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Abstract 

Carbon dioxide (CO2) is the major contributor to greenhouse gas (GHG) emissions and the 

main driver of climate change. Currently, CO2 utilization is increasingly attracting interest 

in processes like enhanced oil recovery and coal bed methane and it has the potential to be 
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used in hydraulic fracturing processes, among others. In this review, the latest 

developments in CO2 capture, utilization, conversion, and sequestration are examined 

through a multi-scale perspective. The diverse range of CO2 utilization applications, 

including mineralization, biological utilization, food and beverages, energy storage media, 

and chemicals, is comprehensively presented. We also discuss the worldwide research and 

development of CO2 utilization projects. Lastly, we examine the key challenges and issues 

that must be faced for pilot-scale and industrial applications in the future. This study 

demonstrates that CO2 utilization can be a driver for the future development of carbon 

capture and utilization technologies. However, considering the amount of CO2 produced 

globally, even if it can be reduced in the near- to mid-term future, carbon capture and 

storage will remain the primary strategy and, so, complementary strategies are desirable. 

Currently, the main CO2 utilization industry is enhanced oil and gas recovery, but 

considering the carbon life cycle, these processes still add CO2 to the atmosphere. In order 

to implement other CO2 utilization technologies at a large scale, in addition to their current 

technical feasibility, their economic and societal viability is critical. Therefore, future 

efforts should be directed toward reduction of energy penalties and costs, and the 

introduction of policies and regulation encouraging carbon capture, utilization and storage, 

and increasing the public acceptance of the strategies in a complementary manner. 

 

Keywords: CO2 utilization; Carbon Capture, Utilization and Sequestration (CCUS); 

Carbon Capture and Storage (CCS); Climate change  
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1 Introduction 

Carbon dioxide (CO2), as one of the greenhouse gases (GHGs) emissions emitted by 

human activities, is the main cause for climate change [1]. As of 2018, global CO2 

emissions had increased to 37.1 Gt, of most of which still comes from the combustion of 

fossil fuels from a wide range of industrial processes and transportation. Additional 

increase in anthropogenic CO2 production in 2019 appears likely due to the sustained use 

of oil and natural gas and the strong increases projected to drive the worldwide economy 

[2]. According to data from the National Oceanic and Atmospheric Administration / Earth 

System Research Laboratory, global CO2 emissions are steadily increasing, and CO2 

concentration in the atmosphere has reached 411 ppm, a new record high [3]. BP’s Energy 

Outlook claims that CO2 emissions from energy use will continue to rise through the next 

several years, increasing by ~10% by 2040 in the evolving transition scenario [4]. In 

response to these dramatic increases, the Intergovernmental Panel on Climate Change 

(IPCC) recently recommended limiting global warming to 1.5 oC instead of 2.0 oC to 

reduce catastrophic climate change issues [5]. In consequence, finding methods to convert 

CO2 to useful commodities could spur the development of novel techniques, products, and 

industries, and help to reduce the climate-altering emissions. Several international 

agreements have been reached, considering that carbon capture, utilization and 

sequestration (CCUS)–an integration of carbon capture and utilization (CCU) and carbon 

capture and storage (CCS)–is essential to cut CO₂ emissions in a sustainable way to limit 

the severity of climate change [6-8]. 

In a CCUS process, CO2 is first captured from exhaust gases of fossil fuel combustion 

and purified to deliver a high-purity CO2 stream, after which it can either be sequestered 

or converted to valuable products with environmental, economic, and social benefits. CO2 

can be physically and chemically employed in the various fields of chemical, biological, 

and food processes, which are at different stages of development and demonstration. 
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However, we are drastically failing in meeting our targets of GHG reduction, which can be 

seen in terms of arctic changes and ocean acidification [9, 10], and we will need every 

option, including CCS for gas and coal projects, and CCU in the near future to reduce 

energy and resource consumption, and improve innovation and competitiveness. 

Here, we first present the trends and status of research on carbon dioxide utilization 

(CDU). We review a diverse range of CDU technologies, including mineralization, 

biological utilization, food and beverages, energy storage, and chemicals production. We 

also illustrate the current research and development (R&D) CDU projects worldwide. 

Lastly, we discuss the market, policies, and challenges in CDU, and then propose priority 

research directions for the future.  

2 CO2 Utilization Technologies 

In the CCUS framework, CO2 is utilized in a variety of ways, mainly mineral 

carbonation, physical and chemical methods, which are discussed below. 

2.1 Fuels and Chemicals 

CO2 can be utilized as a building block, or feedstock for the sustainable production of 

chemicals or even fuels, providing extra added value and potentially sequestrating CO2 

[11]. The common products made from CO2 include urea, formic acid, methanol, cyclic 

carbonates, and salicylic acid [12, 13]. Among them, some products such as formic acid 

should be preferentially considered because they have the largest potential for CO2 

emission reduction [14]. To compete with fossil fuel-derived products, the economic 

feasibility studies are very important, which consider uncertainties in market due to 

government policies and legislations (e.g., carbon tax).  

2.1.1 Electro-catalytic conversion 

There are complicated pathways to convert CO2 into chemicals or fuels including 

electrochemical, thermocatalytic, photochemical, biochemical, and hybrid methods [15]. 



5 
 

Electro-catalytic methods for converting CO2 to commercially-valued products, including 

carbon monoxide [16], methane [17], methanol [18], and hydrocarbons [19], have been 

broadly studied using both experimental and theoretical methods. Liquid-phase electro-

catalysis has a relatively complex mechanism, with very different reaction intermediates 

and final products, and various catalytic systems used. In particular, both heterogeneous 

metallic catalysts and enzymes have been found to be suitable for such reactions [20]. Here, 

the catalytic site effect has been shown to be particularly important to ensure selective CO2 

reduction, but usually more easily achieved, compared to the competing hydrogen 

evolution reaction [21]. The mechanistic insights for Au, Ag and Cu have been elucidated 

by density functional theory (DFT) calculations, while inactivity of Pt is still not explained. 

Interestingly, unlike the other metallic catalysts, Cu selectively converts CO2 to 

hydrocarbons such as methane and ethylene [22]. Using DFT calculations, Nie et al. [23] 

have suggested a series of possible pathways for the selective CO2 reduction on Cu. For a 

rational catalyst design, Hansen et al. [24] have developed a volcano-shaped contour plot 

to describe the trends of the CO2 electro-reduction, with the CO and COOH- adsorption 

energies as the reaction descriptors (Fig. 1(a-c)). With more DFT-calculated 

thermodynamic parameters, Cheng et al. [25] further designed a series of Au- and Ag-based 

single-atom catalysts (Au or Ag surface atoms replaced by “strong-binding” transition 

metals) that could theoretically convert CO2 to hydrocarbons. Ma et al. [26] and Ulissi et 

al. [27] used the machine learning method (i.e., artificial neural networks [28]) for a larger-

scale catalyst screening of alloy surfaces (Fig. 1(d)). Specifically, they evaluated various 

binding sites on NiGa alloys and found highly active sites (Fig. 1(e)). Also, based on the 

recently developed “tunability” theory of adsorbate (e.g., H and CO) bindings with the 

atomic ensemble effects, it is expected that some new types of alloy catalysts may be highly 

active and selective in CO2 electro-reduction processes. More recently, new catalytic 

systems have also been evaluated for CO2 electro-reduction, including graphene and 

defected graphene [29], nitrogen-doped graphene [30], transition metal sulfides [31], 
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core@shell materials [32], complexes [33], supramolecular porous organic cages [34], and 

metallic/oxide nanosheets [35]. These studies have shown that new materials can be 

applied for CO2 electro-reduction with relatively high activity, selectivity, and stability. 

However, the more expensive and exotic the precursor materials are, their use in any 

particular scheme at an industrial scale is limited. 

Although several studies have been reported for CO2 electro-reduction on catalytic 

surfaces, there are still challenges that limit further development. These include uncertain 

kinetic parameters for the various reactions [36], mismatching between current theories 

and experiments [37], and the formation of unstable metallic structures during catalysis 

[38]. These issues result mainly from the lack of in situ observation on the reaction 

mechanisms and active sites during experimentation. Though theoretical studies provide 

insights into the reaction mechanisms and new catalyst design, there are limits in the 

modeling of the systems. For example, water and solvation effects have been found to be 

particularly important for mechanistic studies of CO2 reduction using DFT. However, most 

previous modeling studies have not considered the presence of water molecules, which 

leads to higher uncertainty and discrepancies between model predictions and experiments. 

This not only hinders the rational design of highly active and selective CO2 reduction 

catalysts, but also limits the applications of CO2 electro-reduction in industries. However, 

they can be addressed with further theoretical studies and in situ experiments.  
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Fig. 1 Models of the active site for CO2 electro-catalytic reduction on (a) enzyme and (b) 

Au surface. (c) Volcano activity plot for CO2 electro-catalytic reduction at a 0.35 V 

overpotential. The data were obtained from the (211) stepped sites of transition metals. (d) 

Predicted activity of transition metal and the NiGa sites. (e) Rotation energy of CO on Ni 

and NiGa (110). Reprinted with permission from Refs. [24, 26]. 

2.1.2 Plastics 

CO2-based polymers used as the raw materials for plastics are potentially more 

environmentally friendly, and hence have attracted much industrial attention [39]. They are 

produced by copolymerization of hydrocarbons and CO2 (about 31-50%), which reduces 

the consumption of petrochemical products [40]. CO2 was first used by Inoue et al. [41] in 

1969 in the sequential copolymerization process with epoxides to form high-molecular-

weight aliphatic polycarbonates, as illustrated in Fig. 2. Importantly, the polymerization 
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reaction needs to be catalyzed. Therefore, the production of cheap and efficient catalysts is 

the key to future developments. The commonly used catalysts in the copolymerization 

between CO2 and the epoxides include homogeneous, heterogeneous and 

supported catalysts, and are mainly organometallic compounds [42]. Fig. 3 shows the 

representative homogeneous and heterogeneous catalysts for the copolymerization process 

[40, 43]. Among them, β-diiminate (BDI) zinc complexes [44-46], rare earth metal 

complexes [47, 48], metalloporphyrin complexes [49], and Schiff-base metal complexes 

[50, 51] are widely employed in current research. A good copolymerization catalytic 

system should have high selectivity activity, and be easy to prepare, safe and nontoxic [52]. 

The large-scale application of CO2 copolymers is still limited due to relatively low catalytic 

activity and poor thermal and mechanical properties.  

Fig. 2 Possible products from CO2 reacting with epoxides. Reprinted with permission from 

Ref. [53]. 

 

 
  

 

(a) (b) (c) (d) 

  

Cyclic carbonate Polycarbonate Polycarbonate containing ether linkages 
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(e) (f) 

  

(g) (h) 

Fig. 3 Common homogeneous catalyst systems (a) salen, (b) β-diiminate, (c) phenoxides, 

(d) porphyrin; and acids used in the heterogeneous catalyst synthesis (e) succinic acid 

(C4), (f) glutaric acid (C5), (g) adipic acid (C6), (h) pimelic acid (C7). Reprinted with 

permission from Ref. [40]. 

In past decades, there have been a large number of experimental and theoretical studies 

on the reaction mechanisms, catalytic efficiency, and the applications of polymers [53-57]. 

Polyoxymethylene (POM) is a polycondensation polymer which can be fabricated from 

CO2 through the intermediate, formaldehyde, and serve as an alternative to polyethylene 

and polypropylene. Although POM is more expensive than other polymers, it has better 

mechanical properties that can compensate for the higher price in certain applications [58, 

59]. Furthermore, polyethercarbonate polyols (PECPs) are produced by the 

copolymerization of CO2 and propylene oxide (PO), which were successfully used for 

preparing polyurethane (PU) foams by Langanke et al. [60] as demonstrated in Fig. 4(a). 

As shown in Fig. 4(b), PU foams prepared in this study show the same thermal stability 

when compared with the conventional PU materials. This implies that the large-scale 

polyethercarbonate polyols applications for PU production offer a new way to utilize 

carbon. One major concern for using CO2-derived polymers is the following decomposition 

of these polymers over several decades, releasing CO2 back to the atmosphere [39]. 

 

(a) 
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Fig. 4 (a) Scanning electron micrograph of a flexible PU foam produced by toluene 

diisocyanate (TDI) and PECP (10.5 wt% CO2), (b) thermal stability of PECP and polyether 

(PE), and PU foams based on them; Reprinted with permission from Ref. [60].  

2.1.3 Urea 

According to the recent IPCC report [61], agriculture activities accounted for 23% of 

all anthropogenic GHGs emissions globally during 2007-2016. Fertilizers are widely used 

in the agricultural and forestry fields, and the synthetic nitrogen fertilizer accounts for 

around 70% of the global fertilizer use which is produced via reacting CO2 with anhydrous 

ammonia during the synthesis [62]. Urea is a neutral fertilizer with the highest nitrogen 

content up to 46%, which is simple to store and does not present fire risks for the long-term 

storage. The most common method for producing urea is the steam reformation of natural 

gas which generates CO2 and ammonia (see Eqs. (1-2)). 

N2 + 3H2 → 2NH3 (1) 

CO2 + 2NH3 ↔ NH2CONH2 + H2O (2) 

However, these urea fertilizers are normally derived from fossil fuels which also 

release net CO2 emissions during the process of synthesis. At the same time, the feedstocks 

of fossil fuels are limited, and the gradual depletion inevitably reduces the supply security. 

The integrated systems of urea production and utilization using both fossil and renewable 

(b) 
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energy have been proposed and reported. Gilbert et al. [63] came up with a novel process 

using H2 rich syngas from biomass gasification instead of natural gas reforming during 

ammonia production, which reduced 65% of the GHG emissions compared with the 

conventional process. Koohestanian et al. [64] proposed a new design process of urea 

production from the power plants flue gas, and CO2, N2, and H2O from the tail gas were 

utilized in the process. The intensified approach decreased the environmental risks and 

produced the urea more than 1.68 t/t CO2. In addition, a concept of Blue Urea has been 

proposed which converted the captured CO2 into valuable chemicals [62, 65]. In this 

process, the ammonium carbamate was produced via the reaction between CO2 and NH3 

into the organic solvents, i.e. 1-propanol, ethanol or N, N-dimethylformamide (DMF). 

Then, it was utilized to produce urea in the present of various catalysts. However, these 

integrated systems for urea production are still in the conceptual stage and operated under 

the controlled conditions. They need to be evaluated in the real conditions before the 

scaling up to commercial applications since the interactions among fertilizer, soil and corps 

are complex.  

Although CO2 can be widely converted to chemicals, liquid fuels and polymers, the 

CO2 conversion processes consume a lot of energy. Renewable solar, wind, wave, 

hydropower, geothermal energy, and waste heat from plants should be the first 

consideration. For instance, the solar thermochemical technology is proved to be a novel 

and feasible pathway for CO2 conversion using solar energy. The excessive solar electricity 

could be employed for the synthesis of renewable fuels during the summer which can be 

used during the winter. In terms of sustainable large-scale CO2 utilization, the commodity 

products of these conversion processes should be economically viable and in high demand. 

Meanwhile, it is essential to evaluate the economic feasibility and energy balance of the 

conversion processes. 
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2.2 Mineralization  

Industrial CO2 emissions can be effectively utilized through mineralization processes 

(so-called accelerated carbonation) to form various products and/or carbonate precipitates, 

as it is a thermodynamically favorable reaction. A variety of feedstocks, such as natural 

silicate ores [66] and alkaline solid wastes [67, 68] can be utilized in CO2 mineralization 

processes. Recently, mineralization using alkaline residues has become an attractive 

method for direct and indirect decrease in CO2 emissions from industries and power plants 

[69, 70]. Despite the very large CO2 capture capacity using natural ores, mineralization 

using alkaline solid wastes has other merits, such as low feedstock cost and availability 

near the source of CO2. Mineralization can be achieved through four main approaches [71]: 

(i) direct carbonation, i.e., the reaction of CO2 with alkaline slurry or mixture in a single 

reactor; (ii) indirect carbonation, i.e., the extraction of ions of interest for the production of 

high-purity chemicals such as CaCO3 and K2SO4 via multiple steps; (iii) carbonation curing, 

i.e., the use of CO2 for curing of cement-based materials to enhance their strength and 

durability; and (iv) electrochemical mineralization , i.e., the use of an electrochemical cell 

to mineralize CO2 while producing hydrogen or electricity. A number of large-scale CO2 

mineralization demonstrations have been carried out, and critically reviewed from 

technical and engineering-science perspectives [72].  

Available alkaline solid residues include iron and steel slags [73, 74], incinerator ashes 

[75], fossil fuel residues [76, 77], cement and concrete waste [78, 79], mining and mineral 

processing waste [80, 81], and pulp/paper mill waste [82, 83]. They typically contain a 

large amount of alkaline earth metals (i.e., calcium and magnesium), which can serve as 

suitable feedstocks for CO2 mineralization. To examine the performance of different 

mineralization processes, Pan et al. [84] developed an integrated thermal analysis method 

and determined the relationship between carbonation conversion and weight gain for 

different types of solid residues. The integrated thermal analysis method accurately 
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quantifies the weight of reaction products after mineralization based on the interpretation 

of the thermogravimetric and derivative thermogravimetric (TG-DTG) plots. As shown in 

Fig. 5(a), a relationship between carbonation conversion and weight gain of alkaline 

residues can be easily identified and compared. In general, a carbonation conversion above 

85% for solid residues is acceptable to achieve waste stabilization and CO2 fixation [85]. 

It should be noted that the carbonation conversion of alkaline residues represents the ratio 

of the actual amount to the theoretical maximum amount of CO2 (denoted as ThCO2) that 

can be mineralized. According to the chemical compositions of solid residues, one can 

estimate the ThCO2 (kg CO2 per kg of solid residue on dry basis) by Steinour’s equation 

[86]: 

ThCO2(%) = 0.785 (CaO – 0.56 CaCO3 – 0.7 SO3) + 1.091 MgO +1.420 Na2O + 

0.935 K2O 
(3) 

where CaO, SO3, MgO, Na2O, and K2O are their weight fractions (per kg solid residue) 

obtained via X-ray fluorescence (XRF). CaCO3 is the weight fraction analyzed by 

integrated thermal analysis.  

 Theoretical Maximum Capacity (kg-CO2 per kg of residue)

0.0 0.1 0.2 0.3 0.4 0.5

BFS

BOFS

EAFOS

EAFRS

AODS

LFS

Coal FA

MSWI FA

MSWI BA

 

Fig. 5 (a) Relationship of carbonation conversion and weight gain for various solid residues. 

Acronyms: cement kiln dust (CKD), municipal solid waste incinerator (MSWI), fly ash 

(FA), and bottom ash (BA). Reprinted with permission from Ref. [84]. (b) Theoretical 

maximum capacity of CO2 mineralization for different solid residues (with a 95% 

confidence interval). Reprinted with permission from Ref. [87]. Acronyms: ladle furnace 

(a) (b) 
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slag (LFS), argon oxygen decarburization slag (AODS), electric arc furnace reducing slag 

(EAFRS), electric arc furnace oxidizing slag (EAFOS), basic oxygen furnace slag (BOFS), 

and blast furnace slag (BFS). 

Fig. 5(b) shows the values of ThCO2 for different solid residues based on integrated 

thermal analysis and Steinour’s equation. In most cases, ThCO2 values for alkaline solid 

residues are proportional to the percent of calcium-bearing compounds. For instance, argon 

oxygen decarburization slags have a theoretical maximum capacity in the range of 0.43‒

0.48 kg CO2/kg, determined based on their chemical compositions [87]. CO2 also could be 

mineralized in several hours with magnesium-bearing compounds through the formation 

of MgCO3 under typical conditions of CO2 partial pressure >10 MPa, and 

temperature >417.15 K [88, 89]. Though the total amount of manmade alkaline solid 

residues is limited compared to natural ores/minerals, scale-up demonstrations should 

reduce some of the technical barriers to processing natural minerals for CO2 mineralization 

and utilization. 

Compared to natural minerals, industrial solid residues are more reactive and usually 

available in a finely ground state, reducing or eliminating the need for additional 

pretreatment. The lack of reactivity of serpentine rock and similar minerals has been a 

major problem for mineralization of natural rocks and may demand grinding down to 

micron size and reaction in salt solutions at pressures up to 10 MPa or more, since in nature, 

reactions with CO2 are exceedingly slow [90, 91]. Fig. 6 shows the mechanisms and 

important reaction routes of CO2 mineralization with brucite, in the case of using mine 

tailings. The mechanisms of CO2 mineralization using alkaline residue slurry can be 

described by three main steps: (i) dissolution of gaseous CO2 into the aqueous phase; (ii) 

dissolution of minerals; and (iii) precipitation of carbonates. To reduce the fresh water 

consumption as well as to enhance the mineralization performance, industrial wastewater 

[92] or concentrated brine [93] can be utilized for CO2 mineralization using alkaline solid 
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residues. In addition, the use of brine solution for CO2 mineralization may enhance the 

dissolution of calcium- and magnesium-bearing silicate minerals [94]. Due to the chemical 

and mineralogical complexity of alkaline residues, further elucidation of reaction pathways 

and mechanisms at the interface of liquid-solid phases is needed to understand and improve 

the kinetics and mass transfer in the CO2 mineralization processes.  

 

Fig. 6 Mechanisms and important reaction routes of CO2 mineralization using alkaline 

residues, e.g., brucite including Mg(OH)2 in mine tailings. Reprinted with permission from 

Ref. [81].            

CO2 mineralization using alkaline solid residues can also be beneficial for air pollution 

control for various industries and/or coal-fired power plants (as depicted in Fig. 7). For 

instance, Pei et al. [71] evaluated the performance of high-gravity mineralization 

technologies using fly ash for the removal of air pollutants from the petrochemical industry. 

The results showed that the removal efficiencies for CO2, NOx and particulate matter were 

approximately 96%, 99% and 83%, respectively. The reacted solid residues can be used in 

construction as alternative cementitious materials in concrete or cement mortars [67]. The 

products from CO2 mineralization should be engineered toward diverse applications in the 

built environment. For other mineralization approaches, the products from indirect 

carbonation also can be converted to high-value-added materials, such as geopolymers, 

abiotic catalysts, soil conditioners, glass ceramics and calcium carbonate precipitate. 
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Similarly, the electrochemical mineralization technologies can sequester gaseous CO2 from 

various industries while generating electrical energy and NaHCO3 product [95].  

 

Fig. 7 CO2 mineralization using alkaline residues with integrated air pollution control from 

industries and power plants. Adapted from Ref. [71].  

Although the amount of CO2 that can be mineralized is limited in comparison to the 

total global CO2 emissions, it offers the added benefits of remediating alkaline solid 

residues, as well as of generating marketable products from the solid residues. However, 

significant technological breakthroughs are required before deployment in a cost-effective 

manner can be realized. This includes novel reactor design, process intensification, heat 

integration and system optimization. The hybridization of CO2 mineralization with other 

concepts or processes, such as integrated air pollution control or water reclamation, should 

be a future priority research direction. Also, several unit processes used in CO2 

mineralization, such as feedstock grinding, process heating and slurry stirring, consume a 

substantial amount of energy. Therefore, energy consumption of CO2 mineralization needs 

to be compensated by recovering energy from the exothermic reactions to make the process 

economically viable in an industrial context [96-98]. To achieve a waste-to-resource supply 

chain, a system optimization from the energy, engineering, environmental, and economic 

sectors is also required [99].  

2.3 Beverage and Food Processing 

In the beverage and food industry, CO2 can be utilized as an acidifying agent [100]. 
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However, CO2 purity is a very significant factor due to possible contamination of the final 

products from benzene, COS, and H2S from gasification processes and SO2 and NOx from 

combustion sources. Currently, the main uses of food-grade carbon dioxide are in 

producing carbonated drinks, de-oxygenated water, milk products, and food preservation. 

Beer, soft drinks, and sparkling wine consume large quantities of liquid CO2 for their 

production and, therefore, it is important that the CO2 used comes from renewable sources 

or recycled CO2. In conventional food preservation, mechanical refrigeration is mainly 

used during transportation and storage. However, for foods that require freeze drying 

(dehydration), liquid carbon dioxide, dry ice (i.e., the solid form of CO2) and 

modified atmosphere packaging (MAP) technologies are more widely used for 

refrigeration. The major limitation of such approaches is that “storage” is transitory, and 

the best justification of such technologies is if the source of CO2 replaced represents “new 

potential off-set” CO2 being released to the atmosphere, in which case careful life cycle 

analysis is needed to estimate the benefit of replacing CO2 production from fossil fuels 

such as methane [101]. 

Supercritical fluid extraction (SFE) technology is an approach for utilizing CO2 in the 

production of flavors and essential oils, and coffee decaffeination, which is beneficial to 

the separation and extraction of heat-sensitive, volatile and oxidizable components. In 

comparison with the traditional separation methods, it has the following advantages [102-

104]: The extraction agent in SFE is typically non-toxic, non-corrosive, and chemically 

stable; SFE provides better permeability than other solvent techniques; The extraction 

capability of SFE can be controlled easily by adjusting the main operating parameters; and 

the extraction agent can be reused after decompression to save energy.  

Thus, supercritical CO2 extraction (SCE) technology is preferred in food 

manufacturing owing to the above merits. In 1978, SFE technology was first industrially 

employed in Germany for extracting caffeine from coffee beans [105]. Currently, this 
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technology has been extensively applied in daily life as illustrated in Fig. 8 [106]. 

Important applications of SFE technology include the extraction of oils and fat fractions 

[107-111], lipids and cholesterol [112, 113], natural colors [114], antioxidants [115, 116], 

and hops [117, 118], and decaffeination of tea and coffee [119-121].  

 

Fig. 8 Representative daily food obtained by supercritical fluid extraction. Reprinted with 

permission from Ref. [106]. 

A number of essential oils (EOs) are widely used in foods or cosmetics. Table S1 

shows the extraction yields of EOs from various samples at the optimum operating 

conditions, i.e., temperature, pressure, and extraction time reported in the recent literature. 

Importantly, SCE is found to exhibit better extraction performance than some other 

extraction technologies. Conde-Hernández et al. [122] claimed that CO2-supercritical 

extraction has higher antioxidant activity and oil yield, compared with 

steam distillation (SD) and hydrodistillation (HYDRO) methods. Micrographs of rosemary 

before and after SCE treatments are shown in Fig. 9, which provides a vivid description of 

the changes in the samples. The surface of the rosemary was smooth before treatment (Fig. 

•Decaffeinated 
tea/coffee

•Flavor enhanced 
orange juice

•Vitamin additives

•Fat-free 
meat/french fries

•De-alcoholized 
beer/wine

•Beer brewed with 
CO2-hop extracts

•Defatted potato 
chips

•Parboiled rice by 
CO2
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9(a)); however, the samples tended to collapse after exposure to the supercritical extraction 

under different temperatures and pressures (Fig. 9(b) and 9(c)). Moreover, watermelon 

seed oil was extracted via SCE technology by Rai et al. [123]. As depicted in Fig. 9(d) and 

9(e), the surface of the extracted seed layers was cracked and both oil and non-extracted 

phase were closely interpenetrating after the extraction compared to a rough surface before 

the extraction. The response surface methodology (RSM) was used to optimize the 

operating condition parameters including pressure, temperature, particle size, solvent flow 

rate, and co-solvent addition and obtain the maximum oil yields as shown in Fig. 9(f). More 

recently, the SFE techniques assisted by other methods such as enzymes [124, 125], 

ultrasound [126, 127], and microwave [128-130], have been extensively reported. However, 

development of SCE technology must meet various hurdles due to the need for 

sophisticated equipment, difficulties in continuous production, and relatively high costs of 

the pilot-scale equipment, which slow the development of this technology.    

 

   

 

(a) (b) (c) 

(d) 
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Fig. 9 Scanning electron microscopy (SEM) images of rosemary (a) before SCE treatment, 

and after SCE treatment (b) at 10.34 MPa and 323 K, and (c) at 17.24 MPa and 313 K. 

Watermelon seed (d) before SCE treatment, and (e) after SCE treatment, (f) maximum oil 

yields with different condition combinations. Reprinted with permission from Refs. [122, 

123]. 

2.4 Biological Utilization 

In nature, CO2 is converted to carbohydrates through photosynthesis, as part of the 

natural carbon cycle. The biological fixation of CO2 is a safe and cost-effective method 

using plants and autotrophic microorganisms. In particular, autotrophic microorganisms 

are advantageous because of their small volume, high photosynthetic rate, strong 

environmental adaptability, rapid reproduction, high processing efficiency, and easy 

integration with other technologies. It has been noted that 1 kg algal biomass can fix about 

1.83 kg CO2 [131]. Thus, research on microalgae has attracted great attention globally, 

especially as it could be used as an alternate energy source displacing fossil fuels [132, 

133].  

The carbon sources obtained for microalgae are mainly from the inorganic carbon 

dissolved in water. During the photosynthesis process of microalgae, CO2 is first fixed by 

(e) (f) 
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ribulose bisphosphate carboxylase-oxygenase (Rubisco), and then converted to organic 

compounds using light energy through the Calvin-Benson cycle (C3 cycle). Since the 

Rubisco carboxylase reaction is inhibited by high O2 concentrations, the photosynthetic 

organisms have developed special mechanisms to adapt to variations in the gas 

composition. In particular, the carbon concentrating mechanism (CCM) is a typical process 

as shown in Fig. 10 [134]. In a recent study, up-to-date developments in worldwide CCM 

research and the molecular components’ effect on CCM enhancing carbon biofixation were 

discussed by Singh et al. [135]. The CCM system needs to be further studied to identify 

the most effective algae species.     

   

 

Fig. 10 Schematic of carbon concentrating mechanism process. Reprinted with 

permission from Ref. [134].  

The selection of microalgae type is closely related to the desired application. For CO2 

from flue gas, the microalgae not only need a highly-efficient CO2 fixation ability, but also 

the ability to survive high temperature, high CO2 concentration (10-20%), and the presence 

of other gases such as NOx and SOx. For trace CO2 (below 0.1%) in an enclosed reaction 

apparatus, it should have a wide range of pH, and high CO2 conversion rate [136, 137]. 

Table 1 lists the common use of different microalgae for CO2 fixation.  
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Table 1 CO2 fixation performance using different algae. 

Algae Temperature, 

K 

CO2 level, 

vol% 

Maximum CO2 fixation 

rate, g/(L∙d) 

Ref. 

Anabaena sp. 308 10 1.010 [138] 

Botryococcus 

braunii 
298 5 0.497 [139] 

Botryococcus sp. 303 10 0.257 [140] 

Chlorella 

pyrenoidosa 
298 10 0.260 [141] 

Chlorella 

sorokiniana 
298 4.1 0.251 [142] 

Chlorella sp. 
303 10 0.252 [140] 

293 5 0.700 [143] 

Chlorella vulgaris 

298 5 0.252 [139] 

298 0.093 3.552 [144] 

303 1 6.240 [145] 

298 5 0.162 [146] 

298 2 0.430 [147] 

Dunaliella 

tertiolecta 
298 5 0.272 [139] 

Euglena gracilis 300 10 0.074 [148] 

Nannochloropsis 

sp. 
303 10 0.265 [140] 

Scenedesmus 

obliquus  

303 12 0.140 [149] 

301 10 0.549 [150] 

301 20 0.390 [151] 

298 10 0.288 [141] 
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Scenedesmus sp.  
298 2.5 0.368 [152] 

303 10 0.210 [140] 

Spirulina platensis 298 5 0.319 [139] 

Spirulina sp. 303 6 0.220 [149] 

Physiochemical parameters during the fixation process, such as culture temperature, 

CO2 concentration, light, and pH value, have an impact on the biofixation of CO2 [153]:  

(1) Culture temperature is an important factor for the photosynthesis efficiency of 

microalgal-carbon biofixation. Generally, microalgae also have an optimum growth 

temperature range of 291 to 298 K. Extremely high or low temperatures slow down the 

microalgal growth, by reducing the activity of Rubisco, which is the key plant enzyme for 

CO2 fixation [101].  

(2) In the past decades, the photobioreactor (PBR) or enclosed cultivation system was 

widely used. Light (sunlight or artificial light) plays a significant role in microalgae growth, 

reactor design and system operation, providing the energy for assimilation and activating 

some enzymes involved in the photosynthesis. However, long-time exposure can easily 

cause aging of the equipment, and the operation of the equipment may be affected by heat 

generation from the illumination [134].  

(3) The pH can easily reach a high value of 10 under the conditions of high-density 

cultivation and without the supplement of CO2. In addition, a high-pH environment 

seriously affects the photosynthetic reaction process and cell uptake of nutrient salts, which 

leads to a decrease of microalgae biomass yield. Therefore, during the cultivation of the 

algae, the pH should be stabilized and managed to be neutral (pH = 6–8) [154].   

(4) CO2 concentration has an impact on the growth of the microalgae, and in general, 

a suitable value is 10-20% [155]. It is possible to use fossil fuel flue gas or the gas emissions 

from the steel and cement industries directly. Also, some types of microalgae show good 
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growth performance at higher CO2 concentrations. For example, Chlorococcum littorale 

has a better growth performance when CO2 concentration is higher than 40% [156, 157]. 

Synechocystis aquatilis has also been proved to grow with a CO2 concentration of 40% 

[158]. These studies could help to improve microalgae tolerance using high concentrations 

of CO2 from fossil fuel combustion flue gas. More research is also being devoted to 

genetically modifying algae to improve their ability to capture CO2 [159].  

2.5 Enhanced Oil Recovery, Coal Bed Methane and CO2 Fracking 

Geologic CO2 storage involves injecting captured CO2 into underground reservoirs 

with suitable geological conditions, where CO2 can be securely stored underground for 

more than 10,000 years [160]. However, it is possible to inject CO2 into oil and gas 

reservoirs to enhance the production of fossil fuels [161]. CO2 could be injected into 

depleted oil reservoirs, shale formations and unmineable coal seams for tertiary recovery 

or enhanced oil recovery (EOR), enhanced shale gas recovery (ESGR) and enhanced 

coalbed methane (ECBM) recovery, respectively. A future possible use of CO2 is utilization 

as a fracturing fluid, thus eliminating or reducing the use of water [162]. 

The EOR method refers to extracting crude oil from oilfields, which could not be 

extracted by primary and secondary recovery. Three main techniques for EOR are chemical 

injection (e.g., polymer flooding and surfactant-polymer injection), thermal injection (e.g., 

in situ combustion, steam flood, and steam stimulation), and gas injection (e.g., natural gas, 

CO2, and N2) [163-165]. Among these, since the 1970s CO2 has been most commonly 

utilized for miscible displacement (Fig. 11), due to decreasing oil viscosity and a cheaper 

cost than liquefied petroleum gas (LPG). Stewart et al. claimed that there can be net 

emissions of CO2 when the maximum utilization of CO2 (CO2 EOR+) process could store 

more carbon than produced [166]. CO2-EOR projects in operation are mainly in the US 

and Canada, which are also associated with available sources of CO2. The number of 

projects is growing in other regions such as China and Australia since CO2-EOR is treated 
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as an early CCUS adoption [167, 168]. Higher than 90% of the oil reservoirs worldwide 

might be suitable for using CO2-EOR technology [169]. Four important factors should be 

considered for further expanding CO2-EOR technology including the monitoring of 

underground and vented emissions, strengthening the risk management to the site capacity, 

and improving the utilization of the abandoned fields.  

 

Fig. 11 Schematic of CO2-EOR process. 

Shale gas has become an important alternative to natural gas (i.e., unconventional 

natural gas) over the past decade. CO2 injection to enhance shale gas recovery in gas 

reservoirs is also an effective technique to improve the gas yield [170, 171]. CO2 is also 

potentially more soluble than CH4 in geological formations, and can replace desorbed CH4 

in pores and fractures, thereby increasing the recovery rate as depicted in Fig. 12 [172]. To 

date, a large number of experimental and theoretical studies have been carried out on ESGR 

considering different influence factors such as reservoir and gas injection pressures [173-

175], injection and production time [176-178], and physical characteristics of the reservoir 

[179, 180]. This method is also proven to be a feasible means of natural gas recovery [181]. 

Injecting CO2 into gas hydrates to extract natural gas has attracted increasing interest [67, 

182]. As a result, future research will likely be carried out to help commercialize this 

technology, in order to provide a route to long-term storage of CO2.  
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Fig. 12 CH4 and CO2 flow dynamics in gas shales. Reprinted with permission from Ref. 

[172]. 

Moreover, CO2 can be injected into deep coal seams (i.e., ECBM), which not only 

improves coalbed methane recovery, but also sequesters CO2. The mechanisms of CO2-

ECBM are presented in Fig. 13. A number of modeling, lab-scale studies, and small-scale 

field CO2-ECBM tests have been conducted. For example, Sun et al. [183] simulated the 

distributions of gas pressure and gas sorption performance during CO2-ECBM (Fig. 13). 

They noted that gases were mainly absorbed in the pores, and CH4 diffused from the 

interior to the exterior of the samples, while CO2 diffused in the opposite direction. 

However, almost all CBM is currently produced by removing water from the coal seam 

that decreases the pressure and enables CH4 release from the coal. A detailed understanding 

of CO2 sorption in reservoir conditions is needed to accelerate the commercial deployment 

of the technology.  
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Fig. 13 Gas sorption and its pressure distributions in coal via CO2-ECBM technology (at 1 

MPa). Reprinted with permission from Ref. [183].  

2.6 Leading and Promising Utilization Technologies 

The recovered CO2 has already been stored in oil and gas wells and aquifers, and 

underground cavities also provide more possibilities. The CO2 injection method for EOR 

has been employed in several regions. However, there are potential issues such as water 

supply leakage or acidification, which are still not completely understood, and 

transportation of supercritical CO2 is also energy‐intensive. In order to promote this 

technology, corrosion and other CO2 transportation pipeline problems should be solved 

[184].  

Ultimately, CO2 conversion methods require different energy inputs, and renewable 

energy sources such as wind or solar power, which themselves have a minimal carbon 
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footprint, are the most obvious energy sources for such processes, where the energy for 

such processes is not used directly to make electricity, i.e., stranded energy resources. If 

the prices of renewable energy continue to decrease, it could enable greater utilization of 

the energy for CO2 conversion via chemical or catalytic approaches. Thus, microalgae can 

be a solution to produce liquid fuels and achieve CO2 emission reduction. However, to 

make such methods economically viable, governments will need to intervene in the market. 

One major advantage of microalgae is the fact that such developments, especially no land 

use competition, are likely to receive significant public support [185]. Key challenges for 

such technologies include increasing the lipid content and also its conversion to biofuels 

with low CO2 emission and energy consumption. It is important also to realize that such 

technologies will have specific geographic locations for early production or adoption based 

on local conditions and resources. In the short term, the production of simple industrial 

chemicals such as urea, methanol, and methane are still the most mature and closer to 

commercial application and are demanded in large volumes, making them more interesting 

if the goal is to reduce anthropogenic CO2 emissions. Interestingly, integrated systems 

using different utilization methods may be a promising solution such as methanol 

production integrated with enhanced gas recovery (EGR) [186], or methanol and dimethyl 

ether synthesis [187]. 

CO2 can be used in a number of ways, leading to different disposal options and making 

their evaluation difficult to quantify. Before the commercialization of these CO2 utilization 

methods, the life cycle assessment (LCA) or techno-economic analysis (TEA) is beneficial 

to help identify promising utilization pathways [58, 188]. According to the tutorial review 

by von der Assen et al. [188], LCA is able to identify environmentally promising routes for 

CDU even in the early development stage. A variety of comprehensive reviews have 

focused on studying the life cycle environmental effects of different CDU strategies or a 

specific CO2 utilization approach in detail [189-191] , which can provide future insights 

for suitable CO2 utilization pathways in particular instances. Therefore, the ideal methods 
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for CO2 utilization need low additional energy, simpler reaction mechanisms and high 

future market size and value.   

3 Trends in Global CO2 Utilization Projects 

In this decade, a variety of facilities to utilize CO2 throughout the world have been 

operated, constructed, or announced, involving different-scale applications. These ongoing 

R&D projects are at the various stages of technological readiness but all are located in or 

are led by technologically advanced countries. 

3.1 United States 

The United States leads the deployment technology of CCS in the world especially the 

EOR technology. The United States Department of Energy (DOE) has promoted the CCS 

knowledge base via a wide portfolio of research projects since 1997. Three technologies in 

the United States for CO2 utilization are focused on boosting the commodity market for 

CO2, including chemicals, mineralization, and polycarbonate plastics. These methods are 

expected to be in large-scale testing by 2030, with widespread commercial applications by 

2035. To support the development in the regional infrastructure for CCS, seven Regional 

Carbon Sequestration Partnership (RCSP) regions have been created since 2003, as shown 

in Fig. 14 [192]. Approximately $2.66 billion has been invested by DOE in 794 different-

scale R&D projects since 2010 [193]. Meanwhile, the United States has increased the 

carbon tax credit to $35/t for EOR use and $50/t for storage in saline formations by 2026, 

which was initially $10/t in 2008 [194]. In addition, the United States is collaborating with 

various global organizations on CDU and CCS projects.  
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Fig. 14 United States Regional Carbon Sequestration Partnership network [192]. 

3.2 China 

In China, R&D activities on CCS are mainly financially supported by the government 

and conducted by industrial companies with the joint participation of universities or 

research institutes. One of the national key scientific and technological projects of ‘‘Large 

Oil and Gas Fields and Coal Seam Gas Development Projects’’ invested more than $40 

million to promote demonstration of the CO2-ECBM and CO2-EOR techniques [195]. In 

2018, the first large-scale CCS facility was commenced by China National Petroleum 

Company [196]. Furthermore, the Chinese government actively participates in the Carbon 

Sequestration Leadership Forum (CSLF), Clean Energy Ministerial (CEM) conference and 

some international frameworks, and supports domestic research institutes and companies 

involved in bilateral and multilateral cooperation projects [195]. Currently China owns the 

largest number of CCS pilot and demonstration plants in operation, construction, and 

planning.  
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3.3 United Kingdom 

Since 2017, the United Kingdom government has announced new strategies (e.g., 

Clean Growth Strategy) to support advancements in carbon capture, usage and storage. 

Three routes are promoted: development of innovative technology, development of 

international collaboration on CCUS, and research on reducing costs in CCUS projects. A 

number of CCUS deployment projects are planned to start in the next two or three decades. 

The government has invested more than £130 million on CCUS R&D and innovation since 

2011. In addition, £20 million has been allocated to design and support CCU demonstration 

projects for developing innovative techniques [197]. More recently, the government 

awarded £26 million to advance CCS, and the largest CO2 capture project to date in the 

United Kingdom will be able to remove and use 40000 t/y CO2 [198]. Even allowing for 

the United Kingdom leaving the EU, there will be little effect on the current Energy policy 

due to its Climate Change Act [198]. This requires that the United Kingdom reduce CO2 

emissions by 80% from 1990 levels by 2050 to meet its CO2 emissions target. 

3.4 Australia 

The Australian government is involved in a variety of international forums that aim to 

promote the development and deployment of CCS such as CSLF, the Australia-China Joint 

Coordination Group and others within and beyond the Asia Pacific region. The China 

Australia Geological Storage (CAGS) projects included: Phase 1 on clean development 

and climate (from 2009 to mid-2012); Phase 2 on clean coal technology (from mid-2012 

to 2015); and Phase 3 on bilateral CCS/CCUS cooperation (from 2016 to 2018) [199]. 

3.5 Norway 

Norway has deployed two commercial-scale CCS projects at Sleipner in 1996 and at 

Snøhvit in 2007 [200]. In 2018, the Norwegian government allocated about €29 million to 

promote CCS deployment including the funding for two full-chain CCS projects. Each 
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project will capture 400 billion t per annum of CO2 for storage below the North Sea seabed. 

More recently, the government announced funding of about €36 million to the CCS 

exploration well in April 2019 [201]. 

3.6 Germany 

Since 2002, the German government has set goals for combatting climate change, i.e., 

decreasing GHG emissions by 40% (2020) and 80% (2050) compared with 1990 levels 

[202]. In 2015, they renewed the targets as “New High-Tech-Strategy” that defines the 

major future directions. From 2010 to 2016, 33 CDU projects were granted, through the 

government, around €100 million in total, and €50 million was paid by various industries 

to support research projects [203]. Furthermore, the German Federal Ministry of Education 

and Research (BMBF) employed the efficient integrated method considering the scientific 

and socio-economic competencies in climate services. In order to trigger innovations, 

Germany supports a wide range of R&D programs for CDU. 

3.7 Future Directions in R&D Projects 

Currently, a number of projects for CO2-EOR, CO2-ECBM, and CO2 storage in saline 

aquifers are ongoing worldwide [204]. Fig. 15 shows the facilities with a scale of 400 t/d 

or more of CO2 utilization (non-EOR). Approximately 20 CDU projects are being operated 

or under construction. CO2 could be used in several industrial fields such as mineralization, 

food and beverage, and algae cultivation, which could promote scaled-up applications of 

CCS technology [205]. Most of the R&D projects are centered on the power generation 

industry, especially coal power generation. However, the great majority of the R&D 

projects are still in the early stages, and have not yet reached the pilot-plant scale. Both 

Petra Nova (United States) and Boundary Dam (Canada), two commercial large-scale 

electricity-generating plants with CCS, could offset the CCS cost via selling CO2 for EOR 

[206]. In Europe, the Norwegian CCS projects are successful due to the high national 
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carbon taxation and two offshore storage projects, i.e., Port of Rotterdam CCUS project 

and Norway full-chain CCS, will be expanded in future [207]. It indicates that increasing 

the carbon tax credits could incentivize more investments in large-scale CCS deployment 

and boost the confidence in the private sector. In the future, R&D projects should be 

concentrated on finding pathways to process intensification of CO2 utilization, taking 

capture cost and policy support into account. Unfortunately, the development of such R&D 

projects is challenging due to their complexity and financial barriers [208].
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Fig. 15 Distribution of large-scale CO2 utilization projects around the world.
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20. CO2 Utilization Plants by the KM CDR Process® (multiple locations) 
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4 What is the Potential CO2 Market?  

4.1 Market Scale and Value 

The size of the individual CO2 utilization markets varies from country to country, 

which could affect the climate benefit from the CDU approaches. The demand for products 

using CO2 is increasing gradually. As illustrated in a recent report [209], the CO2 market 

throughout the world will exhibit an annual growth rate of more than 13% by 2022. Fig. 

16 displays the potential CO2 utilization in 2050 compared to global CO2 emissions, 

indicating the enormous markets for CO2 use [210, 211]. However, the CO2 utilization 

potential is relatively small compared to the 37.1 Gt/a global CO2 emissions (2018), but 

could offer the potential of using up to, say, 10% of anthropogenic CO2 for the production 

of products like methanol [212]. Use of CO2 is not a substitute for storage due to the large 

amounts of CO2 needed to be stored. Oil and gas industries are the main contributors to the 

CO2 market for EOR. For instance, the billions of tonnes of CDU potential in the cement 

and aggregates industries represent low-margin, highly standardized markets that are 

difficult to penetrate with new products. As shown in Fig. 17, significant unit price and 

high market volume of products cannot be obtained simultaneously. It is recommended that 

the focus should be on four categories of CO2 utilization markets: building materials (such 

as carbonate aggregates and concrete); chemical intermediates (such as formic acid, 

methanol, and syngas); fuels (such as methane and liquid fuels); and polymers. For instance, 

the current market size of methane is 3-4 trillion cubic meters per year (Mt/y), estimated 

to be 4-5 trillion cubic meters annually by 2030. Urea exhibits a market size of 180 Mt/y 

with a cheap unit price. The main barriers are low-cost catalysts and the integrated 

processes of carbon capture and conversion and renewable energy [213]. However, the high 

cost of these technologies still hampers the growth of the market. Some of the technologies 

are still at an early development stage, thus the cost/performance should be considered. 

The methods for utilizing CO2 need further scale-up by improving the market size and 
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manufacturing capacity in pilot to commercial plants.   

 

 

Fig. 16 Comparison between CO2 emissions and utilization potentials. 

 

Fig. 17 CO2 utilization market potential and value comparisons. Reprinted with permission 

from Ref. [214]. 
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4.2 Regulation and Policy 

The possibility of failure still exists in the present CCS market. Thus, without a well-

designed policy, the private sector will not invest in CCS at the scale necessary to achieve 

climate change mitigation targets. A stable regulatory framework is needed to help 

companies reduce and avoid the negative impacts of failure and increase the financial 

return from the investment. Therefore, well-designed policies for CO2 utilization are very 

important to start and build markets. Currently, the range of government policies 

supporting the deployment of CCS is wide, including carbon pricing, taxes, reporting 

requirements, government procurement, market mandates (e.g., a low- or zero-emissions 

portfolio standard) and shareholder actions. In many cases, the products need to meet 

current standards to be accepted in the marketplace. These standards are normally 

supervised by the government and industry members, and developed by consensus-based 

and voluntary committees. Currently, there are few incentives to update or revise the 

present criteria. Even where the willingness exists, changes to regulatory frameworks are 

slow and are certainly lagging demand for CO2 reduction [5].  

Currently, planning and investment decisions are hampered by a lack of information, 

the dynamic nature of the technology and the markets, and the changing policy landscape. 

In general, individual attitudes to accept CO2 utilization technologies and products are 

positive due to the perceived goal of reduction in CO2 emissions. It is important that the 

public receives adequate information provided by governments to increase their interest 

and confidence. Governments should engage early with standards-setting organizations to 

avoid delays in market entry of these products and expand an innovative agenda for CO2 

utilization. Currently, there are only a few countries with specific policy measures to 

support the deployment of CCS including Norway, the UK, the US, China, Canada, and 

Japan [215]. In the long term, the government policies are central to increasing the 

deployment of these technologies and without these drivers CO2 use cannot make a 
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significant contribution to meet climate goals. The procurement for CO2 products and 

climate policies must be aligned as we are serious about meeting the targets. That being 

said, utilization might, for instance, compensate for hard-to-control areas such as aviation, 

and is in any case a logical direction for a carbon-constrained world. 

5 Conclusions and Recommendations 

Increasing atmospheric CO2 concentration is regarded as a major contributor to climate 

change. Although CO2 capture technologies are relatively mature, the utilization of 

captured CO2 remains an important challenge which needs much future research. The 

development of novel LCA and techno-economic tools and benchmark assessments will 

enable consistent and transparent evaluation of CO2 utilization pathways in the short to 

medium term. Currently, there exist some limitations to further developing CDU such as 

energy and water consumption, the use of expensive catalysts, and gas infrastructure issues. 

In particular, cost-effective CO2 utilization methods are required, and their pilot-scale 

demonstrations are critical for their commercial deployment. It is evident that the 

comprehensive introduction of different CO2 utilization methods is beneficial to 

understanding the mechanisms and choosing appropriate techniques for use of captured 

CO2. The potential integrated technologies are preferable to make up the present gaps for 

broad industrial applications. Furthermore, the demonstration of R&D projects for CDU 

and analysis of CO2 utilization markets are advantageous to identify the possibility of full-

scale deployment of these technologies.  

To promote development of the industrial feasibility of CDU technology, economic 

viability is critical whether this is achieved by means of technical development or policy 

changes. Thus, future primary research interests should be focused on the areas of CDU 

and CCS regulations, policy and assessments, and integration of CO2 utilization with other 

techniques to reduce energy consumption and costs, especially at a larger scale. Meanwhile, 

in order to improve public awareness of the environmental impacts, public education and 
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publicity on CCUS should be emphasized, and international collaborations need to be 

further enhanced. It should also be emphasized that CDU is not an alternative to CCS, but 

rather an adjunct and that without CCS we will fail to meet our climate goals. Governments 

should increase their commitment to CCUS and play a crucial role in promoting its 

deployment (e.g., tax incentives, financial options, and policies) to maintain the global 

mean temperature increase below 1.5 ℃. Another effective strategy is to encourage private 

sector investments for larger-scale demonstration programs and commercialization of CDU 

technologies. In the near future, CO2 may become a resource which will be demanded by 

different sectors of the global economy and affect the regulation and policy to the CO2-

based products market. 
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