 

s tre ss  point.

Ac *b B A<5 - An
— 1  — — 1

C<5J> Evaluation of the corresponding s tre ss  increment.

#
A c? m D Ac
—i *~o — 1

#
The upper dash is written to indicate th a t Ac? ̂  may not be equal

to the actual Ac? .
— ±
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S t e p  <3>: T o t a l  S o l u t i o n .

The calculation of the to tal vectors are as follows:

Ciy 6 m (5 + A<5—i —o —1

= £ + A£—o —1—1

<3 } &± m a  + Ac —o —1

S t e p  (4 ) :  P l a s t i c i t y  C h e ck .

In this step, each s tre ss  point in turn  is checked for yield 

using a given yield criterion. If none of the s tre s s  points 

have yielded, then no more calculations are required. 

Otherwise, the following procedure must be employed, assuming 

tha t there is no unloading.

If a point has yielded from an . initial elastic s ta te , a 

parameter £ can be assumed such that:

The value of £ can be either calculated directly or found by an 

iterative approach. With £ being known, the completely elastic 

part of the s tre s s  and stra in  increment can be expressed as 

follows:

Ac ■ £ Ac —© —1

A£ « £ &£± 

and the elasto-plastic parts as:

Y -  f< c + £ Ac >
— o  — i

Ac ■ <l-£ > Ac
- ® P  - ±
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A£ a <l-£> Ac
—op —1

Notice th a t £ a 0, if  the initial s ta te  has already exceeded 

the initial yielding condition.

Step C5>: S tress  Correction.

In this procedure, the stra in  increment is assumed to be 

correct and a correction of the s tre s s  is to  be carried out so 

as to  match the s tre ss-s tra in  behaviour of the material. The 

correction algorithm is as follows:

CxJ> Assume Ac a Ac
—op —op

£  a  £  +  A£ +  A£ /  2  
—m —o —o —op

Cjl c a c + Ac + Ac /  2
—TY) —o —o —op

C4 I  D a  D <C ,£  >
“ op op —m —m

C5O AC a D h£
—op Op —©p

Cay If I Ac - Ac , , I > a permissible error, then go
1 - o p ( n o v )  —op<old> 1

to  step <3>.

CvJ> C a c + Ac + Ac
—i —o —o —op

0
C&y The error in the s tre ss  increment is Ac a a - c .

—e r  —i  — 1

C&y The required equivalent nodal force to restore equilibrium

is:

n

“  -  Y , dV
e= 1
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S t e p  C 6>: I t e r a t i o n  G o n tr o L

The corrected load Is to  be applied and the previous steps are 

to  repeated, with all of the numerical subscripts increased by 

one, until a t  least one of the following conditions is 

satisfied.

Ci2 An acceptable error in the displacement. Such an error can 

be measured by the following norm:

Er ■ C A6l . AS. ) /  C <5l . 6. )
1  — L — V — — t

($3 An acceptable error in the corrected load. This error can 

be measured as follows:

Er * C APl . AF. ) /  C - EL )2 v “\  —t '  l. “1

C3 } Divergence. When the structure has become unstable.

Vibratory divergence. This is the case when the problem 

has failed to reach the required error tolerance within a 

given number of iterations.

ii. Iter-ativ&t Modified **Newton—Raphson** Scheme:

In this scheme, a constant value of K , based upon the elastic 

s tre ss  strain  matrix D is used. A procedure similar to the 

previous one, can be employed with:

AS rn K"1 AF 
—1 —«  —i

A a m D A£—i a —i

where for any element in the mesh, K is defined as follows:

KaCe> - XfJ a1 a dv
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The procedure requires more iterations than the interpolative 

scheme, but there is no need to  update K .Q

iii. The Combined Scheme;

In this approach, the K and D matrices are assumed to  be fixed 

Csimilar- to the modified Netuton-Raphson Scheme}, however their 

values are the tangential or the elasto-pJLastic values a t  the 

s ta r t  of the new load increment. This procedure is perhaps the 

best, being a compromise of the previous two, the stiffness 

matrix is updated only once for every new load increment which 

may save time and accelerate the iterative procedure.
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u=0
y = o

(a)

u £ =0
vt =o F / 2

ELEMENT I ELEMENT II

(b)

Fig.(5.1) The F in ite -E le m e n t Model fo r a P late in  Tension.



- 1 4 1 -

No. 1

No. 3

No. 5

No. 2

No. 4

No. 6

No. 7 No. 8

Fig.(5.2) The S tandard  Fam ily of F in ite E lem ents,
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No . 12No. 11

No. 15

No. 14

No. 16

No. 17 No. 16

Fig.(5.3) The T ran sitio n  Fam ily of F in ite  E lem en ts.
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C H A P T E R  6

THE BOUNDARY ELEMENT METHOD 
FOR FRACTURE MECHANICS PROBLEMS
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6.1 I n t r o d u c t i o n :

An alternative approach to the domain type solution is to 

integrate the weighted residual expressions of the governing 

differential equations analytically before introducing any 

approximation procedure. Using some mathematical techniques, an 

integral equation within a specified domain can be transformed 

into a boundary integral equation over the boundary of the

domain.

The boundary integral equation CBIE> can be solved numerically 

by means of piece-wise discretization, whereby the boundary of 

the domain is divided into sub-boundaries Cboundary elements). 

The equations of the boundary elements, are assembled together 

to  form a system of algebraic equations in terms of the values 

of field function parameters over the boundary. Solving such 

system of equations, the values of the field function a t any

point inside the domain can be obtained in terms of its  

boundary values, and this involves the evaluation of some 

boundary integrals.

This approach is known as the boundary element method CBEM5

[Ref .813, and i t  has many advantages, compared with other 

numerical methods. Such advantages are given in Ref .[823 as 

follows:

i. I t  reduces the dimensionality o f  the problem by one,

resulting in a smaller system  o f equations and a 

considerable reduction in the data required fo r  the 

analysis.

2;. I t  o f f e r s  continuous interior modelling within the 

solution domain, and the values o f  the solution variables 

can be calculated at any selected interior point.

3'. The method is  well suited to problems o f  infinite domains, 

such as fracture mechanics* so il mechanics» hydraulics» 

s tre s s  analysis, fo r  which the classical domain methods 

are unsuitable.
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Since most of the fracture mechanics problems are considered as 

boundary-type problems Ci.e. the fie ld  parameters are only 

required on the boundary o f  the structured then a numerical 

technique such as the boundary element method can be very 

advantageous and can save computer time and human e ffo rt when 

used to solve such problems.

There are, however, some difficulties associated with the

boundary element method which must be taken into consideration.

The integrands of the boundary integrals usually contain
—1 —2singular terms such as £&gr, r , r , which approach infinite 

values as r goes to  zero. Also for geometries like narrow 

strips, the wide variation in r can cause computer rounding 

errors which may lead to inaccurate solutions. In this work an 

attempt has been made to overcome those problems and others 

such as corner effects, edges, etc, in two-dimensional boundary 

element programs utilizing general isoparametric elements. The 

outlines of the boundary element method for linear and 

nonlinear problems with different types of loading and boundary 

conditions are reviewed in this chapter.

6.2 Outline o f the  BEM fo r 2D Linear-Elastic Problems:

The basic procedure for the boundary element method can be 

stated  in a standard algorithm, which can be summarized for 

two-dimensional linear-elastic fracture problems in the 

following steps.

S t e p  <1>:

D iscretization of the  boundary.

Considering a typical two-dimensional problem within a 

specified domain Q, as shown in Fig.<6.1), the boundary T of 

the domain is to be discretized in terms of boundary elements 

connected by boundary nodes, i.e.



- 1 5 5 -

n
r ■ u ® r <6.i>Oe=±

where n is number* of boundary elements.o

The boundary nodes are to  be defined in terms of their 

cartesian coordinates, and the boundary elements are defined by 

the number of element nodes and a topology array. The topology 

array of the external boundary should be defined in an

anti-clockwise direction whilst i t  should be in a clockwise

direction for any internal boundary, as shown in Fig.C6.2>, in 

order to obtain the boundary normals in the outward direction 

with respect to  the domain.

The field parameters x l> o, T , and T are defined for eachx y
element in terms of their elemental nodal values. The nodal

displacement and traction vectors are as follows:

<5 = {  XL V  XL V  .... XL V  1
— 1 1  2 2 m m

C6.2>

T = { CT > CT > CT > CT > ... <T ) <LT > V
x l  y l  x 2 y 2 x m  y m

where m is number of the boundary nodes over T.

For isoparametric elements, the nodes are placed a t the ends of 

the element and along its  length such th a t if  there are n nodes 

on the element, the j th node has £ value of <j-l>/Cn-l>. The 

shape functions are the standard Lagrangian multipliers

given by:

N.<£> n" f
r = l l_

Cn-l) £ - <r-l> <6.3>

Taking the field function x l  as an example, i t  can be 

approximated over the element as follows:



- 1 5 6 -

n

XL ■ ) N.<£> ^  <6.4 >

j = i

where x l .  are the nodal values.
J

Step <2>:

Formulation of th e  Boundary Element Matrices q*, A®.

The element matrices can generally be defined for an n-node 

boundary element with respect to  a source point <x. ,ŷ > 

CRef.833, as follows:

o° /ô x > y / o ^ x_x->y~y  ̂ n.<£> | j |  d£J a/3 i"  -i j s 1 —1 s

<6.5>

<̂x. ,y. > ■ f F <x-x.,y-y. > N.<£> IJI d£ a,2<j-±>+/3 1/-V J a/3 t  ̂ j N «—' s

where^

are fundamental solution parameters, 

j  *s The local number of a node on the eth element,

CX a 1, 2 , /? « 1, 2 ,

III A 2 +

The above integrations may be obtained numerically by means of 

a Gaussian quadrature technique.
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Step <3):

A s s e m b ly  o f  t h e  M a t r ix  E q u a t i o n  f o r  t h e  W h o le  B o u n d a r y .

Employing the concept of boundary discretization and the 

definitions of element matrices A°, and considering all of

the boundary equations for the to ta l number of nodes m, i t  can 

be shown, in the absence of domain-type loading, th a t the 

boundary integral equation is represented by:

m

G u + ) H u + H o
21-1,21-1 I /  [_ 21-1,2J-1 J 21-1,2J J

J=1

1 - 0-G  CT ) - G CT ) j « 0 <6.6)
21-1,2J-1 x J 21—1,2.7 y J

m

G V  + j H XL + H
21,21 I [  2I,2J-1 J  21,2J J

J=±

-G  CT ) - G <T ) -  0 <6.7)2I,2J—1 x J  21,2J y J

Defining the topology array TA, such th a t TA<e,j) is the global
t.Vlnumber of the j  local node 

rule can be deduced as follows:

number of the j  local node on the e element, an assembly

G _ « 6 ■ G. <6.8)2<I-l>+Ct,2<J-l>+/3 2 ( I -  1 > + OL, 2 < J  —1 > + /3  t

H ^ « ) A* .(x. ,y. ) <6.9)2<i-i>+a,2(j-i>+/3 ot,2 < j - i > +/? i
e

G *  ̂ <6.10)2 { i- i> + a ,2 < j- i> + /r? a ,2 <  j - 1 > + /3 -V l.

where,

I *■ i 

a « 1, 2
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(3 « 1, 2 

J -  TA<e,j> 

j  ■ 1, 2,...., n.

and the summations are carried out, on relevant, element,s.

Now, Tor I « l, 2, ...., m, the equations generated from

equations <6.6> and C 6.7>, can be expressed in the following 

matrix form:

G <5 + H <5 - <3 T «* 0 C6.11>

From the rigid translation condition, the C matrix can obtained 

as follows:

/or* fin ite  domains.

<6.12>

for- infinite domains.

2m

G « - V  H. .
LA L,J

j  = ±

2m

H. . 

J=1

where, i ■ 1, 2, ......., 2m.

Step <4>:

Application of the  Boundary Conditions.

A A

Defining a matrix H such tha t, H *= G + H , then the system of 

equations given by equation C6.11> can be written as follows:

H 6  ■ G T C6.13>

In order to solve the above system of equations, 2m values of S 

and T should be prescribed. So the nodal vectors 6  and T can be 

participated as follows:
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T = { T T }
-  - u  “ p

where,

<5 , T are the unknown parts of 6 and T >—u p —
S , T are -the prescribed parts of 6  and T.
—p  —u  —

Hence, equation C6.13> can be partitioned as follows:

A
H.“ U'u
A.

A
H-up
A

6 —u 85
G— UU G—up T—u

H—pu H
~PP

6
—P

G—pu G
“ PP i 1__

_
and i t  can be rearranged as follows:

H -GUU Up
A
H -G
—pu —pp

& —I

T

G -H
uu up

A
G -H

pu —pp 6 
—P

Now, equation C6.16> can be rewritten as:

A X * B P

where,

H
“ UU

-G
"up

H
-pu

-G
'PP

G
A

-H
“UU “ Up

A

G -H
pu PP

<6.14>

<6.15>
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X *s { 6 T V, which is a vector of the unknown nodal
—u p

values..

P b { T 6  }•, which is a vector of the prescribed nodalu —p
values.

Defining a vector Y such tha t, Y *= B P, then equation C6.17> 

can be written as follows:

A X = Y <6.18>
2Tnx2m 2mxl 2mxl

Step C5>:

Solution a t  Boundary Nodes.

The matrix equation given by equation C6.18> represents a 

system of 2m simultaneous equations in 2m unknowns. These 

equations are generally neither symmetric nor banded and an 

ordinary Gauss elimination solver may, therefore, be used for 

solving such system of equations.

Step C6>:

Solution a t  In ternal Nodes.

Ca) Displacement Components;

Consider a point Cx̂ ŷ ) which is inside the domain, the 

equation for the displacement components can be expressed 

CRef.833, as follows:

x l  m <f> G T ds + <f> G T ds - |  F x l  ds - |  F v  dst J  11 x j  21 y *r 11 j  21
r r r  r

<6.19}

o ■ |  G T ds + |  G T ds - <6 F xl ds - <f> F v ds
t J  12 x J 22 y  J  12 *T 22

r r r r
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w h e r e ,
XL m xlCx ,y ) t t -'t
o ■ oCx ,y >t v Jt
G m G <x-x ,y-y >rs  rs  t t
F ■ F Cx-x ,y-y >ra rs  t  t
r  -  1, 2

S a 1, 2

Using element matrices # Cx̂ ,ŷ >, A <x̂ ,ŷ >, and boundary 

discretization concepts, the displacement components can be 

expressed in matrix form as follows:

XL

V

n

I
[ 0 <x ,y > T— L t 6 A <x ,y > <5 ]— t " t  —e J

e=i

<6.20>

where for n-node isoparametric boundary element:

T = { CT ) <T > CT > <T > ... <T > <T > }e x l  y l  x 2 y 2 x n  y n & <6.21>

•{ U, x l  v .... rL •e V
1 1  2 2 n n e C6.22>

C£>.> Str-axn Components:

The strain  components a t the internal point <x̂ ,yt>, are sta ted  

in Ref.1833 as follows:

s.Cx ,y ) a f  Q .Cx-x ,y~y } T ds + <f> Q .Cx-x ,y-y > T ds
j t'-'t j  ^ ij X j  2j y

r  r

- |  P Cx-x ,y-y ) u ds - |  P Cx-x ,y-y > o ds
j  i ,  t "  -'t J  2j t/-7 7 t

C6.23>

where,

j
e

1, 2, 3.

£ , £ = £ , £ ? =  y .
x 2 y 3 xy
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The element matrices £>° and P° can be expressed with respect to  

a source point Cx ,y > as follows:
X .  X .

1

m S  1̂1 ^
o

<6.24>
l

/^x >y  ̂ “ f P yôx_x.,y-y. > N.<£> IJ j d£ot,2<j-i>+/3 t/ 7*. j  ot/9 i i j s » —» s
o

Using the discretization concepts, the stra in  components can be

expressed in matrix form as follows:

na

£<x ,y > «a ) [ Q*<x ,y } T - Pe<x ,y >6 ] <6.25>
— t " t  ^  f 7t —e — t / J t  —o J

e=i

where and 6  are as defined in equations C6.21> and <6.22>

respectively.

CcD S tress  Components;

The s tre ss  vector a t a point Cx̂ ,ŷ > inside the domain can be 

obtained in terms of the strain  vector a t the point, as

follows:

o<x ,y > ■ D eCx. ,y > <6.26>
— t t — — t t

where,

a  «s ■{ a  a  t  V
— x y xy

and the D matrix can be expressed as follows:
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1 - L > 0

D  «s — -i-----
-  <1-2v' ) 1-u O <6.27>

O 0 i-2v
2

where,

Shear modulus, 

v fo r  piano strain,

fo r  piano s tro ss ,

i> m Poisson's ratio.

6 .3  F a m i l i e s  o f  S t a n d a r d  a n d  C r a c k - T ip  B o u n d a r y  E le m e n t s :

6.3.1 Family of Standard Elements:

This family contain two "types of elements, as follows:

Cay Tho Constant Elomont:

This is a one-node element defined in terms of two geometrical 

points, as shown in Fig.<6.3-a>, and is called the constant 

element because the field parameters of this element are 

approximated in the node on the middle of the element. The 

shape functions of this element are approximated as follows:

where J ■ 1, and the field parameters for this element can be 

expressed as follows:

N.<£> ■ 1 <6.28>

CT >
x fi

<6.29>
CT > 

y ®



Cfc>) T h e G e n e r a l n—n o d e  E lem en t:

This is an n-node isoparametric element,, as shown in 

Fig.<6.3-b), and i ts  shape functions are as given in equation 

<6.3), where n « 2, 3, 4, 5, etc. The field parameters for this 

element are expressed in equations <6.21) and <6.22) 

respectively.

6.3.2 Family of Crack-Tip Boundary Elements:

This family contains three types of crack-tip elements as 

follows:

<a) The 3 -Node Isoparametric Crack-tip Element:

This element is a three-node isoparametric one-dimensional 

element with i ts  mid-side node being a t  the quarter point, as 

shown in Fig.<6.4-a).

The element can be represented in the intrinsic (-system 

<G<£<1), and i t  has the following shape functions:

■ <l-£) <l-2£)

N <l-£) <6.31)2
Na ■ £ <2£-l)

The above equations are the same as equations <5.32), therefore 

this element can provide the same stra in  singularity which is 

required for linear-elastic fracture analysis, i.e. the 1 / \ r  

singularity.
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<b) The 4 -Node Isoparametric Crack-Tip Element:

This element is a four-node isoparametric with the two internal 

nodes of the element being moved to  1/9 and 4/9 locations with 

respect to the length of the element, as shown in Fig.<6.4-b). 

The shape functions for th is element are as follows:

N « <1-0 C 1 - % % <1-0 1
1 2

N -  % t  < 1 - 0  < 2 - 3 02 2
<6.32)

N as — I  t. < 1 - 0  < 1 - 3 03 Z

N H £  E 1 -  I  £  < 1 - 0  3

Comparing the above equations with equations <5.61), i t  is 

clear th a t this element can produce the same singularity 

required for linear-elastic fracture mechanics.

<c) The Singular Crack-tip Boundary Element:

This element has been derived and used by the current author 

for the f ir s t  time. The derivation of this element can be 

reviewed in section <5.3.4). The shape functions for this 

element in the (-system <0<Ol> are as follows:

-  <1-0 <1—<12 O 

Nz « 2 C|2+l) £ <1-0 <6.33)

Ng -  - C|2+l) £ <1-^2 O

which are the same as equations <5.54).



- 1 6 6 -

6 .4  B o u n d a r y  I n t e g r a l  E x p r e s s i o n s  f o r  D o m a in  L o a d in g ;

In the presence of domain loading, the boundary integral

equations are given in Ref.1833 as follows:

c x l  +  <f> P x l  ds + <j> F o ds - <f> G T ds
i  i  J  i i  «» 2 1  J  l i  x

r r r

r r r

r
where,

U. -  ff C X G + Y G ) dx dy L J J 11 21
o

“ XIC X Q + Y G2z ) dx dy

O

From the above equations, the one remaining domain integral is 

the body force integral. In practice this integral has to be 

evaluated numerically, increasing the amount of data 

preparation and the CPU time required to solve such a problem. 

However, i t  has been shown CRef.833, th a t for most of the 

commonly used body forces such as gravity, rotational inertia, 

or steady thermal loading, the domain integral may be reduced 

to a boundary integral by further application of the divergence 

theorem.

For two-dimensional problems the reduced domain integral 

equations are given in Ref.C833 as follows:
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Ca) For- Tr-anslational Inertia:

U y [ s

h [ S

Cal> For- Rotational

u - k ;  [ S x

rJ €
r

m, - 2C1-V> ^  I ds + dy dn

ner'tia-

h  ( 1

* 35§ “ 2Ci-U> dx dn ] ds + Jy [ tti  ] 63 ]
C6.35>

] d s  + J j s r [ i ^  ] ds)

1 7i§ “ 2<l-v> dx 3f ds

C6.36D

^  1 5  "  2 a - L Ody dn

dy
dy “ 2a_w> s  ] *  ‘  J  «* [  “ ■ f £  ]  )  ““

2 *  2 where a « Srr/LiCl- and g » r  l&gr-.

To produce programmable equations, specific values for the body 

force terms X and Y have been considered as follows:

CO Rotation about the z-aocis:

X *  p  CX-X } 63 o z
C6.37>

y ■ p Cy-y > 6>
O Z



- 1 6 8 -

C6.38>

Ciiy Rotation about an a x is  in the x —y  plane:

2X = p  [ Cx~X >63 ~ Cy-y > 63 63 ]o y o x y

2y  ■ p  [ Cy-y > 63 -  Cx-x > 63 63 ]o x o x y

w h ere ,
p  i s  t h e  d e n s i t y  o f  t h e  m a te r ia l ,
x  , y a r e  t h e  c o o r d in a t e s  o f  t h e  c e n t r e  o f  r o t a t io n ,O O
63 ,̂ 63 , 63̂  a r e  t h e  a n g u la r  v e l o c i t i e s  in  t h e  x , y , and z

d ir e c t io n s .

6.S Boundary In tegral Expressions fo r Thermal Loading:

In t h e  c a s e  o f  th e r m a l lo a d in g  t h e  If and V p a r a m e te r s  in  t h e  

bou ndary in t e g r a l  e q u a t io n s ,  C6.34>, a r e  g iv e n  e x p l ic i t ly  a s  
fo llo w s  CRef.833:

,  0 r 60 60 ^
)  T (  - S T  + - #  )  dx dy

Cl

w h ere ,

ex* «s a for- plane s tr e s s ,

= C I+ lO ci fo r plane strain,

cx = C o e f f ic ie n t  o f  th e r m a l e x p a n s io n .
T = T em p e ra tu r e  d i f f e r e n c e .

and, i t  ca n  b e  sh o w n  th a t :

r + l  .  - i z 2^  
I  6 k  dy J 2 p C i - v '  > d>r J

C6.39>
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60 60
f + _££ *1 bb J-~g^___ ^_/‘vZG*')[ <Jx J 2/j(i-y') dy'* J

1k
where <3 is a fundamental solution parameter defined as 

follows:

G* *= - l&ffr <6.40)bn

Hence, i t  may be deduced that:

-  f f  £ y  T dy
a

C6.41>

v i a J I ^ T  | ^ 2 q *> « * d y
a

Now, by using integration by-parts theorems CAppendix A3, i t  

can be shown that:

rr „ ^zr6 Q. , , r „ 6  ,60. . p dT r60,ff T dx dy -  f  T ds - |  _  c—j os

o r  r

-  U  <***> H * d x  d y
O

<6.42)

11 -  * § £  - dy -  tf * -  - # S  < 0  *
o r  r

+ 11 ^  d* dy
O

For steady-state heat condition with no heat generation: 

V*T -  0

Hence, i t  can be proved that:
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”, ■ ^  - f  s  ]
r  r

<6.43>

« ' T X m * ^ r  #T _d(3* , *1
vt -  I=P- [ # T a £ a ?  “■ " # 35 ^  J

r  r

The thermal stra in  vector is defined for plane s tre s s /s tra in

problems as follows:

£  m 1 a 'T  a 'T  0 I  —t 1 '

and the corresponding s tre ss  vector can be written as:

a = D (£-£ )— — ----------T

6.6 Accuracy Measure Parameters:

6.6.1 The Singular Integrals:

The mechanics of the boundary element method implies th a t the 

magnitude of the basic variables are determined by the 

inflyence of a number of source points on the boundary. The 

effect of each source point on the field point is only a 

function of the distance r- between the two points. Thus when

the source point and the field point coincide, a singularity
—£  —2occurs due to terms like r  , and r  , which approach

infinite values when r* tends to zero.

Now, in order to improve the accuracy of the solution obtained 

by the boundary element method, the singularity problems should 

be solved. A technique developed and employed in this study to 

solve the singularity problem, is based on the

quadrature table given in Ref.1843. This technique is required 

for the g° matrix formulation only.
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The term which appears in equations <6.5> is defined

[Ref.833, as follows:

G « -  [ f G Z&gt-') - G 1 6  + 1 <6.44>aft a I I i r '  a J a/3 dx^ dx^ J

where a, Ĝ , and Gg are given constants.

For the special case where the field point coincides with the

source point, the value of r- in equation C6.44> will go to zero 
1

making singular. Using the intrinsic coordinate £, for

any general isoparametric element a t  node <1>,* £ ■ 0, i t  can be 

shown that:

+ £*#c|) <6.45>

Hence, for the case of a = /3, and Ĝ  ■ 0, i t  can be deduced

that:

G « -  [ G { tegch + tegt-) * + d r - ) 2 1 C6.46>aa a L 1 £ r^ ' vdx^ J

For a constant element, the function G can be calculatedaa
analytically [Ref .833. However, for an isoparametric element 

the terms can be split into regular and singular parts as

follows:

G ■ GR + GS C6.47>aa aa aa

where,

GR ■ -  [ G ^pC-) + C ^-)2 1 C6.48>aa a  I i r dx jl a J

and
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(3s  ■  i  [  G ^ g C v >  1Ota a  [  i   ̂ J <6.49>

<6.48> represents a regular* function, the integration of which 

can be obtained by the usual Gauss-Legendre quadrature. On the 

other hand equation <6.49> represents the singular part In a 

format suitable to  be evaluated by means of the quadrature for 

the logarithmic kernels given in Ref.C843.

Similarly for node <n>, a t £ ■ 1, i t  can be shown that:

element can be divided into two parts as shown in Fig.<6.5>, a 

separate analysis is to be carried out for each parts, as 

follows:

<6.50>

therefore,

<6.51>

<6.52>

Cay Part I:

For this part, the following can be shown:

<6.53}

theref ore,

<6.54 >
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]?

«  [ G* M  «7 ?  )  ]  C6 SS>
S  ̂ ■ ■ Z:

Qaa a

A parameter <p is now defined such th a t <p « 0 a t  £ a £., and 

4> ■ 1 a t £ ■ 0, i.e.

K - t
<t> ■ y <6.365

resulting in,

^  « £ <l-0> C6.57>

and

f  /<?> df - - j  ?. /<*> - r?. /<*>
J J

<6.S8>

s»Therefore, the function <3 can be written as follows:aa

gL  -  3* [ * 4 >  ] <6-59>

CfcO Part II:

The logarithmic function for the second part is modified as 

follows:

l _£. K~K
ZoeĈ i -  <^[ ^  ] + *»[ o=T5F ) <6-60:>

J J

R S>and G f G can be expressed as: aot aa ^

G* a i  f c  u J  f. /  1 + 1 <6.61>aa a [ i ^  Cl-£\:>r J "xa J
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l-£ r r l-£ ;
C6.62>C ' - ' h M R : )  ]

The parameter 0 is defined such tha t, 0 = 0 at, X “ K . said 0 = 1  

at, £ ■ 1, i.e.

?' ej4> ■ C6.63>

and

£ -  £. + €!-£.> 0 <6.64>
11 J J

g
Hence. the function G can now be w ritten as:otoi

l-£.
QS m ■ 
aa i  f  Gt  1  «S.<SS>

6.6.2 Corner .Tump Functions Technique:

Cx.) Definitions:

Consider the boundary integral equations given by equations 

<6.34>, and le t the boundary r  contain a corner defined by two 

nodes a and b Ca=b>, then i t  can be written that:

b

<j> /  ds ■ j ^ J ^ ds + J  /  ^  jj C6.66>

r  "  r b

where r  « T - T , as shown in Fig.C6.6>.
b c

Now, define Cx ,y > = Cx ,y ) = Cx ,y > to represent a boundary
C  C  CL CL D O

node a t the corner c. From equations <6.34>, i t  can be shown 

that:

/
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<f> F _ u, ds ■ f F u ds + Hat , f F . u  ds J cx/3 a  J ot/3 o  a -*b J o/3 o

r b

f F it ds + $ .Cx. ,y. > u Cx ,y ) C6.67>J o/3 o va/3 o c - c

r b

where Cx̂ ŷ } are the 1th source point coordinates, and the

term 7? rtCx ,y. > is defined as follows:vo/3 x. Jx.

8  ,*,Cx. ,y. > ■ Hat , J" F _Cx-x. ,y-y.> ds C6.68>v O/3 i" i. a.-+b d a/3 x. J 3x.
a

Similarly i t  can be deduced that:

<f> <3 _ T ds a f G 7 ds + <SJ ACx.,y > T Cx ,y > C6.69>J o/3 o J o/3 o o/3 L i o c c
r  r.

where,

© -Cx. ,y.> ■* Hol f (3 -Cx-x. ,y-y. > ds C6.70}o/3 cl-+b J o/3 i."

The functions 8  ̂  said ®0Ĵ  whenever they exist are called "Jump 

Functions'\

Jump Functions foe a Smooth Corner- Model:

Consider a smooth corner model as defined in Fig.C6.7>, where

Cx ,y > are the coordinates of the centre of the circular arc
c c

which is tangent to the boundary a t points a and b.

To use this model, two cases should be taken into consideration 

depending upon the location of the source point. The two cases 

are as follows:
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Cas?& Ca5:

T h e  S o u r c e  P o in t ,  i s  n o t ,  a  C o r n e r  N o d e .

For such a case there is no singularity in and terms.

Hence:

b

lint f /  ds 0 C6.71D
cl -+b J

From the above equation it, can be deduced that, the Jump 

functions an<̂  ®a/9 ^or> this case as defined by equations

C6.68> and <6.7G> respectively, are zeros.

Case CbJ>.-

T h e  S o u r c e  P o i n t  i s  a  C o r n e r  N o d e .

For this case, F^^ and G^  ̂ contain singular terms, therefore 

their integrals should be examined with care. Considering the 

corner model shown in Fig.C6.7>, i t  can be deduced th a t the 

field point <x,y> is moving from point a to point b on a 

circular arc centred at- c, as explained before.

Now, since x. ■ x and y. ■ y , i t  can be shown that:
t c t c

r- ■  I C x - x  >2  +  C y - y  >2  < 6 .7 2 >
c c

Using polar coordinates, i t  can be proved that:

x bb x + r  cos0
c

y  ss y  + r  sin0

Also i t  can be shown that:

C 6 .7 3 >

dr _ dr . . dr . dr .-x— m cos0, -s— ■ sin0, -5— m 1. —— m 0 C6.74)dx dy dn ds
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The terms and as given in Ref .1831, are as follows:

„ 1 f * dr dp dr . * v to , dr ^
aft * 4rrCl-p)r I dn dx dx ^ ft dx a dxL a f t  1 a /3

- <l-2p> ^ 6  . C6.75>dr , 1
dn a/1 J

" 8fl/Xl-p> { - [ <3_4p> ^  + |  ] ^

+ dr dr 1
dx dx^ J C6.76}

f t

where 6 - is the Kronecher delta. aft

From equations C6.69>, C6.74> and C6.75>, i t  can be shown that:

e b
$ Cx ,y > m Um, f F r  da 11 c c a  -+b J 11

aa

■ U™' f -Z—FZ c I 2Cl-p> + cosC2a> 1 da C6.77}r -*o J 4nCl-p> L J
a

a

Therefore, from Fig.C6.7> and equation C6.77), i t  can be 

deduced that:

7? Cx ,y > « C ^ cosC2^> sina C6.78>vii c,Jc 2 n 2 b '

Similarly, i t  can be deduced that:

7? Cx ,y > « C ^ i  cosC2ĵ > sina C6.79>
v 22 c 2 n 2  b '

35 Cx ,y > ■» Cx ,y > ■ - J- cosC2^> sina C6.80>v 12 c"c 21 c'-c b f



where,

b ■ 4 n Cl-p> 

a m n + tp - <p
CL D

r  -  ca + e  > /  2a  b

Using similar procedure, it, can be proved that,:

The Modified Boundary Integral Equations:

For a source point, Cx̂ ,ŷ > being not, a corner node, there is no 

modification required for the boundary integral equations. On 

the other hand, for Cx. ,y. > being the corner node Cx ,y ), the
1 1  c c

following modification is required.

Using the previous corner model, the boundary integral 

equations may then be rew ritten as follows:

c u fi c  c
C6.81>

C6.82>

(C  u , + C  v  ) + <f> F x l  ds + I  F o  ds21 C  22 C  j  12 j  22
r rb b

C6.83}

where,
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6.6.3 Use of Rigid Translation Conditions:

If -the structure is moved rigid translations a in the

x-direction, and ft in the y-direction, then there are no

loading and no s tresses  generated, which means th a t a t any

point in the structure , the following can be deduced:

T m T = 0
x y

U. ■ V. « 0t t
u£x,y> * a

4»<x,y> ss f t

Then, the boundary integral equations given by equations C6.34>

can be rew ritten as follows:

c. a + a <f> F ds + ft <f> F ds = 0
j  11 j  21

r  r
<6.84>

c. ft + a  ̂ ds + ft <f> F ds = 0

r  r

For the special case of a = u. and ft = v , the above equations

can be restated  as follows:

c u, + <f> F xl ds + <f> F v ds = 0
l l  J 11 i J 21 i

r  r
<6.85>

c. o. + (6 F xl. ds + I  F v ds ■«= 0l i  J 12 l J 22 l.
r  r

Subtracting equations <6.85> from equations <6.34>, the

boundary integral equations can be rew ritten as follows:

£ F Cxl- xl. > ds + <f> F Cv-o. > ds - <f> G T ds
* * 1 1  l J 21 l J 11 X

r  r  r

- <£ <3 T ds - U. « 0 C6.86>** 21 y t
r
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<f> F Cu-u. > ds + F Co-o. > ds - £ Q T ds
• * 1 2  l J  22 l J  12 X
r  r  r

- £ Q T d s - V - 0  C6.87)J 22 y i
r

Now, for* the special case of having a corner node Cx ,y >,
c c

equations C6.86) and <6.87) can be rew ritten as follows:

<f> F C x l - x l . ) ds + <x l  ~ v b . > ^  Cx -y. > + <fi F Co-o > ds• * 1 1  1 C l  11 L t * *21  i

r b r b

+ Co -o. > g - <fi G r  ds - <f> Q T ds - U « 0 C6.88)
c i  21 J  11 x •* 21 y i

r b r b

<f> F C x l- x l . ) ds + Cx l  - x l  ) S Cx -y > + £  F Co-o ) ds
• * 1 2  t  c t 12 i i  * * 2 2  i

r *> r b

+ Cu, -u,) $ - £ G T ds -  £  G T ds - V = 0 C6.89)
c -i. 22 •* 12 x •* 22 y i

r b r b

From the Jump function equations, i t  can be seen that:

CaJ i f  Cx. ,y. > s? Cx ,y >, then g  ̂ “ 0.
1 . 1  c c v C(/3

CfcO i /  Cx. ,y.) = Cx ,y ), then g .Cx. ,y.) ^ 0, but Cxl  - xl  ) = 0,i t c c '  i. l. * c i *
and Co -o.) = 0.c 1

Hence, for any source point Cx̂ ,ŷ >, i t  can be deduced that:

b

Z U tv f F C xl- x l  )  ds ■* 0 <6.90>a -+b J aft t
a

and
b

ZiffL f F . Co-o. y ds m 0 C6.91)a. -*b •* aft t
CL
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From previous analysis, it, can be shown that:

b

l i m , f F . C x l- x l . ) ds ■ C xl - x l . ) 7? ,y. ) « 0
a  - > b  J  0 / 5  v  c l  v O / 5  l  l

a
and

b

Zlfh, f F vv Cv~V. ) ds ■ Cl> --L>. > $  sr.Cx. ,y. ) “ 0
a-*b J 0/3 l c l  v a/3

a

£6.92)

<6.93}

Substituting equations £6.92) and £6.93), into equations £6.88) 

and £6.89) and using equations £6.90) and £6.91), the boundary 

integral equations can now be rew ritten as follows:

<f> F Cxl- x l . ) ds + <f> F Co-v.> ds - <f> G T ds
J 11 l  J 21 I  •» 11 X

r b r b rb

- £ Q T ds - U . « 0 
J  21 y  l

r.

£6.94)

<f> F Cxl- x l . ) ds + <f> F C o - v . ) ds - f  G T ds
J  12 I J 22 l  J  12 X

r  r  r/ b b b

- £ Q T ds - V «*» 0 J 22 y i
r

£6.93)

The above equations are free from corner effects. The corner 

can be le ft as a finite gap in the boundary element mesh. This 

result justifies the double-node technique of the corner, i.e. 

representing the corner with two nodes, one with element £1) 

and the second with element £2), as shown in Fig.£6.8).

For further simplification, defining the factor a t source

point £x. ,y.), as follows:
l L

G. £x. ,y.) ■ - <f F ,£x-x. ,y-y.) ds £6.96)(3a l" l j a/3 l v
r



Then, the boundary integral equations: can be expressed as:

follows::

G Cx ,y ) xl. + G <x.,y. > v .  + & F x l  ds + £ F v  ds
11 i  t t 12 v i  i. J  11 J  21

V  r b

- ( E g  T ds - (E G T ds - U » 0 C6.97)
J  11 x J 21 y x.
r. r

C <x.,y) it + G Cx.y) «. + |  F x l  ds + d> F v  ds
21 i  i V 22 l. 1 t J 12 J 22

r *> r b

- ( E g  T ds - (EG T ds - V. -  0 <6.9 8)
J 12 X J 22 y

r b r b

6.6.4 Boundary Integral Equations for strains:

Although the boundary integral equations for stra ins exist 

[Ref .833, the results are not expected to be very accurate, 

especially near the boundary. This is because the fundamental 

solutions for the boundary integral equations of strains 

Cobtained by differentiating the fundamental solutions o f  the 

BIE*s o f  displacements} exhibit a high degree of singularity. 

In an attempt to improve the accuracy of the results, a number 

of techniques were developed, their use depending on the 

position of the source point from the boundary.

Consider the boundary Integral equations given by equations 

<6.34>. Differentiating these equations with respect to  x̂  and 

y. yields the following equations:
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d\L. do.
G ^  + G -5-^ ■ y <x.,y > <6.100)

21 dx. 22 dx. X  il. t.

dxL. do.
G ^  + G ^  « <p <x.,y.) <6.101)

n  dy 12 dy^ y i

du. d<;.
G + G ^  « y/ <x.,y.) <6.102)

2i  dy 22 dy y i.

where,
dG <96 dF

" i'*riTx ds + J*r iTy ds;"J’ *riu ' ds 
rb 1

dF dU
f  «  d s  +  C6 .103>

r b ‘

dG dG dF
yj <x.,y.) * f T ds + f T ds - f ^  dsX j dx. X j dx y j dx

r b 1

dF dV.
- f -r-^ ds + ^  <6.104)J dx dx

dG dG dF

V W  " f a F £ T x ds + f a f LTy d s - f ^ r 1 ^ ds

r b 1 r b 1 r b 1

dF au
-  S  a f "  °  ** -  5T <6105>

r b 1

ao ao aF
V W  “  f a ^ l T x ds + S a ^ Ty d s - f a ^ u d s

rb 1 r b 1 r b 1

dF av
■ J a T u d s  + ^  <6106>

rb 1

The above system of equations can be solved to  obtain the



partial derivatives of u and v. with respect to x and y > andt L L i
hence the values of stra in  a t Cx. ,y.). To obtain the values of 

s tre ss  and strain  a t  an Internal node using the method outlined 

above, the rigid translation condition must be used to  define

the term .fta

As mentioned before, the boundary integral equations for 

strains have singularities in their fundamental solutions. 

Thus, they are unsuitable for boundary nodes, where these 

singularities occur. Other techniques exist a t  such points, 

where the displacement components a t  any point on the boundary 

element can be interpolated as follows:

n

u,C?> -  ^  N X?} 

J=i
<6.107}

n

t><?} m ^  v .  N X?}

J=i

The derivatives of the above displacement components with 

respect to ?, can be deduced as follows:

dNd u, \T* j
1  ui ard?

C6.108}

. dNdo
I  "j a rJd?
“J=i

From the chain rule of partial differentiation, i t  can be 

written that:

dvb f d\L } dx f &il *| dy
d? -  [ J d? t dy J d?

C6.109)
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Now, dividing throughout by the Jacobian lil> the following 

expressions can be obtained:

w '  HI
d\L . . d u47b —— + I ——dx dy

do . do47b -jr— + t  ——
dx dy

<6 .110)

The surface traction components can be obtained as follows:

T m I a  + 47b T 
x x xy

T —I t + (ib a
y xy y

Substituting the stra in  values with the appropriate

s tre ss /s tra in  coefficients d . i n t o  equations <6.111), i t  can
i-J

be deduced that:

T m t  f  d  * d  £
x L 11 dx 12 dy

f   ̂ du, . . dt>
^  I d + d -t—-I 2i dx 22 dy

+ 47b d
33

+ Z d
33

f  £ £
[ dx 

(

du,
dy

d\JL+ _  
dx dy

<6 .112)

If the value of ? is known for a given <x̂ ,ŷ ), then a system 

of equations can be se t up to find the partial derivatives of il 

and v with respect to x̂ , ŷ . This system can be represented 

by:

A x = y <6.113)

where,

-47b

0

Z <d /E) 11

4ibC d /E)1 2

fTbCd /E)
33

Z<d /E)
33

0

-47b

*t<d /E)
3 3

£ <d /E)
3 3

£<d /E)
12

/nXd /E) 
22
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{ d\L d\L do do 1
dx dy dx dy J

* “ { J r 'I H  7^\l\ TZ* TS*  }

A separate method exists for isoparametric elements if  <X,ŷ >

coincides with two different nodes (double nodes technique).

The nodes belong to  separate elements, say element <1) and <2).

Defining <Z ,471 ) and <Z t47v ) to be the direction cosines for 
* * i  i  2 '  2

element <1) and <2) respectively, then if  <T ) and <T ) are
x l  y 1

the tractions for the node on element Cl> and <T ) and (T >
x 2 y 2

are similarly defined for the node on element <2), i t  can be 

shown that:

Z CT ) - 47V CT) ~ ?  a - 47? a
1 x l  1 y l  I x  l y

<6.114)

Z <T ) - 47V < r )  ~ £  a - 47? Cf
2 x 2  2 y 2  2 x 2 y

The traction components in the above equations can be obtained 

from the boundary integral equations of displacements, then the 

equations can be rew ritten as follows:

Z*' cf - 47? a as f
1 x 1 y 1

<6.11S)

£  0  - m2 a = f
2 x 2 y 2

where f  and f  are known parameters.

There are a variety of techniques for solving equations <6.115) 

depending on the values of the following three determinants:

2
~47v z  z -47V  47V Z Z -fl i1 1 1 2 1 2 1 2 1 2

f 2
-4 7 1

2
-  m- 2

2 2 1 1 2 2
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6.6.5 Use of Finite Difference Method:

It, was clear* from many cases tested, th a t the previous 

approaches would fail if  the source point, <x. ,y. > being very 

close t,o the boundary. For such cases. x j l ( x  ,y. > and -t><x ,y. )t t x x
are always very accurate, and the finite difference method can 

therefore, be employed.

For source point, <x.,y )̂, as shown in fig.<6.9), define a, b, 

c, and d> such that:

a = <x.-Ax,ŷ > 

b = <x̂ +Ax,ŷ ) 

c = <x ,̂y.-Ay) 

d = <x. ,y.+Ay)
V. X

The increments Ax and Ay should be selected such th a t a, b, c, 

and d are still inside the domain or on its  boundary, but not 

outside the domain.

For such a case, the following can be deduced:

XL -XL ,  A V -Vb a[ dxL 1 ^ b a f do I
dx J ̂  ~ 2Ax f dx J

f &kl 1 f ^  1
[ dy I “ 2Ax ' [ dy J ~

2 Ax

<6.116>

The displacements (xl ,u >, Ou, ,« ), (xl ,o >, and (xl fo > will
c l  c l  b b  c c  d d

be evaluated from the boundary integral equations. The strain  

and s tre ss  components can be evaluated as follows:

]. - <Vi " ( ^  ), 

(V i  “ ( 57 1  + ( £  ).

<6.117>

and, a = D £—v —I <6.118)
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6.6.6 Use of Subregion Technique:

In many e n g i n e e r i n g  applications i t  is essential to  divide the 

structure analyzed into several regions known as subregions. 

This may be due to  the existence of cracks, flaws, or because 

the dimensions of the structure are not regular.

In each of the situations mentioned above, a se t of regional 

boundary equations can be formulated and assembled. These 

boundary equations are inter-related by the compatibility and 

equilibrium constraints a t the region interfaces, and wherever 

the traction is discontinuous on an interface boundary the 

multiple nodes concept, mentioned earlier, can be used.

Consider a structure of two subregions a and b as shown in 

Fig.C6.lG). For subregion a the following can be defined:

6 ■ The displacement vector of the independent boundary
— CL CL

nodes of subregion a.

6  , m The displacement vector of the nodes on the interface—ab
between subregions a and b.

Now, the displacement and traction vectors for all boundary 

nodes of subregion a can be defined as follows:

T « { T T }“ a  aa  ab

<6.119)

Similarly, for subregion b , the following can be defined:

<5 ■ ■{ <5 <5 V
- b  1 - b a  —bb r

T a { T T V
- b  1 “ ba —bb 1

C6.120)
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Consider the matrix equation given by equation <6.11>, the 

matrix equation for subregion a and b can be written as 

follows:

C 6 + H 6 - G T
a. —a a. —a a a.

Therefore, C , H , and G , can be partitioned as follows:
CL CL CL

f  -  fi b 1I cia ab J

6—aa 

^ab

r  h  & i
I aa ab J

■ r s  & b iI aa  ab J

6
—aa 

^ab

"ab

<6.122>

Similarly, for G. , H , and G .
D O O

Now, since i t  is assumed to  be no relative movement between the 

subregions Ci.e. no slip  or separation}, the conditions of 

compatibility and equilibrium over the interface must be 

satisfied. These conditions can be summarized as follows:

C-O 6 , « <5
—ab —ba

for- compatibility o f  displacement.

CiO T « - T
ab ba

for- equilibrium o f  tractions.

The above conditions allow the separate subregion matrices to 

be assembled into a global matrix for the complete boundary. 

However, before the system can be solved, further conditions 

must be applied a t the multi region interface nodes.

The problem of discontinuity of traction a t  corners are also

encountered a t subregion interface nodes, where the normals are 

not defined. Consider the node 1, as shown in Fig.C6.10>, the

to tal number of variables a t this node is six Ci.e. two

displacement components, and two traction components fo r  each
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subregion}. Now, two component equations, with respect to x  and 

y axes, can be generated for each of the two subregions.

For a unique solution of all the variables, another two extra 

independent equations are required. To provide these extra

independent equations, the multiple nodes concept is used.

Auxiliary nodes are defined a t  the intersection points, where 

each node is assigned a unique normal. Considering node i 

again, three auxiliary nodes take the place of this node, as 

shown in Fig.C6.il>, although they are considered to  be 

geometrically coincident, each node is associated with a 

particular element and hence a unique normal.

This technique also applies to internal interfaces between 

subregions. For a node a t the intersection of three subregions, 

three nodes should be defined to take the place of the actual 

node, leading to  the auxiliary nodes being only common to two 

subregions. Thus two equations can be generated from each 

subregion to  correspond to  the four unknown variables active a t 

each node.

The subregion technique does have the disadvantage of 

increasing the to ta l number of active variables, and hence the 

size of the matrix equation to be solved, also there will be an 

increase in assembly and solution time, which may mean th a t for 

large or complex structures requiring many auxiliary nodes, 

this method is inefficient. However, using many subregions may

lead to  a matrix of coefficients diagonally dominant, which

facilitates the use of banded solvers.

6.7 Outline o f th e  BEM for 2D Elasto-Plastic Problems:

The outline of the boundary element method for two-dimensional 

elasto-plastic fracture mechanics problems is summarized in the 

following sections.
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6.7.1 Boundary Integral Equations! for* Elas to-Plastic Problems:

The boundary integral equations for elasto-plastic problems are 

given as follows ERef.833:

c. x l  +  [  F  x l  +  F v 1 ds
V I .  ■*' L 11 21 J

: r

- £ f Q T + a r  1 ds - ff ffl X + <3 y ] dx dy J ^ ±1 x 21 y J j  j  ^ 11 21 J  J
r  a

- [T f  R* cP + R* cP + R* t p  1 dx dy e 0 <6.123>
J J  ^ 11 x 21 y 31 xy J  J
Cl

c. o. + <f f F u, + F - y j d s  
v v L 12 22  J

r

- <6 f <3 T + G T ] ds - f f  f fl X + Q Y 1 dx dy^ 12 x 22 y J J J ^ 12 22 J
r a

- [T f R* cP + R* cP + R* Tp ] dx dy « Q <6.124 >JJ  < 12 x 22 y 32 xy J J
Cl

where,

c. = f f  6<x-x. ,y-y. > dx dyi i i
a

In the above equations the plastic s tresses  cP, cP, and r p can
x y xy

be defined as follows:

cP as D £p * CD. - D ) £
—

C6 .1 2 5 >

where,

= i cP
X

<p
y

TP * ,x y

£p -  i *p
X

£p
y Ky '  Snd

D *= Elas to-plastic s tre ss-s tra in  matrix, 
“ep
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6.7.2 Incremental Boundary Integral Equations:

Since the incremental plasticity theory is used, then due to

the application of a load increment represented by AT , AT ,
x y

and the load intensity increment AX, AY, equations (6.123) and 

(6.124) may be w ritten as follows:

G Au. + G Au.+ <6 f F Aa + F Av 1 ds
11 t 12 v v. i i  21 J

r

~ $ (  Gl l  A rx + G21 ATy  ]  ^  “ J J  [  G11 + Q21 ^  ]  *** d y
r  a

- ff f R* AcP + R* Ac? + R* Atp 1 dx dy * 0 (6.126)
JJ [  11 x 21 y 31 xy J
a

G Aa. + G A-t>.+ <f> f F Aa + F A-t> I ds
21 V 22 V i. 12 22 J

r

- f G A T + G  AT 1 ds - ff f G AJjf + G Ay 1 dx dy J ^ 12 x 22 y J  J J  ^  12 22 J  J
r  o

- ff f R* Acf + R* Aô  + R* Atp 1 dx dy * 0 (6.127)
J J  [  1 2  x 22 y  32 x y  J
O

The boundary element calculation of elas to-plastic problems

will s ta r t  always with the elastic solutions, in which the

following can be defined:

Ao'= D A£ (6.128)

Then a correction may be carried out such that:

A a *a D Ae (6.129)—ep op —

Now, from equations (6.125), (6.128), and (6.129), i t  can be

shown that:

A c/p «= A a' - A a (6.130)
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The above equation represents the difference between the 

non-corrected and the corrected s tre ss  increments.

6.7.3 Boundary Integral Equations for Strain Components:

The boundary integral equations for strain  components can be 

generated by differentiating equations <6.123} and C6.124} with 

respect to x̂  and y. as follows:

Or} I/ith  respect to x. .*

dxt. do.  ̂ dF dF
G 35—̂ + G11 ox 12 ox.

v r

>. r dF dF

r  + $ I * r  + &r ^  V  J

f dG dG .  -d G  dG

# ( 33T Tx -  35T r y ) *•“ " f f  [ &r x+ y  dy
r  i. ■ o  1 L

dR* dR,* dR'21 + 31
i y dx.L- n  ( 53T1 <  + 2BT <  + a ir1 Txy ) dy -  0 C6131>

a

dvu. do.  ̂ dF _ dF
G ——— + G21 dX 22 dx

r

r dG da _ dG dG

- # ( * r  T* + a f  ry } *= - f f  ( s r  *  + * r  y
^ 1 n 1 1

<9R* 0R* <?R*

■ If ( < + + T*y ) dv - 0 <6132>
a
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With respect to y. *

dtt,. di>. , dF dF
Gii — -  + G -5—̂  + <f> f Cvu-ru. > + -3—̂  > 1 d s

d y ^  12 d y ^  j  d y ^  i  d y ^  l  J

 ̂ dG d G .  -dG dG

-  #  (  a ^ 1 T x +  S 5T 1 T y  )  ^  "  H  (  5 F 1 ^  +  ^  d y
r  *■ *- o  "■ L

dR dR dR

-  I f  ( aiT <  + a i r  <  + a i r  Txy ) ^  dy “ 0 C 6 1 3 3 >

Cl 1 v L

d .̂ d4>. dF dF
G -x—- + G  ̂ + <f> [ Cvu-vu. > + — 22 <.0 - 0 . > I ds21 dŷ  22 dŷ  j  ̂ dŷ  t dy. i J

- dG dG -dG dG

- # [ air2 Tx -  a ir2 r y ) *• - 11 [  o f  *  + 3 j f  *  }  * *  «*
r  t 1. o

r dR* dR* dR*

- 11 ( a ir2 <  + a ir  <  + a ir2 T*y ) *« dy -  0 <6134:»
Q  t  L L

Now, t.he above equations can be rewr*it/ten as follows:

dxu. do. dvu. do.
G + G - - I - *  , G —-i + G —i * 8

11 dx. 12 dx. 1 21 dx 22 dx 2
l  1.  L i

du. d<t>. dvu. do.
a + G —±m' S  G ~  + G —I  ■ »

11 dy. 12 dy. 3 21 dy. 22 dy <1
t  L L i

<6.13S>

where, t,he parameters X ,<8 can be defined as follows:
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8 m - <f J L CvL-vb.y + L Co-o.} j dsa. J  [ o n  l 012 l J
r

+ <£ f Q T +Q T ] d s+  ff [ q  X + Q YJ ^ 0(1 x 0(2 y  J i. C(1 0(2
r  o

+ rr f S + S  cP + S t p ] dx dyJ J  [ Oli x 0(2 y  0(3 x y  J ^
O

and a = 1, 2, 3, 4.

Therefore, from equations £6.135} i t  can be deduced that:

du.
= C S G - S C  ) /  C G G - G G } 

dX. 1 22 2 12 11 22 12 2 l'

do.
^  «= C « G - S G ) /  C G C -G  G )  dx. 2 11 1 21 v 11 22 12 21

Similarly,

dXL.
« C « G  - S G ) /  C C G - G G )dy^ 3 22 4 12 v 11 22 12 21^

do.
rsr̂  = C « G  - S C  ) / ( C  G - G G )dy^ 4 11 3 21 11 22 12 21

6.7.4 Evaluation of Strain and S tress Increments:

The incremental Boundary integral equation of strain

written by defining such that:

AS s - |  J L ACxl- xl }  + L ACo-o } j ds0( J 0(1 l 0(2 l J
r

+ <f> f Q AT + Q AT 1 ds + ff f Q AX + Q AX ] 
j  r  0(1 X 0(2 y J J J r  0(1 0(2 J
r  o

+ rr f £ Ao'5’ + S Ac? + S  Atp 1 dx dyJ J  [ ai  X 0(2 y 0(3 xy J  ^
O

dx dy

<6.136}

<6.137}

<6.138}

can be

dx dy

<6.139}
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Then the incremental equations of stra ins can be deduced as 

follows:

G AU + G AV m AS
11 X 12 X 1

G AU + G AV ■ AS
21 X 22 X  2

G AU + G AV » AS
11 y 12 y 3

G AU + G AV ■ AS21 y 22 y 4

<6.140>

where,

x m dx * y ** dy

v  = , K = £x dx y dy

Now, the increments of stra in  can be obtained as follows:

As » At/
X X

As « AK
y y

Ay ■ At/ + AF
x y y x

<6.141}

For elas to-plastic analysis, the increments of s tre s s  can be 

expressed in terms of stra in  increments as follows:

Aa m Aa ■ D As - Aa <6.142}— —op — —

where,

A a = 1 A a Aa A t  1 
— x y xy

and in terms of displacement increments as follows: 

f  dA u dAv  } p
x  “  [  dt l  * T  + dl Z W  J  '  X

Act -  f d + d 1 - actp C6.143>y r 21 ^  22 dy J y

Ar „  d  r  ^ 3  +  ^  i .  A x i
xy 33 r  dY dx  J  :

.P
xy
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Then the corresponding traction increments can be written as 

follows:

AT ■  ̂ f d AU + d AF ] + a  d ( At/ + AX ) - ATPx [  11 x 12 y J  33 y x x

<6.144>

AT ■ fli f d AU + d AX 1 + I d C AU + AX ) - ATP
y ^ 21 x 22 y J  33 y x y

where,

< = i f  '  111 ' *■ = - If '  IJI

and

A!TP ® £ Aô 5 + m, Atp
x x xy

ATP = £ Atp + fli, Ao^y xy y

Now, equations <6.144} can be used to form a system of 

equations similar to th a t given by equation <6.113}, i.e.

A x = y <6.145}

where A and x are as defined before, and y may be defined 

as follows:

* - { 3r"|J| ir'IIl X T ' *  ATy'"E } “ 1465

The solution of the above system of equations involves the use 

of Gauss elimination solver with a partial pivoting procedure, 

th a t due to the zeros in the leading diagonal of matrix A.
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6.7.3 Numerical Int.egrat.ion over* N-Node Elements:

Ca5 Numerical Integration ouer an N-Node Cell Element.- 

Consider an integration term as follows:

C «=o
Cl

J J  £ /Cx-x^y-y^> * pCx,y> J dx dy C6.147>

where,

/<x-x., y-y. > *= A fundamental solution parameter with

respect to a source point <x. ,y. >. 

p<x,y> ■ The value of one of the field function

parameters Cstr-ess, strain , etc.).

Now, for an n-node cell element, as shown in Fig.<6.12-a>, the 

isoparametric interpolation can be employed such that:

n

pCx,y> ■ ^  p̂  NX ,̂rj) <6.148>

j=*

where N . a r e  the shape functions of the corresponding 

n-node cell element Cjfinite element) as given in Appendix CB3.

Therefore, the integration in equation C6.147D can be written 

for the e th element as follows:

i <p n

n  ( /  C x<̂ ,T?>-xi,yĈ ,r>>-yi>] * p. N.<£,7?> J |J | d£ <±n

o o j =1
 C6.149>

where,

4> =1 fo r  quadrilateral elements,

« 1-7) jfor triangular- elements.

Ill - I I Cff) |
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The numerical evaluation of the above equation can be carried 

out in a way similar to  th a t used for the finite element method 

by means of Gaussian quadrature technique.

Cb> Numerical Integration over an N-Node Boundary Element: 

Consider the term,

* J  [ /<x-x^,y-y.> * pCx,y> J ds C6.150>

r &

For an n-node isoparametric boundary element, as shown in 

Fig.C6.12-b>, the value of the field function p can be

interpolated a t point <x,y> as follows:

n

pCx,y> ^ ^  p̂  NXO <6.1S1>

J=±

where NX£> are the shape functions as given by equation C6.3>. 

Hence, equation C6.150> can now be written as:

n 1

Bo= ^  Pj { J  /  [xCf>-x.,y<:f>-y.] * N.CO |J | d? } C6.1525

J=i o

where,

in - j~ w t w
Similarly, the above integration can be evaluated by means of 

Gaussian quadrature technique.
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6.7.6 Solution Algorithm:

The solution algorithm for- two-dimensional elas to-plas tic 

boundary element method can be summarized in the following 

steps.

Step <1>: In itia l Calculations.

The boundary element procedure of elas to-plastic problems 

s ta r ts  always with an elastic solution, and matrices like H, <3, 

A, and B will be the same throughout the elas to-plastic 

iterations. To save CPU time, these matrices will be calculated 

once and saved before the s ta r t  of the load increments.

Step <2>: New Load Increment.

The initial traction vector P̂  will be prescribed, so th a t any 

new load increment is defined as a ratio  of the original 

vector, i.e.

AP ss Ratio x P.L

Then the following can be defined:

AY a B AP

Also a t the s ta r t  of a load increment, the displacement vector 

Au is assumed to be zero, i.e.

Au as o

Step <3>: Elastic Solution.

To define the initial displacement and traction increment 

vectors A6  and AT , the following system of equations should—o o
be solved:
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A AX ■ AY

where AX represents a vector of the unknown values.

Step <4): Results a t  In tegration  Cells.

The domain inside the boundary element will be discritized into 

a number of integration cells, the extent of the cells need 

only to  cover the area of expected plasticity, but could and

normally does cover part or all of the boundary. Each cell is 

defined in terms of an n-node finite element, the nodes of the 

cell are defined depending on their position in the domain,

i.e. either "internal node" or "boundary node**. Then for each 

node the vectors Au, Â , and A a should be calculated as 

follows:

Cal For- Boundary Nodes:

The above vectors can be calculated using the incremental 

equations given in section <6.7.4>.

CfcO For Internal Nodes:

The above displacement vectors can be calculated using the 

boundary integral equations given in section C6.7.2>, then the

strain  and s tre ss  vectors can be calculated using either the 

boundary integral equations for stra in  increments as given in

section <.6.7.3> or the finite difference scheme described in 

section C6.6.5D.

Step <5>: Elas to-P lastic S tress Correction.

By knowing Aa' , A£, o^, and a t every internal and boundary

node, and using an algorithm similar to  th a t described in steps
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C4> and C5> from section <5.4.3-c>, a corrected s tre s s  vector a 

can be obtained. Hence,

Aop « Aor* - Aa

where,

Aa ** D Ac
—  —& p —

Now, if  Aop is negligible then a new load increment, can be 

applied, and calculations from step <2) in this section are to 

be repeated.

Step C 6 >. Elas to-P lastic Iteration .

The steps of the elas to-plastic iteration can be outlined as 

follows:

Cal Consider AP = 0 , and but Ay = Au , where Au is now 

calculated in terms of the newly evaluated A<yp.

CbD Solve the system of equations A Ax *= Ay to  define the

additional correction vectors A<5 , AT , which should be
— ± '  —1'

added to A6 , AT respectively.— o o

Cc.) Due to A6 ,̂ AT̂  find the corresponding A c and Aa .̂ Then

calculate Ao*p.

CcD Carry on the iterations until, one of the following

conditions is encountered:

i.
A<5 .A<5

s'.s
< a permissible error.
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U.
AT1 .AT
----------- 5: a err-or.

< Tl.T

Divergence, where the displacement or traction vector 

ratios begin to  increase numerically instead of decrease.

xxj. Vibratory Divergence, where the displacement or traction 

vector ratios failing to reach prescribed values within a 

given number of iterations
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F ig .(6 .6) B o u n d a ry  w ith  a  C o m e r  N ode.

F ig .(6 .7 ) S m o o th  C o m e r  M odel.
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Fig*(6.12) N -N o d e  Cell a n d  B o u n d a ry  E lem en ts*



CHAPTER 7

THE APPLICATIONS OF 
FEM & BEM IN FRACTURE MECHANICS
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7.1 Introduction:

The ability of the finite element and the boundary element 

methods in providing numerical solutions for some field 

parameters like displacement, s tre ss , and strain  nearly a t any 

point inside or on the boundary of a problem can be very useful 

for the evaluation of fracture mechanics parameters such as 

s tre ss  intensity factors, crack opening displacements, and 

./-integrals.

To make use of the finite and boundary element solutions in 

fracture mechanics, several techniques have been developed and 

employed in this work. Some of these techniques are summarized 

in the following sections.

7.2 Extrapolation Methods of S tress In tensity  Factors;

The extrapolation methods fall into two categories each one 

associated with the field parameter used for the calculation of 

the s tre ss  intensity factor. These categories are as follows:

7.2.1 Displacement Extrapolation Method:

Considering only the tensile mode J, where the crack plane is 

the plane of symmetry, the analytical expressions for the 

displacement variation along the radial line emanating from the 

crack tip can be written, for both plane-stress and 

plane-strain conditions, as follows:

(2A+1) sin

(2A-1) cos

C7.1>

where,
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E/2C1+V)

<3-lO/<1+v} for- piano stress ',

<3-4v> /o r  piano stra in .

For the purpose of" numerical evaluation, a modified parameter 
★

K can be defined as a function of the crack-tip coordinates r-, 

and B. Consider the finite element mesh given in Fig.<7.1>, and 

using equations <7.1>, this parameter can be written as 

follows:

1/2

« 4 ju y  [ C2A-1) cos § J “ cosj^ J J

or <7.2>

1/2
K*<r.,e> -  4 Ai «. [ |2- J /  [ C2A+1) sin [ § ] - sln [ — ] ] 

where,

r. = Nodal radius from the crack tip,

xl , v *= Nodal displacements,l i.
i = Node number.

By substituting the nodal point displacement u, or o a t some

nodes on the plane where B has a constant value between 0° and

180°, and the corresponding radial distance r- in the suitable
*

equation, the quantity K can be calculated a t each node and 

plotted against the radial distance r , as shown in Fig.<7.2>.

With suitable refinement of element size the K curve obtainedi
approaches a constant slope a t a point close to the crack tip.

The intersection of the tangent to the constant slope position 

on the curve with 

intensity factor, i.e.

*
on the curve with the K axis will define the K s tre ssi i

K =t Hail K*<r ,0>
i  r -*o i  \. <7.3>
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7.2.2 S tress Extrapolation Method:

The s tre ss  method for determining crack-tip s tre ss  intensity

factor is similar to the displacement method.

Equations C3.41-3.43> can be written for mode I  loading

conditions, in a general form, as follows:

K
a. . = ---— f  ce> C7.4>

where,

i = x ,  v- 

j = x, y.

f  C£?> = cos
X X

f  <£> = cos 
y y

f  C0> = cos
x y

( I ) [ 1 - sin( I ) W- ) ] 

( I ) [ 1 + sin[ I ) sin( ¥ )  ] 

( I ) sin[ I ] sin( ¥ }

&
Now, the parameter can be defined as follows:

K Cr ,0> = ^2nr Co > /  f  C0> C7.5>I k  k k

where,

Co. > = Nodal stresses,
»-J k

k = Node Number.

Similar to the displacement method, nodal point s tre s s  o or
X X

o or r can be substituted into equation C7.5> with a 
y y  xy

suitable f'. ,C0> function to calculate and plot the parameter

K . Then K can be estimated from the K curve in the same way i i  i  J
as explained before.
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For* the case of an oblique crack, both mode I  and mode I I  

loading conditions should be considered. In this case the

extrapolation methods by solving a system of two simultaneous 

equations generated from equations C3.41-3.4S) by using 

combinations of two s tre ss  or displacement distributions along 

the line of the crack or any other line with specified crack

angle 0 .

7 .3  E x t r a p o l a t i o n  C u r v e - F i t t i n g  T e c h n iq u e :

An alternative approach to the graphical extrapolation,

described above, is to  use an analytical curve fitting  for 

extrapolation. A special extrapolation curve-fitting procedure 

has been developed in this work to evaluate s tre ss  intensity

factors as well as crack opening displacements. This technique 

can be summarized as follows:

Consider a polynomial equation as follows:

y C x )  == a  <p + a  <p + a  4> + a  <P C 7 .6 )1 1  2 2 3 3  n n

where <p. Cx) can be defined as Cx) sb x , <p. Cx) *= 0&?#x) ,

Now, for a se t of points such as Cx^y^), k sb ±f 2, ..., m. The

above equation can be written as follows:

s tre ss  intensity factors K and K can be calculated using the

etc.

n

C 7 .7 )

J=i

n

<7.8)

j=*
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Now, by employing the least-square method, i t  can be written 

that:

m

y 2£ = minimum <7.9)k
k=±

From the above equation, a functional £<a ,a ,...) can be 

defined as follows:

-  L

m
2

*  -  >_ *k
k=i

i.e.

m n

XC at , a 2,...> = Z [I aj yk ] min' <7.10)
k=i j=i

from which, i t  can be deduced tha t d£/da^ as 0. i.e.

m

k=i

Since:

ds
k <£.<x) <7.12)da i k'

then, from equations <7.8), <7.11), and <7.12) i t  can be shown

that:

m n

Z [ Z aj "W_ yk ] = ° <7i3:>
k=i j=i

Now, the above equation can be rearranged as follows:
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n m m

Y  aj [ Y ] = Y  ̂ <7i4:>
j=i k=i k=i

Hence, from equation C7.14>, the following parameters can be 

defined:

m

G . « V" <p.<x> <p.Cx > C7.15>
tJ L-t 1 k j k 

k=i

m

b. = ) 0. Cx > v C7.16}x /  i k k
k=±

where C . = G . , and i = 1, 2, 3,..., n.
Ji- i-J

Thus, equation C7.14> can be rew ritten as follows:

n

I G.. a. s b. , i a 1, 2,...,n C7.17>
T-) J T-

j = *

and in matrix form as:

G a = b C7.18>
nxn nxl nxl

Solving the above system of equations will provide the

coefficients a , a a .
1 2  n

Hence, the intersection of yCx> with the y-axis can be obtained 

as follows:

n

yCO> « ■ [ I  a. <p.Cx) J

j=i

and for the case of algebraic polynomial:

yCO> = C7.19>



An alternative method to the absolute error approach is to  use 

the relative error, where the following parameter is defined:

y < x 5 -  y
=  ----------------- -  ; y ,  ?= 0  < 7 . 2 0 }

k y  J k

and the functional to be minimized is:

m

I
—2
£k

k=i

from which, the equations parameters can be deduced as follows:

G. . a  C . /  y f  <7.21>
x j  t-j k

b. = b. /  y f  < 7 .2 2 >
l i. k

Using the curve fitting  procedure explained above, the s tre ss

intensity factor can be calculated as follows:

Ci) Calculate K <r ,0) for a given se t of r  , as shown
I k  k

in section <7.2).

Cii) Let y<x > = /C*<r ,0) and x = r  .
k  I  k  k  k

Ciii) Follow the procedure given above to generate the

system of equations given by equation <7.18).

Civ) Solve the generated system of equations by means of

Gauss elimination solver, to obtain the coefficients 

a , a ,....., a .
1 2  n

Cv) Finally, substitute the above coefficients into

equation C7.6). It is clear from this equation and 

equation C7.19) tha t the s tre ss  intensity factor a t 

the crack tip can be obtained by putting x = O. i.e. 

for an algebraic polynomial = â .
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Similarly, the crack opening displacement can be evaluated by

using the model given in Fig.<7.3) as follows:

Ci) Evaluate A-l> for a given se t of r  on the surface ofk k
the crack as shown in Fig.<7.3).

Cii) Let y<x, ) = Av, and x, = r  .k k k k

Ciii) Generate and solve the system of equations given by

equation C7.18).

Civ) Finally, the crack-tip opening displacement 6 ® 2

7.4 Numerical Evaluation of the J-Integral:

For the special case of linear-elastic fracture mechanics, the 

./-integral expression can be written, in the absence of domain 

loading, as follows:

J  ■ { [  1/ dy - T1 ds ] C7.23)

r
o

Using the finite element method or the boundary element method 

to  obtain field parameters such as displacements, s tresses , and 

strains, equation C7.23) can be written in terms of such 

parameters as follows:

J ■ J* [ ^ o'1 £ dy - T1 ds ] C7.24)

r
o

The numerical evaluation of the above equation can be reviewed 

in the following subsections.
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7.4.1 Piecewise Discretization of Arbitrary Contour:

Consider* an arbitrary contour T around the crack tip. ThisO
contour can be divided into n sub-contours C.stib-botmc/ar-'tesO ase
shown in Fig.<7.4>. i.e. 

ne

r  -  V  r  <7.2S>o /  , e
e=i

Therefore, equation C7.24> can be written as follows:

n
©

J = cf £ dy - Tl ds ] C7.26)

e=i r

A parameter J can be defined such that:

n
©

- zJ -  } J <7.27}9
e=i

where,

J  « f [ — <yL £ dy - Tl ds ] <7.28>
9  J  Z  — — <7X

r

7.4.2 Characteristics of N-Node Boundary Element:

To evaluate the J term numerically, an n-node isoparametric 

boundary element is employed as a contour element, on the same 

sub-contour within the x-y plane, as shown in Fig.C7.5). The 

element may be transformed into a stra igh t line of unit length 

in the £-line, and the parametric equations of the element can, 

therefore, be expressed as follows:
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n

x<£) = ^

i=±
<7.29)

n

y<£) ■ ^  yL Ji?"<£} 

i=i

For* the special case of = <i-l)/<n-l), i t  can be shown

that:

*"<?> -  n f M Y  - Cr- °  ] C7.305
1 I  i  -  r  J

Hence, i t  can be proved that:

n dJ£n<£)

1=1

dy v  r  1" L  y<- L ^ J
1 = 1

where,

<£ )  n

d?
S=1 r^ sS^l

or

d£

where,

<7.31)

I  n  ( c- “, )
Now, for n-node boundary element i t  can be shown that:

ds = |J | d£ <7.33)

ds , T,
| J I <7.34)
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t i l  -  J < f ) '  *  c f ) -
and the directional cosines of the outward normal can be 

defined as follows:

dy ds
cUf cUf

dx . ds= " a? '  a?
C7.35>

7.4.3 Evaluation of the Elemental ./-Integral:

The evaluation of the elemental J- integral J  is not possible
©

unless the values of a and/or £t and u are given a t the 

boundary nodes of the corresponding e element.

Let the e element be an n-node isoparametric element as 

described before. Using isoparametric interpolation equations, 

i t  can be shown that:

n

£<£) = o\ ^"<£) <7.36)

i = i

*;<£) m D"1 o<£) <7.37)

If s is given instead of a , the following can be written: 

n
n

£<?) = ^  £L <£) <7.38)—l. i
i = i

<?<£) = D £?<£) <7.39)

Similarly, the displacements can be expressed as follows:
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n

i = i
<7.40>

n

<X£} ~ ^
i = i

Then it, can be deduced that,:

.  v  f 1d? - 1 I J
i = ±

<7.41>

n dJ£n C% >

i = i

If the values of a <£}> o CO, and r CO are known at, any t.
x  y  x y

Then, the fractions can be defined as follows:

T <0 = I a <0 + m, r <0
x  x  x y

<7.42>

T <0 y * I r
x y

<0 + -m, o- <0 y

Now, 0 3 the chain rule of partial

diL
df =

dvL dx 
dx df

dii, dy 
dy df

dv 
—  =
<*K

dz> dx 
dx d£

d-t>
dy

dy
d?

i.e.

du. dx dii. dy
df "  ̂ 14/

x  d£ dy d£

dv d-L> dx dy
d£ dx df £

y d£

where £ =
X

i du/dx, £y = d o /d y .

<7.43}

C7.44>

<7.45}
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The evaluation of the term dv/dx in equation <7.45 > 

the following two conditions:

Ca5 I f  dx/dt, 7* o  O n, o5:

From equation <7.455, i t  can be written that:

dv_ f  d« _ dy 'I dx
dx  [  d f  d? y J d£

Using equations <7.35} i t  can be deduced that:

dv f dv dx 5ST  “ \ + Z £  /  m,d x  t  d ?  d £  J  y

Cb} I f  dx/d^  = o , dy/d% o  C£ o}.-

From equation <7.44}, i t  can be shown that:

du f du dy
=  -r^- /  — - I +  m, £  /  Zdy I d£ df J  x

and from v *= , i t  can be deduced that:xy dy dx

dv f du dy }
s r  ~  y  - /  -jit -  m , e  /  Zdx * xy I d£ d£ J x

Now, from equation <7.28} i t  can be written that:

Je - |  J" £ £ dv - J” ( Tx + Ty §£ ) ds
r  r© ©

Then for an element in the plane, i t  can be shown that:

i n  «
O O

or

involves

C7.46>

<7.47}

<7.48}

<7.49}
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“ J  [ I  '  £  £  -  (  T* + T y ^  ) ] III d? <7S°>
O

Using Gaussian quadrature technique, i t  can be written that:

NQ

J rn V  AJ <Z 5 <7.51}
e /  . Q q

q=i

where,

A J e -  Wq {  [  l  * £  £  -  (  T* f *  + r y £ £ )  ]  H I  }  <7S2>

7.5 Evaluation of the  J-In tegral Domain Loading Term;

If the domain loading effect is considered, then a domain 

loading term can be defined as follows

'd - JT (J  -  rr I *  £  + y §£ 1 dA <7.s3>

o

Using the discretization procedure of the finite element 

method, the above equation can be written as follows:

n
&

J  = V  Qj  ) <7.54}
e = i

where,

‘  U  [ X l £  + y  1r ) M l  <7.55>
n K

and J as given by equation <5.4}.
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The domain integral in the above equation can be carried out by 

means of integration cells C finite? elements1}. The shape 

functions for such cells or elements are given in Appendix CB3.

Let equation <7.55} be written as follows:

“ J  J  f Cx>y> III df dr) <7.365

where,

/<x,y5 = ( *  |% +

Using quadrilateral cells, the above integration can be 

evaluated by means of Gaussian quadratures as follows:

N

D ©

NOl

- I  I /<x ,y }
r , s  r , s III V  v c <7.575

S= 1 r  = i

where xr s> yr s can be evaluated using the cell shape 

functions as follows:

n

x
r , s

V  x. N.<£ ,77 } 
/  ■ J J r s
j=*

<7.58}

n

y = y  y . n <£ ,77 }
r , s  /  J  J  r  s

j = i

The domain loading components X, X, can be defined as follows:
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Ca) For Transitional Inertia:

X as - p a
x

C7.59>

/ ■ - p a
y

where,

p ■ Material density,

a b Rigid acceleration in the x-direction,X
a m Rigid acceleration in the y-direction.

CW For* Rotational Inertia about the Z—Axis:

2
< X  “  X  >z r,s o

7 = p wZ (y - y >
z r,s  o

<7.60)

where <*> is the angular velocity in the z-direction, and
Z

Cx ,y > are the coordinates of" the centre of rotation.o o

Co) For Rotational Inertia about a Line in the x-y  Plane-

2
X -  p [ Cx - x > oi - Cy - y ) a) o> l

r,a o y r,a o x y
C7.61)

2y « p [ < y  - y ) o> - Cx - x > oi 1
r,a o x r,a o x y

where 63 , co are the angular velocities in the x- andx y
y-directions respectively.

A generalized expressions for the domain loading components can 

be defined CRef.853, as follows:

X ** a x + a y + a 
i  r,a 2 r,a o

y = b x + b y  + b1 r,s 2 r,a o

C7.62)
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b  =  -  p  W  0 31 x y

b  as p  <o>2 + 032} 2 x z

a = - Ca x + a y ) * b = - Cb x + b y )o 1 0 2 0  o 1 o 2 o

The above equations are valid for the following conditions:

Ci) 03 J* 0 , 03 = 03 = 0 .z x y

Cii) 03 = 0 , 0 3  ^ 0,  03 0 .z x y

7.6 Transformation of J-In tegral Domain Loading Term:

The domain integral in equation C7.S3) can be transformed to a 

boundary integral as explained before in chapter 4. i.e.

JD = J + c,
r o

- # / < * >  [  C2 +  C3 ^  J dx + J y „ dy C7.63>

r r o

where /Cx), C , C , and C are as defined in section C4.5.3).
1 2  3

The above transformation is valid for the following cases:

Ci) 03 ^ 0 , 0 3  = 03 = 0 .z x y

Cii) 03 =  0 , 0 3  = 0, 0 3  ^ 0 .z x y

w h e r e ,

a = p  C032  + 032)  
i  y  z

a = -  p  63 032 x y

Using the f ir s t  integration approach, discussed in section 

C4.5.2), then:
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m J* ,$ dy - JT< ^  u + v ) dx dy C7.64}

r  oo

where,

3 Z ~ X ^ u  = X'Ub +  y  v

For the case of transitional inertia and -the case of rotation 

in the x-y plane when = 0 Ci.e. only cô is  considered^), if

can be proved that:

J d = |  S dy <7.65>

r

Hence, equation C7.28> can he written as follows:

j m Y. / . [ ( s - 2
e=± r a

It is clear from equations <7.63} and <7.64} th a t there is no 

requirement to use integration cells for the evaluation of the 

J- integral domain loading term, since the domain integral is 

transformed to a boundary integral. This transformation is very 

useful for the numerical evaluation of such a term, since i t  

can save computer CPU time and reduce the e ffo rt required for 

the preparation of data.

7.7 Evaluation o f the  J-In tegral Thermal Loading Term:

For elastic case with thermal loading, the ^/-integral thermal 

loading term is given in equation <4.82}. The domain integral 

part of this equation can be written as follows:

- X1" u J t du
dx ds <7.66}
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j t  m H  dx  d y  C 7 A 7 >
a

The double integrals in the above equation can be evaluated by 

means of integration cells and Gaussian quadrature technique as 

follows:

md

J = QJ ) <7.68>
T ^ T&

e= i

where m is the number of integration cells.©

The term G-J ) can be defined according to  equation <7.67} as 

follows:

N N o o

= Y . Z  /<Xr.='yr.^ lil Wr W,
s=i r =i

where,

/<x ,y } as {yt <x ,y } ^- £ <x ,y }r,s r,s — r,s r,s «7X —o r,s r,s

Now, the complete ./-integral value due to thermal loading can 

be evaluated as follows:

ne

J = Z  ^ [ ( 2 1 ^ ] d y " - | d S ] t J T <7-69>
e=i r
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7.8 Evaluation of th e  J-In tegral Plastic Loading Term;

For the case of plastic strains the complete J -Integral 

expression can be written using equation <4.86> as follows:

<y +W ) dy - Tl ds 1 <7.7Q>
© p  — <?X I

where W and W are as defined in chapter 4.
© p

Now, to evaluate equation <7.7 0) numerically, the plastic

stra in  energy component W should be evaluated using an
p

elasto-plastic finite element or boundary element programs.

Then a numerical procedure similar to th a t introduced in

section <7.4 > can be used.

7.9 Evaluation of J-In tegral fo r Oblique Cracks:

All the equations given before for the evaluation of the 

J"-integral are with respect to crack axes, the x-axis of Which 

is on Cor parallel to5 the crack surface, as shown in 

Fig.<7.4>.

Consider the case, in which the crack axes <x' -y' > are oblique

with respect to the structure axes <x-y>, by an angle <p, as

shown in Fig.<7.6>. To facilitate the FEM or BEM analysis, the 

structure axes will be used in the analysis and to be selected

as the best appropriate axes for the finite or boundary element 

mesh employed, i.e. x l ,  v  , a , £ given to the J—integral

program are assumed, to be with respect to structural global 

axes Cx-yy. However, according to the derivation of the 

./-integral expression, explained in chapter 4, the expression

should now be modified as follows:



- 2 3 3 -

J W dy'
r

-  s c i i § :  ) d s

- JJ C x '1 § ;  ) dx' dy'
a

<7.71)

where the dashed parameters are measured with respect to the 

crack axes <x' -y' ).

The directional cosines of the x' and y' axes with respect to 

the oc and y axes, can be obtained as follows:

I =

-m,

(Tb =

C O S  f p

sin0

-sin0

C O S 0
for- y* —aocis.

<7.72)

A vector can be represented in terms of i ts  x-y components as 

follows:

U  i  +  XJ i  — XJ* i  +  \ J *
x y  x y

From which, i t  can be deduced that:

XJ

XJ (Tb (Tb

X>'
x

U' <7.73)

or

V
XJ

XJ

I  (Tb XJ
1 i X

I  (Tb XJ
2  2 y

<7.74)

Using the above equations to represent du, T, X in terms of
9 9

du' , 1 , X , i t  can be proved that:
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T#t du' = Tl du

X 1 du' = X1 du

<7.75)

From which, the following results are deduced:

J * t du' . r _t du
T aJ. ds “ J  I  ^  ^  <776>

r  ro o

and

J J  X 1 §»! dx' dy' = JJ X1 |a , dx' dy' <7.77>

n o

and from the invariance of the stra in  energy function, i t  can 

be deduced that:

t
W  m W  C7 .7 8 )

Substituting equations C7.76-7.78) into equation C7.71), the

expression for the J-integral can now be written as follows:

J  -  J  V  dy' - J C Tl §S. ) ds
r  ro o

“ JJ C xf §==, ) dx' dy' C7.79)dx'
a

For the numerical evaluation of J , the following

simplifications can be employed:
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&u, a du, dx du dy
dx' " dx dx' dy dy'

xt I  £ + 4Tv I t  -  -x— 1
1 x 1  ̂ xy dx J

dv
dx'

du dx du dy
dx dx' dy dy'

, du ,
■6 -r— +  47v £1 dx 1 y

dx' dy'
z ftb
1 1

z fTh
2 2

dx dy = dx dy

Fox* the case of domain loading, with:

X — a + a x + a yo 1 2
Y = b + £> x + b yo ± 2

i t  can be deduced that:

J I  ( *  §^- + Y ] dx' dy' = J  [ x  u + y " ] dy'
a r o

•  J T  ( § £ -  ' u ' + i r -  v ) ** d y
O

where,

dX . dX ^ dX . ^-z—, = l  —— + <n, —— tei z a + m, adx i dx i dy 1 1  1 2

dX dX dy
-5—, = <6 -X— +  -Wi, - X — = -6  0  + odx i dx i dy 1 1 1 2

C7.80)

Finally, for the case thermal loading, the ./-integral 

expression can be written as follows:
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J m f  V dy' - f  C Tl §y, ) ds

r ro o

- J J  5 dx' dy' + j  <7.815dx'
O

where,

ds

J t = JJ  di^ dx# dy# <7.82)
a

Now, for numerical evaluation of J , i t  can proved that:T

d£ ds ds
~7- = * -577° + m. <7.83)dx' i dx i dy

where,

d  ̂ J i  dN

a i °  = V  C£o\ ^
i = i

d  ̂ J-!, dN

Xdy
i=i

Hence, from equations <7.82) and <7.83), i t  can be written 

that:

r -v
Jr " I f  ^  \  + n\  J d x  d y  <7 84>

Cl
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Fig. (7.4) Discretization of a J—Integral Contour.

k nJ

1

x

Fig.(7.5) N-Node Boundary Element used as 
Contour Element.
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/ / x

Fig.(7.6) An Oblique Crack w ith  re sp e c t to  Global Axes.



C H A P T E R  8

PROGRAMMING
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8.1 Introduction:

A modular approach has been adopted in this work to  design the

programming system, which is named FRA MEG CFRActure MEChani.esy

system. The system consists of five basic modules, each module

corresponds to  the type of analysis required Ci.e. /o r  example

mesh generation* fin ite  element analysis» boundary element 

analysis* etc.}. The modules are linked together as shown in 

Fig.<8.1>, and each one of them contains a group of programs 

related to  the type of analysis which can be carried out using 

such a module. The modules and the programs are described in 

the following sections.

8.2 Pre-Processing Module;

This module consists of two programs namely, a two-dimensional 

general mesh generator program, and a two-dimensional mesh

plotter program. The procedures of these programs are explained 

in the following subsections.

8.2.1 Two-Dimensional Mesh Generator Program:

This is a general mesh generator program, which is capable of 

generating finite and boundary element meshes for 

two-dimensional structures. The structure of the program is 

given in Fig.<8.2>, and the basic steps of the mesh generation

procedure can be summarized, for the FRAMEC system, as follows:

Ca"> Bloch Modelling;

A primary coarse mesh is to be prepared such tha t, for finite

element analysis, multilateral or curved regions are reduced to

quadrilateral or triangular blocks, and for boundary element 

analysis, the boundary is divided into one-dimensional blocks.



- 2 4 3 -

The curved domains or boundaries are to be modelled in terms of 

curved blocks which belong to  finite element or boundary 

element families. The data for blocks can be introduced as mesh 

data, and the user has the choice, either to  employ i t  directly 

as the suggested mesh, or to  direct the program to  generate a 

new one. Each generated mesh can be considered as a model of 

blocks for any further generation.

CfcO Intrinsic Transformation:

Each block is to  be transformed into a uniform element inside 

its  own local intrinsic space, by employing an isoparametric 

transformation as explained in the finite and the boundary 

element theories.

CcJ> Intrinsic Discretisation:

The discretization is carried out using the following two 

steps:

Ciy Division into simple similar elements; the quadrilateral 

block into 4-node quadrilaterals, the triangular block 

into 3-node triangles, etc.

Ciiy Fitting the required elements, such elements may have 

different geometry or different nodal systems from the 

simple ones. The fitting is to be performed recursively, 

by using the local intrinsic space of every generated 

simple element.

The final result is to  obtain a fully-discretized block in i ts  

own intrinsic space.
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Cdty Transformation to the Global Space:

The global cartesian coordinates of each generated node are

obtained by applying the previously-mentioned isoparametric 

transformation. Hence, the generated elements of every block

can be described in the global cartesian space.

Cei Condensation and Compatibility:

The nodes generated on the common boundary between any two 

blocks may have been repeated. A condensation process is to  be 

performed so th a t the genuine nodes are to  be kept. I t is 

necessary to maintain compatibility a t such common boundaries. 

The geometric points, division numbers, and division ratios 

should be uniquely specified a t these boundaries. The

isoparametric transformation itse lf does not violate any

compatibility, as long as the shape functions satisfy  the 

C°-continuity condition over the whole domain.

8.2.2 Two-Dimensional Mesh Plotter Program:

This program has been designed to plot finite and boundary 

element meshes by using plotting subroutines from the GINO 

library. The structure of the program is given in Fig.C8.3>, 

and the procedure of every subroutine will be described as 

follows:

Cay ASS TERM Subroutine:

The use of this subroutine is to assign the graphical computer 

terminal to the FORTRAN stream, in order to produce a graphical 

picture.
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Cby DATA S u b r o u t in e :

This subroutine reads the output of the mesh generation 

program, which contains all the information required to  run the 

plotting program Csuch as* number o f  nodes and elements» types  

o f  elements, coordinates, topology array, etc.y.

Ccy AMIN & AMAX Functions:

These functions calculate the minimum and the maximum values of 

the coordinates, which are required by the program to se t a 

graphical view port.

Cdy PLOTTER Subroutine:

This is the main subroutine in the program which uses the GINO 

library and the following subroutines to  plot the required 

mesh.

i . QUAD-N Subroutines:

These subroutines are designed according to the quadrilateral 

family of the finite elements. Every subroutine is capable of 

plotting one type of element.

ii. TRI—N Subroutines:

The subroutines are designed for the plotting of the triangular 

family of finite elements, and they are carrying out similar 

job as in the QUAD-N subroutines.

Hi. GENBEM Subroutine:

This subroutine is designed to generate the isoparametric 

boundary elements. I t is called by the PLOTTER subroutine when
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a boundary element mesh with any type of isoparametric elements 

is required to  be plotted.

Cel NODE Subroutine:

This subroutine is designed to  plot the node number according 

to the output of the mesh generation program.

8.3 Finite-Element Module:

In this module two general finite element programs are 

developed, these programs are:

Cxi Lineai—Elastic Finite Element Program.

C l̂ Elasto-Plastic Finite Element Program.

The above programs have the capability of carrying out elastic 

and elas to-plastic finite element analyses using different 

types of two-dimensional elements, loading conditions, and 

boundary conditions. Both programs contain a frontal solver 

developed in the Computational Mechanics Group CRef.863 to  

reduce the CPU time required for the solution of large 

matrices, especially in the case of elas to-plasticity where 

iterations take place. A description of the programs is given 

in the following sections.

8.3.1 Types of Elements:

The above two programs use a library of elements which contain 

different families of standard, transition, and crack-tip 

elements, including the newly developed singular elements. The 

families of elements are as described in chapter 5, and the 

shape functions of the standard and transition elements are 

given in Appendix CB3.
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8.3.2 Types of Loading:

The previous programs are capable of carrying out elastic and 

elas to-plastic analyses with different types of loading such as 

point loading, distributed loading, pressure loading, thermal 

loading and different types of domain loading Ci.e. inertial* 

translational* and rotationaly. The above types of loading are 

described in chapter S.

8.3.3 Structure of the Linear-Elastic Program:

The structure of the two-dimensional linear-elastic finite 

element program is given in Fig.<8.4>, and can be summarized as 

follows:

Cay DATA Subroutine:

The data subroutine is designed to read all the information 

required to run the program such as mesh generated data, 

material data, boundary conditions data, and the loading data.

Cby DPLOAD Subroutine:

This subroutine assembles the equivalent pressure loading 

vector and the equivalent domain loading vector which are 

generated for each element by the following subroutines:

i. EPVG Subroutine:

This subroutine generates the elemental pressure loading vector 

using the theory described in chapter S, section 5.2.4, and by 

calling GAUSS, SHAPEP, and JACOBP subroutines which will be 

described later.



- 2 4 8 -

i i .  EDVG S u b r o u t in e :

This is a generator for an element domain loading vector using 

the theory described in chapter 5, section 5.2.3, and i t  calls 

GAUSS, JACOB, and SHAPEF subroutines.

Ccy INITIATION Subroutine:

This subroutine in itiates all the matrices and the vectors 

required for the frontal solver solution.

CcD FRONT Subroutine:

This subroutine assembles and reduces the system of equations 

for the whole domain using the approach developed in the 

Computational Mechanics Group CRef.863. Each assembled equation 

is eliminated whenever becoming complete and stored in a direct 

access file. The subroutine calls STIFF subroutine which is 

designed so as to make the FRONT subroutine independent of the 

type of elements used. STIFF subroutine prepares data required 

for the generation of the stiffness matrix for one element and 

calls ESMG subroutine for carrying out this process.

CeJ> ESMG Subroutine:

Tills is an element stiffness matrix generator which uses the 

following subroutines:

i. DMATRIX Subroutine:

This subroutine generates the D matrix which is the 

s tress-s tra in  matrix required for the correlation between 

stresses  and strains.
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U . BMATRIX S u b r o u t in e :

This subroutine generates the B matrix in terms of the 

cartesian derivatives of the element shape functions.

Hi. GAUSS Subroutine:

A data file containing the parameters for Gauss quadrature Cup 

to the id-point schemey is opened by th is subroutine, and the 

parameters for the quadrature scheme selected for an element 

are read.

iv. MATT, MATM, MATS, MATI Subroutines:

These are matrix operations subroutines, which are required to  

carry out a number of operations such as transposition, 

multiplication, initiation, etc.

C_p SOLVER Subroutine:

This subroutine carries out a backward substitution by reading 

the eliminated equations backward from the direct access file, 

so as to calculate the nodal displacement vector.

Cgy DISP Subroutine:

This subroutine extracts and prints the nodal displacements for 

the whole number of nodes.

CtO STRESS Subroutine:

This subroutine generates and prints the nodal stra ins and 

s tresses for the whole number of nodes by using the DMATRIX and 

the following subroutines:



i .  INTERCO S u b r o u t in e :

This subroutine generates the nodal intrinsic coordinates for 

all types of standard, transition, and crack-tip elements.

ii. MATV Subroutine:

This subroutine is used for the multiplication of a matrix by a 

vector, and is required to multiply the D matrix by the nodal 

strain  vector to obtain the nodal s tre ss  vector.

The remaining subroutines are as follows:

Ciy SHAPEP & JACOBP Subroutines:

These subroutines generate the pressure element shape functions 

and Jacobian matrix using the theory described in chapter 5, 

section 5.2.4.

Cjy SHAPEF Subroutine:

This subroutine uses the developed finite element library to 

call the type of element required by the EDVG subroutine, so as 

to generate the values of its  shape functions a t  any given 

point.

Cky CARTD Subroutine:

This subroutine generates the cartesian derivatives of the 

element shape functions as required for the BMATRIX subroutine.

Ciy JACOB Subroutine:

This subroutine generates the two-dimensional finite element
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J a c o b i a n  m a t r i x  r e q u i r e d  b y  t h e  CARTD s u b r o u t i n e .

CrrO INTRD Subroutine:

This subroutine uses the finite element library to generate the 

intrinsic derivatives of the required element shape functions 
essential to generate the Jacobian matrix.

8.3.4 Structure of the Elas to-Plastic Program:

This is a two-dimensional elasto-plastic finite element program 

based upon the initial stress incremental method, as described 
in chapter 5. The program uses the finite element library 

mentioned before, and incorporates different types of yield 

criteria, hardening rules, and solution algorithms, as follows:

Cay Y ield  C riteria:

1. Tresca criterion.

2. Von Mises criterion.
3. Mo hr - C o ulo mb criterion.

4. Druker-Prager criterion.

Cby Hardening Rules:

1. Isotropic hardening.
2. Kinematic hardening.

3. Mixed hardening.

Ccy Solution Algorithms:

1. Newton-Raphson interpolative algorithm.

2. Modified Newton-Raphson iterative algorithm.
3. Combined algorithm.
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A flow diagram of this program is illustrated in Fig.<8.5>. The 

steps to carry out an elas to-plastic stress analysis using this 
program are as follows:

Cay D a ta  P r e p a r a t i o n :

A data subroutine has been designed and implemented in this 
program to read all the information required for carrying out 
the elasto-plastic stress analysis using the facilities 
available in the program.

Cby P r e s s u r e / D o m a i n  L o a d i n g :

In this step the program uses the DP LOAD subroutine explained 

earlier to generate the pressure and the domain loading vectors 
and assemble them in the main force vector, if the analysis 
involves any pressure and/or domain loading conditions.

Ccy I n i t i a t i o n :

In this step the program initiates all the vectors and matrices 
required to carry out a frontal solution, using the I N I T I A T I O N  

subroutine mentioned earlier in this chapter.

Cdy L o a d  I n c r e m e n t s  D o - L o o p :

Since the program is based upon an incremental approach, a 

number of load ratios are specified according to the given 
number of load increments. The nodal loading vector for every 
new increment is obtained by multiplying the corresponding 

ratio by the total nodal loading vector applied.
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CeJ> A s s e m b l y  B R e d u c t i o n :

In this step the program uses the FRONT subroutine described 
earlier in this chapter to generate the assembled, reduced, 
eliminated equations for the whole structure and store their 
coefficients in a direct access file.

Cfy F r o n t a l  S o l v e r :

In tis step a backwards substitution procedure is carried out 
to solve the system of equations generated by the FRONT 
subroutine.

CgO S t r e s s / S t r a i n  C a lc u la t io n :

In this step the displacement-strain relations are used to 

perform strain calculations at all quadrature and nodal points, 
similarly the stress-strain relations are used for stress 
calculations. Also in this step the equivalent stress at every 

point is checked with the initial yield stress of the material. 

If no point has exceeded yield, then ho plastic calculations 
are required and a new load increment is to be applied.

CIO S t r e s s  C o r r e c t i o n :

In this step a stress correction procedure will take place 

using the theory explained in chapter 5. The structure of the 

plasticity correction subroutine is shown in Fig.C8.6>. This 

subroutine is common between the elas to-plastic finite element 
program and the elas to-plastic boundary elements program.
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CD R e s i d u a l  F o r c e / R e a c t i o n  C a l c u l a t i o n :

In this step the equilibrium equations are checked so as to 
calculate the vector of nodal residual force resulting from 

stress correction. The subroutine calculates also the reaction 
forces at restrained nodes.

C j)  C o n v e r g e n c e  C h e ch :

In this stage an error calculation takes place to check the 

convergence of the displacement and the residual force vectors. 

If the displacement error or the residual force error is 

greater than a given value, a new iteration takes place 

C a c c o r d i n g  t o  t h e  i t e r a t i o n  a l g o r i t h m  e m p l o y e d  y using the 
residual force vector as a new load increment.

ChJ P r i n t  O u tp u t:

In this step all the required output such as displacements, 
stresses, strains, forces, and reactions are printed for all or 

selected load increments at the nodal and quadrature points.

Ciy U n lo a d in g  C a lc u la t io n :

After the last load increment for the elas to-plastic 
calculation, the unloading calculation takes place if required. 
This calculation involves the evaluation of the residual 

stresses, strains, and displacements at the nodal and 
quadrature points.
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8 .4  B o u n d a r y -E le m e n t , M odule:

In this module, six different two-dimensional isoparametric 
boundary element programs have been developed for 

linear-elastic and elasto-plastic fracture mechanics problems. 
These programs are:

Cxy L inear-E lastic  Boundary Element Program.
Ca> L inear-E lastic  Domain Loading Boundary Element Program.
C3O Lineai—E lastic  Subregions Boundary-Element Program.
C4I) E lasto—P la s tic  Boundary Element Program.
C5O E las to -P la s tic  Domain Loading Boundary Element Program.
Cdy E la s to -P la s tic  Subregions Boundary-Element Program.

The structures of the above programs are described in the 
following sections.

8.4.1 Linear-Elastic Boundary Element Program:

This is a two-dimensional isoparametric boundary element 
program. The structure of the program is illustrated in 
Fig.<8.7>. This program uses different techniques for accuracy 

measures, such as the singular integration technique, the jump 
function technique, the corner module technique, and the finite 

difference scheme. Also a special subroutine has been developed 

in this work to generate the isoparametric crack-tip boundary 
element automatically inside the program without the 
interference of the user. The structure of this program can be 
explained as follows:

CaJ DATA Subroutine:

This subroutine reads all the information required to carry out 

the analysis, and it calls the following subroutines:
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i. GAUSS Subroutine:

The job of 6 his subroutine is similar to that of the GAUSS 

subroutine used for FEM analysis, and described earlier.

ii. SING Subroutine:

This subroutine opens a singular quadrature file and reads the
quadrature parameters required to carry out a numerical

1
integration for integrands which contain Z&gCr'> or t&gC—'y.

Hi. TIP ELEMENT Subroutine:

This subroutine has been developed for the purpose of 
generating crack-tip boundary elements automatically by moving 

the mid-side node of a 3-node isoparametric element to one 

quarter of the distance from the crack tip, or for a 4-node 
isoparametric element by moving the two mid-side nodes to 1/9 

and 4/9 the distance from the crack tip. The location of the 

generated crack-tip elements should be specified by the user in 
the DATA subroutine by giving the global number of the element 
in the mesh.

CbJ> GHMAT Subroutine:

In this subroutine <3 and H matrices are assembled for all 

boundary nodes of the whole structure. This subroutine carries 
out the assembly after calling the GH subroutine for every 
boundary element in the mesh.

Cc.) GH Subroutine:

This subroutine generates the elemental g and A matrices with 
respect to any specified source point. The singular quadrature 

is invoked whenever the source point lies on the element 
involved.
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CcD JACOB S u b r o u t in e :

This subroutine generates the Jacobian matrix required by the 

GH subroutine. The generation of the Jacobian matrix is carried 
out by calling the following functions:

i .  GLAG F u n c tio n :

This function is used for the generation of Lagrangian shape 

functions for n-node isoparametric boundary element. The 
required element should be specified by the user in the DATA  
subroutine.

i i .  DLAG F u n c tio n :

This function generates the derivatives of Lagrangian shape 
functions for n-node isoparametric element.

Ce3 BCO S u b r o u t i n e :

This subroutine applies the specified boundary conditions to 
organize the system of equations generated by the GHMAT 

subroutine, so as to form a linear simultaneous system of 
equations.

C/3 SOLVER S u b r o u t i n e :

This is a Gauss elimination solver used for the solution of 
equations prepared by the BCO subroutine.

CgO OUTPUT S u b r o u t i n e :

This subroutine extracts and prints the nodal displacements and 
tractions for the whole boundary.



CrO INTERNAL S u b r o u t in e :

This subroutine evaluates the required field parameters such as 
displacements, tractions, stresses, and strains at given 

internal nodes. The subroutine incorporates different 

techniques to improve the accuracy of the results such as jump 
functions and other techniques which explained before in 

chapter 6. The subroutine uses GH and the following 

subroutines:

i. CORNER Subroutine:

This subroutine evaluates the G matrix required at a corner 
node. The number of corners on the mesh should be specified by 
the user and doubling the nodes at each corner is essential to 
model the corners efficiently.

ii. BOUNDARY Subroutine:

This subroutine calculates the field parameters at any internal 

node on the boundary of the structure. The subroutine uses a 
Lagrangian interpolation technique to calculate the location of 
each node within the nearest element in the mesh, then 
interpolates the field parameters accordingly.

Hi. FINITEDEF Subroutine:

This subroutine uses a finite difference scheme to evaluate the 

field parameters for internal nodes which are very near to the 

boundary. At such nodes the boundary integral equations for 

strains may not lead to accurate answers due to the singular 
terms involved. However, with the jump function correction, it 
is possible to obtain accurate displacement values there, and 

hence it becomes more accurate to evaluate the strains from 

derivatives obtained from direct finite difference ratios of 
displacement components, as explained in section <6.6.53.
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iu .  STRAIN  S u b r o u t in e :

This subroutine uses the boundary integral equations to 

evaluate the field parameters for internal nodes which are far 
enough from the boundary.

xj. DMAT S u b r o u t i n e :

This subroutine generates the elastic D matrix which is 

required to correlate between stresses and strains.

v i .  MATVEC S u b r o u t i n e :

This subroutine carries out a multiplication of a matrix by a 
vector as follows:

A . X a Y
mxn nxl mxl

CO EXTERNAL S u b r o u t i n e :

This subroutine uses the boundary displacements and tractions 
so as to generate a system of 4  equations in 4  unknowns C & llS & x ,  

&uSdyt d o /d y i t dv/'&y'> at every boundary node by means of 
subroutine AMAT. The equations are solved by using SOLVER  

subroutine, then the strains and stresses are evaluated and 
printed at each boundary node.

8.4.2 Linear-Elastic Domain Loading Boundary Element Program:

This is a two-dimensional, domain loading, isoparametric, 

boundary element program which accounts for different types of 
domain loading such as inertial, rotational, translational, 
thermal, and concentrated point loading. The structure of this 

programi is illustrated in Fig.<8.83, and it is similar to the 

elastic boundary element program! described ad>ove except that



- 2 6 0 -

some new extra subroutines are developed and added to the 

program for dealing with domain loading. The new subroutines 
are as follows:

<a3 CPLOAD & CPSTRAIN Subroutine*:

These subroutines are developed to generate the equivalent
displacement and strain vectors due to a given set of 
concentrated point loading with respect to any given source 

point. The GH and STRAIN subroutines then assemble these 

vectors to the corresponding boundary integral equations for 
displacements and strains, respectively.

<53 BFORCE S BSTRAIN Subroutines:

These subroutines generate the equivalent displacement and

strain vectors due to other types of domain loading at any

specified source point, as required by the GH and STRAIN
subroutines to account for the effect of these types of loading 
on the boundary integral equations for displacements and
strains.

8.4.3 Linear-Elastic Subregions Boundary Element Program:

This program is a two-dimensional domain loading boundary 

element program which incorporates the subregion technique

described in chapter 6. The structure of this program is shown 
in Fig.<8.93, and it is similar to the above program except

that some additional subroutines are developed and linked to 

the program for the assembly of subregions. Also some
subroutines such as BCO, OUTPUT, EXTERNAL, and INTERNAL have 

been modified to deal with each subregion separately. The new 
subroutines are as follows:
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Ca3 SUBDATA S u b r o u t in e :

This subroutine is developed to extract the required data for 
each subregion from the global data provided by the DATA  

subroutine, and also to generate and store a location vector 
for the nodes in the mesh with respect to each subregion. The 
location vector is required by the ASSEMBLER subroutine to 
assemble the required matrices for the whole boundary.

Cb3 ASSEM BLER S u b r o u t i n e :

This subroutine is designed to assemble the (3 and H matrices 
for the whole structure by calling the GUM AT subroutine for 

every subregion. The GHMAT subroutine in this case treats each 
subregion as a separate boundary element mesh and generates the 

required matrices by calling other subroutines, as described 
before.

Cc3 CONDENSER S u b r o u t i n e :

Doubling the nodes at generated corners due to subregioning is 

essential so as to maintain the accuracy gained by using the 

double-node technique. However, unless a finite tolerance is 
inserted between the nodes of each corner, a singularity may 
develop in the generated equations. This tolerance may, 
unfortunately, reduce the level of accuracy. Alternatively, 

CONDENSER subroutine is developed to condense the equations by 
eliminating any unknown which is similar to another. A number 
of similar nodes C nocles  urith o n e  o r  m o r e  b o u n d a r y  p a r a m e t e r  

b e i n g  s i m i l a r 3 can be specified in the data by the user. This 

subroutine can also deal with any other similar nodes besides 
those at generated corners. Using the CONDENSER subroutine 

leads to a reduction in the number of equations required to be 
solved.



CcD EXPANDER S u b r o u t in e :

Every time the CONDENSER subroutine is used, the program calls 
EXPANDER subroutine, after solving the condensed equations, in 

order to generate the solution at eliminated nodes, from the 

specified conditions of similarity. The CONDENSER and EXPANDER 
routines can also deal with parameters being equal in magnitude 

and opposite in direction at specified boundary nodes.

8.4.4 Elasto-Plastic Boundary Element Program:

This is a two-dimensional elasto-plastic boundary element 
program developed in this work for dealing with elasto-plastic 
fracture mechanics problems. The program uses the same CORRECT 
subroutine explained before and shown in Fig.<8.63. Also it 

uses the same library of finite elements as integration cells 

for the purpose of domain integration required for 
elasto-plastic analysis. The program flow diagram is shown in 
Fig.<8.103 and the stages for an elasto-plastic boundary 

element analysis carried out by this program are as follows:

Ca3 Data Preparation:

In this stage the program reads all the information required to 

carry out an elasto-plastic boundary element analysis and 
generates the required vectors such as the prescribed 

displacement and traction vectors.

Cb3 Assem bly o f  G & H Matrices:

The program in this stage generates and assembles the G and H 
matrices for the whole structure to form a system of equations 
in terms of boundary displacement and traction.
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Cc3 Boundary C onditions:

In this stage the boundary conditions are applied to organize
the matrices generated by the previous stage, so as to
formulate a system of linear equations in terms of the unknown 

parameters at boundary nodes.

C<±> Load Increm ents Do-Loop:

The total load applied to the structure is divided into a

number of increments according to some ratios specified by the 
user in the data. Then the analysis is to . be carried out

several times by adding one load increment each time till the

total load is applied completely. Inside this stage the 
following steps are carried out:

i. T ractions Calculations:

In this step the prescribed traction vector for each load
increment is calculated according to the specified load ratio.

ii. Solver:

The generated system of equations is solved in terms of the 

current load increment. Since a large amount of computer CPU
time is spent in eliminating the matrix of coefficients for
equations, provision has been made in the SOLVER subroutine
used in this program so as to eliminate the matrix only once.

For further load increments, only the "equivalent” loading

vector will be manipulated together with a backward
substitution. Using the vector of prescribed values, the nodal 

displacement and traction vectors are defined for all boundary 
nodes.
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iii. B o u n d a r y  C a l c u l a t i o n s :

In this step the strains and stresses are calculated at every 
boundary node using the technique described in section <6.7.43. 

Old and new values are stored so as to facilitate stress 
correction carried out JLater.

i v .  I n t e r n a l  C a l c u l a t i o n s :

All the field parameters such as displacements, tractions,
stresses, and strains at internal nodes are calculated in this 
step, and old and new values are stored. The equivalent stress 
at every internal point is calculated and checked against the 
initial yield stress of the material. If any point has exceeded 

yield, next step is carried out, otherwise, the procedure goes 
to step C/3.

Ce3 I t e r a t i o n s  D o—L o o p :

In this stage a plasticity check and a correction scheme are

applied iteratively till a convergence is met. The steps inside 
this stage are:

i . Boundary stress correction at the specified boundary
nodes.

i i .  Internal stress correction at internal nodes defining
integration cells.

H i. Estimation of " e q u i v a l e n t "  residual force: Every

integration cell is checked and if some of the nodes of a 

cell have plastic deformation, then an integration is 
carried out over the cell to estimate the effect of stress 

correction on boundary integral equations for every source 
point, as explained in chapter 6.
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The stress correction is carried out using the CORRECT  

subroutine mentioned before, whilst additional subroutines are 

developed for calling CORRECT at boundary and internal nodes 

and for the estimation of " e q u i v a l e n t ” residual force.

C/3 P r i n t  O u tp u t:

The required output for each load increment is printed in this 

stage according to specified switches in the data.

CgO L a s t  I n c r e m e n t :

When the last load increment is applied the program terminates 

the analysis and stops, unless an unloading calculation is 
required.

8-5 F r a c t u r e  M e c h a n ic s  M odule:

This module has been designed for the evaluation of fracture 

mechanics parameters such as stress intensity factors, 

J - integrals, and crack-opening displacements. The module 
consists of two types of programs. The first type is programs 
using the finite element or the boundary element results to 
calculate the required fracture mechanics parameters. The 

second type is analytical solution programs based upon 
well-known analytical solutions to calculate mainly stress 

intensity factors and crack-opening displacements. In this 
section only the first type of programs are described, the rest 

of the programs are not included since they are simple and 
based upon well-known literature.
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8.5.1 The General ./-Integral Program:

This is a two-dimensional ./-integral program based upon the 

algorithm given in chapter 7. The program has been developed in 

this work to use the finite element or the boundary element 

results for the evaluation of ./-integrals for specified 
contours. It has the ability to calculate elastic, 

thermo-elastic, elasto-plastic, and domain loading ./-integrals. 

The domain loading ./-integrals are calculated using domain 

integration or the newly developed techniques of using boundary 
integrals. The structure of this program is illustrated in 
Fig.<8.113, and can be described as follows:

Ca3 DATA S u b r o u t i n e :

This subroutine reads all the information required to carry out 

a ./-integral calculation using finite or boundary element 
output. It uses the following subroutines to interpolate the 

field parameters at the Gaussian quadrature points if a domain 
loading analysis is based upon domain integration.

i -  SHF S u b r o u t in e :

This subroutine uses the standard library of finite elements to 

generate shape functions for the integration cells specified by 
the user in the DATA subroutine.

i i -  CGAUSS S u b r o u t in e :

This subroutine opens one of two Gaussian quadrature files 
depending upon the type of integration cells employed Ci.e. 
Q u a d r i l a t e r a l  o r  T r i a n g u l a r 3, and reads the quadrature 
parameters for the selected scheme.
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Cb3 INLOAD S u b r o u t in e :

This subroutine is designed to evaluate the domain and thermal 

loading terms in the ./-integral, if such loading conditions are 

assumed, by using domain integration. The subroutine uses the 
CGAUSS subroutine described above and the following 

subroutines:

i. TRANS Subroutine:

This is a transformation subroutine, based upon the theory 
given in section <7.93, required for the calculation of 

./-integrals < for oblique cracks, where the line of the crack is 
not lying on the x-axis.

ii. BMATRIX, CARTDt CJACOB, and INTRD Subroutines:

These subroutines are similar to the subroutines explained 
before in the finite element module, and they are used in this 

program for the same purpose.

Cc3 JINTi Subroutine:

This is an assembler subroutine which assembles the ./-integral 
contour elements and provides the final value of the evaluated 
./-integral for a specified contour. It is also assembles the 

domain loading term calculated by the domain integration 

technique provided by the INLOAD subroutine. The subroutine 

calls the following subroutines:

i. JELP Subroutine:

This is a subroutine to generate the elemental plastic 
./-integral term required for an elasto-plastic ./-integral
analysis. The subroutine uses JACOBC, GAUSS, GLAG, and DLAG
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subroutlines, which are the same subroutines explained before in 
•the boundary element module.

ii- JE L E  S u b r o u t i n e :

This subroutine generates the the elastic elemental ./-integral 

term by calling the same subroutines called by J E L P  subroutine.

C<±> J I N T z  S u b ro u tin e f ;

This subroutine is similar to J I N T t subroutine but it  is used 
for the calculation of the domain loading term by the boundary 
integral technique developed in this work. The subroutine uses 
the next subroutines in order to assemble the final value of 
the ./-integral for the required contour.

Ce> J E B P  & JE BE  S u b r o u t i n e s :

These subroutines are used for the generation of the elemental 
elastic and plastic ./-integral terms required for an elastic or 

an elasto-plastic ./-integral evaluation. The subroutines use 

the DCOEF subroutine, which generates the domain loading 
coefficients required for the boundary integrals.

8.5.2 Extrapolation Method Program for Symmetric Cracks:

This program is based on the theory explained in chapter 7. The 

program uses the finite and boundary element results such as

stresses and displacements to calculate the nodal parameters K
★  ̂

and K- for symmetric cracks.
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8.5.3 Program for Extrapolation Method of Unsvmmelrical Cracks: 

This is a program for the calculation of stress intensity
A A

factors K and required for the extrapolation method and
based upon the theory explained in chapter 3. The program uses

the finite and the boundary element results to calculate the
stress intensity factors for a specified orientation with

respect to the crack plane. It employs a stress transformation
technique to account for oblique cracks, and uses different

combinations of stresses and displacements to generate a system

of equations and then solve this system by using Gauss

elimination solver. A part from the flow chart of this program

is shown in Fig.<8.12>, where a combination of a  and a
* £  ystresses have been used to calculate K and K stressi  i i

intensity factors.

8.5.4 The General Curve Fitting Program:

This program is based upon the theory explained in chapter 7. 
The program uses the output of extrapolation method programs to 
calculate and plot the stress intensity factors K and K at 

the crack tip. The structure of this program is illustrated in 
Fig.C8.13> and can be explained as follows:

Ca> PDATA S u br-ou ti .n e :

This subroutine reads the information required to carry out a 
curve fitting using the least-square method.

Cb) CFxV S u b r o u t i n e :

This subroutine reads an interactive data required by the 

program to select the type of fitting and some other 

parameters. Then it carries out the curve fitting and plotting 
by means of the next subroutines.
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Cc> GLSQC B PLSQC S u b r o u t in e s :

These subroutines are based upon the least-square procedure. 

The first subroutine is used for the curve fitting in terms of 

general functions, whilst the second subroutine is used for 

polynomial curve fitting. Both subroutines use the BFUN 
function to generate the required system of equations.

CdJ SOLVER. Subroutine:

This is a Gauss elimination solver used for the solution of the 
system of equations generated by one of the above subroutines.

Ce> PLOTTER Subroutine:

This is a plotting procedure based upon the GINO library. The 
subroutine is used to represent the original data and the 

fitted data graphically.

8 .6  P o s t - P r o c e s s i n g  M o d u le :

This module contains a suit of programs, developed in this 
work, based on UNIRAS and GINO libraries to represent the 

results obtained from the previous modules, and to produce hard 
copies. These programs have been used to create 1̂1 

results-figures presented in this work and they are as follows:

Cjt> Graph. Plotter- b a se d  on Uniras Library.
OJ> Gr-aph Plotter- b a sed  on Gino Library.
C3O Contour P lo tter  b a sed  on Uniras Library.

UNIPICT Spooler  b a sed  on Uniras Library.
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Ca> The G r a p h  P l o t t e r s :

These plotters are designed to represent a system of functions 
of one variable. The programs can generate graphs with straight 

line or curve-fitted segments, and also can draw shaded graphs.

CbJ) T h e  C o n to u r  P l o t t e r :

This program is designed to represent the results in a contour 

form. It can represent two-dimensional, three-dimensional, 
shaded, and annotated contours. Also the program can represent 

cracks, holes or contours within any geometrical shape. This 

plotter has also been used to plot plastic zones using the 
output of the finite element or the boundary element module.

CcJ> T h e  UNI P IC T  S p o o l e r :

This program lias been designed to use the U N IR A S  standard 

U N IP IC T  file created by previous programs, so as to produce 

hard copies or to display the results again without using the 
original plotters or the original data files.
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Check convergence

Last increment

Stress correction

Check Plasticity

Unloading calculation

Pressure/domain loading

Assembly & Reduction

1 st/next load increment

Stress/strain calculation

Residual force/reaction calculation

Fig,(8,5) Flow Diagram  of th e  E la s to -P la s tic  FE P rogram ,



- 2 7 7 -

aNixnoaans aNiuioaans aNixnoaans
TVA 2VA CVA

aNIUlOHSflS
A1VM

I

aNixnoaans
3AQVHD

awixnoaans
HVdHVH

p?
w
W £H-'

O■̂3 w
§ «
P 8

p 1orj pj
H

oPi
P

> oV—4
B

HU
<y 5a=s
w g

t

SNixnOHans

1
o C-h
OQ p
W O
«
H

P iPQ

aNixnoaans aNixnoaans aNixnoaans
JLVMANI HVHOSI HVHNIX

Fi
g.

(8
.6

) 
St

ru
ct

ur
e 

of 
2D 

Pl
as

tic
ity

 
C

or
re

ct
io

n 
Su

br
ou

ti
ne

.



- 2 7 8 -

aNixnoaans
D3AXYK aNixnoaans

ivm

«  o  w  «

rj © 
O gCQ £5

O °'*■' rv*

*  8  O  g
o  m

aN ixn oH sn s
X N 3 W 3 1 3  3 IX

aNixnoaans
ssnvD

amnoaans
DMIS

Fi
g*

(8
.7

) 
S

tr
uc

tu
re

 
of 

2D 
L

in
ea

r-
E

la
st

ic
 

BE
 

P
ro

gr
am

*



- 2 7 9 -

<

0

O

«

Ph

^  a

5 1
g  «  

w

«

go
GQ

O
Mn

aN iuiO H ans
33AXVM

C—i
b

0 o
O ««
P5

g

a N ix n o a a n s
XVHV

m  m

aisau ioH ans
NIVHiLS

£
W i—i
Q H
w£-1 S
s m

E &

£

« O
P5

GQ W
m b

aNimoaans aNixnoaans aNixnoaans
ssnvD DNIS XN3H313 an,

F
ig

.(
8.

8)
 

S
tr

uc
tu

re
 

of 
2D 

D
om

ai
n.

 L
oa

di
ng

 
E

la
st

ic
 

BE 
Pr

o,



M
A

S
T

E
R

 
P

R
O

G
R

A
M

- 2 8 0 -

BNLLnousns 
03AJLW1 sNimoyans

ivwv

SNiinoaans 
Nivyis

SNimouans 
3 0 ti0 d 8

aNiinoaans
vivasns

3NimodGns
ssnvo

aNtinouens 3Niinoyans
DNIS 1N3W3T3 dll

F
ig

.(
8.

9)
 

S
tr

uc
tu

re
 

of 
2D 

Su
br

eg
io

n 
E

la
st

ic
 

BE
 

P
ro

g
ra

m
.



- 2 8 1 -

N o

Yes

No
Yes

Print output

No
Yes

Solver

Data preparation

Stop/end

Traction correction

Boundary conditions

Stress correction

Force correction

Check convergence

Last increment

Unloading calculation

Tractions calculation

1 st/next load increment

1 st/next iteration

Plasticity Check

Assembly of G & H matrices

Boundary calculations

Internal calculations

Fig,(8,10) Flow Diagram  of th e  E la s to -P la s tic  BE P rogram ,
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C H A P T E R  9

RESULTS AND DISCUSSION
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9.1 Introduction:

It, is clear from chapter 8 that, the package, developed in this 

work, contains many old and new elements and numerous 

facilities for engineering fracture mechanics analysis. Hence, 

i t  was essential to  te s t  every developed part, using cases with 

known analytical or published solutions so as to  be sure of i ts  

validity. Many of such te s ts  had been carried out in the course 

of the package development, and some of them will be reported 

here.

It was vital for such study to  assess the efficiency and 

accuracy of different schemes developed for linear-elastic, and 

eJLas to-plastic fracture mechanics. Hence, a number of case 

studies, most of which have well-known solutions, had been 

selected, and fracture mechanics parameters such as s tre ss  

intensity factors and J- integrals were evaluated using 

different methods possible, and some assessment have been 

carried out.

Since, the BEM could offer a numerical technique more efficient 

than many others, specially for dealing with LEFM, a comparison 

has been made between the BEM and its  nearest competitor , the 

FEM, for a number of case studies, where accuracy of results, 

computer CPU time, and human being effo rt were monitored for 

each of the two methods.

In this chapter, some validation te s t  cases, and case studies 

are described together with their results obtained by using the 

FRA MEG package developed in this work. The cases are divided 

into the following two basic sections:

CO Linear— Elastic Cases.

Ci.i.y Elasto-Plastic Cases.

Although some discussion will be given with every case study, 

aiming a t results interpretation and comparison between
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different techniques used, the chapter* will end with a rather 

more general discussion about the efficiency and reliability of 

the basic facilities available in the package.

9.2 Linear-Elastic Validation and Case Studies:

The following linear-elastic finite and boundary element case 

studies have been analyzed using FRA MEG system.

9.2.1 Finite Element Simple Validation Test:

The aim of this simple te s t  is to check the validity of the

linear-elastic finite element program developed in this work by 

comparing the resu lts obtained by using i t  with those obtained 

be means of an analytical solution. The te s t  was carried out 

using a thin plate C Plano-Stress condition} under a uniform 

tensile load as shown in Fig.C9.1>.

In order to validate the standard elements available in the 

finite element library used with th is program, seven finite 

element meshes for the plate with different types of elements, 

as shown in Appendix CGI, Figs.<C.l-C.7>, have been employed. 

The meshes were generated and plotted using FRAMEC system

pre-processing module.

The displacement distribution on the lower surface of the plate 

Calong the x -axis), as obtained for different meshes, is shown 

in Fig.<9.2> against the analytical solution. I t is clear from 

the figure th a t the accuracy of results obtained for different 

elements tested  are beyond any doubt.

The axial s tre ss  distribution along the y-axis, on the

line oc ■ 1, is also plotted for different types of elements

against the exact answer for the case used Co* « 1>, as shown
x
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in Fig.<9.3> which confirms the validity of the s tre s s  routines 

in the FEM program.

It is worth mentioning tha t several other patch te s ts  for 

plane-strain cases, cases with different types of loading, and 

cases with curved boundaries, had been carried out and proved 

th a t different facilities available in the FEM program are 

absolutely correct.

9.2.2 Boundary Element Program Validation Test:

The te s t  is carried out to validate the isoparametric
♦

linear-elastic boundary element program developed in th is work. 

A pressurized cylinder under a uniform internal pressure, as 

shown in Fig.<9.4 >, is used. Different boundary element meshes 

with different elements are generated for this case and can be 

reviewed in Appendix CGI, Figs.CG.S-G.llX

The results of the boundary element program were compared with 

the well known Lame's solution. Fig.<9.5> shows the radial 

displacement distribution along the radius a t  B = 45°. I t is

clear from this figure th a t the results obtained by using the

3-node isoparametric element are more accurate than the results 

obtained by the use of other elements.

The radial s tre ss  distribution along the same radius is shown 

in Fig.<9.6>. It is clear from this figure th a t the 3-node and 

the 4-node isoparametric elements have given more accurate 

results compared with other elements.

Fig.<9.7> shows the hoop s tre ss  distribution along the same 

radius of B m 45°. Again i t  is clear from this figure th a t the 

results obtained by using the 3-node isoparametric element are 

more accurate than the results obtained from other elements.

It is obvious from the three previous figures tha t, according
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to Lame's solution, the 3-node isoparametric element has 

provided results more accurate than those obtained by means of 

the constant and the higher order isoparametric elements. The 

reason th a t the higher order elements have less accuracy than 

the 3-node element is related to the high round-off errors 

encountered with high-order interpolation within such elements.

Validation of other facilities available in the BEM programs 

such as different types of loading and subregioning will be 

demonstrated within the analysis of case studies discussed 

later.

9.2.3 Case Study of Centrally-Cracked Plate in Tension:

This case is as shown in Fig.<9.8> with all of the information 

required to carry out a finite or boundary element analysis. I t 

is clear from th is figure th a t only one quarter of the plate 

structure is required to be modelled in order to carry out the 

analysis, since the structure of the plate is symmetrical with

respect to the oc any y axes. The meshes for one quarter of the 

plate with different types of finite and boundary elements are 

given in Appendix CC3, Figs.CC.12-C.17>. In these meshes, a 

modest refinement has been employed in the area around the

crack, since crack-tip elements described earlier have been 

used.

Different analyses were carried out for this case study, and

different types of results were obtained. The results are 

categorized in the following sections.

Ca} Calculation o f  S tress  Distributions:

The distribution of the s tre ss  a along the x-axis was
y

calculated for the case study with a fixed crack length of 60

mm, using different types of standard and crack-tip, finite and
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boundary elements, and it, has been plotted as shown in 

Figs.C9.9-9.li>, where r* represents the distance from the crack 

tip along the x-axis.

Fig.C9.9> shows the s tre ss  distribution calculated by using the 

9-node standard element, the 9-node crack-tip element, and the 

C1/SQR2> singular element developed in this work. I t  is clear 

from this figure th a t the use of one <1/"SQR2> element in the 

left-hand side of the crack-tip has provided b e tte r accuracy

than the use of two elements in both sides of the crack-tip or 

than one element in the right-hand side of the crack-tip.

Using the 6-node standard, isoparametric crack-tip, and 

collapsed crack-tip finite elements, the s tre ss  distributions 

were calculated and plotted as shown in Fig.C9.10>, which 

indicates th a t the isoparametric crack-tip element and the 

f ir s t  collapsed crack-tip element have given be tte r 

distributions than the re s t  of the elements. This conclusion

will become clearer in the next section where the s tre ss  

intensity factors are presented and compared with an analytical 

solution.

The 3-node standard and crack-tip boundary elements were used 

to calculate the s tre ss  distribution for the same case study. 

This distribution is shown in Fig.C9.11>, which proves th a t the 

crack-tip boundary element has given a s tre ss  value near the

area of the crack tip higher than th a t obtained by using the 

standard element, especially when only one crack-tip element, 

located in the left-hand side of the crack-tip, is employed.

Cb> Calculation o f  SIF using Extrapolation Methods:

The K s tre ss  intensity factor was calculated using

extrapolation methods with different types of finite and 

boundary elements for the same case study, and the results are 

demonstrated in Figs.<9.12-9.21>.
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Fig.<9.12> shows the K s tre s s  intensity factor calculated 

using the 8-node finite, and 3-node boundary, standard

elements, a t points on the line inclined an angle 0  m 0° from

the crack surface. I t  is clear from this figure th a t the

results obtained by using s tre s s  values can easily be

extrapolated to  an accurate value of compared with the

results obtained from displacement values. Also i t  can be seen

from the figure th a t the 3-node boundary element has given 

accuracy much b e tte r than th a t obtained by means of the 8-node 

finite element with reference to Feddersen's solution CRef.71.

On the line with angle & m 90°, the K s tre ss  intensity factor 

for the same case study was calculated using the same elements, 

and the results are shown in Fig.C9.13> and Fig.<9.14>, which

indicate th a t both elements have given good results compared 

with Feddersen's solution mentioned earlier.

Similarly, a t Q «* 180°, the s tre s s  intensity factor K was

calculated using the displacement extrapolation method, as 

plotted in Fig.<9.15>, which proves that, for this particular

case, the results obtained using the 3-node boundary element 

are more accurate than the results obtained using the 8-node 

finite element.

The curve fitting  technique discussed earlier has been employed 

with the boundary element results of the s tre ss  intensity 

factor, as shown in Fig.C9.16>. I t is clear from this figure 

tha t the results obtained are more accurate than the results 

obtained by means of manual fitting  as shown in the previous 

figures.

Different types of elements; old and new, standard and 

crack-tip, finite and boundary elements have been employed for 

the analysis of the previous case study and s tre ss  and 

displacement results have been used for the estimation of K 

s tre ss  intensity factors. Curves leading, by means of 

extrapolation, to the value of K Cat the crack tip> are shown
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in Figs.C9.17-9.22>, and extrapolated values of K have been 

compared with the corresponding Feddersen's solution CRef.73. 

To facilitate the comparison, curves for similar types of

elements have been plotted together, and the results can be 

summarized as follows:

i. For the 8-node standard and crack-tip elements, i t  is

clear from Fig.C9.17> tha t i t  is hard to find any

appreciable improvement gained by the use of tha t

crack-tip element.

ii. Although the use of the 3-node, crack-tip, boundary

element may cause some disturbance in results near the 

crack tip, as shown in Fig.C9.18>, i t  has been found th a t

the use of one crack-tip element as such in the right-hand 

side of the crack tip C material side) leads to  smooth 

curves which can be extrapolated to  a very accurate value 

for the s tre ss  intensity factor

iii. The 9-node elements developed in this work; the 9-node

crack-tip element and the C1/SQR2> singular element have

shown some improvement of accuracy compared with the 

standard 9-node element, as demonstrated in Fig.C9.19>.

Some disturbance of results has occurred near the crack

tip, when the <1/SQR2> element is used, but this can be 

avoided if only one of such elements is employed a t the 

left-hand side of the crack tip, or if  more refined mesh 

is used.

iu. Comparing the results obtained by means of several

collapsed 6-node elements, developed in this work, against 

those from standard and crack-tip, 6-node triangular 

elements, as illustrated in Fig.C9.20>, i t  was proved th a t 

the f ir s t  collapsed element, in which no distortion of 

node locations is required, has yielded the most accurate 

answer. It has also shown the minimum disturbance of 

results near the crack tip.
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x j . Testing the cubic elements; the 12-node standard and 

crack-tip quadrilateral elements, and the 10-node standard 

and crack-tip triangular elements, against one another, as 

shown in Fig.C9.21>, i t  is clear th a t crack-tip elements 

have very little  effect on extrapolated answers, except in 

minimizing the disturbance of results near the crack tip.

vi. When comparing the K values obtained by using different 

types of elements, as demonstrated in Fig.<9.22>, i t  is 

obvious th a t most of the new elements developed in this 

work perform well near the crack tip and lead to some 

improvement in the accuracy of the extrapolated K values. 

One should deduce th a t such improvement in accuracy would 

have become significant if coarser meshes have been used 

for this analysis.

Cc> Calculation o f  SIF using the J—Integral Technique:

Under linear-elastic fracture mechanics conditions the 

J-integral value is equivalent to the energy release ra te  G. 

This correlation can be used to calculate the s tre ss  intensity 

factor K as explained before in chapter 3. Using this 

approach, the s tre s s  intensity factors from standard finite and 

boundary element results have been calculated for the same case 

study with different crack lengths and compared with the values 

obtained from five different analytical solutions available in 

the literature, as shown in Fig.<9.23>. It is clear from this 

figure th a t the finite and the boundary element results are in 

good agreement with the analytical solutions for a wide range 

of crack length.

Using different crack ratios, the non-dimensional s tre ss  

intensity factors for the same case study have been calculated 

from finite and boundary element results, as illustrated in 

Fig.<9.24>. This figure shows th a t the finite and boundary 

element results are in good agreement with the analytical
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solution for crack ratios of values more than 0.1. The reason 

for this phenomenon is th a t for the case of a short crack, a 

very fine mesh should have been used in the vicinity of the 

crack tip to model accurately the s tre ss  distribution in this 

area.

The same technique has been used to calculate the s tre ss  

intensity factor for the same case study with a fixed crack 

length of 60 mm, by means of 9-node and <1/SQR2> elements. A 

comparison between the s tre ss  intensity factors calculated by 

means of these elements using different ^-integral contours a t 

different distances from the crack tip is shown in Fig.C9.25>, 

which proves th a t the use of 9-node standard, crack-tip, and 

<1/SQR2> elements gives good accuracy compared with Irwin 

solution. Also this figure indicates th a t the results of the 

./-integral technique are path independent.

Cdl Calculation o f  CTOD under- Linear—Elastic Conditions:

The crack-tip opening displacement, 6̂ , has been calculated, 

using the curve fitting  technique, from finite and boundary 

element results for the same case study. The results are shown 

in Fig.C9.26> and Fig.<9.27> respectively. I t is clear from 

these two figures th a t the use of the curve fitting  technique 

for the calculation of the CTOD has provided an acceptable 

accuracy compared with Dugdale solution CRef.73, whilst the use 

of linear extrapolation, as suggested in the literature  and 

shown in Fig.<9.28>, leads to  less accurate results.

Ce> Plotting o f  Displacement a'nd S tress  Contours:

The displacement and s tre ss  contours for the same case study 

have been generated and plotted from the finite element output 

using post-processing facilities available in the present 

programming package. Fig.C9.29> shows contours of the



- 2 9 4 -

displacement in the y- direction, whilst Fig.C9.30> shows 

contours of the s tre s s  in the y-direction. These two figures 

show the behaviour of the displacement and s tre ss  distributions 

for a cracked plate under uniform tension, also i t  is clear 

from Fig.C9.3Q> th a t the highest s tre ss  concentration occurs 

near the area of the crack tip, and this behaviour of s tresses  

agrees well with the theoretical prediction th a t the s tresses  

a t the crack tip have infinite values.

9.2.4 Case Study of Single-Edge Cracked Plate in Tension:

This case is a single-edge cracked plate with an oblique crack 

a t angle B ■ -45°, as shown in Fig.C9.31>, subjected to a

uniform tensile loading. Finite and boundary element analyses 

have been carried out using the meshes shown in Appendix CC3, 

Figs.CC.18-C.19>.

Such a case study was very useful for the validation of the 

subregion technique developed in this work for the BEAf, and i t  

has been proved, in the course of the analysis, th a t without 

such a technique i t  would become impossible to  obtain accurate 

answers from the BEM for any case with an oblique crack being a 

part of i ts  whole boundary, since i t  seems th a t every two 

opposite boundary elements on the two surfaces of the crack 

tend to cancel each other.

For such a case study, fracture modes I  and I I  exist, and this 

has provided a chance for testing and validating not only the 

procedures for calculating K and K s tre ss  intensity factors, 

but also the use of the ./-integral for defining an equivalent 

s tre ss  intensity factor, under linear-elastic conditions.

The s tre s s  results obtained by means of the FEM and the BEM 

have been used together with different combinations of 

simultaneous equations given in section C3.3.3>, so as to
ik ifc

obtain values for K and K a t different distances from thei i i
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crack tip, on the line with & m 0. Due to the nature of the

resulting curves, as can be observed in Figs.C9.32-9.34>, i t

was decided to  employ the Eyctr-apolation-CuiruG-Fi.tti.ng

technique, developed in this work, so as to obtain the true

values of K and K , a t the crack tip, which have then been i u*
compared with the corresponding analytical solution, as given 

by Rooke & Cartwright CRef.333.

The curves for K and #C extrapolation, based upon s tre ss

components a and a obtained from the finite element and x y
boundary element analyses, are shown in Fig.<9.32> which 

emphasizes the good agreement of package results compared with 

the analytical solution.

Using each one of a and a s tre s s  components together with rx y xy
component, for the evaluation of K  ̂ and K values, two se ts  of 

curves have been obtained, as illustrated in Fig.<9.33> and 

Fig.C9.34>, respectively.

One may deduce, from Fig.<9.33>, th a t the a - t combination
x xy

has led to well-defined curves for K , with an extrapolation 

easier than with corresponding curves in Fig.€9.32>, should the 

manual extrapolation have been used. The figure indicates also 

tha t the FEM results tend to be extrapolated to  answers more 

accurate than those obtained by extrapolating the corresponding 

BEM results.

Alternatively, the curves resulting from the a -ty xy
combination, as represented in Fig.<9.34> have all reasonable 

curvatures, and the BEM extrapolated K value seems to  be very 

accurate indeed. One should, of course, have guessed th a t 

computer limitations have restric ted  the usage of very fine 

meshes required for such cases with irregular geometries.

The equivalent s tre s s  intensity factor can be calculated for 

such a case study, by means of the following formula, suggested 

in the literature:
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K « I K2 + K2
eq 4 I II

Using th is formula, the equivalent, s tre ss  intensity factor* for

different s tre ss  combinations have been calculated from the

finite and the boundary element results, and compared with the

analytical solution, as can be seen in Fig.C9.35> and

Fig.C9.36> respectively- I t is clear from these two figures

th a t the best accuracy has been gained from the combination of

a  and t stress components, where both the finite and they xy
boundary element results have given nearly the same value for

K s tre ss  intensity factor.
©q

Using the ^/-integral technique, the values of K were
©q

calculated and compared with the analytical solution, as shown

in Figures <9.37> and C9.38> . Fig.C9.37> shows the K s tre ss
©q

intensity factor for this case study calculated using the 

finite-element results a t different contours around the crack 

tip. It is clear from this figure tha t the calculated s tre ss  

intensity factors are in a reasonable agreement with the 

analytical solution, also i t  shows th a t the values of the 

s tre ss  intensity factor calculated a t different contours are in 

close agreement with each other, proving th a t the J-integral 

values are path independent.

A comparison between the K values calculated be means of the 

J'-integral technique, and the corresponding value from the 

analytical solution, is demonstrated in Fig.C9.38> which 

indicates th a t the BEM value is nearer to the analytical 

solution of Rooke & Cartwright than the corresponding FEM 

value.

The maximum s tre s s  contours for this case study has been 

generated using finite element results, and plotted in three 

dimensions as shown in Fig.C9.39>, which demonstrates th a t the 

maximum s tre ss  concentration for this case has occurred a t the 

area near the crack tip, whilst the minimum s tre s s  

concentration has occurred on the surfaces of the crack itself.



- 2 9 7 -

9.2.S Case Study of Centrally-Cracked Rotating Disc:

In order to  verify the calculation of domain loading conditions 

in FRAMEC system, finite and boundary element analyses have 

been carried out for the centrally-cracked rotating disc shown 

in Fig.C9.4G>. Due to  the symmetry of the disc, only one

quarter of i t  has been modelled using the Meshes shown in 

Appendix EC], Figs.CC.2Q-C.21>.

Using the ./-integral technique for the case of domain loading, 

the J-values for th is case have been calculated from the finite 

and boundary element results for different crack ratios and 

compared with the analytical solution of Rooke & Cartwright

ERef.33] as shown in Fig.<9.41>, which proves th a t the ./-values 

calculated from the finite and boundary element results are in 

a very good agreement with the analytical solution values up to  

a crack ratio  of a/R m 0.35, beyond which the analytical

solution is no longer valid. Also i t  is clear from the figure 

tha t the finite element and the boundary element results are in 

a very good agreement with each other.

The K s tre ss  intensity factor has been calculated for this 

case study using the J-integral values obtained before, and 

shown in Fig.C9.42>. Hence, i t  is clear th a t the results of

this figure exhibit the same accuracy as demonstrated in the

previous one.

In order to  study the effect of the crack ratio  and the domain 

loading conditions on the path independency of the ./-integral, 

the ./-values a t different contours around the crack tip have 

been calculated for different crack ratios, as shown in 

Figs.C9.43-9.46>. I t is clear from these figures th a t the

domain loading conditions have no effect on the path

independency of the ./-integral. However, the crack ratio  has 

some effect not only on the path independency of the J -integral 

but also on the accuracy of the results compared with the 

analytical solution. This fact is very clear in Fig.C9.43> when
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the crack ratio  is very small, and i t  can be seen th a t the best 

agreement with the analytical solution is gained when the crack 

ratio  a/R  ■ 0.25 as seen in Fig.<9.44>. Also, i t  is clear from 

Figs. <9.45-9.46> th a t when the crack ratio  exceeds the limiting 

value of a/R m 0.35, the FEM and BEM ./-integral values, 

although converging with each other, s ta r t  to diverge away from 

the analytical solution, whilst the path independency of their 

/-in tegrals improves noticeably.

9.3 Elasto-Plastic Validation and Case Studies;

Before using FEM and BEM elas to-plastic programs developed in 

FRA MEG system for the analysis of elas to-plastic fracture 

mechanics, i t  was essential to validate such facilities. A 

number of validation cases, with known analytical solutions, 

have been tested, and some of them will be reported here, 

followed by results and discussions for some interesting case 

studies.

9.3.1 Finite Element Elasto-Plastic Validation Case:

This case is a pressurized cylinder, as shown in Fig.C9.47>, 

with increasing internal pressure and plane-strain conditions. 

Due to the symmetry of the problem, only one quarter of the 

structure has been meshed using 8-node finite elements as shown

in Appendix CGI, Fig.CC.22>. The analysis has been carried out

in different stages, as follows:

Ca> Analysis urLth Pr-essur-e in the Elastic 

Range o f  the Material:

Since the elas to-plastic analysis is based upon the incremental 

theory, which requires the loading to s ta r t  with an increment

generating s tresses  below the yield s tre ss  of the material
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Ci.e. elastic analysisJ, it, was necessary then to verify the

elas to-plastic analysis a t this stage. Hence, an initial
2pressure increment of 10 N/mm has been applied to the

structure, causing the s tresses  to  be within the elastic range 

of the material.

Fig.<9.48> shows the elastic radial displacement distribution 

for this case compared with the analytical solution given in 

Ref.1721 and with the ABSEA finite element package. I t is clear 

from this figure th a t the results of FRAMEC finite element

module agree well with the other results. Similar agreement has 

been achieved for the elastic radial s tre ss  and hoop s tre ss

distributions as can be observed in Figs.C9.49-9.50X

Cb> Elasta-Plastic Analysis with Pressure Higher 

than the Elastic Range:

Increments of pressure leading to plastic deformation have then 

been applied, and the results for the case with a pressure of 

16 N/mm , Ccausing plasticity up ta the radius o f  1 3 5  mm>, are 

demonstrated here. The elas to-plastic radial and hoop s tre ss

distributions have been plotted as shown in Fig.C9.51> and

Fig.<9.52> respectively, which illustrate tha t the results of 

FRAMEC system have more or less the same accuracy as the 

analytical solution and ABSEA package, and this agreement in

accuracy level may verify th a t the elasto-plastic procedure 

employed in FRAMEC system is absolutely correct.

Using von Mises yield criterion, the equivalent s tre ss  

distribution has been calculated and plotted in contour form, 

as shown in Fig.<9.53>, which shows th a t the maximum equivalent 

s tre ss  distribution occurs in the area near the internal 

surface of the cylinder, also this figure shows the size of the 

plastic zone and the plastic zone boundary.
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<Tc> Elastic Unloading from Pressure Higher than 

the Elastic Range:

In order- to calculate residual s tresses and validate the 

unloading facility in the FRAMEC finite element module, an

unloading elasto-plastic analysis has been carried out when the
2pressure reached the value of 16 N/mm . The residual radial and 

hoop s tre ss  distributions have been calculated and shown in 

Fig.<9.54> and Fig.<9.55> respectively. I t is clear from these 

two figures th a t the results of FRAMEC system are more close to 

the analytical solution than the results of ABSEA system.

The residual radial and hoop s tre ss  contours have been plotted 

as can be seen in Fig.C9.56> and Fig.<9.57> respectively. 

Fig.<9.56> shows th a t the maximum residual radial s tre ss  

distribution occurs in the area near the internal surface of 

the cylinder, whilst the minimum residual radial s tre ss  

distribution occurs on the outer surface of the cylinder. 

Similarly, Fig.<9.57> illustrates th a t the maximum residual 

hoop s tre ss  distribution occurs in the internal surface of the 

cylinder, and i t  ia a compressive s tress , which may be useful 

to improve the strength of the material, if  the structure is 

re-loaded C Auto fre tta  gel.

Ccf> Elasto-Plastic J—Integral Validation urith 

Different Pressure Values:

Before applying the /-in tegral elasto-plastic algorithm to 

cracked components, an attempt has been made to validate it , 

using a reliable solution. The present case study is very 

useful, since i t  has an analytical solution for elasto-plastic 

displacement, s tre s s  and strain, but the actual value for any 

/-in tegral around a closed contour within the cylinder is zero, 

since i t  has no crack. Hence, a non-trivial /-in tegral value 

does exist, if  only a part of a complete contour is considered.
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An analytical solution for the value of the J-integral, 

considered only around the outer boundary of the cylinder has 

been derived in th is work using Tresca yield criterion, as 

shown in Appendix EDI, and the final expressions of the 

•/-integral for plane s tre s s /s tra in  conditions are given as 

follows:

r o jz f  C I 4J  » I “  I for- picme-sfress condition,
o

r o r c  2
J m Y* [ ~ 1 Cl-uZ> fo r  planestr-ain condition.

where,

C ss The radius of the plastic zone,

r  os The outer radius of the cylinder.
o

Elasto-plastic -/-integral calculations have been carried out 

using different pressure values ranging from elastic to 

plastic, for both plane-stress and plane-strain conditions and 

using Tresca yield criterion. The results are compared with the 

above analytical solution and shown in Figs.<9.58, 9.59}. It is

clear from these two figures th a t the finite element -/-integral 

results are in a very good agreement with the analytical 

solution up to  the pressure value of 14 N/mm . However, for 

pressures higher than tha t, the FEM -/-integral value s ta r ts  to 

diverge from the analytical solution. This may be related to 

the accumulation of errors during the elasto-plastic finite 

element analysis, and to  the growth of the plastic zone a t high 

pressure levels.

9.3.2 Boundary Element Elasto-Plastlc Validation Case:

In order to validate different facilities available in the 

boundary element elasto-plastic programs developed in this 

work, an analysis has been carried out, using a case similar to  

the previous one, with different loading conditions, and one
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and two subregions. The boundary element meshes and the 

corresponding integration-cell finite element mesh are shown in 

Appendix CGI, Figs.CG.23-G.25), respectively.

Ca) Case with P ressu re  Loading Only:

A boundary element elasto-plastic s tre s s  analysis has been 

carried out for the case study, under different pressure 

values, assuming the von Mises yield criterion, and ignoring 

strain-hardening effects.

The resulting hoop and radial s tre ss  distributions, for the
2pressure values of 14 and 16 dN/mm have been compared with the 

corresponding finite element and analytical solution results, 

as shown in Figs.C9.60-9.63).

It is clear from figures C9.60) and C9.61), which demonstrate

the radial distributions of hoop and radial s tresses  a t the
2

pressure value of 14 dN/mm , tha t the boundary element results 

are even slightly more accurate than the corresponding finite 

element results, compared with the analytical solution. This 

may prove th a t the boundary element elasto-plastic algorithm is 

completely reliable. However, the hoop and radial s tre s s  

distributions a t the pressure of 16 dN/mm2, as can be seen in 

figures C9.62) and C9.63), indicate a slight drop in accuracy, 

compared with the analytical solution, due to the accumulation 

of errors resulting from the increase of the plastic zone.

Cfc>) Case urith Subregions:

The previous case has also been analyzed using the 

elasto-plastic, boundary element, subregion program developed 

in this work. Two different meshes were tested, one with only 

one subregion and the second with two subregions, as shown in 

Appendix CGI, Figs.CG.23, G.24).
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The hoop and radial s tre ss  distributions, a t pressure 14 
2

dN/mm , are presented in figures C9.64) and <9.65>, 

respectively, which prove th a t subregioning technique leads to 

an improvement in the accuracy of the BEM analysis.

The subregion program contains a facility which allows the user 

to select one or more subregions to be elastically analyzed 

only, depending upon his prediction of the expected plastic 

zone. When such a facility has been tested by considering the 

case with two subregions, such th a t only the inner subregion 

would be analyzed plastically, a significant saving of the 

computer CPU time has been achieved, with the same level of 

accuracy, proving the usefulness of such a facility which can 

only be employed with subregioning.

Cc) Case urith Pressure and Thermal Loading:

The previous case of the pressurized cylinder was reconsidered 

when its  inner surface was kept a t a temperature of 120 °G,

whilst the outer surface was a t 20 °C.

Boundary element programs for heat conduction, with and without

subregions, as developed in this work, have been employed to

calculate the values of temperature and its  gradient a t

different nodes, and feed them to the elas to-plastic programs.

The resulting hoop and radial s tre ss  distributions a t pressure
2

18 dN/mm have been compared with the corresponding finite 

element solution, validated before, and plotted as shown in 

figures <9.66) and C9.67) respectively, which prove tha t, for 

the case of thermal loading the elasto-plastic boundary element 

analysis, developed in this work, is as accurate as the finite 

element analysis.
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CcO Case xtrith. Domain Loading:

The pressurized cylinder was also analyzed when i t  was assumed

to ro ta te  with a uniform angular speed around i ts  axis*.

Different values of have been tested, and i t  may be worth

mentioning tha t, as soon as plasticity occurs, the value of

can only be increased slightly before divergence occurs in

finite element and boundary element elasto-plastic programs.

This phenomenon may be explained, since the difference between

the value of co causing complete collapse of the structure and co

which initiates yield is only 11% CRef.721. The results for the

particular case, with to «= 1 rad/s together with an internal
2pressure of 11 dN/mm is reported here.

The hoop and radial s tre ss  distributions are shown in

Fig.C9.68> and Fig.C9.69> respectively, which prove th a t the

boundary element elasto-plastic results are very accurate 

compared with the corresponding finite element solution, 

validated earlier.

9.3.3 Case Study of Elas to-Plastic Analysis 

for Centrally-Cracked Plate:

Having validated the elasto-plastic finite element and boundary 

element programs, the elasto-plastic fracture mechanics 

analyses for some case studies of cracked components have been 

carried out, aiming a t  comparing the newly-dev eloped boundary 

element method with the well-established finite element method,

in terms of accuracy and computer CPU time. The case study, 

which is shown in Fig.C9.70), is the f ir s t  case employed for 

such a purpose.

Due to the symmetry of the problem, only one quarter of the

structure has been modelled. The finite element mesh and the 

boundary element mesh used in this analysis are similar to 

those given in Appendix CC3, Figs.<C.12, C.17).
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The a s tre ss  distribution along the line of the crack has been 
y

calculated and plotted, as shown in Fig.<9.71>. This figure 

shows an acceptable agreement between the finite element and 

the boundary element results. However, the boundary element 

results seem to have more singularity Ci.e. higher* s tr e s s  

distribution} in the area near the crack tip.

Using different load values, the ./-integral values have been 

calculated, for every load value, and plotted as can be seen in 

Fig.<9.72>. I t is clear from this figure tha t the finite 

element results and the boundary element results are almost 

identical.

The ./-integral values have also been calculated using different 

contours around the crack tip. The results from the finite and 

the boundary element programs are shown in Fig.<9.73>. I t is 

obvious from these results th a t the path independency of the 

./-integral has been satisfied, although the boundary element 

results show a higher J  value a t  contour number 1, because the 

contour has been taken on the outer boundary of the problem, 

which contains some corners, with less accurate results there.

The von Mises equivalent s tre ss  contours around the crack tip

has been calculated and plotted in Figs.<9.74-9.76>. The scale

of the s tre ss  contours has been magnified 25 times in order to

show the shape of the plastic zone, which is in this case, the
2

area srounded by the 400.0 MN/m contour.

9.3.4 Case Study of Symmetrically Cracked 

Pressurized Cylinder:

The case has been selected to te s t  the efficiency of boundary 

element accuracy measures such as subregioning on the 

performance of the BEM elas to-plastic analysis for a cracked 

component. A pressurized cylinder with two symmetric radial 

cracks, as shown in Fig.<9.77>, was employed for this purpose.
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Since, the case has two axes of symmetry, one quarter of i t  was 

modelled with a finite element mesh as shown in Fig.<C.26> 

[Appendix Cl, and a boundary element mesh with four subregions 

as illustrated in Fig.<C.27> [Appendix Cl.

On running the case without any subregions, the BEM 

elasto-plastic analysis had divergence occurring due to the 

high s tre ss  concentration a t the crack tip. With the

4-subregion mesh, and limiting plastic check to  the inner 

subregions, i t  was possible to obtain boundary element results 

with rapid convergence, for such a relatively coarse mesh.

The boundary integral equation for strains was tested  against 

the finite difference procedure, by changing the length of the 

finite difference boundary layer thickness from a very small to 

a very large value, no difference in results has been observed 

throughout all of the load increments used.

The xl displacement distribution on the crack surface, and the y
cr s tre ss  distribution on the crack line have been plotted, for 

elastic results, as shown in figures <9.78> and C9.79>

respectively, which indicate tha t BEM results have more or less 

the same accuracy level as FEM results. Fig.<9.79> shows also 

tha t, without using any crack-tip element, a singularity occurs 

a t the crack tip because of i ts  location as a corner node 

common between two subregions.

The elasto-plastic ./-integral values are plotted a t different 

internal pressures, as shown in Fig.C9.80>, which shows a

reasonable agreement between FEM and BEM results. The deviation 

between the results of the two methods increases with the

increase of the internal pressure due to plasticity in outer

subregions.
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9.3.5 Case Study of Cracked Thick-Walled 

Pressurized Cylinder:

This case is similar to  the previous one but with one radial

crack only, as shown in Fig.C9.81>. Due to  the symmetry of the 

problem around the x-axis, only one half has been analyzed 

using the mesh given in Appendix CC3, Flg.CC.28>. The 

nondimensional ./-integral for this case study has been 

calculated for different pressure ratios using the

elasto-plastic FEM program of FRAMEC package and compared with 

similar results obtained for the same case study by Sumpter 

CRef.893, and Tan & Lee CRef.903.

The output has been plotted, as shown in Fig.<9.82>, which

proves th a t the elasto-plastic ./-integral values obtained by 

means of FRAMEC finite element analysis is in a very good

agreement with the published results. The equivalent s tre ss  

contours for this case study is shown in Fig.<9.83> which can 

provide a useful illustration for s tre ss  concentration and 

plastic zones.

9.4 General Discussion:

During the course of study, and considering the results 

obtained for different case studies described before, some 

general interesting points have been materialized, and they are 

discussed and reviewed as follows:

Ca> Pro jam m ing Package Facilities:

It was not possible to run the package so easily and smoothly 

without the help of i ts  control program developed as a 

V AX-Command file which controls different operations of the 

package. It is also clear th a t the package pre- and 

post-processing facilities are very useful tools for data
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preparation, mesh generation and plotting, and results

presentation. Most of the figures presented in th is chapter 

have been generated by means of those facilities.

Many other facilities have been validated and proved to  be very 

advantageous. Pressure elements may help in reducing data and

human e ffo rt required for the specification of finite element

loading equivalent to  pressure loading. The package own finite 

and boundary element, heat-conduction programs provide thermal 

data required for thermo-elastic analysis, using the same mesh. 

An experienced user can employ facilities, such as transition 

and crack-tip elements, for generating very economical meshes,

without affecting accuracy levels required. Some advantages of 

other facilities may become apparent within next sections.

Cb> Standard Finite and Boundary Elements:

Although different te s ts  have proved th a t all of the finite and 

boundary elements available in the package are correct in 

derivation, i t  is clear from the analysis of previous case 

studies th a t one should not expect an automatic improvement in 

accuracy whenever higher order elements are employed. The 

second order finite elements, elements with one mid-side nodes, 

and the second order boundary element, the 3-node isoparametric 

element, provide an optimum choice.

Cc> Package Modularity:

The package modular design has proved to  be extremely useful. 

The same ./-integral program can be coupled with results from 

either FEM programs or BEM programs without any interference by 

the user. The elasto-plastic analysis; stress-correction, 

s tre ss-s tra in  matrix, ...etc, is available in a separate file 

which can be linked to either FEM or BEM elasto-plastic 

programs. I t is perhaps best to use the same mesh employed for
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FEM analysis as an integration-cell mesh for the BEM 

elasto-plastic analysis, since i t  will make i t  possible to have 

a direct comparison, a t the same nodes between the results 

obtained by means of each method. This idea was not possible 

without including the same finite element library in 

elasto-plastic BEM programs. Different boundary elements have, 

similarly, been employed in the FEM analysis as pressure 

elements, they have also been used as contour elements in the 

J- integral programs.

CgD Assessment o f  Crack-Tip Elements:

Many old and new crack-tip elements have been tested, and the 

results have proved th a t a crack-tip singularity can be 

generated within a rather coarse mesh, when such elements are 

used in the vicinity of a crack tip. Most of the crack-tip 

elements available in the literatu re  require coordinates

distortion for some nodes near to  the crack tip, and this may 

become as a heavy burden to the user generating meshes for 

cracked components.

However, two of the new elements developed in this work, the 

<1/SQR2> element and the collapsed element require the

distortion to be carried out only in the intrinsic plane, 

keeping the nodal cartesian coordinates untouched. These new 

elements have also proved to be very accurate compared with

other elements. Some crack-tip elements, specially the 3-node 

boundary element, seem to have a favoured direction, i.e. they 

cannot be used efficiently except when located a t certain side 

of the crack.

Ce> Methods fo r  S tress  Intensity Factor Evaluation:

Many methods for the evaluation of s tre ss  intensity factors 

have been presented in this work. The extrapolation method,



- 3 1 0 -

which is based upon some parameters defined on a line emanating 

from the crack tip, may require the use of additional internal 

nodes for the BEM analysis. The suitability of generated curves 

for being extrapolated, may depend upon the parameters used and 

the inclination of the line from the crack surface. The

extrapolation curve-fitting technique, developed in this work, 

provides a very efficient tool for the evaluation of s tre ss  

intensity factors, specially when the component contains an 

oblique crack. Short cracks may require the use of very fine 

meshes so as to  obtain accurate s tre ss  intensity factors for 

them by means of FEM or BEM results. I t may be advantageous to 

employ the ./-integral technique for the evaluation of

linear-elastic s tre s s  intensity factors but i t  is only capable 

of providing the value of an equivalent s tre ss  intensity 

factor, whenever the component has multiple modes of fracture.

Cf} J-Integral Algorithms:

The algorithms developed in this work for the calculation of 

./-integral values have proved to be very accurate and

efficient. They have performed well for cases with boundary 

loading, domain loading, and thermal loading and with elastic 

and elasto-plastic analyses. They have been programmed so as to  

use directly output files generated by means of the FEM or BEM 

programs without any human interference. Transformation of 

global axes to crack axes have been carried out internally 

within the ./-integral programs, and this allows the user to 

employ the best global axes possible for the FEM or BEM 

analysis. New derivations and simplifications of domain-loading 

terms in ./-integral expressions have helped in obtaining 

./-integral values accurately and efficiently, and also in 

reducing computer CPU time.

Although the ABAQUS finite element package, which contains 

-/-integral facilities, is available a t Cranfield, no comparison 

with its  results has been presented here, simply because some
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te s ts  carried out earlier had proved th a t the -/-integral values 

' for domain loading cases, as calculated by means of the ABAQUS 

package, were fa r from being accurate or path independent.

Cg} BEM Accuracy Measures and Subregioning:

Some accuracy measures should be observed when using 

isoparametric boundary elements such as, doubling of corner

nodes, using subregions whenever necessary, and defining a

boundary layer within which s tresses  are calculated by means of 

a finite difference procedure applied to displacement values 

there.

The subregion technique presented in this work is unique in 

using double nodes a t generated corners, and a condensation 

algorithm to minimize unknowns a t similar nodes. This allows

the use of, gaps with zero length a t corners, and corner 

jump-functions which improve the accuracy of the BEM analysis. 

I t is clear from previous te s ts  tha t, in addition to the 

condensation facility, there are three basic advantages

achieved by subregioning:

i. I t  improves the accuracy of BEM results, specially for 

cases with irregular domains.

ii. I t has made i t  possible for the BEM to deal with cases 

which contain non-symmetric or oblique cracks.

Hi. I t  can be used to reduce the computer CPU time for 

elasto-plastic analysis, by specifying whether every 

subregion may have plastic analysis or not.
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ChJ Finite Element versus Boundary Element

for Linear—Elastic Fracture Mechanics:

I t is clear from previous results th a t the BEM has proved to be 

very advantageous for the analysis of linear-elastic fracture

mechanics problems as compared with the FEM, due to the

following main reasons:

i. For the calculation of -/-integrals, and s tre ss  intensity 

factors from data along crack surfaces, FEM and BEM 

results are only required on the boundary. This represents 

an ideal situation in favour of the BEM since no internal 

nodes are required for fracture mechanics analysis.

ii. The accuracy of the BEM is, without any doubt, as good as 

th a t for the FEM, or may even be better, for many cases.

Hi. Some saving in CPU time may be achieved with the use of

the BEM. However, with the frontal solver being employed

only for FEM, the actual saving with the BEM would be in 

data-preparation e ffo rt and in mesh generation, specially

whenever there are non-symmetric or oblique cracks which 

may require mesh-zooming in the vicinity of crack tips.

iv. Subregioning, if  considered instead of a coarse finite

element mesh would provide more accurate answers and have 

banded-matrix characteristic which may then be dealt with 

by means of efficient solvers.

CO Finite Element versus Boundary Element

for Elasto-Plastic Fracture Mechanics:

It is clear from previous cases th a t there are s till some 

development required to  be carried out in order to have the BEM 

being as efficient as the FEM for elasto-plastic fracture 

mechanics analysis. With old and new accuracy measures
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considered within the BEM analysis, i t s  accuracy has not now 

become the crucial factor, since accurate BEM results could be 

obtained by one way or another, but the basic disadvantage is 

tha t the CPU time required for carrying out an accurate BEM 

analysis is larger than th a t for the corresponding FEM 

analysis. One may, of course, reduce the BEM CPU time by means 

of efficient subregioning. Although the present author, cannot 

argue against the view th a t this may not provide enough grounds 

for the BEM to become superior to  the FEM, for elasto-plastic 

analysis, he believes th a t most of the CPU of the BEM, is spent 

in pagination required with a virtual memory computer such as 

VAX. Anyway, subregioning techniques provided here may pave the 

way for generating a hybrid procedure within which the FEM and 

the BEM will be coupled together to  provide a new technique 

more efficient than each of the two methods on its  own.
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O' = 30 N /m m  

E = 210 x 10 N /m m

If = 200 m m  
H = 400 m m

a

Fig.(9.8) C en tra l—Cracked P late u n d e r  U niform  Tension.
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GONGLUSIONS

F rom  p r e v io u s :  a n a ly s is :  a n d  d i s c u s s i o n s ,  o n e  c a n  c o n c lu d e  th a t ,

t h e  b a s ic  o b j e c t i v e  o f  t h e  w o rk , a im in g  a t  t h e  d e v e lo p m e n t  o f  

a n  e f f i c i e n t  e l a s t i c ,  a n d  e l a s t o - p l a s t i c  f r a c t u r e  m e c h a n ic s  

p a c k a g e , b a s e d  u p o n  f i n i t e  a n d  b o u n d a r y  e le m e n t  m e th o d s ,  h a s  

b e e n  a c h ie v e d .

W hen u s in g  t h e  p a c k a g e  f o r  f r a c t u r e  m e c h a n ic s  a n a ly s i s  o f  s o m e  

c a s e  s t u d i e s ,  t h e  f o l lo w in g  c o n c lu s io n s  h a v e  a l s o  b e e n  

e n v is a g e d :

CcO P a c k a g e  c h a r a c t e r i s t i c s  an d  f a c i l i t i e s ,  s u c h  a s  

c o n t r o l l a b i l i t y ,  m o d u la r ity , p r e -  a n d  p o s t - p r o c e s s o r s ,  

d i f f e r e n t  t y p e s  o f  e l e m e n t s ,  d i f f e r e n t  t y p e s  o f  

lo a d in g ,...  e t c . ,  h a v e  p r o v e d  t o  b e  v e r y  u s e f u l  t o o l s  f o r  

c a r r y in g  o u t  s u c h  a n a ly s i s .

Cb.> New c r a c k - t i p  e l e m e n t s  d e v e lo p e d  in  t h i s  w o rk  h a v e  sh o w n

t o  b e  v e r y  e f f i c i e n t  an d  c a n  le a d  t o  a n  a c c u r a t e  

e s t i m a t i o n  o f  l i n e a r - e l a s t i c  f r a c t u r e  m e c h a n ic s  

p a r a m e t e r s .

Cc.> A c c u r a t e  v a lu e s  f o r  s t r e s s  i n t e n s i t y  f a c t o r s  c a n  b e

o b t a in e d  b y  m e a n s  o f  t h e  e x t r a p o l a t i o n - c u r v e - f i t t i n g  

t e c h n iq u e  d e v e lo p e d  in  t h i s  w ork .

CdJ> New a lg o r i t h m s  d e r iv e d  f o r  t h e  c a lc u la t io n  o f  . / - i n t e g r a l s ,

h a v e  p r o v e d  t o  b e  v e r y  e f f i c i e n t  an d  a d v a n t a g e o u s  f o r  b o t h  

l i n e a r - e l a s t i c  an d  e l a s t o - p l a s t i c  f r a c t u r e  m e c h a n ic s .

CeO T he s u b r e g io n  t e c h n iq u e ,  p r e s e n t e d  in  t h i s  t h e s i s ,

p r o v id e s  a n  in d is p e n s a b le  f a c i l i t y  t o  f r a c t u r e  a n a ly s i s  o f  

c o m p o n e n ts  w i t h  n o n - s y m m e tr ic  a n d  o b liq u e  c r a c k s  b y  m e a n s  

o f  t h e  b o u n d a r y  e le m e n t  m eth o d . I t  h a s  a l s o  p r o v e d  t o  b e
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v e r y  u s e f u l  f o r  r e d u c in g  c o m p u te r  C P U  t im e  d u r in g  

e l a s t o - p l a s t i c  b o u n d a r y  e le m e n t  a n a ly s is .

C f y  T he b o u n d a r y  e le m e n t  m e th o d  h a s  sh o w n  t o  b e  m o r e

e f f i c i e n t ,  in  t e r m s  o f  a c c u r a c y ,  C P U  t im e  an d  hum an  

e f f o r t ,  t h a n  t h e  f i n i t e  e le m e n t  m e th o d , f o r  l i n e a r - e l a s t i c  

f r a c t u r e  m e c h a n ic s  a n a ly s i s .  H o w ev er , f o r  e l a s t o - p l a s t i c  

c o n d i t io n s ,  a n  a c c u r a t e  b o u n d a ry  e le m e n t  a n a ly s i s  m ay  

r e q u ir e  C P U  t im e  la r g e r  t h a n  t h a t  f o r  c o r r e s p o n d in g  f i n i t e  

e le m e n t  a n a ly s i s  w it h  t h e  s a m e  a c c u r a c y  le v e l .

C£\> F r a c t u r e  a n a ly s i s  o f  c o m p o n e n ts  w ith  s h o r t  c r a c k s  m ay

r e q u ir e  v e r y  f i n e  m e s h e s  in  t h e  v i c i n i t y  o f  c r a c k  t i p s .

R e c o m m e n d a t io n s  f o r  F u t u r e  W ork:

CaJ> E f f i c i e n t  s o l v e r s  f o r  b o u n d a ry  e le m e n t  a n a ly s i s  a r e

r e q u ir e d  t o  b e  d e v e lo p e d , s p e c ia l ly  f o r  c a s e s  w it h  

e l a s t o - p l a s t i c  c o n d i t io n s .

CfcO A p r o p e r  c o u p lin g  b e t w e e n  f i n i t e  and  b o u n d a r y  e le m e n t

m e th o d s  f o r  a n  e f f i c i e n t  a n a ly s i s  o f  n o n - l in e a r  p r o b le m s  

s h o u ld  b e  i n v e s t i g a t e d .

CcJ> S om e e x p e r im e n t a l  w o rk  i s  t o  b e  c a r r ie d  o u t  f o r  t h e

v a l id a t io n  o f  r e s u l t s  sh o w in g  so m e  d e v ia t i o n  fr o m  

p u b lis h e d  a n a ly t i c a l  s o lu t io n s .

CeD F r a c t u r e  m e c h a n ic s  a n a ly s i s ,  p r e s e n t e d  in  t h i s  w o rk , c o u ld

b e  e x t e n d e d  t o  c o v e r  f r a c t u r e  d y n a m ics  an d  f a t i g u e  c r a c k  

g r o w th .
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APPENDIX A

A.l In tegration  By-Parts Theorems:

Let /<x,y> and ^<x,y> be continuous functions with continuous 

f ir s t  order derivatives defined in a domain Cl with boundary r, 

then:

c a > i f f I f d A ■ < a i >
a r a

i f  U * "  <A2>
a

where, Z ds = dy, m. ds = - dx .

The proofs of the above theorems are shown in Ref.1793.

Cb> n  f dy dA <§> f  g  ds -

Cl

A.2 Useful Theorems:

A.2.1. Theorem <1>:

Let a parameter £ exists such th a t u = u<x,y,0> then, for a

stationary structure defined in terms of the domain O, i t  can 

be shown that:

d£

n  21 -  "
Cl

<*C
r

ds + i f * 1
a

du dA <A.3>

where Cl is a closed two-dimensional domain with a boundary r.
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Ca5 _R esu lt Cx}.*

H z  As dA = ^ T1 Au ds + J’J' X1 Au dA CA.4>

r a

CtO Result Cxi:

Defining ns=U + V=s U-  Wor*k done by external loads, then:

An = JJ  t LV dA - j ;  t cf dA <A.5>

O

dU 1 dU 
dvol " t dA

A.2.2 Theorem C2>:

Let, a parameter £ exist, such "that, u, a, T, and X are all

functions of £, then in the absence of dissipation energy, for 

a moving structure defined by means of the domain Q, i t  can be 

proved that:

<A.d>

n r o

Ca5 Result Cx):

For a constant system of surface and body forces:

<A.7>

a r  a
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CbJ> Result Ĉy.-

Dividing equation CA.S> by tA£ and taking the limits, i t  can be 

deduced that:

1 dll rr dW rr t d-
t dC “ dC JT — d£ <A.8>

o a

CcJ> Result CgO-

Substituting equation CA.3> into CA.8>, i t  can be shown that:

i an f n dW r du , du ,.
t = J J  dC ^ -  ac J J  ^  a f

o r  o
<A.9>
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APPENDIX B

FRAMEC PACKAGE LIBRARY OF FINITE ELEMENTS

B.l Standard Family of" Elements:

Element No. 1

4 ~Node Isoparametric Element.

N a Jf2<77>1 i ±

N = J£2C£> Jf2Cr)>
2 2 N 1 '

N = £ZC%> ^2<Y)>3 2 2

N = Jif2Ĉ > Ĵ 2Ct7>4 1 2

Element No. 2

<5—Node Quadrilateral Element.

N a :e3<0 J^Crp1 i i '

N a Jif2Cn>2 2 ± '

N a j?3CO Jf2CY7> 3 3 s i '

N a J?3<̂ > Ĵ 2Cr7>
4. 3 2

N a £aO;> Jf2<r)> 5 2 2

N a je3<£> JfZCT)>
<S 1  2  '
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Elemervb No. 3

Q—Nade I£?crpar-am&tr-i.c El&ment.

N4 ■

N ■ J?2Cr)>
2 2 1

N a ^2<77> + ̂ 2ĉ > ^3<r>> - Ji?2<̂ > Jf2Cr)>
3 3 1 2 S 1 ' 2 1 '

N = J?2<̂ > Jf3<r?>
4 2 2

N a je3C£> J£*<yp + Jf2Ĉ > ^3<r?> - JS?2<̂ > Je2<r?:>
•5 3 2 2 3 2 2L

N a £2C7)>
<5 2 2 '

N a jf3ĉ > J^Op + ̂ 2ĉ > ^3<r)> - z 2 0;> Je2Cr?>
7 1 2 1 N 3 ' I s 2 '

N a £ZC%> Jf3Cr}>8 1 2

Elements No. 4

p-Node L.agr'Cingxan El&m&nt.

N a J?3<̂ > £3<7)>i l l

N a Jif3Ĉ> Jf3C»>
2 2 1 '

N a j£3<£> Ji?3Cr)>
3 3 1

n a j?3ĉ > ^3<r?>
4 3 2

N a J£3<t)>
5 3 3

N a J?3<̂ > Jf3<r>>
cs 2 3
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Na -  £®Cf> x \ r>>

Element, No. 5

8 -Node? Quadr-ilater-al 'Element.

N a «S?2<77>1 1 1 '

N a J£4<£> -3̂2C77>2 2 1 '

N a ^ 4<£> J^Cyp
3  3  ±  '

N a J£*Op
4  4  1

N a J?2<r)>
5  4  ^ 2  '

N a J?4c^> je207>
<S 3  2

N a ^ 4<£;> j?2<:>7>
7  2  2

N a j?4C£> ^ 2C7)> a i 2 '

Element, No. 6

io-Node Quadr'i.later-al Element.

N a j?4<£;> j?2Cy7> + J?3C£> Jf2Cr)> - £zc%> ^2<r7>1 1 i I s 1 ' I s 1 '

N a Jf2Cr)>
2  2 1 '

N a j?4<̂ > Jf2Cr>>
3 3 i  '

N « Jf4ĉ > JE>2Cr?> + J?2<:̂ > £3<7)5 - £2<Z) ^2Cr)>4 4 1 ' 2 1 2 i '
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N a Jf3Cr)>
5  2 2

N a £a<y)) + ̂ 4<£> ^2Cr>> - J?2<£> J£Z0)>
<S 2 3 ' 4  N 2 ' 2 2

N a J^Op
7 3 N 2 r

\  = <<?>' <<»>

N = £2CT)> + J?2Cf> £2<T1>fi> 1 2 ' i N 3 I s 2

N a ^3C7)>
l O 1 2

Element, No. 7

i 2“^ode Isoparametric Element.

N a 2*Crp + Jf4Cr)> - j£2<£:> J£2<7p
1  I s  ±  '  i  i  '  I s  ±  '

N a £*<_£} Jf̂ Crp2 2 i '

N a J£*<7p
3 3 1 '

N a jf4ĉ > J^Op + ̂ 2ĉ > Ĵ 4Cr?> - £*<.%} Je4Cp
4  4  1  2  i  '  2  2

N a J?4Op
5  2 2

N a J?2<̂ > £4'<Lt)'><5 2  ̂ 3 '

N a J?2ĉ > Jf4Cr?> + ̂ 4<£> £2Cri> - z 2 c%> £2<Lri>7 2 4  ' 4  2 2 2

N a8 3 2

N a jf4<̂ > J?2Cr>>£> 2 2

N a jf4ĉ > jf2<r)> + J^CO Jif4C77> - £2<Z> J?2Cr?)iO 1  ̂ 2 '  1 4 I s 2 '



Element, No. 8

3 -Node Triangular Element

N a L = l-£-i i

N a L a £ 
2 2

Element, No. 9 

d-Node Triangular

N a \ 2CL > 
1 2 1

N a X2CL > X22 i l l

N a XZCL >
3 2 2

N a XZ<L } X24 1 2  1

N a XZCL >
5  2 3

N a XZ<L > X2
CS 1 3  1

Element

CL, > 
3

where,
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Element No. 10

xo-Node Lagrangian Element.

N a X3<L > 
1 l i

N a  X3CL > X3CL > 2 2 1 1 2

N a X3CL > XaCL J>
3 1 1 2  2

N a X3CL )
4 3 2

n a x3cl ) x3c l y
5 2 2 1 3

N a X3CL > X3<L ><S 1 2  2 3

N a X3CL }
7 3 3

N a X3CL } X3CL >
8 2 3 1 1

n  a  \ 3cl > x3c l yS> 1 3  2 1

n a x 3 < l  > x3cl > x3cl y
l O 1 1  1 2  1 3

B.2 Transition Family of Elements:

Element No. 11

g-Node Quadrilateral Element.

n a z 3c%y z 2 tr}yi  i  i  7

N a  ^ 3 C?> J£2 C 7p
2 2 1 7

N a j£3<£:> ^2<p
3 3 1 7

N a  je2 C O  ^ 2 Cn>
4 2 2 7
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N ■ £ZCr}>5 1 2

Element. No. 12

(5-Node Quadrilateral Element.

N b ^2C»>1 l l '

N = J?3C£> Jf2Cn>2 2 1

N * J^C?} J?2Cr}> + J^C?) J?3<r?> - £ZC%y ^2<»>3 3 1 2 1 2 1

N « Jf2Q> ^3<n>
4 2 2

N a J?2<̂ > J^Op
5 2 3 1

N B J?2C£> <̂2<:r?><S 1 2 '

Element. No. 13

ii-Node Lagrangian Element. 

N b J£5<£> J^Crp1 i i '

N B ^5<̂ > ^3<»>
2 2 1 '

N B ^3<r)>
3 3 1 1

N a Jf5<£> ^3<77>
4 4 i

N B ^ 5<^> J£3<7p
5  5  1

N b je3<e;> j^op
<S 3 s 2

N b J?3ĉ > Jf3Cr?)
7 3 3

N b Jf3<y)>
a  2 a
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N a
S> * 3 < r »

N «io Jf?3C£>

N «  
11

# 3< e>  
2 S < < r »

Element, No. 14

1 3 -Node Lagrangxan 1

N a 
1

<<rj>

N a
2

£*<?> 
2 N

^ < T }>

IIz;01 3 S
^ < 1 , 5

N a
4- 4 N ^<rj>

N a
5 •5 N ^Crj>

N a
<S

^ 3 < ?>  
3 S

N a
7 3 N

< < r , >

N a 
e 3 N

<C„>

N a
£> 3 N

* = < r »

N a
IO 2  S

j £ c r , >

N a 
1 1

Jf3Ĉ>
1

^Cr,>

N a 
12 1

n « j?3<:o
13 2 2
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Element, No. 15

io-Node? Quadiri.later-al Element.

N « + ^2<̂ > Je3<7)> - £ * t ^2Cr)>
i l l  1  i.  1  1

N a ^2<»>
2  2  1

N ■ .£**<£> ^2<»>
3  3  1

N ■ jf2<Y7>
4 - 4  1

N a  ^ S<^> ^ 2<T)> + ^ 2<^> ^ 3C»> -  ^ 2<£> ^ 2<7)>
5  5  N 1  '  2 s  1  '  2  1

N a  Je2<£> ^ 3<r>>
<S 2  ^ 2  '

N a  £ z <l%> ^ 3<r>> + ^ 3<?> ^ 2Ct>> -  ^ < 0  JS^Op
7  2 s  3  '  3  2  2 S  2 '

N a  ^ 3<£> J ^ O p  
a  2  2

N a  £*<.%} ^ 2Cr)> + ^ 2<^> ^ 3<T)> -  je2<^> ^ 2<»> 
P 1 2 1 N 3 ' I s 2

N a  ^ 2<£> Jf3<Y)>
I O  1  2  '

Element, No. 16

i^ —Node Quadr'ilater-al Element.

^ C y p  +  ^ 2C^> J?3Ct)> ~ J ^ C O  ^ 2<rp

N a  J£5<£:> Jf2CY?>
2  2  1

N a  jf5c^> J^Cyp
3  3  1

N a  J?2<rp
4  4  1

N a  £*<%> J£3Crp + J?2C^> J^C yp  -  Jf2C^> Jf2<r)>
5  5  1  '  2  N 1  1  '
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N = ^2<̂ > Je5<yp<S 2 2

N a Jf2Ĉ > JŜ Op
7 2 3

N a Jf2Ĉ > ^5<77>8 2 4

N a J£2C£:> Jj?5Cy)> + £*<%> Jf2<yp - jf2Ĉ > J£2<rp 
P 2 5 ' 3 2 2 s 2 '

N a J£3<£> Ĵ 2Cy>>
IO 2 2

N a £3<L%} £ZCt}> + £2 c%> J^Crp - £2 C^ £2Cyp 
11 1 S 2 '  I s 3 ' i S 2

N a J£2<£> j?3<yp 
12 1 N 2

Element, No. 17

^-node Triangular- Element.

N a L Cl - 2L > 
i  i  2

N a 4 E E 
2 1 2

N a L C2 L + 2 L -1>
3 2 2 3

N a L
4 3

Element, No. 18

8 -Node Tr-iangular Element.

N a L C2L -1> - |  L L [2L CL -L > - L C2L -1>1
1 2 2 3 2 3  2 2 3  1 2

N a I  L L [ C4L -1> C2L -1> + C2L -1> C4L -3>]2 3 2 3 2 2 3 3

N a - 2  Z, L  [  C 4 L  - 1 )  C 4Z, - 3 )  +  < 4 1 ,  - 1 >  C4Z, - 3 > 1
3 2 3  2 2 3 3

N a |  L L [ < 4 L -1) < 2 L -1> + C 2L -1> C4Z, -3>]4 3  2  3 3 3 2 2
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N = L C2L -i> ~ % L L [2L CL -L > - L C2L -1>]
5 3 3 3 2 3 3 3 2  1 2 J

N = 4 L L
<5 1 3

N = L Cl - 2L -2L >
7 1 2 3

N = 4 L L a 1 2

B.3 Collapsed Cr*ack-Tip Elements Family:

Element, No. 1:

l-r?

N± = r) C2r?-1>

* 4 ]) Cl-^-r)^

N ■ Cl-̂ -r?> Cl-277} - 2£ +
3  ̂ N 1-Y)

™4 “ 4f “4 1 T) 2

N as -if Cl+2r)> +
5 s ' 1-

N a 4 £ » <s

Element, No. 2:

N a <1-0 Cl-2^)

N B 4% Cl-£> Cl - 2 £

Ng a  C-l +  2£ -  2

N a  4r) Cl -
4 £

N a  v C-3 + 2£ + 2 5 > 
s '  K

Ntf a 4Y) Cl-£>



- 4 2 0 -

Element, No. 3:

N± a  Cl-T)> C l-277}

N  ̂ a  4 £ C1“ T)>

N a  £ C—3  +  2  — +  23 Ti
N a 4? Cl -  5->

4 s 7} «
N a  C y rO  C -l -  2  5- + 277>5 7)
n  a  4  C r r O  d -7 )>

<5
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APPEWDIX D

Derivation of the Elas to-Plastic 
.T- Integral Expressions for* Pressurized Cylinder*

For the case of pressurized cylinder as shown in Fig.C9.47>, 
the J -  integral expressions for plane stress and plane strain 
conditions can be derived as follows:

Considering the outer boundary of one quarter of the cylinder 

as the J"-integral contour, and assuming that the structure 
contains a crack of zero length, then the J — integral expression 
for such a case can be written as follows:

J \  J  —1 — dy CD.1>
r

For this case:

dy a r cos0 d0 CD.2>O

where r is the outer radius of the cylinder.
o

Now, for the quarter cylinder, equation CD.1> can be expressed 
as follows:

1 ny2 tv7 « — r f o’1 £ c a s e  d0 CD.3>Z o J — —
o

Assuming Tresca criterion, the stress and strain relations for 
this case are given in Ref.t721 as follows:

Ca> For P la n o -S tn o srs :  C o n d i t i o n :

O' *b 0 ,
r
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y c z _ . _ .O' m ---- . £ - m — — <D.4>e 2  er
o

■ i ( § J

CfcO For P l a n e —S tr -a in  C o n d i t i o n :

Y C 2
°e " — » £er

o

where C is the radius of the plastic zone which can be 
estimated from the following expression:

2P. _ 2
1 “  1 " (  ~  J  + 2 * » » ( | J

Now, by substituting from equations <D.4> and CD.5>, the 

integration in equation CD.3> can be solved and expressions for 

the ./-integral can be obtained as follows:

r o jz f C >4J  = ^  1 — I /o r  pZcrne-.sf re-s-s- c o n d i t i o n »
 ̂ cr

r o r c  l 4 2
./ “ 2 ^ y2 -  /o r  p l a n e - s t r - a i n  c o n d i t i o n .


