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Nowadays, the widespread availability of cheap and efficient unmanned systems (either

aerial, ground or surface) has led to significant opportunities in the field of remote sensing

and automated monitoring. On the one hand, the definition of efficient approaches

to information collection, filtering and fusion has been the focus of exremely relevant

research streams over the last decades. On the other hand, far less attention has been

given to the problem of ‘interpreting’ the data, thus implementing inference processes

able to, e.g., spot anomalies and possible threats in the monitored scenario. It is easy to

understand how the automation of the ‘target assessment’ process could bring a great

impact on monitoring applications since it would allow sensibly alleviating the analysis

burden for human operators. To this end, the research project proposed in this thesis

addresses the problem of behaviour assessment leading to the identification of targets

that exhibit features “of interest”.

Firstly, this thesis has addressed the problem of distributed target assessment based on

behavioural and contextual features. The assessment problem is analysed making refer-

ence to a layered structure and a possible implementation approach for the middle-layer

has been proposed. An extensive analysis of the ‘feature’ concept is provided, together

with considerations about the target assessment process. A case study considering a

road-traffic monitoring application is then introduced, suggesting a possible implemen-

tation for a set of features related to this particular scenario. The distributed approach

has been implemented employing a consensus protocol, which allows achieving agree-

ment about high-level, non-measurable, characteristics of the monitored vehicles. Two

different techniques, ‘Belief’ and ‘Average’ consensus, for distributed target assessment

based on features are finally presented, enabling the comparison of consensus effects

when implemented at different level of the considered conceptual hierarchy.

Then, the problem of identifying targets concerning features is tackled using a different

approach: a probabilistic description is adopted for the target characteristics of interest

and a hypothesis testing technique is applied to the feature probability density functions.

Such approach is expected to allow discerning whether a given vehicle is a target of
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interest or not. The assessment process introduced is also able to account for information

about the context of the vehicle, i.e. the environment where it moves or is operated. In so

doing the target assessment process can be effectively adapted to the contour conditions.

Results from simulations involving a road monitoring scenario are presented, considering

both synthetic and real-world data.

Lastly, the thesis addresses the problem of manoeuvre recognition and behaviour anoma-

lies detection for generic targets through pattern matching techniques. This problem

is analysed considering motor vehicles in a multi-lane road scenario. The proposed ap-

proach, however, can be easily extended to significantly different monitoring contexts.

The overall proposed solution consists in a trajectory analysis tool, which classifies the

target position over time into a sequence of ‘driving modes’, and a string-matching tech-

nique. This classification allows, as result of two different approaches, detecting both a

priori defined patterns of interest and general behaviours standing out from those reg-

ularly exhibited from the monitored targets. Regarding the pattern matching process,

two techniques are introduced and compared: a basic approach based on simple strings

and a newly proposed method based on ‘regular expressions’. About reference patterns,

a technique for the automatic definition of a dictionary of regular expressions matching

the commonly observed target manoeuvres is presented. Its assessment results are then

compared to those of a classic multi-layered neural network.

In conclusion, this thesis proposes some novel approaches, both local and distributed,

for the identification of the ‘targets of interest’ within a multi-target scenario. Such

assessment is solely based on the behaviour actually exhibited by a target and does not

involve any specific knowledge about the targets (analytic dynamic models, previous

data, signatures of any type, etc.), being thus easily applicable to different scenarios

and target types. For all the novel approaches described in the thesis, numerical results

from simulations are reported: these results, in all the cases, confirm the effectiveness

of the proposed techniques, even if they appear to be open to interpretation because of

the inherent subjectivity of the assessment process.
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Chapter 1

Introduction: Background and

Motivations

1.1 Autonomous Vehicles in Monitoring Applications

Recently, there has been a noticeable increase in the interest about the study of net-

worked systems of unmanned vehicles: this is due to the progressive, simultaneous reduc-

tion in costs and increase in embedded computational resources of autonomous vehicles.

The introduction of cooperation in teams of agents can greatly improve operational effec-

tiveness, both for civilian and military operations: groups of autonomous vehicles that

operate on the basis of coordination principles are characterised by greater efficiency and

operational capabilities with respect to agents performing solo missions. Furthermore,

redundancy in the number of agents allows for a more reliable mission accomplishment

and greater robustness to faults, implementing, for example, a task-reallocation pro-

cedure if a vehicle become unavailable. In order to obtain such a robustness, vehicles

behaviour must be defined in a distributed manner, on the basis of information both

locally known and provided by other active agents within the communication range.

Potential applications for single- and multi-vehicle systems include combat, perimeter

patrol, intelligent transportation, contaminant cloud extension estimation, hazardous

material handling, forest fires monitoring, cooperative robotics, distributed estimation,

space-based interferometers and dynamic networks of sensor.

A relevant problem, currently of great interest, is the development of Intelligence,

Surveillance and Reconnaissance (ISR) capabilities in urban, extra-urban and maritime

scenarios, both for civilian and military applications. An Unmanned Aerial System

(UAS) performing ISR tasks and communicating with a ground station is illustrated in

1
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Figure 1.1: Representation of a heterogeneous unmanned aircraft systems, [168]

Fig. 1.1. ISR applications should be capable of monitoring, e.g., relocations of enemy

troops on a battlefield or anomalous behaviours of generic targets (cars, boats or per-

sons) in a civilian context. Other than tracking and monitoring targets, ISR systems

should also be capable of inferring additional information on the basis of actual mea-

surements and additional data previously provided: tasks commonly required are target

classification, assessment of the observed behaviours and evaluation of the threat levels

associated with the targets. Monitoring tasks usually consist of long, monotonous and

perhaps dangerous (e.g. in the case of a military scenario) missions, which are thus in-

advisable, or even impossible to accomplish for a human pilot. Such tasks, on the other

hand, seems perfectly suitable to a UAS comprising multiple vehicles equipped with sim-

ilar or heterogeneous sensors. This kind of multi-agent systems, if properly managed,

results indeed more versatile and sensibly cheaper than solutions based on manned ve-

hicles. With reference to crowded environments like cities and towns, classical sensing

approaches, based for example on radar measurements, could be unsatisfactory or even

impractical because of the great number of targets, their proximity and reflections for

Radio Frequency (RF) signals due to buildings. Even if correct localisation of a target

would be possible, typical ISR applications, as mentioned before, are required to extract

additional information, providing target identification and, possibly, threat assessment.

More sophisticated measurement and tracking techniques are thus required, involving

information pertaining to different domains, and thus collected by different types of

sensors (e.g., radar, audio and vision systems).
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1.2 Consensus Problem

The ‘consensus problem’ is the problem of getting a set of agents having different in-

formation and different perspective to agree on some information, e.g. a data value, a

course of action or a decision. The mentioned agents could be, for example, experts 1

providing their interpretations of an event or interacting nodes of a decentralized/dis-

tributed system, which usually perform autonomous sensing and guidance operations.

In the previous section, numerous applications for autonomous vehicles have been pre-

sented, with special emphasis on the cases where multiple agents collaborate in order to

perform a task. For the implementation of such applications, it is required to develop

advanced coordinated control capabilities, including rendezvous, flocking, swarming, at-

titude alignment, formation control, cooperative search, payload transport, task and

role assignment and air traffic control. The implementation of these capabilities can be

facilitated if the agents in the team share a consistent view of the mission scenario and

objectives. For example, considering a ‘formation keeping’ task, agents have to exchange

information about their relative position and to modify their dynamics accordingly, so

that a predefined formation shape can be achieved and preserved. Numerous techniques

have been proposed over the years for addressing the formation keeping problem, based

on, e.g., leader-followers schemes ([26, 33, 55, 112, 121, 142, 143, 150]), virtual leader

methods ([73, 173, 174]) and pure-behavioural approaches ([12, 56]). With reference

to these solutions, an actual consensus about quantities of interest is not achieved, but

rather the necessary formation-keeping action is exerted by means of techniques like ar-

tificial attractive/repulsive forces, potential fields or simple multi-loop control systems.

A slightly different case is the one where the interactions between agents concern actual

information rather than dynamics aspects. In such cases, the consensus problem has

been largely investigated and addressed by means of algebraic (linear averaging) and

stochastic (linear/logarithmic ‘opinion pools’) tools; examples are provided in [11, 18,

30, 167], where medical and topographic problems are addressed. The problem with

these solutions is that they implement a ‘centralized’ approach where all the information

is available to a single agent, which can then take a decision. Consider however the

scenario where multiple assets take measurements about a target: information is clearly

generated in a decentralised manner, and it requires to be aggregated, or fused, for

obtaining a unique, seamless reading of the situation monitored. Such process might not

be performed by a central node for reliability (single point of failure) or communication

burden reasons, and a decentralised architecture for data elaboration and fusion could

thus be required. The use of ‘message passing’ or ‘flooding’ techniques permits the nodes

1Actual people or expert systems.
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to share the information they have with the rest of the network, allowing all the agents to

independently execute a centralized solution. Once the information has been distributed,

if all the nodes perform the same elaboration process, consensus within the network is

guaranteed. This approach, which can be somehow considered decentralised, even if

preventing some of the issues associated with centralized solutions, e.g. the single point

of failure, still has serious drawbacks. Examples are the relevant communication burden,

the inefficient use of computational resources2 and, most important, the necessity to

exactly know how many and which nodes are involved in the process.

With reference to both the cases here briefly described3, an elegant, distributed (not

symply decentralised) solution has been identified and largely adopted for allowing co-

operating agents to achieve some sort of agreement about relevant information for the

problem addressed. These solutions consist in dedicated iterative interaction rules de-

noted as ‘consensus protocols’ (or algorithms), which allow, e.g., taking a shared decision,

achieve coordinated motion or perform distributed estimation. The distributed nature

of these protocols makes it possible to overcome some of the drawbacks previously men-

tioned, that is to reduce the communication burden (each node communicates with a

reduced subset of agents), calculation optimisation (each node perform a partial, differ-

ent component of the overall computation) and, most important, knowledge about the

structure of the whole network of agents is not required, thus allowing nodes to join

and detach without any effect on the effectiveness of the consensus process. For these

reasons, consensus protocols will be the tool leveraged in the remaining of the thesis for

achieving agreement among agents.

1.2.1 Consensus Protocols: Brief History and Applications

The consensus problem has a long history in computer science, especially within the field

of automata theory and distributed computing ([84]). In this context a well-known prob-

lem is the ‘transaction commit problem’, which arises in distributed database systems

([34, 53, 68]). The problem is for all the data manager processes that have participated

in the processing of a particular transaction to agree on whether to install the transac-

tions results in the database or to discard them (if some data managers were, for any

reason, unable to carry out the required transaction processing). Regardless of the taken

decision, it is essential for all of the data managers to agree on that in order to preserve

the consistency of the database. Another problem in the computer science field where

consensus between nodes in a network is required, is that of clock synchronisation: some

2all the nodes consume energy for performing the exactly same calculation
3Dynamic synchronisation and information agreement.
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of the most relevant protocols addressing such a problem are Reference Broadcast Syn-

chronization (RBS, [37]), Timingsync Protocol for Sensor Networks (TPSN, [52]) and

the Precision Time Protocol (PTP, [36]).

Other than computer science field, consensus problem is closely linked to the study of

self-organising networked systems, that are composed of locally interacting mobile or

static nodes equipped with sensing, computing and communication devices: such nodes

will be referred in the following as agents. With reference to this kind of networks,

the consensus problem was introduced, even if indirectly, with the pioneering works of

Reynolds ([134]), describing distributed cooperative models for flock, herds and schools,

Vicsek ([160]), where collective motion of a swarm of agents is obtained through local

agreement about vehicle’s heading, and Jadbabaie ([62]), that provides a theoretical ex-

planation of the cooperative behaviour achieved from the Vicsek model. The theoretical

framework for posing and solving consensus problems for networked dynamic systems

was introduced by Olfati-Saber and Murray ([107, 139]) on the basis of the earlier work

of Fax and Murray ([46, 47]). These work, together with the results from Moreau ([93])

and Ren and Beard ([130]), paved the way for more recent advances in study of consensus

algorithms and their convergence characteristics under various conditions for the under-

lying communication network and for consensus subject of various nature. Consensus

principles have been applied for solving some classical problems in teams of agents, such

as rendezvous ([76, 77, 88]), formation control ([47, 67, 71, 80, 122]), flocking ([32, 94,

103, 151, 153, 159]), attitude alignment ([70, 124, 128]) and distributed estimation ([100,

109, 145, 176]). A detailed review of the available literature for the consensus problem

is provided later in Section 2.1

1.2.2 Reasons and Basic Principles

As stated, in the recent years, there has been a huge surge of interest in the study

of multi-agent networked systems: further to reliability reasons, this was mainly due

to the whole new task capabilities of such systems, which are achieved by means of

cooperative approach. A key topic in recent research on autonomous vehicles has thus

been the analysis of either centralised or decentralised cooperation techniques allowing

the multi-agent system to operate in a reliable and efficient manner.

Among the numerous solution proposed, consensus protocols are iterative interaction

rules that enable a network of agents to agree upon quantities of interest, which are

usually critical for achieving a coordination/cooperation result. Such process can be

applied to generic information: e.g., sensor measurements, estimations, local decisions

and assessment or even kinematic and dynamics quantities. The current local value
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of this information is the consensus (or information) state, and it is updated by the

consensus protocol until agreement is obtained. Examples of quantities that could be

used as information state are:

• Rendezvous time;

• Centre position and shape of a formation;

• the direction of motion for a multi-vehicle swarm;

• Length of a perimeter being monitored;

• Probability that a certain event has happen (e.g., a military target has been de-

stroyed).

A consensus algorithm defines which type of information is shared among neighbours,

i.e. the nature of the consensus state, and how each node updates its state on the

basis of the information received, i.e. which update (consensus) function to adopt. The

update function can be a continuous-time or discrete time expression and defines for each

agent the new state or the state time derivative respectively, on the basis of its current

state and state information received from agents within a set referred as Neighbourhood.

The neighbourhood of an agent can be defined on the basis of communication range

limitations or by design, thus limiting the number of exchanged messages and minimizing

the communication effort ([40, 41]). The distributed approach based on consensus finds

indeed its main difference and advantage respect to classical decentralised approaches

in the fact that each agents do not have to communicate with all the other nodes in

the network but just with a subset of them, still preserving a consistent coordinated

behaviour for the entire team. In most of the works available in literature, the consensus

state is expressed through a scalar value or a vector of real numbers, thus allowing for

the application of consensus protocols performing either linear or non linear operations

on the states. In the former case the updated state for an agent (or its time derivative)

can be a linear combination of its previous state and the states of neighbouring agents;

such algorithms are referred as linear-consensus protocols. The most common example

is that of the average-consensus where consensus about the possibly weighted average

of the initial states of the nodes is achieved performing only linear combinations of the

state values over time. Otherwise, when general operations are applied to not necessarily

real-valued states, a nonlinear-consensus protocol is adopted, which is the case, e.g., of:

Max-Min Consensus: consensus result is the the maximum or minimum of the initial

states ([28, 114])

Product Consensus: reach an agreement about the product of the initial states ([110])
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Power Mean Consensus: consensus is obtained about the (weighted) power mean of

the initial states ([28])

f -consensus: each agent can calculate a family of functions of the initial states ([28,

57] )

Nonlinear consensus protocol can be used for obtaining agreement about states of pe-

culiar nature, like logical values ([40, 41] ) or sets ([39, 42]). Such types of states result

useful when the consensus process involves a shared decision rather than a distributed

estimation.

To the best of the author’s knowledge, consensus problems have always been considered

as problems on graphs, since these seems to be the simplest and most natural repre-

sentation of the communication network connecting the agents. By adopting a graph

representation, each networked agent is considered as a graph node and the presence

of an edge between two nodes represents the possibility for the agents to communicate.

Directed and undirected graphs are considered in the case of unidirectional or bidirec-

tional communication between the agents respectively. The most general case of consen-

sus problem can be addressed by adopting a weighted switching topology graph. Edges

weights allow modelling reliability, time-delays and bandwidth limitations characteris-

ing the underlying communication network. Furthermore, the time-varying structure

of the graph accounts for the fact that communication links could be introduced and

removed over time due to agents movements and communication range limits. Graph

theory has a crucial role in the analysis of consensus protocols since both algorithms

convergence properties and speed of convergence depend on topological characteristics

of the associated graph. Roughly speaking, a necessary condition for the convergence of

a consensus protocol is the presence of a spanning tree in the underlying graph. This

intuitively means that information can flow from an agent to any other in the network

in a finite time (or number of steps). In the case of linear consensus this condition is also

sufficient ([105, 107]). Convergence speed for linear consensus protocols (and also for

some nonlinear ones) usually depends on the algebraic connectivity of the graph ([110,

131]), which is measured as the the second-smallest eigenvalue of the Laplacian matrix

associated with the graph. Another parameter of interest is the diameter of the graph,

which defines the rate of convergence for some consensus problems operating on discrete

variables ([39, 40, 42]), that is when the quantity of interest for the protocol is, e.g., an

integer, a boolean or the element of a set. All the notions about graph theory referred

in the thesis are presented in Appendix B in detail.

Continuous-time consensus protocols can be further classified on the basis of their or-

der : second or higher-order consensus protocols are characterised by a vectorial state
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where each component is the derivative of the previous variable within the vector, i.e.

X = [x, ẋ, ẍ,
...
x, . . .]. This definition corresponds with the ‘multiple integrator’ model,

commonly adopted for representing the kinetic/dynamic state of a moving vehicle. For

this reason, a natural application for this class of protocols is to “sinchronyze” the move-

ments of networked mobile agents. More specifically, assuming to adopt a consensus

protocol with order equivalent to that of the considered vehicle dynamics, higher-order

consensus can be applied for obtaining a coordinated dynamics for the agents in a team:

by adopting a consensus state composed of states from the dynamic model, agreement

between nodes implies the achievement of same position4, speed and acceleration (de-

pending on the actual order of the protocol) for all the vehicles in the network. Analysis

of higher-order consensus protocols and their convergence properties is presented in

([127, 179, 183]). In the case of higher-order linear consensus protocols, the presence

of a spanning tree in the graph does not represent a sufficient condition anymore (yet

necessary), but more complex conditions on the linear multi-agent dynamical system

are required. For example, in the case of second and third order algorithms, agreement

can be obtained if and only if the matrix associated with the dynamic of the whole

multi-agent system has two or three zero-valued eigenvalues respectively. This rule can

not be generalized to protocols with order greater than three: in such cases, algorithm

convergence is guaranteed under specific conditions for all the non-zero eigenvalues of

the Laplacian matrix.

1.3 Target Assessment: Qualitative approach and Valida-

tion

1.3.1 Operator-Support Role

A specific problem that can be framed in the general surveillance context is the moni-

toring of targets to recognise peculiar behaviours representing evident or hidden threats

([99]). In such case, a relevant drawback of most of the solutions proposed in the past

consists in the fact that the UAS only implements tracking functionalities, and a human

operator is thus required for assessing and classifying the behaviour of the targets. This

approach, requiring numerous and highly skilled human operators, appears to be expen-

sive and unsustainable, especially in cases with a large number of targets. Alleviating

the work burden for human operators appears thus as an extremely relevant objective:

this can be obtained by signalling to the ground station only when the vehicles that

4Of course, reference is here made to individual components of the position vector, e.g. the altitude,
and not to the overall position, causing otherwise collisions between agents.
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represent a potential menace, possibly together with the level and nature of the asso-

ciated threat. In so doing, operators are provided with a filtered, summarising picture

of the monitored scenario and thus relieved from lots of menial analysis. Such intended

supporting role allows considering the monitoring tool as non-critical, in the sense that

no actual damages are to be expected in the cases where the system misses a detection

or produces a false alarm. Regardless of these soft-constraints for its functioning, a

monitoring system can be considered effective, and thus useful, only if it can spot the

majority of the actual threats and, most important, it does not produce an excessive

number of false alarms. In this last case, indeed, an operator would be tempted to

simply ignore the suggestions provided by the assisting monitoring tool. For this reason,

the evaluation of the assessment process performances in terms of correct detections and

false alarms ratio appears to be an extremely relevant issue that needs to be thoroughly

analysed. The operator-supporting tool just described requires the implementation of an

automated assessment process that is able to reproduce the inference processes naturally

undertaken by a human operator. One of the key issues that arises in these conditions

is the need to replicate a not mathematical, and thus not rigorous, assessment approach

as the one performed by human beings. These indeed are usually in charge of detecting

generic, ‘unusual’ aspects of the behaviour of the monitored targets. Given these con-

siderations, it is not surprising that currently behavioural assessment is predominantly

based on the experience and intuition of human operators. Two relevant reasons for this

are the lack of mathematical models to refer to and the inability for the system designer

to provide an analytical interpretation of the monitored scenario.

1.3.2 The Need for a Qualitative Assessment

In the previous section, the problem has been introduced of target assessment and threat

detection, emphasising the great advantages connected with an automated implementa-

tion of such tasks.

The key problem in trying to automate the generic-purpose monitoring action provided

by a human operator is the subjectivity of the assessment process. This is due to the

lack of strict applicable mathematical models and objective rules to implement. An

assessment process is indeed qualitative ‘by definition’: any attempt to quantitatively

describe it, by means of whatever analytical tool, necessarily leads to the introduction

of subjective assumptions and approximations.

By proposing an assessment ‘mechanization’, a model is defined on the basis of the

available knowledge about the considered problem. Such knowledge, however, cannot be

assumed as the only one ‘valid’. The subjective interpretation involved in the assessment
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process is evident thinking of the case where, e.g., a monitoring task is assigned to

two different human operators: their assessments would probably not be completely

matching as each of them would have its own interpretation of what actually represents

a threat. Intuitively, under these circumstances, the assessment process can hardly be

framed within an ‘exact science’ approach since it can not be assumed as indisputable

but rather opened to different interpretations.

Furthermore, the knowledge leveraged for modelling the assessment process is not nec-

essarily valid under all the circumstances. An effective assessment approach should be

capable of taking into account the information about the environment where the targets

operate/move (referred in the following as ‘context information’): behaviours totally

acceptable in a given context could indeed be suspicious under different conditions. In-

clude context information in the assessment process thus allows achieving a more flexible

and reliable classification.

The subjective nature of the assessment process has been one of the most challenging

issues encountered during the research project. In the solutions proposed within the

thesis, this issue has been addressed by adopting a general, non-strict approach to the

detection of irregular behaviours suggesting possible threats . This has been done mainly

by:

• providing a qualitative characterisation of the target features of interest;

• defining testing policies based on simple, adaptable thresholds;

• taking context information into account within the testing process;

• introducing a flexible approach for identifying abnormal behavioural patterns.

1.3.3 Validation Issues for Assessment Approaches

In the previous section, the subjectivity issue of the assessment task has been introduced.

Such condition can be ascribed to the lack of a Ground Truth (GT), which is a univocal

description of the reality underlying the monitored scenario. In a classic estimation

problem, from the simulation point of view, the real state of the target is known, allowing

the definition of error measures and proper performance indexes. However, this is not

the case of the generic assessment problem, for which an indisputable classification of

the target based on its behaviour, to be adopted as GT and compared to assessment

results, is not available.

The main issue with the considered assessment process is not that this has to be carried

out in on the basis of common-sense and empirical rules, rather that in most cases a
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quantitative evaluation of assessment performance can hardly be provided. The assess-

ment case is sensibly different from the one where non-rigorous techniques based on

non-specific knowledge (like fuzzy systems) are applied , e.g., for implementing a control

system. In the latter case indeed, even if the resulting stability or control performances

can not be guaranteed analytically, the effectiveness of the control system together with

actual performances can anyway be tested and measured given the existence of a clear,

indisputable GT (system state). This usually does not hold for the assessment problem,

where being a ‘suspect’ vehicle does not correspond to a measurable physical state. A

key problem that is necessary to tackle when dealing with an automated assessment

framework is thus to define how to evaluate the performances of the implemented tech-

niques.

It is possible to conclude that trying to provide an objective performances evaluation

for an assessment framework would not be extremely meaningful. This is due to the

inherent subjectivity of the framework outcomes, which prevents any common approach

to system validation. For this reason, the approach taken in the remainder of the thesis

consists in providing numeric results that should not be considered ‘absolute’ but related

to a synthetically-defined GT. This makes reference to a specific interpretation of the

problem and is thus, to a certain extent, subjective.

1.4 Aims and Objectives

Given the subjectivity and validation issues described in the previous section, the defini-

tion of automated assessment techniques appears as a complex and tricky task. Nonethe-

less, this problem undoubtedly represents an interesting research field, which could bring

great advantages in the automation of repetitive, dangerous or time-consuming surveil-

lance tasks. Furthermore, the application of consensus techniques seems an effective way

to easily accomplish the assessment task when more agents are involved.

The general objective of the proposed research is to define a novel approach for the

automated identification of target that appears to be ‘misbehaving’ and thus to be

considered a ‘possible threats’. These will be indicated in the following as Targets

Of Interest (TOIs). The proposed solution has to be effective, adaptable to different

detection policies, accounting for different types of knowledge and fit to be tailored to

various monitoring scenarios. The main necessary steps for accomplishing this results

consists in:
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• Defining a hierarchic and modular structure for the intended assessment frame-

work, accounting for measurement collection, data processing and information

inference;

• Designing assessment techniques implementing different approaches, based, e.g.,

on field-specific knowledge and learning tools respectively;

• Define reasonable performance metrics for evaluating the framework outcome;

• Verify the effectiveness and the efficiency of the proposed approaches on the basis

of the adopted metric;

• Investigate multi-agent scenario cases, where the target assessment has to be pro-

duced in a distributed manner.

The main problem with most of the solutions proposed in the past for assessing the

targets behaviour (usually solely on the basis of its trajectory and dynamics) is that those

approaches seem not easily generalizable to different fields of application. They indeed

usually leverage either specific and rigorous mathematical models for representing the

expected target behaviour or learning tools for classifying what is “regular” from what

is not. Both these approaches, however, are closely linked to the monitoring scenario,

the behavioural aspect of interest or the available data. If any of these changes, the

considered techniques require to be significantly revised.

The intended contribution of this thesis is the definition of a generic hybrid frame-

work for threat assessment based on a mixture of analytical and empirical techniques.

Such approach is intended to be decoupled respect to any specific model or information

dataset, allowing for an easy adaptation to new scenarios, possibly involving different

target types, without affecting the basic assessment approach.

1.5 Monitoring Approach

This section describes the approach adopted for implementing the monitoring task and

for addressing some relevant issues.

1.5.1 Layered Monitoring Structure

The main address of the proposed work is the application of behaviour monitoring

techniques to generic targets. This problem can be tackled by making reference to a
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multi-layered data processing structure involving multiple monitoring agents: a repre-

sentation of the proposed approach is provided in Fig. 1.2. Each node of the graph is an

agent, whose functionalities are classified on three different levels. The three layers may

not make reference to the same communication network topology, addressing the case

where interactions between agents do not depend only on the communication range5,

but also on some routing principle.

Agent i Agent j

Decision Level

Monitoring Level

Sensor Level

Figure 1.2: Hierarchical structure for data processing

The first layer is referred as ‘Sensor Level ’, and represents the lowest level of information

aggregation: here is where the measurements produced by the sensors placed on different

agents can be fused for obtaining single, more accurate, information.

The second, intermediate, level is referred as ‘Monitoring Level ’: its intended role is to

implement distributed monitoring and behaviour analysis, providing a common situa-

tional awareness for all the agents in the network. Multiple information sources seeking

agreement can be considered within this level, entailing that the consensus subject could

be function of heterogeneous data.

The third layer, referred as ‘Decision Level ’, is intended to implement high-level func-

tions like behaviour modelling, machine learning and decision-making policies, where

the last could lead to efficient task allocation and resource deployment. The decision

level, for example, could gather information and assessments provided by the lower level,

assigning to each agent a reliability score. These can then be used as weights for influ-

encing the consensus protocols executed at the lower layer. More in general, this layer

is meant to provide to the monitoring level:

• feedbacks on its performance;

• high-level information about the mission scenario that is not directly measurable

and must be thus inferred from the history of measurements or decisions.

5Communication ranges are represented for agents i and j with a blue dashed line.
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For all these reasons, the most suitable techniques for data processing at this level seem

to fall within the computer-science field, like, e.g., Hidden Markov Model (HMM), neural

networks or fuzzy systems.

1.5.2 Consensus Implementation Within the Different Layers

In the cases where the monitoring action is performed through a team of networked

cooperating agents, suitable consensus policies need to be identified. These protocols

allow the monitoring agents to undertake their task in a distributed manner and should

be defined taking into account the layered approach proposed in the previous section.

The application of consensus protocols to the measurements taken by the single agents

(thus at sensor level) has the clear advantage of enabling the implementation of a sim-

ple distributed sensor fusion solution. In this case, the system is able to automatically

adapt to network topology changes since no fixed fusion scheme is defined. On the other

hand, with the consensus approach, the fusion result depends on the network structure,

providing probably poorest outcomes respect to a properly designed distributed fusion

algorithm based, e.g., on a Bayesian framework. The implementation of consensus tech-

nique within the sensor level usually leads to an agreement about a real value, this being

the data type associated with most sensor readings.

If implemented at monitoring level, consensus protocols have the objective of reaching an

agreement about the target features or final assessment. Unlike consensus at the sensor

level, agreement protocols at the monitoring level can return various types of values,

such as boolean (e.g., a positive or negative assessment), a distribution (interpreted as

stochastic representation of a feature) or set-valued (e.g., agents agree about a set of

possible values).

Given these differences, the identification of the most suitable level for the implemen-

tation of consensus techniques appears to be a relevant investigation topic. This choice

could indeed possibly affect the effectiveness and the efficiency of the overall assessment

task. Examples of the implementations of consensus techniques at different levels are

provided later in the thesis.

1.5.3 Monitoring Level Implementation

The outlined multi-layer architecture has been considered because it allows implement-

ing a modular approach to the monitoring problem. In so doing, indeed, it is possible

to decouple the ‘data fusion’ and ‘information inferring’ tasks (both pertaining to the
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monitoring level) from sensors management6 and high-level monitoring capabilities (im-

plemented by sensor and decision levels respectively).

The behaviour assessment problem can be considered as a particular case of the more

generic and well-know ‘anomalies detection’ topic. One of the most distinguishing char-

acteristic of the assessment process is, however, that the policies and techniques to be

implemented do not deal directly with measurements, but rather with more abstract

aspects of the target activities over time. Considering, for example, anomalies within a

spectral imagery reading, they can be identified by applying a classification technique

directly to the pixel values; such classification can then be verified or disproved by the

GT associated with the image. On the other hand, the identification of a misbehaving

vehicle usually can not be achieved by means of simple measurements7: the threat level

associated with a vehicle does not depend only on its actual state, but also on previous

trajectories, on the conditions of neighbouring vehicles and on the current environment.

This makes necessary to adopt an overall, comprehensive assessment for the observed

manoeuvre. This assessment, as already mentioned in Section 1.3 is necessarily subjec-

tive, since no absolute, indisputable classification of what is legit and what is not can be

provided. Given the need to work with such possibly-abstract features, the most suit-

able level for the implementation of behaviour assessment technique appears to be the

‘Monitoring Level’. This entails to consider information and to provide results within a

higher conceptual-level respect to, e.g., measurements and estimations. For this reason,

the work presented in this thesis neglects implementation details pertaining to the sensor

level (i.e., measurements filtering, Measurement-to-Track Association (MTA), Track-to–

Track Association (T2TA) and estimation) for focusing on the high conceptual-level

features characterising the targets behaviour. At the same time, consensus protocols at

this level are supposed to reach an agreement about abstract features of the targets or

peculiar aspects of the mission scenario, rather than, e.g., simple measurements. On

the basis of such considerations, the approach proposed in this thesis is to leverage con-

sensus techniques for implementing distributed assessment and decision-making, rather

than for calculating physical quantities about the targets in a distributed manner .

1.5.4 Subjectivity and Validation Issues

The arbitrariness involved in the decision process and the lack of objective performance

metrics appear as challenging, tightly coupled issues. The approach taken in this thesis to

6Involving the measurement collection, filtering, fusion and estimation processes.
7It is here made reference to the case where complex behaviours are the subject of the monitoring

action. Of course, simple behaviours like a speeding vehicle can be identified by means of simple sensor
readings.
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address this matter consists in techniques able to easily adapt to the different subjective

interpretations of the problem.

The subjectivity involved in the assessment process has been mainly taken into consid-

eration by adopting a flexible approach to the classification of the targets as possible

‘threats’. The accuracy of the assessment so obtained is then evaluated by means of a

synthetically-defined GT that is closely related to a specific interpretation of the problem

or by analogy with the outcomes of different, assumed reliable, techniques. More specif-

ically, concerning the subjectivity issue and performance evaluation, the key solutions

adopted in the thesis consist of:

• providing a qualitative, probabilistic characterisation of the target features of in-

terest;

• defining testing policies based on simple, adaptable thresholds;

• taking context information into account within the testing process;

• introducing a flexible approach to the identification of anomalous behavioural pat-

terns.

• defining a controlled and fully ground-truthed environment for basic performance

evaluation

• Defining a GT consisting of the classification outputs provided by well-established

learning techniques.

1.6 Contribution

This thesis addresses the problem of target assessment on the basis of high-level be-

havioural aspects, with reference to both single or multiple cooperating agents. In

particular, the thesis outline a distributed assessment framework focusing on three key

aspects: (i) Implementation and analysis of consensus protocols within a monitoring

environment, (ii) Target characterisation and assessment on the basis of high-level be-

havioural features and (iii) Target manoeuvre detections by means of pattern matching.

The specific contributions of this thesis can be summarised as follows:

Consensus Protocols Integration: The application of consensus protocols within

the monitoring level has been investigated, in order to implement agreed decision-

making and assessment. A monitoring application based on high conceptual-level
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features characterising ground vehicles traffic has thus been taken into consid-

eration: results from performed simulations have shown sensible advantages in

implementing the consensus protocol within the monitoring level respect to the

sensor level.

Target Behavioural Features In the monitoring application considered for consen-

sus analysis, the feature values have been obtained by means of simple fuzzy-

like sigmoid functions. With the purpose of defining a more analytical approach

to feature evaluation, a stochastic representation of the target features has been

then taken into account. This led to the definition of a novel approach for high

conceptual-level features description, based on a hierarchy of probability distribu-

tions. Finally, a probabilistic decision policy based on joint features distributions

for the classification of targets as TOI has been proposed. Simulations results have

confirmed the effectiveness of the method, for both synthetic and real-world data.

Manoeuvres Detection The problem of identifying TOIs in a multi-target scenario

has also been addressed by taking an approach that is based on pattern matching

techniques. Unlike the other solutions presented in the thesis, where features values

are related to the target state at a single time instant, the motion of the targets

is now taken into consideration by analysing their position and velocity in time

and trying to detect not commonly observed trajectories. A novel approach has

been proposed, where manoeuvres of interest (reference patterns) are codified by

means of Regular Expressions (regexes). Identification performances improvement

respect to a classic, well-established pattern matching technique has been then

verified by means of numerical simulations.

Lastly, the regex-based matching technique has been extended by means of a dic-

tionary of regular expressions defined leveraging a supporting learning tool, in the

proposed case a Neural Network (NN). This dictionary contains sets of regular ex-

pressions representing behaviours that are considered ‘regular’ to different extents

and its use allows the framework to recognise as TOIs vehicles either (i) behaving

in a known-unregular manner or (ii) behaving in a manner that is not considered

regular. Empirical tests have been performed also for this technique, achieving

identification performances similar to those of the supporting NN, but requiring

sensibly shorter computation times.

1.7 Thesis Outline

The remainder of this thesis is organised as follows. Chapter 2 presents a comprehen-

sive literature review about the main problems considered within the thesis: consensus
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achievement in networks of cooperating agents, anomalies detection and target monitor-

ing. Chapter 3 provides the necessary background for the implementation of agreement

techniques, by introducing the concept of graph and the fundamental consensus proto-

cols. Chapter 4 outlines the main characteristics of the proposed assessment framework

together with the details of a case study that will be taken into consideration for sim-

ulations in the remainder of the thesis. In Chapter 5 a basic implementation for the

assessment framework is proposed. A distributed approach based on consensus is taken

into consideration, providing also a comparison between the implementation of consen-

sus about information at different levels of abstraction. In Chapter 6 a comprehensive

implementation approach is proposed for the assessment framework, which is based

on a stochastic representation of the behavioural features. An hypothesis-testing deci-

sion policy is furthermore provided, and the effectiveness of the proposed approach is

tested by means of simulations involving both synthetic and real-world data. Chapter

7 describes pattern matching techniques applied to the behaviour monitoring problem.

A ‘knowledge-based’ and a ‘learning-based’ approaches are presented, both leveraging

regular expressions for the detection of patterns of interest. The performances of the

proposed approaches are finally compared against well-established techniques. Finally,

Chapter 8 provides conclusions about the proposed work and indications for possible

future works.

1.8 List of Publications

The following papers have been published in relation to the research project described

in this thesis:

(1) Dario Turchi, Hyo-Sang Shin, and Antonios Tsourdos. Airborne behaviour mon-

itoring using regular-expressions based pattern matching. IFAC-PapersOnLine,

48(5): 2934, 2015.

(2) Dario Turchi, Hyo-Sang Shin, and Antonios Tsourdos. Feature-based probabilistic

target assessment. Under review at IEEE Transactions on Intelligent Transporta-

tion Systems.

(3) Dario Turchi, Hyo-Sang Shin, and Antonios Tsourdos. Behaviour Monitoring Using

Learning Techniques and Regular-Expressions Based Pattern Matching. Waiting

for submission to IEEE Transactions on Intelligent Transportation Systems.



Chapter 2

Literature Overview

2.1 Consensus

2.1.1 Early Works

One of the earliest works, and probably the most relevant, addressing the ‘Consensus

Problem’ is [62], where Jadbabaie et al. analyse the flocking model that has been pre-

sented in [161] and provide a theoretical explanation for the observed particles behaviour.

The convergence of autonomous particles headings to a common value is here proved,

using (undirected) graphs and systems theory. In the paper is furthermore presented a

model for leader-followers interaction, proving the convergence of the followers headings

to that of the leader. The consensus problem is not explicitly named yet, but it is clear

from the purpose of the model provided, i.e. the agreement about a common heading

for a group of particles.

2.1.2 Protocols Convergence Analysis

In [107] consensus protocols convergence analysis is provided for directed graphs with

switching topology or communication time-delays. The work is focused on balanced

graphs, a specific class of directed graphs that allow to solve the average-consensus

problem. The relation between the convergence rate and the network topology is taken

into account, also considering the necessary trade-offs between performances and the

robustness to time-delays. Moreau in [93] provides a strong theoretical framework for

the convergence analysis of a coordination process in a network of agents that interact

via time-dependent communication links. The agents behaviour model considered in

the paper is simple but appealing, and finds application in a variety of field, including

19
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synchronisation, swarming and distributed decision making. Necessary or necessary and

sufficient conditions (depending on the network topology) for the convergence of a given

consensus protocol are provided, leveraging graph and system theory tools. In [130]

the problem of consensus achievement is addressed for time-varying network topologies

with time-varying communication links weights, in both the continuous and discrete

time cases. This work extends the results given in [62] to directed graph topologies: the

consensus protocol convergence under unidirectional information exchange is here taken

into account, which is necessary for applications where bidirectional communication

or sensing is not available. On the basis of the problem formulation given in [130], the

work in [175] provides convergence conditions in the case of time-varying communication

delays: a necessary and sufficient condition is given for the case of fixed communication

topologies, while only a sufficient condition is considered for time-varying graphs. In

the same paper is showed how the problem of asynchronous consensus can be seen as a

special case of time-delayed communication. In [131] an overview of consensus strategies

is presented: recent results from literature, application examples and graph and matrix

tutorials are briefly yet clearly described. Olfati et al. in [105] present key results about

the theory and implementation of consensus techniques within networked systems, such

as synchronisation of coupled oscillators, flocking, formation-control, fast consensus,

Markov processes, rendezvous in space and distributed sensor fusion. These results are

based on the work described in five key earlier papers: [47, 62, 93, 107, 130].

2.1.3 Task Allocation

In [25] consensus algorithms are adopted for robust decentralised tasks allocation to

a team of cooperating autonomous vehicles. In this work Consensus-Based Auction

Algorithm (CBAA) and Consensus-Based Bundle Algorithm (CBBA) are presented,

providing the algorithm outline, the convergence condition and numerical simulation re-

sults. In [115] a comprehensive analysis is provided of CBBA and its possible extensions,

among which the most relevant is maybe CBBA With Relays, which allows allocating

tasks efficiently while preserving the communication network connectivity; this is done

by utilising idle agents as communication links. This last version of CBBA estimates

communication capabilities of agents solely on the basis of euclidean distances, while

in real-world applications communications are influenced by many causes such as path

loss, presence of obstacles, multipath fading and packets routing. In [60] an extension

of CBBA with relays is presented, which adopts a more sophisticated and realistic com-

munication model, evaluating the network connectivity on the basis of the data-rate

and Bit Error Rate (BER) thresholds. The paper provides the algorithm outline and

numerical simulations confirming the effectiveness of the proposed approach.
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2.1.4 Dynamic Consensus

The works referred so far tackle the problem of Static Consensus, i.e reaching an agree-

ment on a time-invariant quantity, as function of agent initial states and network con-

nection topology. However, the implementation of decentralised control or estimation

usually requires the coordination (and thus some form of agreement) of agents within

a dynamic environment: this field of research is referred as Dynamic Consensus or

Consensus Tracking. Spanos et al. in [146] consider the problem of obtaining agree-

ment about time-varying quantities: the consensus algorithm proposed is implemented

through a dynamic model acting as an high-pass filter on the local variables that cor-

respond to the consensus states. The authors provide two variants of this dynamic

model, accounting for either arbitrary communication time-delays or network ‘splitting’

and ‘merging’ events. In [109], Consensus Filters are introduced: these are distributed

algorithms that enable the calculation of average-consensus about time-varying signals.

In the paper, consensus filters are exploited as a tool for distributed sensor fusion and

estimation in sensor networks: a dynamic model acting as a distributed low-pass filter

on noisy signals is presented, and the convergence of the consensus on the target es-

timation is proved. The main drawback of the approach adopted in [109] is the fact

that sensor fusion is made with no regard to noise statistics, i.e. without considering

the covariance of the measurement error. Olfati in [100] adopts consensus filters for

obtaining a distributed Kalman Filter (KF) from local KFs in information form, which

are locally executed by the agents. The error covariance and the state estimation are

updated using the outcome values from two different consensus filters, which reach an

agreement on measurements and covariance innovation respectively. The same author

in [101] introduces three novel Kalman filtering algorithms, with the purpose of solving

two serious drawbacks of the approach proposed in [100]: the KF proposed in that work

requires the sensors in the network to have identical sensing models (thus not supporting

heterogeneous sensor fusion) and has a relatively weak performance, comparable with

the collective estimation error of n non-cooperative local KFs (this problem was noticed

by other researchers and reported in [20]). The Kalman filtering algorithms proposed in

[101] implement measurements/covariances consensus (via consensus filters) or state es-

timates consensus (directly within the Kalman estimate-update step), showing that the

best performances are obtained in the latter case: this is referred as Kalman Consensus

Filter (KCF). In [104], a formal derivation is provided of optimal consensus gains for the

KCF, which result however in a covariance propagation algorithm that is not scalable

respect to the number of cooperating agents. In the same work a suboptimal scalable

version of the KCF is presented, and stability proof for this novel Kalman-like filter is

provided using Lyapunov-based technique. It is worth to be mentioned that the problem

of decentralised Kalman filtering was firstly solved by Speyer [148] and then by Rao et
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al. [118], but both these methods require a completely connected network, that is with

all-to-all links. These solutions are thus not scalable and clearly less efficient respect

to the properly distributed Kalman approaches adopted in [100, 104, 109], where each

agent communicates only with its neighbours. Consensus Filtering has been considered

also by other authors: Yu et al. in [182] present consensus filtering algorithms that allow

reaching an agreement on the target state estimation with guaranteed error bounds. In

this work, consensus filtering is applied also in the cases of ‘Pinning Controllers’ (when

some network nodes can not be controlled [24, 165, 181]) and ‘Pinning Observers’ (when

some network nodes can not measure all the target states); numerical simulations results

are finally provided for both these two methods.

2.1.5 Higher-Order Protocols

When consensus techniques are aimed at achieving coordinated motion for networked

agents, it could be useful to implement consensus algorithms of order higher than one.

Ren and Atkins in [127] propose a second-order protocol for information consensus, pro-

viding necessary and/or sufficient conditions under which agreement can be achieved in

directed networks; an example where a consensus protocol is exploited for the altitude

alignment of rotary-wing air vehicles is furthermore presented. The same authors in [126]

extend their previous work considering also the case of switching communication topol-

ogy, applying the second-order consensus algorithm to the formation-control problem of

nonlinear dynamic agents. Second order consensus tracking algorithms are considered in

[123]: consensus achievement in the case of bounded control inputs or directed switch-

ing network topology is there proved. Simulations for the formation-control problem

involving actual ground robots have been performed, and numerical results confirming

the effectiveness of the consensus algorithms are given. In [184] the problem is con-

sidered of second-order consensus, in the case that a nonlinear dynamic is required for

the agents, i.e the control input is a nonlinear function leading to time-varying velocity

for the agents. In the paper is showed that the agreement on consensus variables can

be obtained under specific conditions for the ‘generalized algebraic connectivity ’ of the

graph associated with the network. This result is obtained for directed network topol-

ogy, but the case of time-varying communication link is not considered in this work. Yu

et al. in [183] derive some necessary and sufficient conditions for achieving consensus

in the case of generic higher-order protocols and undirected communication topology.

Here, the concept of ‘Stable consensus regions’ is exploited for performing the stability

analysis and an application of the generic m-th order consensus to the leader-followers

case is presented. This work extends some of the results obtained in [179] and [133],

where consensus protocols of second and third order respectively are considered.
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2.1.6 Consensus in Tracking Applications

Information consensus has been widely applied to the target tracking problem, trying

to exploit advantages offered by a multi-vehicle system for improving the estimation

performance. In [108], the authors apply the distributed estimation method presented

in [101] to a sensor network of fixed agents with limited sensing range. Olfati et al. in

[106] exploit Kalman consensus filter ([101, 102, 104]) and the flocking models described

in [103] for implementing an approach where target tracking is coupled to agents de-

ploying, trying to maximise an information theoretic metric; this technique is referred

as ‘Information-Driven Flocking ’. The stability analysis of the coupled consensus and

flocking dynamics is performed, resulting in an asymptotically stable structural dynam-

ics of the flock and estimation consensus asymptotically reached. In [114] Petitti et al.

describe a fully decentralised estimation scheme, named Consensus-Based Distributed

Target Tracking (CDTT), dedicated to heterogeneous sensor networks, where single

agents have different sensing ranges. In the proposed scheme, the agents perform their

own estimation about the target (correction-prediction for actually sensing agents, sim-

ple prediction otherwise), and then a max-consensus algorithm is applied. In so doing, at

the end of the consensus step, all the agents in the network will share the most accurate

target estimate. The simulation results show improved performance respect to KCF,

which does not deal properly with the case of not sensing agents. The problem of dis-

tributed target tracking in a sensor network of fixed heterogeneous agents is tackled also

in [186]: here an unbiased, optimal estimation filter with a consensus term is derived,

both for sensing and non-sensing agents. Simulations results are reported that prove the

effectiveness of the method, but no comparison with other techniques is provided. In

[64], Kamal et al. exploit average-consensus for implementing a distributed ‘maximum

a posteriori’ estimation method called Information-Weighted Consensus Filter (ICF):

consensus is achieved about local estimates, and the name refers to the fact that the

estimations provided by non-sensing agents (thus obtained by means of simple predic-

tion) have less influence on the result of the consensus algorithm. Simulation results

show that the proposed method perform better than KCF and that its performances

tend to those of a centralised ‘maximum a posteriori’ estimator as the consensus step

number increases. The same authors in [63] adopt a similar solution for the problem

of multi-target tracking problem. The well known Joint Probabilistic Data Association

(JPDA)([6]) technique is implemented in a distributed manner by means of average-

consensus. This approach is referred as Multi Target Information Consensus (MTIC)

and its efficiency has been proven by simulation results comparing the proposed method

with both a different distributed and a centralised solutions.
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2.1.7 Nonlinear Consensus

In literature, great interest has been dedicated also to nonlinear forms of consensus.

In such cases agreement is not obtained on a numeric value as a linear combination

of information from different agents, but nonlinear functions or even different types of

information (e.g., binary or set values) are involved in the process. This kind of approach

represents a more general form of consensus, which can be useful in many control and

robotics problems.

Olfati-Saber et al. in [110] tackle the problem of Distributed Hypothesis Testing (DHT)

introducing a novel consensus algorithm for belief propagation, denoted as ‘Belief Con-

sensus’. The proposed protocol achieves agreement on the likelihood of the different

hypotheses of a test, thus enabling the distributed computation of the product of n

belief values (conditional probabilities for a hypothesis) locally produced by n different

nodes of a network. Convergence proof is provided for the novel product-consensus pro-

tocol leveraging the equivalence respect to classic linear average-consensus techniques.

Some considerations are furthermore provided about the algorithm speed of convergence,

which results to be exponential and related to the algebraic connectivity of the com-

munication graph. The novel consensus algorithm is finally exploited for the definition

of a distributed Maximum A Posteriori (MAP) estimator, which allows all the agents

in the network to take a shared decision. An application is then presented, where the

introduced framework is used for the distributed detection of multi-target formations.

In the proposed example, each agent in the network performs its own measurements on

the targets and calculates five feature values, on the basis of which the likelihoods of

some known formation types are evaluated. Agreement is then obtained about these

likelihoods (or beliefs) through the novel protocol and a unanimous decision about the

most likely formation is eventually taken.

Fagiolini et al. in [42] exploit a consensus framework within a robotic multi-agent system

for implementing a distributed Intrusion Detection System (IDS), i.e., a system capable

of detecting faulty or malicious agents. These are identified as robots that do not behave

consistently with a common set of rules, which are respected by all the other agents in

the network. Since each robot has limited knowledge of the system state, decisions on the

behavioural correctness of other agents can be taken only in a distributed, cooperative

manner, thus requiring consensus between all the monitoring agents. In the paper,

a different approach is considered to the consensus problem respect to classic linear

protocols: the shared information corresponds to confidence intervals for the presence

or absence of vehicles around the monitored agent, and the consensus algorithm reaches

an agreement on these intervals by performing set operations. If the agreed confidence

intervals cannot explain the behaviour of the monitored agent, this vehicle is classified as
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faulty/intruder. An analytical proof of convergence for consensus algorithms performing

only commutative, associative and idempotent operations in presence of a connected

communication graph is given, with guarantees on the maximum number of consensus

steps required. The described framework has been applied to a scenario where 5 mobile

robots are travelling along a multi-lane road with different maximum speed and may

want to reach different desired positions: consensus about the faulty behaviour of one

agent is obtained, proving the effectiveness of the proposed solution.

In [39] the clock synchronization between networked agents is obtained as solution of

a consensus problem based on set-valued information. In the paper, an extended cen-

tralised version of the Marzullo’s algorithm ([89]) for time synchronization, which is at

the basis of Network Time Protocol (NTP), is initially described. Considering a scenario

where each node, or agent, expresses its information as a confidence interval, the consid-

ered algorithm allows identifying the smallest confidence interval that is contained in the

largest number of consensus states, solely by means of operations on sets. A distributed

version of the Marzullo’s algorithm is then introduced, where each agent computes the

shared confidence interval on the basis of information received from the nodes within

its neighbourhood. The proposed method operates under the hypothesis of ‘bounded

inconsistency’: only a limited amount of agents can broadcast a measure that is not con-

sistent with the final agreed solution (i.e., empty intersection). It is proved that, under

given conditions on the communication graph, the distributed approach converges to the

same solution of the centralised Marzullo’s algorithm, and agreement is obtained for all

the agents in the network. The number of nodes allowed to have not consistent initial

information depends on the connection level of the underlying graph, which becomes

thus a robustness index for the consensus protocol.

The problem of consensus on logical values is considered in [40] from Fagiolini et al. .

In this work the networked agents locally perform event detection and decision tasks on

the basis of their own measurements and information provided by neighbouring agents.

Each agent can communicate with a subset of the nodes in the network (as usual for

consensus problems) and can detect a limited amount of the events of interest, which

means that it can directly influence a limited portion of the information state vector.

This, in the considered case, is defined as a bit string representing a minimal encoding

of the events list. A linear consensus algorithm is proposed that guarantees agreement

if, for each event, any agent that can not directly detect the event has a path to an

agent that can perform such measurement. The key point of the proposed consensus

protocol is the definition of an optimal communication matrix, which allows obtaining

agreement in the minimum time (minimum number of steps or rounds) and to minimize

the number of messages to be exchanged. Consensus is, however, not guaranteed in

the case where a faulty node is involved. A second, robust, consensus protocol is then
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presented, accounting for the presence of misbehaving agents, i.e., agents that perform

wrong event detections. In this case, the consensus protocol is not linear and, through

the use of an increased number of exchanged messages and redundant minimum-length

communication paths, robustness respect to a given number of faulty nodes is obtained.

Agreement is thus guaranteed for all the agents in the network, except for the faulty

ones. Finally, the two proposed consensus protocols are applied to a distributed intrusion

detection problem, both in the case of presence and absence of faulty nodes, proving the

effectiveness of the proposed algorithms.

Fagiolini et. al in [41] extend the logical consensus protocol described in [40] introducing

an algorithm that allows the agents in the network to define the optimal communication

matrix (which defines the message routing protocol used for the communications) in a

distributed manner. The proposed Self Routing Network Protocol (SRNP) is able to

elaborate the optimal communication matrix in a finite time, with O(n2) complexity

and without any need for centralised elaboration. It is worth to be noticed that the

distributed computation of the communication matrix that will be used for achieving

the logical consensus is a form of consensus itself, which is executed, in the considered

application, just in the initial phase and when a new node joins the network.

2.1.8 Various Works

The problem of obtaining consensus among agents over a finite time-horizon is considered

by Wang and Xiao in [164]: in this work, a continuous input command is adopted

(thus improving earlier works where discontinuous control actions are applied, [29]),

obtaining finite time agreement in the case of undirected time-varying or directed fixed

topologies. This work has been extended in [48] taking into account directed switching

communication links. In [19] Cao et al. consider the problem of finite-time consensus

in the case of undirected fixed connection topology, where the networked agents are

characterised by an inherent nonlinear dynamics.

Cortés in [28] considers the problem of designing continuous-time coordination algo-

rithms allowing the network agents to agree on the value of a desired function of their

initial states; such function is indicated as χ, and the general problem is referred as

‘χ-consensus’. This study has been undertaken by modelling the communication net-

work between the agents in the most general way, i.e. as a switching topology directed

weighted graph. Necessary and sufficient conditions for the χ-consensus to be reached

are given, with respect to the smoothness of the consensus function and the coordination

algorithm, and to the class of allowed weighted digraphs. Later, a systematic approach
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for defining distributed coordination algorithms with reference to a class of smooth χ-

functions is provided: for these algorithms the convergence of the agents states to the

desired function is proved, assuming a weakly-connected, weight-balanced communica-

tion digraph. A coordination algorithm performing the ‘power-mean consensus’ 1 is then

defined by following the proposed approach. Finally, coordination algorithms for max-

and min-consensus are described, but these are not obtained through the general law de-

fined in the paper since max and min functions do not fit the class of smooth χ-functions

considered. This paper introduces an interesting, systematic approach to consensus al-

gorithms definition, which allows reaching agreement about quite general functions of

the agents initial states. The main drawback is that only continuous-time coordination

algorithms are considered, requiring, in real applications, for numeric integration. In

[57], Goldenbaum et al. provide algorithms for implementation of f -consensus, obtain-

ing agreement on a generic function of initial states of nodes. The techniques proposed

in this work are completely different from the consensus approach used in the previously

cited work and deals directly with communication policies and with the communication

channel access. Further insight into the problem of distributed calculation of generic

functions in a sensor network is provided in [8],

Consensus algorithms, with appropriate selection of the consensus states , are used in

[122] for the formation-control issue, both during the phases of ‘formation approach’

and ‘formation keeping’. In this work, it is shown that some of the most common

formation control techniques (leader-follower, behavioural and virtual structure) could

be thought of as special cases of consensus-based formation-control strategies, where

different consensus subjects are defined. In this paper a general second-order consensus

algorithm and its stability analysis (based on graph and matrix theory) are initially

provided; this protocol is used then as base for the definition of consensus algorithms in

the three different formation cases previously mentioned. In all the cases, a second-order

dynamic is assumed for the vehicles thus permitting the use of a consensus variable

as direct (acceleration) command for the vehicle. Simulation results are provided for

the behavioural approach case, considering a scenario with four vehicles characterised

by point-mass kinematic, second-order dynamics and saturation on the control effort.

Three conditions have been tested: presence of a spanning tree in the communication

network, absence of the spanning tree, and presence of the tree together with low gain

for the consensus protocol. Results show that only in the first condition the formation

shape is preserved during the agents motion.

In [49], Fischer et al. give an analytical proof that consensus between networked agents

can not be obtained in presence of a non-cooperating node. This work considers totally

1In the proposed case the χ-function is the power mean of the initial states.
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asynchronous models of computation and communication that are based on a messages-

exchange framework. It is assumed that messages can be received with a certain delay,

but it is guaranteed that messages sent by non-faulty nodes will be eventually received

from other non-faulty nodes. The considered consensus problem make reference to dis-

tributed commitment algorithms, a common issue in distributed computing and dis-

tributed database systems. The very simple main result, “No consensus protocol is

totally correct in spite of one fault”, means that any consensus algorithm is prone to

a ‘window of vulnerability’, i.e. an interval of time during the execution of the algo-

rithm in which the delay or inaccessibility of a single process/agent can cause the entire

algorithm to wait indefinitely (impossibility to reach consensus), confirming a widely

believed tenet in the literature. The results provided in the paper do not imply that

such problem cannot be solved in practice, instead, they point up the need for more

refined models of distributed computing that better reflect realistic assumptions about

processor and communication network capabilities.
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Linear [62, 64, 103,
106, 114, 139,
152, 176, 183]

[67, 78, 79, 92,
93, 100, 101,
104, 105, 107,
109, 117, 122,
125, 127, 129–
133, 175, 179,
180]

[78, 79, 93,
105, 107, 117,
125, 126, 130,
131, 175, 176]

[78, 79, 92,
105, 107, 117,
131, 139, 152,
175, 179, 180]

Non-Linear [8, 19, 25, 29,
39, 42, 110,
124, 139, 164,
182]

[28, 40, 41, 48,
124, 164, 184]

[19, 29, 48,
164]

[139]

Continuous Time [8, 19, 29, 100,
103, 106, 109,
124, 139, 164,
182]

[28, 48, 67, 79,
92, 105, 107,
109, 117, 122,
124, 125, 127,
129–133, 164,
179, 180, 184]

[19, 29, 48, 79,
105, 107, 117,
125, 126, 130,
131, 164]

[79, 92, 105,
107, 117, 131,
179, 180]

Discrete Time [25, 39, 42, 62,
64, 106, 110,
114, 152, 176,
183]

[40, 41, 78, 93,
101, 104, 105,
107, 131, 175]

[78, 105, 107,
131, 175, 176]

[78, 152, 175]

First Order [8, 19, 25, 29,
39, 42, 62, 64,
100, 103, 106,
109, 110, 114,
124, 139, 152,
164, 176, 182]

[28, 40, 41, 48,
67, 92, 93, 105,
107, 124, 129–
131, 164, 175],

[19, 29, 48,
105, 107, 130,
131, 164, 175,
176],

[92, 93, 105,
107, 131, 139,
152, 175]

Higher Order [127, 183] [78, 79, 117,
122, 125, 132,
133, 179, 180,
184]

[78, 79, 117,
125, 126]

[78, 79, 117,
179, 180]

Table 2.1: Classification of the considered literature for the consensus problem
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2.2 Anomalies Detection

The Target Of Interest (TOI) identification task can intuitively be framed within the

more generic problem of ‘anomaly detection’, which is a relevant research field extensively

analysed over the last century. In its most general definition, an anomaly is a single data

point or a points pattern that does not comply with a definition of ‘regularity’ either

provided by experts in the field or inferred from a set of data representing the available

information. In the latter case, which is the most considered by current researchers

because of the large data-availability provided by modern computer systems, any pattern

that stands out with respect to the other data points within the considered data-set is

considered as an anomaly. Numerous approaches involving different techniques, usually

based on learning processes, have been used for discriminating anomalies from regular

data points: classification of patterns by means of Neural Networks (NNs) ([82, 154]),

Bayesian Networks (BNs) ([66, 170]), Support Vector Machines (SVMs) ([120]) or rule-

based systems ([45]), data clustering ([51]), distance or density analysis respect to the

k-th nearest neighbour ([38, 74]), statistical approaches based on parametric models

(Gaussian\regression models, [5, 156]) or Kernel Functions ([96]), information-theoretic

techniques based on entropy ([95]) or Kolmogorov complexity ([162]), spectral analysis

performed, e.g. , by means of Principal Components Analysis (PCA) ([35]) or wavelet

transform ([154]). Anomaly detection is an essential operation for a huge variety of

applications: telephonic and credit card fraud detection ([21, 44, 45]), fault detection

and diagnosis for mechanic machinery or electronic sensors ([7, 141]), road accidents and

relative precursors detection ([27, 96, 154]), vehicle trajectories monitoring ([51, 66]),

image processing ([35, 147]), medical diagnostic ([147, 170]), intrusion and malicious

activity detection in networked computer systems ([74, 95, 162]), etc. .

Lokman et al. in [82] propose a solution for anomalies detection and target recognition

based on HyperSpectral Imaging (HSI) and Multi-Layered Neural Networks (ML-NNs).

With this approach, the individual pixels from spectral imagery data are submitted

to a properly trained NN capable of recognising background elements from anomalies,

signalling the latter case with a ‘1’ output. If an anomaly is detected, the pixel is fed

to a second NN, which is able to classify the anomalous pixel as a specific target type

within a predefined set.

Kruegel et al. in [66] face the anomaly detection issue considering an IDS applied

to system calls within a Unix-like Operating System (OS). In this work, the detection

task is implemented by means of a Bayesian network modelling the relations between

ordinary/malicious requests and a predefined set of features associated with the structure

and content of the system calls. The proposed BN further accounts for correlation

between features, confidence levels about these and additional information provided

by users or complementary detection systems. The outputs of the individual feature

models are likelihood values in the [0,1] range, which are then discretized into semantic
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values (‘Normal’, ‘Uncommon’, ‘Irregular’,‘Suspicious’ and ‘Very Suspicious’) by means

of arbitrary thresholds and finally leveraged for inferring the final classification for the

considered system call. A similar problem had been previously tackled in [50, 166]

by Forrester et al., with the difference that in these works anomalous behaviours were

detected by considering the sequence of observed system calls instead of the individual

request characteristics.

Intrusion detection, intended as the attempt to maliciously access a computer system,

is also considered in [74] by Liao et al. . The authors show that an anomalous program

execution can be identified by considering the system calls it generates as words of a text

document and by applying a set of well-established text analysis tools. More specifically,

each process is represented as function of the frequencies of the requested system calls

and then a k-NN (Nearest Neighbour of order k) classifier is applied. This identifies the

k training processes with smallest distance respect to the test entry and then classifies

this as ‘regular’ only if the aggregated distance is below a given threshold.

In [120], the task of detecting anomalies and outliers is cast from the authors into a one-

class classification problem, which is solved by means of both an SVM and a boosting

algorithm. On the basis of the well-known equivalence of the two approaches, the authors

further provide a general recipe for translating SVMs into boosting-like algorithms.

Fawcett et al. in [45] consider the problem of telephone fraud detection proposing a

rule-based system relying on learning tools. In this work user-related rules indicating

possible frauds are extracted from a dataset of labelled telephonic records. These rules

are then leveraged for selecting the inputs to be provided to analysis tools indicated as

‘monitors’. These components of the detection framework are in charge of measuring

the deviation of observed call patterns from what it is considered regular for the specific

user, and are trained, or ‘profiled’, on the basis of known-legit calls entries. Finally, a

classifier for the aggregated monitors outputs is defined through a training approach.

Data clustering as learning tool for achieving anomaly detection is considered in [51]

by Fu et al.. In this work a dataset of actual vehicle trajectories over a specific road

section is clustered by means of a hierarchic two-layers clustering technique. Real-time

anomalies detection is then achieved by associating newly observed trajectories to one

of the previously defined clusters and by checking some conditions (e.g., the distance

between the current datapoint and the associated cluster-centre or the fact that the

trajectory is assigned to different clusters over time).

Outliers rejection as specific case of anomalies detection is considered in [156] by Torr

et al.. Given an orthogonal regression problem, the authors propose a technique for

identifying a regression hyperplane not influenced by eventual outliers within the data

points. This is achieved by leveraging the ‘eigenvector perturbation theory’ for defining
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metrics that allow measuring the influence of individual data points on the final regres-

sion solution. Then, an iterative algorithm is applied that at each step removes the most

influencing input until a termination criterion is met.

Nychis et al. tackle the problem of anomalies detection with reference to computer

network traffic in [95]. Their work provides an entropy-based interpretation of the dis-

tributions associated with relevant features of the monitored traffic (source and destina-

tion ports, addresses, packet sizes, communication in- and out-degree for a node etc.).

The authors provide useful insights about how variations in the entropy time-series for

the features suggest the presence of anomalous traffic, also considering the meaning of

features correlation.

A relevant topic related to anomaly detection is that of discriminating anomalies from

novelties in the observed behaviours or, more generically, in the inputs provided to

a trained classification or monitoring tool. With reference to this problem, in [15],

Bishop describes a statistical approach for identifying novel values provided as input

to a neural network: in so doing, the network can provide a confidence value for the

output associated with a novel input. This allows discarding unreliable outputs and

thus, somehow, validating the neural network behaviour.

A comprehensive survey on the anomaly detection problem is provided by Chandola et

al. in [22], while Bolton et al. in [17] and Patcha et al. in [113] present surveys focused

on fraud detection and intrusion detection respectively. A further survey mainly focused

on intrusion detection as specific case of anomaly detection has been proposed by Patcha

et al. in [113]. Finally, Markou et al. in [86, 87] present a review on novelty detection

techniques.

2.3 Target Monitoring

In literature, a well-established approach to threat detection is based on the concept

of ‘target classification’, and thus on the assumption that some given types of vehicles

represent a threat, while others do not. Some of the most widely adopted classification

techniques are based on target feature extraction from imagery, like shapes ([72, 81])

or movements ([58]), measurable physical target characteristics, e.g. radar cross section

([23]) or acoustic data ([165]), kinematic aspects, like speed and acceleration ([3, 137]),

or analysis of the exhibited trajectories ([185]).

A slightly different problem is that of assessing the threat level associated with a target

regardless of its ‘physical’ typology, solely due to its behaviour. Some useful references

and guidelines on this topic are provided by Liebhaber et al. in [75], where the cog-

nitive process involved in the threat assessment task is outlined with reference to the

aeronautic field. Examples of automatic assessment systems are provided in [83], where
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the threat assessment problem is considered with reference to a battleground scenario,

in [90], where expert systems are used for assessing the state (e.g., fatigue condition) of

a human being, and in [99], where the threat assessment is implemented by detecting a

given sequence of manoeuvres exhibited by a road-constrained ground vehicle. Rigolli et

al. in [136] present a multi-lane traffic simulator where the driving agents are modelled

by taking into account the subjective interpretation of human drivers about the road/-

traffic conditions. With this approach, a set of 7 parameters is used for translating the

“Objective World” (where, e.g., the car in front is 5 meters distant) into the “Subjective

World” (where the same vehicle is or is not, e.g., “close enough to start an overtaking

manoeuvre”). Different sets of values for these parameters allow simulating different

driving behaviours, thus providing a variegate representation of human drivers. The

proposed simulation model has not been validated by means of any real-world dataset,

yet it is able to reproduce phenomena commonly observed in real traffic conditions, e.g.

‘compression waves’ in vehicles density. No monitoring actions are performed in this

work, but the simulator appears to be a useful tool on top of which assessment proce-

dures can be built, e.g., clustering techniques based on the behavioural parameters.

The problem of safety-improvement for ground vehicles by means of online-monitoring

has been firstly addressed by taking into consideration the emotional and physiologi-

cal conditions of the driver. Malta et al. in [85] propose a system for inferring the

driver’s frustration state on the basis of a set of physiological, behavioural and environ-

mental information. Actual driving tests have been performed during which gas/brake

actuation, electrodermal activity, speech recognition errors and video footage focused

on facial expressions have been recorded. Lastly, ground truth information about its

frustration state has been directly provided at the end of each session by each of the

30 drivers involved in the experiment. The data collected has allowed the authors to

define and train a Bayesian network capable of recognising up to 80% of the frustra-

tion condition states for the drivers. In [140] Sandberg et al. address the problem

of detecting sleepiness in car drivers. As first thing, a variety of sleepiness indicators

from literature has been considered, and suitable parameters for each indicator have

been retrieved by means of a stochastic optimization method (genetic algorithms). The

data leveraged for this process have been obtained from a study that has involved 12

test subjects at the moving-base driving simulator at the Swedish National Road and

Transportation Research Institute. The data were derived from 12 1-h driving sessions

for each test subject, with varying degrees of sleepiness. The resulting indicators have

then been aggregated into Sleepiness Detection Systems (SDSs), implemented as linear

combination of indicators or by means of neural networks, and combined with a math-

ematical model of sleepiness. Such approach has lead to a resulting performance score

up to 0.83%, demonstrating the effectiveness of the proposed approach. A study similar

to the previous one has been performed by Rigas et al. in [135]. Here, a real-time

methodology for the detection of stress events while driving is presented. This task

is performed by analysing physiological signals, i.e. electrocardiogram, electrodermal
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activity and respiration, as well as information about the user driving behaviour, e.g.

average speed, average magnitude of heading change, average throttle. Two Bayesian

networks are then defined allowing the detection of stress conditions: the fist BN only

relies on physiological features, while the second considers also behavioural features.

The dataset used for the BNs training consists of information recorded in real driving

conditions, involving 13 subjects of mixed age and gender. Similarly to the works in [85,

140] the correct detection ratio is about 80% for the BN based on solely physiological

information, while it reaches 96% for the more complex solution accounting for driving

events. ([169]). Such solutions, however, mostly rely on intrusive sensing devices that

need to be applied directly to the driver (e.g. heart-rate monitor) or on the vehicle

(e.g., cameras or kinematic/dynamics information sensors), thus being hardly suitable

for implementation on large scale. The use of in-car data recorders is the basis of the

experimental study conducted by Wouters et al. in [171]. The authors here analyse the

effects on road accident numbers of recording driving actions and providing behavioural

feedback to the drivers. More specifically, drivers from heterogeneous vehicle fleets have

been informed about the recording device equipping their vehicle and have been then

provided with a feedback about their driving behaviour. The road accident rates for

the recorder-equipped vehicles have been compared with those relative to standard ve-

hicles during the same period and accident rates characterising previous and successive

periods respect to the actual test, so that inherent trends can be isolated from the test

effects. Regardless of the assumptions and approximations introduced in the design of

the statistic experiment, this test, overall involving 1100 vehicles over 3100 vehicle-years,

provides really interesting results, indicating that the use of data-recorder could lead to

a reduction in the accidents rate up to 30%. A relevant aspect that is not addressed

by the experiment, however, is if the accidents reduction should be ascribed to the sole

presence of the recording device (influencing the driver to adopt more conscientious be-

haviours) or to the actual feedback provided from the system. In the two cases, indeed,

different actions would be required to maintain a decreasing accidents ratio over time.

A different and probably more feasible approach to road-safety improvement exploits

roadside infrastructure2, also denoted as Freeway Traffic Monitoring Systems (FTMS):

these are equipped with, e.g., camera systems, loop detectors and other sensing devices

that allow quantifying the traffic flow at discrete positions along the road ([27]). With

reference to this approach, Oh et al. in [96] propose a real-time monitoring system

that collects traffic flow information and effectively manages to detect traffic conditions

suggesting a likely imminent accident; this allows authorities to warn drivers by means

of dedicated road signals or other communication devices. This result is achieved by

means of historic data about the accidents that have happened in that specific road

section (which is used for inferring accident likelihood functions) and a statistic decision

2Such infrastructures have been already deployed in many cities around the world and provide infor-
mation on the overall traffic flow instead of the single vehicle. This solution addresses the sensing issue
that affects the ‘physiological’ approach, even if more coarse-grain information is provided.
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policy. The idea behind this work is to adopt a learning technique so that incident

precursors, which are anomalies in vehicular traffic possibly leading to an accident event

and thus to traffic disruption, can be identified. A similar approach is taken in [154] by

Thajchayapong et al., who present a monitoring framework capable of detecting accident

precursors by analysing microscopic traffic variables. These quantities (e.g. relative

speed and distance between vehicles) are obtained by means of roadside infrastructures

or calculated in a distributed manner by local devices. The classification of the traffic

conditions as ‘regular’, ‘transient anomaly’ or ‘incident precursor’ is finally obtained by

feeding a spectral representation of the traffic variables to a multi-layer neural network

and then by applying a decision policy based on a varying threshold. In [65], Kamijo

et al. present a system for the monitoring of traffic flow at intersections. The proposed

approach is based on video information and considers the individual vehicles behaviour

rather than global flow analysis . For this purpose, a tracking technique based on spatio-

temporal Markov Random Fields (MRFs) is firstly developed, which has proved to be

effective up to 95% of the cases for occluded subjects and 99% for vehicles not causing

occlusion. This technique has been used then for implementing an event-recognition

system, in charge of detecting anomalous events at at road intersection, e.g. bumping

accidents, passing and jamming. This system consists of a Hidden Markov Model (HMM)

trained by means of the Baum-Welch Algorithm on the basis of video observations

sequences. The effectiveness of this method, however, has been tested only on a small

number of cases, due to the limitation of accident events during our observation period.

A different approach to the monitoring problem has been taken in other works, where

the focus has been placed on the behaviour of a single vehicle rather than on general

traffic conditions. Rodriguez Gonzalez et al. in [138] propose a technique for assessing

whether the driving-behaviour of a vehicle can be considered ‘aggressive’, and thus to

some extent dangerous for the traffic flow, or not. This is done by recording kinematic

data from a vehicle performing a limited number of ‘loops’ on a road segment when being

driven by some different drivers, both in an ‘aggressive’ and ‘regular’ manner. The data

collected is then used for producing Gaussian Mixture Model (GMM) distributions for

predefined ‘driving features’ and for empirically verifying the initial hypothesis that

the effect of ‘aggressiveness’ can be modelled as a linear filter on the ‘regular’ variables

distributions. The risk associated with a single vehicle behaviour is analysed also in [172]

by Wu et al., who define a hierarchic assessment framework based on HMMs and fuzzy

logic. Three Markov models for three assumed classes of behaviours (lateral, frontal and

‘car following’) are defined and trained by means of experimental kinematic data: in so

doing the Markov models become capable of recognising a finite set of driving events and

their ‘degrees’. The outputs from the Markov models are provided to a Fuzzy Inference

System (FIS) that calculates the membership functions for different linguistic variables

and applies then one of two hierarchic rule-sets. This finally allows establishing if the

risk level associated with a set of kinematic measurements should be considered low,

medium or high. In [69], Lane et al. address the problem of threat assessment in the
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maritime environment on the basis of alarming behavioural aspects. This is achieved

by means of a BN that assesses the threat likelihood of the behaviours exhibited by

the monitored targets, without however proposing a decision policy that would enable

to actually differentiate alleged threats from regular targets. Benavoli et al. in [10]

present an approach to threat assessment based on evidential networks, an inference

tool defined within the theory of the evidence; the limit for this technique is, however, to

consider discrete values for the features characterising the target. The description of a

generic framework for threat assessment accounting for multi-modal data is provided in

[9] by Beaver et al.. The main focus of this work is the introduction of a taxonomy for

the threat condition and a qualitative description of an approach for implementing the

‘decision-level’ of the information fusion process; an actual definition of the techniques

to adopt is however not provided.



Chapter 3

Consensus Protocols Theory

Background

3.1 Graph Theory

3.1.1 Communication Network Representation

Graphs are probably the simplest and most common models adopted in literature for

representing the communication network connecting a team of agents. A graph can

be considered either directed or undirected, depending on the capabilities of the agents’

communication devices or on some design specification. A directed graph topology could

be adopted, for example, in the case where some agents have shorter communication

range than other (e.g., agent vi can send messages to agent vj but not vice-versa) or if,

for reducing the number of exchanged data, a minimal number of communication links

is established. In the most general case, weighted edges could be considered, accounting,

for example, for a greater reliability of information broadcasted by certain nodes. An

example of a generic weighted digraph is shown in Fig.3.1, which accounts also for self-

loops. This type of edge, connecting a node to itself, will, however, be neglected in the

remainder of the thesis (only simple graphs will be considered).
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Figure 3.1: Example of weighted directed graph

37



Chapter 3 Consensus Protocols Theory Background

3.1.2 Definitions

A Graph is defined as G = (V, E), where V = {v1, v2, ..vn} is a finite nonempty set of

nodes (or vertices) and E ⊆ V × V is the set of edges (or arcs) connecting the graph

nodes. Intuitively nodes correspond to network agents, while edges represent active

communication links. The pair (i, j) ∈ E if exists an edge linking node i and j. Self-

edges are not allowed, so pairs (i, i) ∀i are not valid elements of E . The Graph order n

corresponds to the number of nodes in the graph, i.e. n = |V|.

A Directed Graph, or Digraph, is a graph where edges are ordered pairs, i.e (i, j) ∈ E

indicates that node j can be reached from node i, but not necessarily vice versa: in such

case, i is referred as the parent node and j as the child node. An Undirected Graph is a

graph where edges have no orientation. The edge (i, j) is the same of (j, i), i.e., they are

not ordered pairs. This type of graph can be seen as a special case of a digraph, where

(i, j) ∈ E ⇒ (j, i) ∈ E

Given a (di)graph G = (V, E), a (Directed) Path p between nodes vi and vj is a sequence

of edges of the form

((
vp1 , vp2

)
,
(
vp2 , vp3

)
, . . . ,

(
vpk−1

, vpk

))
, where i = p1, j = pk and

vpq ∈ V ∀q. A (di)graph is (Strongly) Connected if there is a (directed) path between

every pair of distinct nodes.

The Neighbor Set of node v in graph G = (V, E) is defined as Nv =
{
j ∈ V : (j, v) ∈ E

}
.

A Weighted (Directed) Graph is a triple (V, E , w) where (V, E) is a (di)graph and w : E →

R+ is a map associating each arc (i, j) to a strictly positive weight wil. For undirected

graphs, edges (i, j) and (j, i) are allowed to assume different weights.The weights map

w is usually expressed by the adjacency matrix A =
[
aij
]
, i.e G = (V, E , A) . It is thus

clear that a generic graph can be defined as function of the only adjacency matrix, i.e

G = Γ(A), since it indicates the number of nodes, presence of connection between the

latter and weights associated with the arcs.

All the further relevant definitions about graphs that are adopted in this work are

provided in Appendix B.

3.2 Algebraic Tools

This section provides the basic algebraic tools necessary for analysing consensus proto-

cols over graphs. All the required definitions that are not provided in this section can

be found in In Appendix A.
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3.2.1 Algebraic Representation of the Communication Network

A graph G can be completely described by means of a matrix A ∈ R
n×n, usually referred

as the Adjacency matrix. More specifically, A(G) = A = [aij ], where n = |V|, and

aij =





wji, (j, i) ∈ E

0, otherwise

where wji 6= 0 is the weight associated with the directed edge connecting node j to

node i. If no weights are defined aij ∈ {0, 1} ∀i, j. This general definition can be

specialised for non-weighted graph assuming wij = 1, ∀i, j ∈ V, and for non-directed

graph imposing aij = aji, ∀i, j ∈ V. Thanks to the assumption about self-loops, it is

possible to state that aii = 0, ∀i ∈ V. For an undirected graph, A is symmetric by

definition.

The Neighbour set of agent i is the set of agents that are supposed to communicate with

agent i: in the general case, this is a proper subset of V, and can be defined on the basis

of the adjacency matrix, as

Ni = {j ∈ V : aij 6= 0}.

3.2.2 Laplacian Matrix

A relevant matrix for the study of the dynamic of linear consensus protocols is the

Laplacian Matrix L(G) = L = [lij ], with

lij =





−aij, i 6= j
∑

k 6=i aik, i = j

For an undirected graph, L is symmetric and positive semidefinite. Considering indeed

the Laplacian Potential

ΦG(x) =
1

2

n∑

i,j=1

aij(xj − xi)
2 (3.1)

in the case of symmetric Laplacian, i.e. obtained from a symmetric adjacency matrix,

it holds ([139]):

xTLx ≥ ΦG(x) ≥ 0.

By definition, in both the cases of directed or undirected graph, any row-sum of the

Laplacian matrix is zero: L has thus a zero-valued eigenvalue associated with the right

eigenvector

wr = 1 = (1, 1, . . . , 1)T .
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Under these conditions, the ‘Rank-Nullity’ theorem guarantees that rank(L) ≤ n − 1.

Furthermore, L is diagonally dominant and has non-negative diagonal entries. On the

basis of these proprieties for the Laplacian matrix, it can be proved ([59]) that

• For an undirected graph, all of the non-zero eigenvalues of L are positive;

• For a directed graph, all of the non-zero eigenvalues of L have positive real parts.

Given an undirected graph, the ith smallest eigenvalue of L is denoted as λi(L) with

λn(L) ≥ . . . ≥ λ2(L) ≥ λ1(L) = 0

λ2(L) is the algebraic connectivity of the graph G, which quantifies the convergence rate

of a relevant class of consensus algorithms.

Given the previous definitions, the following theorems hold:

Theorem 3.1. (Laplacian Rank for Directed graph) Let G be a weighted digraph with

Laplacian L. If G is strongly connected, then rank(L) = n− 1.

Proof. Proof is given in [107], Appendix A

Theorem 3.2. (Laplacian Rank for Undirected Graph) Let G be a weighted graph with

Laplacian L. rank(L) = n− 1 if and only if G is connected.

Proof is provided in [14].

Theorems 3.1 and 3.2 give conditions under which zero is a simple eigenvalue of the

Laplacian matrices associated with directed and undirected1 graphs. For digraphs, alge-

braic multiplicity of the zero-valued eigenvalue can be checked also through the following

proposition:

Proposition 3.3. Let G denote a (loopless) digraph. Then, zero is an eigenvalue of

algebraic multiplicity one for the Laplacian L if and only if G has a rooted directed

spanning tree.

Proof is given in [67].

1To be noticed that, for an undirected graph, having a simple zero-valued eigenvalue implies having
a positive algebraic connectivity.
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3.2.3 Perron Matrix

The Perron Matrix associated with a graph enables the analysis of discrete-time con-

sensus algorithms. This matrix is defined as:

P = I − ǫL

where ǫ is denoted as ‘Perron matrix parameter’, while L and I are respectively the

Laplacian and identity matrix. The Perron matrix just defined can be thought of as a

special case of the general form

P = e−ǫL =

∞∑

k=1

(−ǫL)k

k!
,

where the series is limited to the first-order term since the algorithm uses just the

information provided by the first-order neighbours 2. Some relevant characteristics of

the Perron matrix are stated in the following theorem:

Theorem 3.4. Let G be a digraph with n nodes and maximum in-degree ∆ = maxi degin(vi) =

maxi
∑

j 6=i(aij). Then, the Perron matrix P with parameter ǫ ∈ (0, 1/∆] satisfies the

following properties:

i) P is a row stochastic nonnegative matrix with a trivial eigenvalue of 1;

ii) All eigenvalues of P are in a unit circle;

iii) If G is a balanced graph, then P is a doubly stochastic matrix;

iv) If G is strongly connected and 0 < ǫ < 1/∆, then P is a primitive matrix.

The proof is given in ([105])

Remark 3.5. From part i) of the theorem it comes directly that an eigenvector associated

with the trivial eigenvalue 1 is 1 = (1, . . . , 1)T

Remark 3.6. If the communication graph is strongly connected, P results to be an

irreducible and primitive matrix. From Perron-Frobenius theorem it is possible to say

that the Perron-Frobenius eigenvalue, i.e. the eigenvalue corresponding with the spectral

radius, is simple. Since from Theorem (3.4) the spectral radius of the Perron matrix

has value 1, these results can be thought of as the corresponding condition of having a

simple zero-valued eigenvalue in the Laplacian matrix.

Remark 3.7. The condition ǫ < 1/∆ in part iv) is necessary. If an incorrect step-size, i.e.

ǫ = 1/∆, is used, then P is no longer a primitive matrix, making multiple eigenvalues

with modulus 1 possible.

2mth-order neighbours are indicated from the mth power of the adjacency matrix, Am.
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The following result will be useful for the convergence analysis of a widely-applied

discrete-time consensus algorithm:

Theorem 3.8. (Perron-Frobenius) Let P be a primitive nonnegative matrix with w

and v, respectively, left and right eigenvectors associated with the trivial eigenvalue 1,

satisfying Pv = v, wTP = w and vTw = 1. Then:

lim
k→∞

P k = vwT

The proof is provided in ([59])

3.3 First Order Linear Consensus Algorithms

In this section linear consensus protocols applied to scalar information states are con-

sidered. The basic idea behind a consensus algorithm is to achieve similar values for the

information states of the agents in a team. The update law for the states can be mod-

elled as a differential equation when the communication network allows communicating

in a continuous manner or if the communication bandwidth is sufficiently large. If, oth-

erwise, the information exchange is implemented at given time steps utilising discrete

data packets the consensus protocol is defined as a difference equation. Recall that, in

linear consensus protocols, the state update for a given agent is obtained as a linear

combination of its own state and the information states received from the agents in its

neighbourhood.

3.3.1 Continuous-Time Protocols

The most common continuous-time consensus algorithm is given by

ẋi(t) = −
n∑

j=1

aij
(
xi(t)− xj(t)

)
(3.2)

where n is the number of agents in the network, aij is the (i, j) entry of the adjacency

matrix and xi(t) is the information state of the ith vehicle at a time t. Given the

definition previously provided for the elements of the adjacency matrix, the sum
∑n

j=1

could also be written as
∑

j∈Ni
. On the basis of the definitions introduced in Section

3.2.2, Eqn. 3.2 can be written as:

ẋ(t) = −L(t)x(t), (3.3)

where x = [x1, . . . , xn], and L(t) = [lij ] ∈ R
n×n is the Laplacian of the underlying

communication graph. Regardless of the notation, agreement in a team of vehicles is
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achieved through the adoption of a consensus protocol if, for any initial collective state

x(0):

lim
t→∞

|xi(t)− xj(t)| = 0, ∀i, j = 1, . . . , n.

This condition3 is equivalent to “proving that the agreement space characterised by x =

α1, α ∈ R is an asymptotically stable equilibrium of system” (3.2), ([105]). Assuming an

invariant communication topology, the Laplacian matrix is a constant, i.e. L(t) = L, and

thus, with reference to Eqn. 3.3 the behaviour of the consensus algorithm for the whole

team of agents is represented by a Linear Time-Invariant (LTI) system, whose dynamic

matrix is −L. The convergence of the proposed consensus algorithm is thus completely

determined by the location of the eigenvalues of the Laplacian matrix. As previously

noticed, all non-zero eigenvalues of matrix −L have negative real part. Furthermore,

vector 1 is an eigenvector of L and thus Span(1) ∈ Ker(L). If 0 is a simple eigenvalue

of L the following statements hold:

• The system described by Eqn. 3.3 is Marginally stable, since the real part of any

pole in the system transfer function is non-positive, and all poles with zero real

value are simple roots;

• Given a scalar value x̄, x̄1 is an equilibrium of the system (3.3), and thus x(t) → x̄1

when t→ ∞, meeting the definition of convergence to a consensus.

The convergence analysis for the considered consensus protocol focuses therefore on

proving that zero is a simple eigenvalue of L. Assuming indeed that the algebraic mul-

tiplicity of the zero-valued eigenvalue is greater than one, if the associated geometric

multiplicity is one, the marginal stability is not achieved, while, otherwise, if the geo-

metric multiplicity is greater than one the dynamical system accepts equilibrium states

that are not contained in Span(1), and thus the convergence to a consensus state is not

guaranteed. Necessary and sufficient conditions for the Laplacian of a graph for having

a simple zero-valued eigenvalue, with reference to graph topology, are provided in Sec-

tion 3.2.2 for both the directed and undirected graph cases. It is worth to remark that

in presence of a single zero-valued eigenvalue, even if the dynamic system associated

with the consensus protocol is classified as marginally stable, the states of the nodes

asymptotically converge to the consensus value x̄. This means that the equilibrium x̄1

is globally exponentially stable.

Assuming the convergence of the consensus protocol, some considerations about the final

equilibrium achieved, i.e. the scalar value x̄, are provided in the following. In the case

of undirected graph, since aij = aji ∀i, j, it can be noticed that the sum of the states

of all the nodes is an invariant quantity, i.e.
∑

i ẋi = 0. Applying this condition at times

3The condition makes reference to the cases where the information state is a scalar value. It can be
however generalised to the case of vectorial information state by adopting an appropriate norm instead
of the ‘absolute value’ operator.
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t = 0 and t = ∞ the following equation is obtained:

x̄ =
1

n

∑

i

xi(0).

This result means that, for an undirected graph, the application of the consensus protocol

in (3.2) leads, if a consensus is asymptotically reached, to a collective decision that is

equal to the average of the initial state of all nodes. A consensus algorithm with this

specific invariance property is called an average-consensus and can be thought of as a

special case of f -consensus where the function f(x) of the initial states is the arithmetic

mean.

For the convergence analysis in the case of a directed graph, the following theorem is

proposed in [105]:

Theorem 3.9. (Weighted Average-Consensus) Consider a network of n agents repre-

sented by a directed graph G: suppose G is strongly connected, and let L be the Laplacian

of G, with a left eigenvector γ = (γ1, . . . , γn) associated with the zero-value eigenvalue,

thus satisfying γTL = 0. Then, applying the consensus algorithm in (3.2) the following

statements hold:

i) A consensus is asymptotically reached for all initial states;

ii) The algorithm solves the f-consensus problem with the linear function f(z) =

(γTz)/(γ1), i.e. the group decision is

x̄ =
∑

i

wixi(0)

with
∑

iwi = 1

iii) if the digraph is weight-balanced, an average-consensus is asymptotically reached

and

x̄ =
1

n

∑

i

xi(0)

The theorem proof is given in [105].

Remark 3.10. The condition of strong connectivity required in Theorem 3.9 could be

substituted with the weaker condition of presence of a rooted spanning tree (preposition

3.3)

Remark 3.11. Convergence for the consensus algorithm applied to an undirected graph

can be thought of as a special case of the directed case, since an undirected graph

is balanced by definition: part iii) of Theorem 3.9 provides indeed the same result

previously obtained for an undirected graph.
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Theorem 3.9 shows that, if the consensus is achieved, the equilibrium state is a weighted

average of the initial information states in the network. However, some of the compo-

nents of γ may be zero, implying that the information states of some of the vehicles do

not contribute to the equilibrium. For strongly connected graphs it can be proved that

γi 6= 0, ∀i and thus all of the initial information states contribute to the consensus

equilibrium. On the other hand, when the directed communication topology contains

a rooted directed spanning tree but is not strongly connected, the consensus equilib-

rium is the weighted average of the initial conditions of just those vehicles that have

a directed path to all of the other agents. The presence of a rooted directed spanning

tree is a less stringent condition than requiring a strongly connected graph. However,

as shown above, in this case, the consensus equilibrium is less meaningful since some

initial conditions are entirely neglected during the agreement process.

Convergence proof for the consensus algorithm in (3.2) has been provided under topo-

logical conditions for the underlying communication graph, both in the cases of directed

and undirected graph. Note that the considered protocol does not allow to define a

desired final state for the information vector. In general, it is possible to guarantee only

that the agreement value is a convex combination of the initial information states.

3.3.2 Discrete-Time Protocols

Various versions of a linear discrete-time consensus protocol have been proposed in

literature: e.g., [62, 93, 105, 130, 131]. In the following, the approach described by

Olfati et al. in [105] is considered since it is more similar in the structure and notation

to the previously described continuous-time algorithm. The protocol update-law is:

xi(k + 1) = xi(k) + ǫ
∑

j∈Ni

aij
(
xj(k)− xi(k)

)
(3.4)

where

xi : state of ith agent

ǫ : step size (> 0)

Ni : Neighbour set of agent i

aij : (i, j) entry of the adjacency matrix

Only the case of digraph will be considered in the following since an undirected graph

can be considered as a symmetric, and thus balanced, directed graph. Algorithm (3.4)
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can be written in matrix form as:

x(k + 1) = Px(k) (3.5)

where P is the Perron Matrix with parameter ǫ associated with the communication

graph (see Section 3.2.3). From this formulation, as well as for the continuous-time

case, it is clear that the discrete-time consensus algorithm in (3.4), applied to all the

agents in the network, can be represented by an autonomous discrete LTI system, whose

stability analysis relies only on the properties of its dynamic matrix P . Convergence

analysis for the proposed algorithm is provided by the following theorem ([105]):

Theorem 3.12. Consider a network of agents with communication topology represented

by the strongly connected digraph G, and implementing the distributed consensus algo-

rithm in (3.4). Assume 0 < ǫ < 1/∆, where ∆ is the maximum in-degree of the nodes

in the network. Then:

• A consensus is asymptotically reached for all initial states;

• The group decision value is x̄ =
∑

iwixi(0) with
∑

iwi = 1

• If the digraph is balanced (or P is doubly stochastic), an average-consensus is

asymptotically reached and x̄ =
∑

i xi(0)/n.

The proof for the theorem is provided in [105] and here reported for convenience.

Proof. The marginal stability of the dynamic system in (3.5) can be proved by apply-

ing Theorem 3.4 to a strongly connected graph: all the eigenvalues of P result to be

within the stability region for a discrete-time linear system (unitary circle), and only one

eigenvalue is on the boundary of the region. Marginal stability is thus guaranteed. An

equivalent result can be obtained by noting that x(k) = P kx(0), and thus the system

(3.5) results stable if P k admits a limit: the existence of such limit is guaranteed by

Theorem 3.8. The convergence of the consensus protocol can be proved considering that,

under the given hypotheses, P is an irreducible primitive matrix (Theorem 3.4 part iv)),

and thus from Theorem 3.8:

lim
k→∞

x(k) = v(wTx(0)).

Remark 3.5 allows affirming v = 1, leading to:

x̄ = lim
k→∞

xi(k) =
∑

j

wT
j xj(0)), ∀i,

which is the agreement value produced by the consensus algorithm. Further,
∑

j wj = 1

because vTw = 1 (again, Theorem 3.8). For the last part of the theorem, if the graph is
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balanced, P is a column stochastic matrix with a left eigenvector of w = (1/n)1, since

wi = wj∀(i, j) and
∑

j wj = 1. The group decision becomes equal to x̄ = (1/n)1T xi(0)

and average-consensus is thus asymptotically reached

Remark 3.13. The result of the consensus algorithm is a weighted average of the initial

states of the agents. The actual weights are defined from the elements that compose the

left eigenvalue of matrix P associated with eigenvalue 1.

3.4 Belief Consensus Protocol

‘Belief Consensus’ has been introduced by Olfati et al. in [110]. This consensus approach

is implemented by means of a nonlinear update rule that allows propagating local ‘belief

values’ denoted as π and achieving a final agreement about this value. The algorithm is

defined as follow:

πi(k + 1) = πi(k)
βi

∏

j∈Ni

πj(t)
γ , (3.6)

where i is the agent index, k is the consensus step, γ is the consensus protocol gain, Ni is

agent i neighbourhood, ∆i is the in-degree of node i and βi = 1−γ∆i. By implementing

this protocol, it is proven that the consensus states πi will tend to a common value that

complies with the Bayes rule for posterior probability:

lim
k→∞

πi(k) = p
(
ht|Z

)
= αp (ht)

n∏

j=1

p
(
zj |ht

)
∀i = 1, . . . , n (3.7)

where ht is the hypothesis “of interest”, Z = [z1, z2, . . . , zn] is the set of measurements

about the target and n the number of agents involved.

By defining the likelihood of the belief of agent i as li = log (πi), the considered belief

consensus corresponds to the discrete-time average-consensus algorithm described in

Section 3.3.2 applied to an information vector composed of belief likelihood values. This

result is proved by the following lemma.

Lemma 3.14. The belief consensus protocol

πi(k + 1) = πi(k)
βi

∏

j∈Ni

πj(t)
γ , (3.8)

is equivalent to the discrete-time linear consensus protocol

xi(k + 1) = xi(k) + ǫ
∑

j∈Ni

aij
(
xj(k)− xi(k)

)
(3.9)

under the following conditions:
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• ai,j ∈ {0, 1} ∀i, j

• ǫ = γ

• X(k) =
[
x1(k), x2(k), . . . , xn(k)

]T
=
[
l1(k), l2(k), . . . , ln(k)

]T
∀k

Proof. The lemma can be proved by simply replacing in Eqn. 3.9 the information

states xi with the belief likelihood li and taking the exponential of both the sides of the

equation:

exp
(
log
(
πi (k + 1)

))
= exp


log

(
πi (k)

)
+ ǫ

∑

j∈Ni

(
log
(
πj (k)

)
− log

(
πi (k)

))



(3.10)

and thus:

πi(k + 1) = πi (k) exp


−ǫ∆i log

(
πi (k)

)
+ ǫ

∑

j∈Ni

log
(
πj (k)

)

 (3.11)

where log
(
πi (k)

)
has been taken out of the summation by multiplying its value by the

number of nodes in agent i neighbourhood. This value is referred as the in-degree of

node i and is denoted by ∆i. Then:

πi(k + 1) = πi (k)
1−ǫ∆i exp


∑

j∈Ni

ǫ log
(
πj (k)

)



= πi (k)
1−ǫ∆i

∏

j∈Ni

πj (k)
ǫ (3.12)

Noticing that ǫ = γ by hypothesis, the proof is completed by defining βi = 1− γ∆i

Given the equivalence proved by Lemma 3.14, the convergence conditions for belief

consensus are the same outlined in Theorem 3.12.
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Monitoring Framework Structure

4.1 Introduction

As extensively described in Section 2.1, most of the works about consensus available in

literature pursues agreement about some measurable physical quantities. This is usually

done in order to either cooperatively produce a representation of the monitored envi-

ronment or for achieving coordinated motion for the networked agents. In the latter

case consensus protocols are directly embedded within the agents guidance law, thus

not representing a case of interest for the intended monitoring application. On the other

hand, making reference to the former case, consensus protocols are usually adopted for

implementing distributed averaging of measures or estimations : this, again, do not

really fit with the research aims, that is the implementation of distributed assessment

and decision-making techniques. For this reason, it is considered more convenient to

consider data-processing and consensus seeking at a higher conceptual-level, involving

possibly abstract features characterizing the targets. This will allow providing a com-

prehensive description and a working implementation of the monitoring level introduced

in Section 1.5.1. In this chapter further details and functionalities of the monitoring

level are presented, together with an example case study that will be leveraged in the

remainder of the thesis for testing the proposed approaches. Actual implementations of

this framework are provided in the following chapters.

4.2 Monitoring Level

With reference to the hierarchical structure proposed in Section 1.5.1, this thesis is

mainly focused on application fields for consensus protocols that lie within the second

layer, at a medium level of abstraction. Agreement at this level has been used in previous

works, e.g., to recognise misbehaving vehicles in a team ([42, 43]), to cooperatively assess

49
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the shape of a target formation ([110]), to detect intrusions in a security perimeter

([41]) or to define the alarm status for a multi-zone area on the basis of multiple sensor

readings ([40]). This section describes the structure and components of the monitoring

layer, proposing a distributed, consensus-based solution for the Situational Awareness

(SA) problem.

4.2.1 Features Classification

The approach adopted in order to identify possible TOIs is based on ‘features’: these

are pieces of information that try to quantify peculiar aspects of either the behaviour

exhibited by the target or the environment where the target is moving. The main aspects

of these two broad classes of features are described in the following sections.

4.2.1.1 Behavioural Features

Information about the target behaviour is leveraged for the definition of ‘Behavioural

Features’: these can represent simple or complex characteristics of a target. The former

come (almost) directly from the measurement or estimation process (e.g., the difference

between the target speed and the speed limit), while the latter are obtained from an

‘interpretation’ of the target track and require some kind of elaboration (e.g., the fact

that the target is moving along a not allowed traffic lane). Irrespective of the ‘simple’

or ‘complex’ nature of the features, these can be divided in two classes:

Knowledge-Based (KB) Features: are defined on the basis of pieces of knowledge

provided by experts in the field, establishing the parameters of interest and their

acceptable/unacceptable values. These features are strictly application-dependant

with reference to their definition and assessment, but are necessary for detecting

the particular behaviours/manoeuvres of interest;

Average-Based (AB) Features: leverage the idea that similar behaviours are ex-

pected from targets that have something in common, e.g. cars moving along the

same road-section. AB features do not require specific knowledge in the field, but

simply try to detect patterns that differ from normality: for this reason such fea-

tures appear more general-purpose and will not need to be redefined unless the

application field of the framework drastically changes.

4.2.1.2 Context Features

The second type of information considered, ‘context information’, enables the definition

of ‘Context Features’, which have the twofold purpose of:
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• Characterizing the environment where the targets move, by means of a syntax that

is understandable by all the agents in the team;

• Conditioning the target assessment.

The main idea behind the use of context information is that the significance of target

behaviours can depend on the actual context. For example, a car exhibiting a high rate

of overtaking manoeuvres in condition of heavy traffic could be normal. However, if the

same amount of manoeuvres would be accomplished in the case of very light traffic, it

would represent something anomalous, maybe a vehicle waving from a lane to another

without any reason. Context features can be defined:

• Independently from each agent of the team;

• As the result of an agreement process among all the platforms (Fig. 4.1).

The latter case is of particular interest when dealing with heterogeneous networks, where

different agents are equipped with different sensors, and can thus measure different

aspects of the environment of interest. Finally, further information about the context,

which cannot be sensed or inferred, could be provided by an external operator.

4.2.2 Target Assessment Implementation

Given these different forms of information, a technique for data and information fu-

sion must be identified, together with assessment and classification policies that allow

achieving comprehensive and seamless knowledge about the targets.

The theoretical tools adopted for implementing such assessment could depend on the

nature of the features (AB/KB) and on the accuracy of the knowledge about the mon-

itored events. A learning technique, e.g. Gaussian processes, seems to be an ideal tool

for implementing ‘Average-Based’ behavioural features: by adopting a variable-in-time

training set, the system can be made auto-updating, and thus capable of following re-

cent trends in the behaviour of the targets. For KB features, on the other hand, the

identification of a unifying approach capable of describing all the possible features seems

to be rather challenging, since the features itself are usually application-dependent. No-

tice that the analytical tool to be adopted seems to be strictly related to the syntactic

form in which the knowledge is expressed, and, as already mentioned, to the degree of

accuracy for the knowledge itself. For example, approaches based on the Bayesian or

possibility theory could be implemented if an exact formulation of the rules regulating

the monitored environment is available, while more flexible methodologies, e.g. fuzzy

logic, could be instead leveraged in the case of a more general, and thus less accurate,

knowledge of the application field. The result of the target assessment process can be,
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e.g., a continuous, discrete or binary value indicating if and to what extent the monitored

vehicle should be considered a TOI.

Fig. 4.1 depicts the reference structure for the proposed assessment process: there, the

interactions among tracking, behavioural features detection, context features detection

and target assessment processes are clearly shown, as well as the separation between

sensor and monitoring layers (upper and lower boxes respectively).

Sensor

Tracking Process

Behavioural Features Detection

Knowledge-Based Average-Based
Contextual Features Detection

Consensus Process Operator Consensus Process

Consensus Process Target Assessment Process

Measurements

Target Tracks
Target Tracks

Behavioural Features
Contextual Features

Contextual Features

Local Assessment

Context Info

Agreed Assessment

Local Features Agreed Features
Local FeaturesAgreed Features

level of threat/interest

Figure 4.1: Reference Structure for the proposed assessment approach

4.2.3 Consensus Approaches

With reference to the target assessment problem, two different policies are possible for

the implementation of consensus techniques:

Consensus on local assessments: local assessments individually produced by the agents

in the team can be fed to a consensus algorithm ([105, 110, 131, 139]), allowing all

the nodes to share a unique tactical picture of the monitored scenario. The type of

agreement to be achieved, and thus the particular consensus protocol, depends on

how the assessment value is defined: possible solutions could be average-consensus,

max-consensus or belief-consensus ([105, 110, 131]).

Consensus on features: the consensus algorithm can be applied to the single be-

havioural features, allowing all the agents in the network to agree about specific

characteristics of the targets. It should be noted that such approach leads to
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higher computational and communication burdens respect to achieving an agree-

ment about the local assessments. Nonetheless, this solution could be preferable

in some cases since the agents share not only their assessments but also the infor-

mation on the basis of which the assessment is produced.

4.3 Case Study

A specific case study has been considered for the implementation of the assessment

approach generically described in the previous section. In the remainder of the thesis, a

road monitoring scenario is considered, where behaviours exhibited by ground vehicles

moving along a motorway section are observed, tracked, analysed and assessed.

With reference to this case study, both synthetic data, produced by means of a traf-

fic simulator, and real-world traffic data collected for the Next Generation SIMulation

(NGSIM) research project has been taken into consideration. This twofold approach is

adopted since it allows:

• To test the assessment process within a well-known scenario (when the simulated

data is leveraged);

• To generalise the assessment capabilities to actual vehicles in real traffic conditions

(by making all the necessary assumptions).

It is clear that, by considering a simulated scenario, an extreme simplification of the

actual problem has been introduced. This allows, however, focusing on a controlled

environment where the manoeuvres exhibited by the vehicles are to some extent known,

and thus for which some form of ground truth about the targets is known. In this case,

the assessment outcomes can be rated by means of appropriated performance metrics.

On the other hand, the use of real-world data allows to capture most of the peculiarities

of the monitored phenomena, but the lack of a ground truth against which to compare

the assessment results makes the performance evaluation step not straightforward. For

these reasons, the simplest and most intuitive approach to take seems to check whether

the assessment trends obtained for real data follows those provided by the synthetic

environment: this would somehow allow generalising the performances measured in the

latter case to the former.

4.3.1 Traffic Simulator

This Section provides a brief, generic introduction to the considered simulation envi-

ronment. More specifically, it describes how a generic road layout can be taken into
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account, the nature and capabilities of the monitoring agents and the characteristics of

the different types of vehicles accounted for in the implemented dynamic simulator.

4.3.1.1 Road Representation

The approach taken in the adopted simulator represents the considered road section

by means of a sequence of circular arcs, leveraging simple geometric techniques ([98]).

By varying the radius length and the angular value associated with each segment it is

possible to obtain a wide variety of road geometries, thus allowing the approximation

of generic road sections (Fig. 4.2). The only simplifying assumption made about the

road is the absence of intersections or roundabouts, and thus that the road represents a

continuous path for the vehicles, with no possibility for direction change1.
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Figure 4.2: Examples of road segments approximated as sequences of circular arcs

A nonlinear algorithmic transformation has been defined to translate generic Cartesian

coordinates into a reference system relative to the road. This reference system, in

each point of the road, has an axis aligned with the direction of the road, while the

other, perpendicular, axis is orientated towards the right of the road. In so doing two

‘curvilinear’ coordinates (s, r) are being considered, where s indicates the actual position

of the vehicle along the road, while r represents the lateral position on the road and

thus, to some extent, the lane occupied by the vehicle. With such approach it is possible

to consider a “straight road abstraction” for each generic road segment, as depicted in

Fig. 4.3.

4.3.1.2 Agents Characterisation

The monitoring tasks are performed by three different types of agent:

1This assumption seems realistic for short and mid-length sections of a motorway (between two
junctions).
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Figure 4.3: Abstract representation of a road segment

Fixed surveillance cameras along the road section : Arrays of surveillance cam-

eras are used for obtaining piecewise continuous tracking on the vehicles. An

array of surveillance cameras is defined as a sequence of cameras without any gap

between their fields of view, whose resultant images are fed to a single tracking

process; this, in the end, produces a unique set of tracks for the vehicles in the

combined coverages of the camera array. From a simplistic point of view, an array

of cameras can be represented as a single camera with extended coverage and sens-

ing range. Image processing and tracking algorithms are assumed to be executed

by the camera system, thus producing position and velocity estimation for each

vehicle in the field of view. More precisely, the tracking process should provide the

following information:

• Along-road position of the vehicle ([m]);

• Along-road speed of the vehicle ([m/s]);

• Lateral displacement of the vehicle with respect to the centre line ([m]).

It is assumed that this information is shared with monitoring Unmanned Aerial

Vehicles (UAVs) and/or the ground station by appropriated communication links.

UAVs equipped with Electro-Optical (EO) sensors: The video coverage for the

road section under consideration is also derived from the use of UAVs equipped

with electro-optical sensors. From a functional point of view, their contribution is

similar to that of fixed cameras; the assumed differences being a smaller sensing

range and varying position over time.

UAVs equipped with Ground Moving Target Indication (GMTI) radars : The

third class of agents involved in the scenario consists of UAVs equipped with GMTI

radars. Each UAV is assumed to be capable of tracking all vehicles in its sensing

range, thus performing:

• Measurement-to-track association;

• Track-to-track association;

• Position and velocity estimation.
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Under these assumptions, for each vehicle on the road segment, the following

information is available:

• Cartesian position (x, y) ([m]);

• Cartesian velocity vector (ẋ, ẏ) ([m/s]).

4.3.1.3 Targets Characterisation

The vehicles moving along the considered road section, which are the targets of the

monitoring action, can be classified as follow:

Regular driver : Maintains a speed below the limit and behave correctly respect to

the overtaking policy, the stopping distance and the lane occupation;

Cowboy driver : Can travel at a speed up to the limit, overtakes on both the side and

can occupy the second and third lane even if not overtaking;

Snail driver : Similar to the type 1 driver, but maintains a speed significantly under

the limit;

Cautious driver : Similar to the type 1 driver but keeps a greater stopping distance;

Racer driver : Can overtake on both the sides and is capable of travelling at speed

higher than the limit;

4.3.2 Real-World Data

For the purpose of testing the proposed assessment approach in real-world conditions,

the data collected for Federal Highway Administration (FHWA) NGSIM project ([2,

158]) has been taken into consideration. This is available to researchers in the field

of transportation and traffic flow theory and incorporates a collection of single-vehicle

related data, including processed trajectories in global and road-local reference frames.

The main reasons behind the use of this dataset are the following:

• It represents an established approach since the dataset has been adopted in nu-

merous previous studies, e.g., for:

– validating traffic flow models;

– interpreting traffic phenomena;

– calibrating traffic/vehicle models.

• It is one of the very few available datasets providing microscopic information about

the traffic flow (single vehicle trajectories);
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• The data representation perfectly fits the reference frame adopted within the sim-

ulator that has been used for producing synthetic data: this allows applying the

monitoring technique presented in this thesis to the NGSIM vehicle trajectories.

The information collected for the NGSIM project is split into three datasets, each of

which is relative to a different road segment located in the United States (Fig. 4.4):

• Lankershim Boulevard in the Universal City neighbourhood of Los Angeles, CA;

• Eastbound I-80 highway in the San Francisco Bay area in Emeryville, CA;

• Southbound US 101, also known as the Hollywood Freeway, in Los Angeles, CA.

(a) (b)

(c)

Figure 4.4: Schematic drawing and aerial photographs showing the lanes, traffic
signals, junctions and intersections configurations within the study areas of Lankershim

Boulevard (4.4a), I-80 (4.4b) and US-101 (4.4c).

Note that only the last two datasets have been taken into consideration in the following

since Lankershim Boulevard does not match the highway layout assumed for the road

in Section 4.3.1.1 . The complete structure for the NGSIM datasets entries is reported
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in Appendix C.1. For testing purposes, however, only a subset of the fields is taken into

consideration, more specifically those providing the following information:

• Vehicle ID;

• Time;

• Local X position;

• Local Y position;

• Speed;

• Acceleration.

This information is sufficient to reconstruct the target trajectory with respect to the

position, speed and acceleration within a 2-dimensional reference frame local to the

road.

Since its release, NGSIM data has been widely leveraged in traffic studies: nonetheless,

some analyses ([116]) have shown that the original data from the project is not totally

reliable, exhibiting indeed a low degree of accuracy for the following criteria:

Internal Consistency: The consistency between space travelled and velocity and ac-

celeration profiles;

Platoon Consistency: Physical consistency of the inter-vehicle spacing resulting from

the individual trajectories of the vehicles.
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Figure 4.5: Example of NGSIM trajectory, original and reconstructed speed profiles

A hybrid filtering and reconstructing approach has been proposed in [91] with the pur-

pose of fixing the position, velocity and acceleration profiles so that the two previous

criteria can be better satisfied. The proposed solution aims at:

• Rejecting the outliers, which give rise to unphysical accelerations, decelerations

and jerks;
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Figure 4.6: Examples of position profile correction for NGSIM trajectory

• Smoothing out random disturbances in the data.

This, however, should be achieved bearing in mind the need for preserving the driving

dynamics (stopping vehicles, shifting gears, etc.) and maintaining the internal consis-

tency of the trajectory.

Further details about the correction process applied to the trajectories are reported

in Appendix C.2 . Some examples of the procedure outcomes are here reported, with

reference to trajectory 1882 within the I-80 dataset:

• the reconstructed speed profile is depicted in Fig. 4.5, where it is possible to note

the effective outlier and high-frequency noise removal, yet preserving the target

dynamics;

• Since the correction of position errors cannot be appreciated plotting the whole

trajectory, in Fig. 4.6 two details are reported for the longitudinal position in time,

where sudden deviations clearly due to measurement errors have been corrected

leading to a smooth profile.
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Distributed Traffic Monitoring

Example

5.1 Introduction

In the previous chapter, the proposed general assessment framework has been outlined

in terms of basic ideas, fundamental components and data-sources characterisation. In

this chapter, a basic implementation example of such framework is presented. This

makes reference to the simulation scenario described in the previous chapter. The main

purpose of this work is to provide some early-stage indications about the assessment per-

formances achievable by the proposed conceptual-features based approach. Consistently

with the data-sources previously described, the specific application here considered is

the monitoring of road traffic by multiple cooperating agents. The proposed assessment

process simply consists in checking the value of high-level behavioural features by means

of a “fuzzy-like”, or hybrid, approach. This definition is due to the fact that for AB

features no fuzzification process is applied to crisp inputs: instead, learning tools have

been adopted for evaluating such features. From a functional point of view, these tools

are seen from the rest of the system as black boxes representing a semantic input variable

characterised by a single fuzzy set, thus producing outputs that comply with those of a

Membership Function (MF). In the following, an extremely simple implementation of a

FIS is presented, where semantic variables account for at most a single MF and a single

output rule is taken into account. Since a single MF is considered for each semantic

variable, the former indicates to what extent the concept associated with the variable

is “verified” by the given crisp input. More specifically, a Takagi-Sugeno-Kang (TSK)

fuzzy model ([149]) is adopted, where each KB/AB feature is represented as a semantic

variable. The values associated with these are produced by means of MFs (KB case)

or leveraging learning tools producing outputs in the range [0, 1]. Regardless of how

they are generated, the values for the semantic variables are used for calculating the

61
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output associated with the only rule considered, which clearly corresponds the output of

the inference/assessment process. The structure of the proposed assessment process is

represented in Fig. 5.4. The outlined approach, based on fuzzy logic, has been adopted

for the following reasons:

• It allows to easily implement a simple assessment process which can be used for

obtaining some early-stage indications about the considered problem;

• It appears as the most intuitive solutions given the not accurate, common-sense

knowledge for the assessment issue.

The simple implementation here considered has been used for investigating the effects

of consensus techniques implementation within the proposed framework. More specif-

ically, the assessment performances associated with two different consensus protocols,

agreement on measurements and agreement on features evaluation, are taken into con-

sideration and compared. Bearing in mind the layering introduced in Section 1.5.1, this

corresponds to comparing the implementation of consensus protocol within the sensor

or the monitoring level respectively.

5.2 Features

Several features of interest are here presented. These make reference to the traffic

monitoring scenario and the classification scheme introduced in Chapter 4.

5.2.1 KB Behavioural Features

Behavioural features are related to behaviours that could raise the level of interest in

a vehicle. Given a qualitative, non-specific, knowledge of the traffic dynamics problem,

the approach taken for the definition of behavioural features is pretty simplistic, based

on MFs. The considered KB features, which are associated with the semantic input

variables of the FIS, are:

Irregular Speed: Indicates that the speed of the vehicle is above allowed limit:

fis = smf (x,−0.1l, 0.1l) (5.1)
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where x is the difference between the actual speed and the limit l and and smf()

is a “s-shaped” MF defined as follow:

smf(x, a, b) =





0 x ≤ a

2
(
x−a
b−a

)2
a ≤ x ≤ a+b

2

1− 2
(
x−b
b−a

)2
a+b
2 ≤ x ≤ b

1 x ≥ b

(5.2)

Frenetic Driver: This feature is related to rate of overtaking manoeuvres over a certain

time-window:

ffd = smf (x, 1, 2) (5.3)

where x is the number of overtaking manoeuvres per minute1

Wrong Lane: This feature indicates the likelihood that the target is occupying a wrong

lane, that is, it should move to the lane on its right. The value for this feature is

obtained as the product2 of three fuzzy MFs:

fwl = fdp · fdf · fdl (5.4)

with

fdp = smf
(
dp, ds, 2ds

)
(5.5)

fdf = smf
(
df , ds, 2ds

)
(5.6)

fdl = smf
(
dl, wl/2, wl

)
(5.7)

where dp and df are the distances between the target and preceding and following

vehicles respectively, ds is the assumed safety distance, wl the lane width and dl

is the lateral displacement with respect to the preceding (or following) vehicle.

The functions fdp, fdf and fdl can be thought of as the marginal likelihood of the

‘Wrong Lane’ feature based only on the distance respect to the preceding vehicle,

the distance respect to the following vehicle and the lateral distance respectively.

All the considered membership functions are depicted in Fig. 5.1.

With reference to the features just introduced, it should be notice that:

• The actual thresholds characterising the membership functions could be differ-

ent for each agent, on the basis, e.g., of the agent confidence about the related

measurements, making the membership function more or less selective;

1Overtaking manoeuvres can be detected, e.g., by means of the pattern-matching technique proposed
by the authors in [157].

2The ‘product’ function has been adopted in this case for implementing a fuzzy T-norm.
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Figure 5.1: Adopted fuzzy membership functions

• Different agents could have different types of information about the targets, e.g.,

in the case where the local tracks make reference to different informative contexts,

case not considered at this stage. The assessment logic implemented by each agent

could thus rely not only on different thresholds for the membership functions, but

even on completely different variables3.

3Consider, for example, the case of security cameras assessing the ‘Wrong Lane’ feature: instead of
geometrically evaluating from the image the distances between the vehicles (dp,df ), the agents could
just analyse the pixels surrounding the target on the left side, for assessing if other vehicles are present.
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5.2.2 AB Behavioural Features

The purpose of average-based features is to assess given aspects of the target behaviour

on the basis of what is perceived as “normal” and what is not. The great advantage of

this approach, conceptually more complex than the one adopted for KB features, is that

no field-specific knowledge is required. By adopting behavioural features, there is no need

to encode the experts’ knowledge in the form of a rules set: the system is made able to

monitor the targets and learn what is normal by itself, being thus capable of detecting

anomalous behaviours. The fuzzy approach adopted in Section 5.2.1 for KB features

cannot be leveraged for this different task: specific knowledge of the considered problem

is indeed required for defining the MFs. This problem could be partially overcome by

automatically retrieving the coefficients4 for the Sugeno-type output function on the

basis of labeled data (if available). Nonetheless, a characterization of the MFs involved

in the process would be still required, making this solution not the most suitable for

the considered problem. For this reason, the field of machine learning has been taken

into consideration, and the actual tools adopted in the following are Gaussian Processes

(GPs), ([119]). These have been chosen because they allow retrieving an analytical

stochastic model for the behaviour of interest, in terms of mean value and variance.

Respect to other learning tools that allow to predict the output associated with a new

input without however providing any indication about the underlying model, e.g. neural

networks, the use of GPs leads to a better understanding of the considered phenomenon

and uncertainty bounds.

A GP is a stochastic process used for modelling an unknown, usually referred as ‘latent ’,

function on the basis of a set of sample measurements. The implementation of ‘GP

Regression’ or ‘GP Classification’ techniques requires a two-step approach:

• Training Step: a set of training points (each consisting of a domain point and

the corresponding function value) is used to identify a set of parameters, denoted

as ‘hyperparameters’, which maximises the likelihood of the training points with

respect to the stochastic process;

• Test Step: given the optimised hyperparameters, the stochastic model approx-

imating the latent function is completely defined. This can then be leveraged

for:

– producing a prediction of the function value at a point not included in the

training set;

– calculating the likelihood of a given function value for a domain point.

With reference to the considered scenario, two relevant AB features have been identified:

4Assuming linear or polynomial output functions, which is usually the case.
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Anomalous Speed: this feature aims to assess whether the vehicle is moving at a “rea-

sonable” speed or not, on the basis of the speed of other vehicles in the proximities.

The purpose of this feature is to identify vehicles that are not responding properly

to unaccounted traffic obstacles, e.g. localised and unpredictable slow-down in the

traffic flow. This function is implemented through the Gaussian process regression

technique (Fig. 5.2), defining a reference speed profile along the road, iteratively

trained using the collected data and thus self-adapting.
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Figure 5.2: Gaussian process regression for the speed profile along the road

Frenetic Driver : this feature relates the ‘overtaking ratio’ (number of overtaking

manoeuvres detected during a time interval) to the congestion state of the road,

quantified by the dedicated context feature (Section 5.2.3). The objective is to

classify the targets as “regular” or “frenetic” drivers, where the latter exhibit a

significantly higher overtaking ratio respect to the former, depending also on the

congestion index for the road. The idea is to consider a bi-dimensional surface

where the coordinates are the congestion index (x) and the overtaking ratio (y),

and to obtain a partitioning of such surface in two zones, which enclose the points

associated with regular or frenetic drivers, respectively. This can be obtained

using a Gaussian process classifier, which, once trained, estimates the likelihood

for each point on the plane of being related to a frenetic5 driver. Also in this case

the training data for the GP is periodically updated for coping with a dynamic

scenario where traffic condition can change over time. An example of Gaussian

process classifier is depicted in Fig. 5.3.

For simplicity, only this AB version of the ‘Frenetic Driver’ feature is considered

in the following

5The likelihood for the point to be related to a regular driver is obviously the complementary value
to 1.
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Figure 5.3: Likelihood contours produced by GP analysis

5.2.3 Context Features

The most intuitive example of contextual feature for the considered scenario is the

congestion level of the monitored road section: vehicles moving at a speed under the

allowed limit but not adequate to the actual congestion could indeed still represent a

TOI. Congestion indexes are thus defined as follow:

cj =
∑

k∈N+(j)

∥∥pj − pk
∥∥
2

(5.8)

c =





(
wc −

1
nv

nv∑
j=1

cj

)
/wc if nv > 1

0 if nv ∈ {0, 1}

(5.9)

where c and cj are the congestion indexes calculated by the monitoring agent (overall

and relative to target j respectively), while N+(j) is the set of vehicles in front of target

j at a distance smaller or equal to a threshold wc, pk is the position of vehicle k, and

nv is the number of vehicles tracked. The overall index c normalises the average of

the vehicle-related indexes respect to the window dimension, and lies between 0 (no

congestion at all) and 1 (heavy congestion).

5.3 Local Target Assessment

5.3.1 Context Information Integration

As mentioned when context features have been introduced, the rationale behind their use

is that the interpretation of some behaviours is usually not “absolute”, but may change

depending on the surrounding environment. Context features can thus be thought of as
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“weights” for the behavioural context-dependant features, capable of highlighting, e.g.,

behaviours that would be considered legit in standard traffic condition, but are alarming

in a congested scenario. For this reason, it is necessary to modify the membership

functions for context-dependent features on the basis of the context information:





f ′k = g (fk, c), if fk is influenced by context

f ′k = fk otherwise

where k = 1 . . . , nf is the index for the considered features, fk is the MF associated

with feature k, c a context-related index (e.g., the one defined in Eqn. 5.9) and g is an

adaptation function. An example of adaptation is provided in Fig. 5.1e, for the case of

the “Irregular Speed” MF.

5.3.2 Local Belief Index

The last step involved in the local target assessment consists in the combined analysis of

the possibly adapted behavioural features: the case where the monitored vehicle should

be classified as a TOI is identified with the “presence” of at least one of the feature

considered. For this reason, the following semantic rule is considered:

“If the vehicle has an irregular speed or a speed that differs greatly from neighbouring

vehicles, or it moves on a wrong lane, or it is moving in a frenetic manner, then it is a

TOI”.

Within the fuzzy-like approach adopted, this rule can be stated as:

“IF X1 is ‘Irregular Speed’ OR X2 is ‘Wrong Lane’ OR X3 is ‘Anomalous Speed’ OR

X4 is ‘Frenetic Driver’ THEN u = 1”

Some considerations about the rule are necessary:

• Xi are the crisp inputs associated with the features;

• In classic TSK models, an inference rule lists crisp inputs and MFs. However,

in the proposed rule, semantic input variables are specified instead of MFs. This

can be done because at most a single MF is associated with a semantic variable

(avoiding any ambiguity6) and because it allows taking into consideration the case

of AB features, where no actual MF is leveraged;

• The rule component “X2 is ‘Wrong Lane’ ” has been adopted for legibility and

compactness reasons, but it should be expanded as “X2,1 is fdp AND X2,2 is fdf

AND X2,3 is fdl”, as described in Section 5.2.1.

6The rule complies with the standard notation assuming that the MF associated with a semantic
variable has the same name of the latter.
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The rule ‘firing strength’, or weight, w is calculated by translating the OR conjunctions

with the max operator (T-conorm). In the considered case, the context information is

assumed to be applied to ‘Irregular Speed’ and ‘Frenetic Driver’ features only, and thus:

w = max
(
f ′is, fas, f

′
fd, fwl

)
(5.10)

The final inference output can then be calculated by applying the rule weight to the rule

output. In the simple case considered, because of the constant output for the only rule

adopted, this can be written as:

f(u,w) = w (5.11)

The assessment result is thus defined as:

πj = max
(
f ′j,is, fj,as, f

′
j,fd, fj,wl

)
(5.12)

where πj represents the overall local belief of the agent in the fact that the target j

exhibits at least one of the behaviours of interest, and thus represents a TOI. More

generally:

πj = max
k

f ′j,k (5.13)

where k spans over the set of considered features.

IrregularSpeed 

WrongLane 

AnomalousSpeed 

FreneticDriver 

output 

f(u)

fis

(sugeno)

1 rule

Figure 5.4: Conceptual structure of the assessment/inference process

5.4 Distributed Target Assessment

The desired outcome of the monitoring process is a distributed assessment of each target,

obtained as result of an agreement process among all the agents in the team. Such result

can be achieved by means of the ‘belief consensus’ algorithm presented in Section 3.4.

With this approach, the local assessment obtained by means of (5.13) is interpreted as
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the local belief about the fact that the vehicle is a TOI and is used as consensus state

within the following update rule:

πi,q(k + 1) = πi,q(k)
βi

∏

j∈Ni

πj,q(t)
γ (5.14)

This is the same of Eqn.3.6, where the index q has been introduced for denoting the

considered target.

5.5 Simulations

With reference to the example scenario described in Section 4.3, a simulation framework

implementing the features presented in this chapter has been developed. Numerous

simulations have been performed and the numerical results are provided in the remainder

of the chapter. The proposed simulations are aimed at testing the effectiveness of the

different components of framework rather than the overall system. This approach has

been taken since the complexity of the proposed assessment system suggests that, in

order to fully understand the framework outputs, it is necessary to have deep insight

into the performances and limits of the individual components. For this reason, in the

remainder of the chapter the effectiveness of the distributed identification of just two

individual features is tested, and not the final classification as TOI. Furthermore, two

different consensus approaches for the features distributed evaluation are implemented

and compared.

5.5.1 Simulation Description

5.5.1.1 Scenario Considered

Complying with the case study outlined in Section 4.3, a three-lanes motorway is here

considered with multiple vehicles moving along, monitored by three different agent types:

EO UAVs, GMTI UAVs and fixed cameras. The performed simulations take into account

only a subset of the features introduced in Section 5.2.1: the objective of the agents is

indeed to assess the two KB features ‘Wrong Lane’ and ‘Frenetic Driver’ in a distributed

manner.

5.5.1.2 Performance Assessment

As an established approach, the framework ability to detect TOIs is evaluated by com-

paring the obtained results with some form of Ground Truth (GT). However, unlike a

common estimation problem, where the GT is known, the objective of the proposed
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work is to identify and assess complex behaviours; in this case the GT is not directly

available in numeric form and a more subtle definition is required. In the considered

case, targets trajectories are obtained as result of a dynamic simulation: the GT is not

known “a priori”, but can be defined as the result of centralised assessment policies

applied to perfect data. Obviously, for having a consistent comparison between the de-

centralised assessments and the GT, the centralised policies must be similar to those

locally adopted by the agents. For this reason, the GT assumed valid within the follow-

ing simulations consists of the outcomes of assessment logics similar to those adopted

by the single agents but centrally applied to “perfect”7 data. At each time step the

results of the centralised assessment are compared with those obtained cooperatively by

the agents, and the distributed performance is thus quantified as the percentage of time

steps where the two methods provide the same results. More precisely, a threshold value

is defined for each feature and, on the basis of these values, for each time step, vehicle

and feature one of the following cases occurs:

• Correct detection, if the distributed and centralised approaches provide beliefs

both above or under the threshold;

• False positive, if the distributed approach leads to a belief value above the threshold

while the GT is below the threshold;

• False negative, if the distributed approach leads a belief value under the threshold

and the centralised assessment above the latter.

The results shown in the Section 5.5.3 make reference to the total number of correct, false

negative and false positive detections obtained during the entire simulation, averaged

over all the vehicles.

5.5.1.3 Comparison with Average-Consensus

With the purpose of having a comparison term, in addition to the belief consensus

outlined in Section 5.4, a basic average-consensus approach has been implemented. This

consensus protocol is capable of reaching an agreement on track values instead of belief

values, averaging position and velocity information provided by all the agents. Once

all the agents share the same tracks, the assessment process is locally undertaken , on

the basis of common logics, thus providing identical resulting belief values for all the

agents. These results are then compared with the assumed GT (centralised assessment

on perfect data) for having a performance indicator comparable with the one used for

belief consensus. In summary, the two consensus approaches adopted are:

7This means to have an exact knowledge of position and velocity for all the vehicles in the scenario.
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Belief Consensus : Consensus is reached about the likelihood of a feature, that is the

feature value. This solution is conceptually slightly different from the approach

described in Section 5.4, where the consensus protocol is applied to the overall

local assessments, yet it still represents a correct implementation of the technique:

a feature value is indeed interpreted as the belief of the monitoring agent in the

fact that target is exhibiting the characteristic associated with that feature. The

protocol in Eqn. 3.6 has been adopted for this case.

Track Consensus : The agents reach an agreement about the track values (position

and velocity) for the targets, and calculate then the features values on the basis

of the agreed track. For this purpose, the protocol in Eqn. 3.4 has been used.

Lemma 5.1. Assuming a connected undirected topology for the graph associated with

the communication network, both ‘Belief Consensus’ and ‘Track Consensus’ converge to

an agreed value for all the agents in the network.

Proof. The lemma is proved by simply noticing that a connected undirected graph can

be considered as a strongly connected digraph. Then, Theorem 3.12 guarantees the

convergence of both the algorithms.

5.5.2 Simulation Parameters

The parameters adopted for the simulations are the following:

• Time parameters:

– Simulation step time: 0.5 s;

– Simulation time: 50min;

• Scenario parameters:

– Road segment length: ∼20Km;

– Number of lanes: 3;

– Max number of vehicles: 30;

– Vehicles speed range: 10–30

m/s;

• Consensus algorithms parameters

(‘Belief’ and ‘Average’):

– Consensus Steps: 10 ;

– Consensus Gain:

(
1/(n − 1)

)
∗ 0.8 = 0.26

where n = 4 is the number of

agents involved in the consensus

process;

• Fixed Camera Parameters:

– Sensing Range 8 : 1000m;

– Coverage factor 9: 1/3 or 1 (full

coverage);

8Maximum distance for a trackable vehicle.
9Portion of monitored road respect to the total length.
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– Longitudinal position error

Standard Deviation (SD): 2m;

– Lateral position error SD: 0.5m;

– Speed tracking error SD:

0.5m/s;

• UAV Camera Parameters:

– Sensing Range: 400m;

– Number of camera-equipped

UAVs : 2;

– Longitudinal position error SD:

2m;

– Lateral position error SD: 0.5m;

– Speed tracking error SD:

0.5m/s;

• GMTI Radar Parameters:

– Number of GMTI-equipped

UAVs: 1;

– Position tracking-error SD:

0.5m;

– Velocity tracking-error SD:

0.5m/s.

The network between the GMTI UAV, the two EO UAVs and the array of fixed cameras

is assumed to enable bidirectional communications and to contain a spanning tree in the

associated graph. Under these conditions Lemma 5.1 is verified, guaranteeing consensus

for all the agents.

5.5.3 Simulation Results

The simulations evaluate the individual values of a KB and a AB feature, ‘wrong lane’

and ‘frenetic driver’, respectively. The numeric results here presented are relative to

two different conditions for the video coverage provided by fixed cameras: a first case

of partial coverage (1/3 of the road length) and a second case of full coverage; all the

other parameters are the same for the two cases. It is important to notice that, even if

a single simulation for each condition has been run, the results provided are statistically

relevant since a huge number of vehicles have been monitored during the 50 minutes of

simulation. All the numeric results are summarised in Table 5.1.

Table 5.1: Numeric results for the comparison of the two consensus approaches

33% Coverage Case 100% Coverage Case

Frenetic Driver Wrong Lane Frenetic Driver Wrong Lane

Correct
Belief Cons. 86 87 92 95
Track Cons. 74 63 56 93

False positive
Belief Cons. 5 13 4 5
Track Cons. 17 36 38 6

False Negative
Belief Cons. 9 < 1 4 < 1
Track Cons. 9 < 1 6 < 1
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5.5.3.1 Results with 1/3 of Video Coverage

The percentages of correct, false positive and false negative detections obtained by means

of belief consensus and track consensus in the case where fixed cameras cover one-third

of the overall road length are depicted in Fig. 5.5.

Under these conditions, the approach proposed, which is based on consensus about

local assessments, provides results highly consistent with the GT (first two columns of

Table 5.1): the method outcomes correspond indeed to those provided by the centralised

assessment process in more than 85% of the cases. The effectiveness of this method is

then confirmed comparing these results with those obtained applying average-consensus

to the tracks values under identical simulation conditions. From this comparison, it

can be noticed that belief consensus achieve better results10 than track consensus for

both the considered features. For example, in the case of ‘Wrong Lane’ feature, the

percentage of correct detections for the track consensus technique is considerably lower

respect to that provided by consensus on assessments (63% against 87%).

Figure 5.5: Detections fractions for the considered features. Results provided by
belief consensus (inner circle) and track consensus (outer ring) in the case of 1/3 of

video coverage.

5.5.3.2 Results with Full Video Coverage

A simulation similar to that of Section 5.5.3.1 has been performed in the case of full

video coverage, for the purpose of investigating the relevance of imagery information.

Results are depicted in Fig. 5.6 for both the consensus approaches and both the features.

Simulation results for this case (last two columns of Table 5.1) confirm the greater

effectiveness of the belief consensus approach respect to track consensus, providing better

results for both the considered features. By comparing the detection ratios obtained

under this simulation condition respect to the ‘1/3 coverage’ case, it is possible to note

that for belief consensus a performance improvement is obtained in the assessment of

10i.e., higher correct detections and lower false positive detections ratios
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both the considered features. On the other hand, in the case of the average-consensus

approach, worst performances can be observed when the ‘Frenetic Driver’ feature is

taken into account. The reasons for this increase in false alarms (and, obviously, for

the associated decrease of correct detections) are not immediate but can be probably

explained considering that video measurements from fixed cameras are less accurate

respect to those produced by GMTI sensing on the longitudinal direction. This can lead

to errors in the calculation of the congestion index, which sensibly affects the ‘Frenetic

Driver’ feature: as can be seen in Figure 5.3, indeed, in presence of high values for

the congestion index the target is classified as “frenetic” even when small numbers of

overtaking manoeuvres are detected. In such scenario, the agreement on local assessment

seems to be capable of better rejecting the described type of error, while simple averaging

is more sensitive to the increased quantity of “low-quality” information collected.

Figure 5.6: Detections fractions for the considered features. Results provided by
belief consensus (inner circle) and track consensus (outer ring) in the case of full video

coverage.

5.6 Conclusions

In this chapter the distributed target assessment problem has been considered, propos-

ing an approach that complies with the conceptual layering for a monitoring framework

that has been previously outlined (Sections 1.5 and 4.2). Focusing on the functionalities

of the monitoring layer, a set of high-level target features allowing to accomplish the as-

sessment task have been theoretically and practically11 described. Finally, two different

approaches to distributed assessment, based on two different consensus protocols, have

been compared by means of numerical simulations.

The reported simulations show that distributed assessment based on consensus tech-

niques is a feasible approach for implementing a framework dedicated to traffic moni-

toring and, more generally, to behaviour monitoring and TOI identification. From the

results obtained, where assessments based on features-consensus are better than those

11With reference to a specific case-study.
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provided by measurements-consensus in all the cases, the idea of implementing com-

mon situational awareness within a team of cooperating autonomous agents by means

of consensus at high conceptual-level seems reasonable and motivated.

Other than the performance improvement described in Section 5.5, consensus at high

conceptual-level (e.g., on local assessments) has the advantage of sensibly limiting the

communication burden in cases where the amount of information leveraged for assess-

ing the vehicle behaviour is considerable. Furthermore, it seems a particularly suitable

solution for heterogeneous teams, where different agents can measure different charac-

teristics of the target: in such case a policy based on agreement about measurements

could indeed be not feasible, while, on the other hand, each agent would probably still

be able to assess certain limited aspects of the target and share this information with

the cooperating agents.



Chapter 6

Behaviour Assessment

6.1 introduction

In the previous chapter a basic implementation for an automated monitoring and as-

sessment framework has been presented. This implementation characterises the features

by means of fuzzy MFs and derives the assessment about a target on the basis of a

t-conorm aggregation operator. Such a simplistic approach has been adopted for the

following reasons:

• For obtaining immediate indications about the effectiveness of the proposed dis-

tributed approach to target assessment;

• For testing at what level of abstraction it is more convenient to implement a

consensus process among cooperating agents.

Given the promising results provided by the simple fuzzy-like approach considered so far,

the analysis of assessment techniques based on high conceptual-level features appears as

worthy of further investigation. More precisely, it seems necessary to define:

• A more rigorous approach to the characterisation and evaluation of behavioural

features;

• A proper test policy allowing to jointly account for for multiple features involved

in the assessment process .

In order to address these requirements, this chapter provides a novel stochastic de-

scription of behavioural features. This description relies on a hierarchical architecture

capable of dealing with features of arbitrary conceptual complexity. Furthermore, an

77
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hypothesis-testing based decision policy has been developed allowing for the classifica-

tion of a target as TOI on the basis of the multivariate distribution associated with the

set of considered features.

Lastly, the assessment approach based on these novel analytical tools has been tested

through an extensive set of simulations. These have taken into account both a simu-

lated environment and real-world data and have provided valuable insights about the

effectiveness of the proposed techniques.

6.2 Probabilistic Representation for the Behavioural Fea-

tures

6.2.1 Features Properties and Classification

One of the main contributions of the thesis is to propose an assessment approach where

a probabilistic description is adopted for the behavioural features of a target. These are

assumed to have a dimensionless value in the range [0, 1], where 0 indicates that the

considered feature is not exhibited at all by the target, while 1 means that the feature

is fully consistent with the target behaviour. The lack of an actual physical process to

model enables a certain degree of freedom in the choice of the distributions family to

adopt. Beta distributions (Fig. 6.1) have been chosen for representing the likelihood of

the feature values since:

• Their domain matches the feature value range;

• They offer great flexibility in the definition of the probability curve, allowing, e.g.,

exponential-like functions and both symmetric and asymmetric bell-type curves.

The fact that a random variable X follows the beta distribution is denoted in the fol-

lowing as:

X ∼ beta [α, β] (6.1)

where α and β are the distribution parameters. Each feature is assumed to be indepen-

dent from the others1, and the joint Probability Density Function (PDF) will be thus

considered2 fΞ(ξ
1, ξ2) = fΞ1(ξ1)fΞ2(ξ2) for the case of two random variables Ξ1 and Ξ2.

The nature of a feature can be:

1They likely represent distinct and uncorrelated aspects of the target behaviour.
2In the following, for the purpose of avoiding a cumbersome notation, when referring to a PDF or

CDF, the considered random variable will not be explicitly indicated, but it will be implicit in the

argument: fΞi

(

ξi
)

→ f
(

ξi
)

, FΞi (γi) → F (γi).
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Figure 6.1: Examples of beta distributions with different parameters

• Instantaneous: the feature makes reference to any target condition that can be

evaluated at a single time-instant, e.g., its speed;

• Non-instantaneous: the feature makes reference to coordinated and persistent

conditions for the target, e.g. an overtaking manoeuvre.

‘Instantaneous’ features are described and analysed in Section 6.2.2, while the others

(“Non-instantaneous”) are not further considered within this chapter. The focus of

this is, indeed, on assessing whether the proposed approach is suitable to the problem

of threat assessment, and such analysis can reasonably be performed by considering

a minimal feature set of reduced complexity. Nonetheless, the problem of detecting

coordinated (time-correlated) behaviours of interests is addressed in Chapter 7.

6.2.2 Features Description

This section describes the proposed procedure for deriving the Probability Density Func-

tions (PDFs) associated with instantaneoustarget features. Two possible approaches to

features definition are here presented, depending on its conceptual complexity. Then,

two feature examples making reference to behavioural aspects of interest for the problem

of traffic monitoring, ‘Irregular Speed’ and ‘Wrong Lane’ occupation, are presented.

6.2.2.1 Layered Description

The features considered in the proposed work represent characteristics of a target at

both low and high level of abstraction. Some features can indeed make reference to

straightforward and directly measurable aspects of the target behaviour, while others

could require a more complex reasoning, possibly involving multiple conditions. For

this reason, two different approaches are proposed for the probabilistic definition of a

feature: a single-layer method and a hierarchic, multi-layer approach. The proposed lay-

ered representation for behavioural features has been preferred to other approaches, e.g.

conditional probabilities, because it provides a more immediate and intuitive description
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of abstract concepts for which the definition of proper multivariate PDFs would not be

easy to derive and motivate.

Single-Layer Features This category includes features that can be defined by means

of a single beta distribution, on the basis of a generic number k of measurements indi-

cated as Z = [z1, z2, . . . , zk]. Considering the generic feature i for a target3, its value

corresponds to a random variable ξi distributed as follow:

ξi ∼ beta
[
gα,i (Z) , gβ,i (Z)

]
(6.2a)

Z ∼ f
(
Z∗
)

(6.2b)

where Z∗ is the vector of the actual quantities measured, f is a generic distribution

representing the measurement error, gα,i and gβ,i are functions such that R
k → R,

which specify the values for the parameters α and β, respectively. Note that, even if a

two-level hierarchy of distributions is considered, this case is referred to as ‘single-layer’

since only one level deals with the problem of behaviour assessment (Eqn. 6.2a), while

Eqn. 6.2b simply describes the sensor model4 .

Multi-Layer Features A multi-layer description is suggested when the feature as-

sessment is a complex task, involving multiple measurements and requiring more con-

ditions to be considered at the same time. In such cases the adoption of a hierarchical

stochastic description is proposed, where the characterisation of a random variable at a

given level is provided as a function of the random variables introduced at the previous

level5. At the top of the hierarchy there is the feature of actual interest (6.3a), indicat-

ing to what extent a target is compatible with the feature concept, while the bottom

layer (6.3g) corresponds with the sensor/estimation level. All the distributions at levels

2 to n − 1 (6.3f-6.3b) are referred in the following as sub-features and represent partial

aspects involved in the feature assessment. The analytic description of the described

3Target index is omitted for simplicity.
4Or the accuracy of the related estimation process if such step is performed.
5Makes an exception, of course, the first (bottom) layer.
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hierarchy is the following:

ξi ∼ beta

[
gα,in

(
ξin−1

)
, gβ,in

(
ξin−1

)]
(6.3a)

ξin−1,mn−1
∼ beta

[
gα,in-1,mn-1

(
ξin−2

)
, gβ,in-1,mn-1

(
ξin−2

)]
(6.3b)

...

ξin−1,1 ∼ beta

[
gα,in-1,1

(
ξin−2

)
, gβ,in-1,1

(
ξin−2

)]
(6.3c)

...

ξi3,1 ∼ beta

[
gα,i3,1

(
ξi2

)
, gβ,i3,1

(
ξi2

)]
(6.3d)

ξi2,m2
∼ beta

[
gα,i2,m2

(Z) , gβ,i2,m2
(Z)
]

(6.3e)

...

ξi2,1 ∼ beta
[
gα,i2,1 (Z) , g

β,i
2,1 (Z)

]
(6.3f)

Z ∼ f
(
Z∗
)

(6.3g)

where i denotes the considered feature, mj is the number of sub-features defined at

level j with j = 2, . . . , n − 1, ξij =
[
ξij,1, . . . , ξ

i
j,mj

]
is the vector of level j sub-features

and n is the total number of layers involved in the feature definition. Parameters α

and β for the distributions in the hierarchy are defined by means of two families of

functions gα,i =
[
gα,i
2 , . . . ,gα,i

n

]
, gβ,i =

[
gβ,i
2 , . . . ,gβ,i

n

]
where6 gi

j : R
mj−1 → R

mj , while

gi
2 : Rk → R

m2 . The single elements of a vectorial function gi
j are indexed as gij,h with

h = 1, . . . ,mj.

6.2.2.2 Feature Examples

Two examples of target feature are here considered, ‘Irregular Speed’ and ‘Wrong Lane’,

which can be related to the two typologies previously introduced (single and multiple

layer, respectively).

‘Irregular Speed’ Feature The Irregular Speed feature characterises vehicles that

exceed the local speed limit. A speed limit entails a rigid, binary condition (either the

limit is respected or it is not), and thus a probabilistic approach for such assessment

could be considered inappropriate. Nonetheless, a probabilistic description of the feature

is here used for two main reasons:

6Superscripts α and β are dropped in the remainder of the section for avoiding a cumbersome notation.
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1. It is relevant to provide a simple example of how to define a probabilistic descrip-

tion of a feature. This approach will be valid for various different aspects of a

moving vehicle;

2. Features are defined with the final purpose of detecting drivers representing possi-

ble threats: when moving slightly faster than allowed, a vehicle does not represent

a more likely threat respect to when its speed is barely under the limit. There-

fore, reduced sensitivity to speed deviations near the speed limit is required in the

feature definition in order to have a reasonable assessment, by “smoothing” the

binary condition associated with the concept of limit.

The definition for the Irregular Speed feature is quite immediate, since it considers only

the measured speed and a known limit: the feature can thus be described on the basis

of the single-layer approach introduced in Section 6.2.2.1. The PDFs considered for this

specific feature are the following:

ξis ∼ beta

[
κ

σ2v
Exp

(
sd
ν

)
,
κ

σ2v
Exp

(
−
sd
ν

)]
(6.4a)

sd ∼ N
[
s∗ − sl, σ

2
v

]
, (6.4b)

which are the proposed implementation for Eqn. 6.2a and 6.2b, respectively. In Eqn.

6.4a and 6.4b, s∗ is the real speed of the target, sl the known limit and the following

parameters are adopted:

• κ, modulus adaptation: introduces a degree-of-freedom in the definition of the

resulting selectiveness of the PDF;

• ν, tolerance adaptation: defines the correspondence between the input data and

the distribution mode position. This parameter thus defines if some given data

should lead to a “high” or “low” value for the feature, regardless of the selectiveness

of the associated distribution.

• σ, measurement accuracy: reflects the uncertainty in the measurement/estimation

process. Similarly to k, this parameter symmetrically increases or reduces α and β,

altering the selectiveness of the function without changing the distribution mean.

The definition provided in (6.4a) clearly indicates the effect of the measured sd on the

PDF shape: when sd = 0, that is the target is moving almost at the traffic speed limit,

α and β are the same and the feature PDF is centred in 0.5 (target is “in between”

respecting the limit and exceeding it). By increasing sd, α increases and β decreases,

while the opposite, decreasing α and increasing β, happens when the difference sd is

reduced. This is due to the fact that as sd tends to either positive or negative values,

α and β will have opposite derivatives (one increases, the other decreases), shifting
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the distribution to the left or right. Regarding the functions used for defining the

beta distribution parameters, the exponential form has been chosen on the basis of two

requirements:

• α and β should be always positive;

• The modulus of α and β should grow quickly for sd > 0. Parameter ν can then

be used for “slowing down” the growth of the exponential term, and thus to delay

the “alarm” condition. This leads to a less rigid assessment of the feature, where

drivers are allowed to slightly exceed the limit before the feature assumes high

values.

‘Wrong Lane’ Feature The Wrong Lane feature characterises vehicles that are

moving along the overtaking lane without an apparent valid reason, that is they do not

have any close preceding or following vehicle, and thus they cannot be considered in

the middle of an overtaking manoeuvre. The feature is described making reference to a

straight road and a local reference system with the s axis in the direction of the road and

the r axis orthogonal to the former. A detailed description of such road representation

and how it can be considered representative of generic road segments is reported in

Section 4.3.1.1.

Wrong Lane assessment is not a straightforward task, and it is thus implemented by

means of the multi-layer approach described in 6.2.2.1. In this case a 3-levels hierarchy

has been adopted7: level 1 (bottom level), corresponding to the sensing/estimation

process (6.3g), level 2 (middle level), implementing a layer of sub-features (6.3f-6.3e)

and level 3 (top level), representing the feature of actual interest (6.3a).

Level 1 (bottom level): A stochastic description of the initial quantities lever-

aged for the feature assessment is here provided:

δrp ∼ N
[
r∗v − r∗p, 2σ

2
r

]
(6.5a)

δrf ∼ N
[
r∗v − r∗f , 2σ

2
r

]
(6.5b)

δsp ∼ N
[
s∗p − s∗v, 2σ

2
s

]
(6.5c)

δsf ∼ N
[
s∗v − s∗f , 2σ

2
s

]
(6.5d)

where σ2r and σ2s are the error variances for lateral and longitudinal measurements,

respectively, while r∗ and s∗ are the real coordinates of the considered (v subscript),

preceding (p) and following (f) vehicles. δrp, for example, is a random variable

7For the sake of notational simplicity and for having a more explicative nomenclature, the feature
name is not reported in the sub-feature symbols, and the numerical indexes in (6.3) have been replaced
by names denoting the aspect represented by each sub-feature.
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describing the lateral distance between the considered vehicle and the preceding

one, while δsp provides a stochastic description of the longitudinal distance between

the two same vehicles. Similar considerations apply to δrf and δsf .

Level 2 (middle level): This level defines random variables representing various

conditions on the relative position between adjacent vehicles. The sub-feature ξδrp ,

for example, indicates to what extent the lateral distance between the considered

vehicle and the preceding one matches the condition of being on a wrong lane;

the same is valid for the other variables, where the letters r, s, p, f indicate lateral

distance, longitudinal distance, preceding and following vehicle, respectively.

This level of the hierarchy is implemented by the following equations:

ξδrp ∼ beta


 κ

σ2r
Exp

((
δrp −∆1

) (
∆2 − δrp

)

ν

)
,

κ

σ2r
Exp

(
−

(
δrp −∆1

) (
∆2 − δrp

)

ν

)
 (6.6)

ξδrf ∼ beta



κ

σ2r
Exp




(
δrf −∆1

)(
∆2 − δrf

)

ν


 ,

κ

σ2r
Exp


−

(
δrf −∆1

)(
∆2 − δrf

)

ν





 (6.7)

ξδsp ∼ beta


 κ

σ2s
Exp

((
δsp −∆

)

ν

)
,
κ

σ2s
Exp

(
−

(
δsp −∆

)

ν

)
 (6.8)

ξδsf ∼ beta



κ

σ2s
Exp




(
δsf −∆

)

ν


 ,

κ

σ2s
Exp


−

(
δsf −∆

)

ν





 (6.9)

where ∆ is a threshold value for the longitudinal vehicle separation, while ∆1

and ∆2 are threshold values for the minimal and maximal lateral vehicle separa-

tion, respectively8. From a numerical point of view, the PDFs for the variables

ξδrp , ξδrf , ξδsp and ξδsf can be easily obtained by replacing the variables δsf , δsp, δrf

8 In all the formulas reported in this section the effects of parameters κ, σ and ν are the same of
those presented for the Irregular Speed feature, but the actual values could be different for each case;
no subscripts have been added to the parameters labels for the sake of notational simplicity.
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and δrp with the respective Maximum Likelihood Estimators (MLE) , simply pro-

vided from arithmetic operations on the assumed vehicles coordinates:

δ̂sf = sv − sf (6.10)

δ̂sp = sp − sv (6.11)

δ̂rf = rv − rf (6.12)

δ̂rp = rv − rp (6.13)

where r and s are the assumed (directly by measurements or by an estimation pro-

cess) lateral and longitudinal coordinates of the considered (v subscript), preceding

(p) and following (f) vehicles.

Level 3 (top level): At the top of the hierarchy there is the feature of actual

interest, ξwl, indicating to what extent the target is compatible with the Wrong

Lane condition:

ξwl ∼ beta


κ


Exp

(
ξδrpξδrf ξδspξδsf

ν

)
− η


 ,

κ
1

Exp

(
ξδrpξδrf ξδspξδsf

ν

)
− η




(6.14)

where η ≃ 1 is a parameter that allows shaping the PDF when the distribu-

tion mode is close to 0. The numerator of the exponential functions arguments ,

ξδrpξδrf ξδspξδsf , is the product of the sub-features introduced at the previous level

of the hierarchy. This is due to the fact that all the conditions represented by

the sub-features are required to be verified for considering the vehicle on a wrong

lane (high value for the feature ξwl). As soon as one of the ξδ#∗
approaches zero,

indeed, α→ 0 and β → ∞, leading to a beta distribution completely shifted to the

left. In Fig. 6.2 an example of the distribution for ξwl is depicted, when ξδrp = 1,

ξδrf = 0.9, ξδsp = 0.8, ξδsf = 0.7 and η = 0.9.

Considering the definitions provided for the α and β parameters in Eqn. 6.14,

note that when even a single ξδs∗# is close to zero (i.e. one of the four triggering

conditions is not satisfied) the argument of the exponential tends to zero and

thus the exponential tends to 1. In this case, the η parameter causes α and β

to be “small” and “big”,respectively, thus leading to a beta distribution shifted

to the left (feature not recognised). In the absence of η , α and β would be

very similar, leading to a centred distribution (mode close to 0.5): this, however,

would not be consistent with the common-sense knowledge (if a single condition
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Figure 6.2: Distribution example for the Wrong Lane feature

on lateral/longitudinal distance is not met the Wrong Lane assertion should be

considered false).

The actual α and β parameters for the beta distribution at this level must be

defined on the basis of numerical values for the variables ξδrp , ξδrf , ξδsp , ξδsf .

Since no real measurements are available for the sub-features, a single numerical

value must be extracted from each of the known PDFs, which could be considered

as ‘pseudo-measurements’. For this purpose, possible solutions are, e.g., the mean

value, the distribution mode, a single sample or the average of multiple samples.

6.3 Hypothesis Testing For Target Assessment

6.3.1 Decision Space and Test Policy

A hypothesis testing approach has been adopted for assessing whether or not the target

should be considered as a possible threat, i.e. a TOI. Within this approach, two states for

a target are considered: either it is a TOI (characterised by the value θ1 for the decision

parameter θ) or it is not (θ0). In so doing, reference is made to a finite parameter space

Θ = Θ0 ∪Θ1, where Θ0 = {θ0} and Θ1 = {θ1}. The ‘null’ and ‘alternative’ hypotheses

can thus be formulated as following:





H0 : θ = θ0

H1 : θ = θ1

that is, the target is recognised as a regular or suspicious (possible threat) driver, re-

spectively.

The approach adopted for testing the two hypotheses is based on the posterior odds ratio.

This can be considered as a likelihood ratio test accounting also for the prior probabilities

of the two hypotheses. The priors can be leveraged to introduce a subjective bias in

the decision process or for simply modelling any further knowledge affecting it. With
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reference to the Bayesian theory, the posterior odds ratio ρ∗ represents the ratio between

the odds given to the two hypotheses on the basis of the prior knowledge and the new

information ([13]), and it is defined as

ρ∗ = ρ ·B (6.15)

where B = f
(
x|θ0

)
/f
(
x|θ1

)
is known as Bayes factor and ρ = π0/π1 is the prior odds

ratio, that is the ratio between the assumed prior probabilities for the two hypotheses.

The considered test policy simply consists in checking whether the posterior odds ratio

is greater or smaller than a given threshold (1 in the simplest case), thus suggesting the

null or alternative hypothesis, respectively.

Given a decision space and a test policy, it is necessary to define the statistical models for

the feature values associated with the two classes of vehicles; these models correspond

to the likelihood functions for (pseudo)measurements taken from the target. The key

problems to cope with within the outlined decision process are:

• Since an assessment based on “high-level” features is being performed, the hypothe-

ses to be tested (‘target is a TOI’, ‘target is ordinary’)are “semantic” concepts that

are not explicitly related to the measurements likelihood function;

• The likelihood functions for the two hypotheses do not exist since direct measure-

ments about the features cannot be taken.

These issues are addressed in the following sections for different numbers of considered

features.

6.3.2 Single Feature Case

This section describeds how the decision policy can be applied within the considered

assessment framework.

In the cases where a direct measurement z about the feature ξ and simple9 hypotheses are

available, a well-established and optimal decision criterion would be the Likelihood-Ratio

Test (LRT), [31, 178], defined as following:

Λ(z) =
P (z|H0)

P (z|H1)
> T =⇒ H0. (6.16)

In Eqn. 6.16, P is the probability function, Λ(z) is referred as likelihood ratio, T is a

threshold value that can be calibrated following various approaches ([1]), and the symbol

=⇒ denote that the indicated hypothesis is accepted. Noticing that the likelihood ratio

9That is Θ =
⋃

i

Θi, with Θi = {θi}, ∀i.
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corresponds to the Bayes factor in the case of simple hypotheses, the posterior odds

ratio test can be written in a very similar form respect to (6.16), that is:

Λ(z) > T ′ π1
π0

=⇒ H0 (6.17)

where T ′ is a threshold value not necessarily equal to the one in (6.16).

In the considered case, however, the feature value is not measured (since it is an “ab-

stract” concept expressed as an dimensionless coefficient) but described as a probability

density function f(ξ). The necessary steps for the implementation of the described

assessment technique are then:

• To subjectively define reasonable likelihood functions for the feature values given

the two considered hypotheses;

• To extend the test policy reported in (6.17) to cope with information about the

feature expressed as a PDF instead of a single measurement.

For the first step, considering a generic single feature ξ, a threshold value γ can be

defined, which separates the feature values that classify the target as a threat (> γ)

from those characterising regular targets (≤ γ). The threshold value can be defined

on the basis of the knowledge provided by human experts or by means of a learning

process (in case the necessary information is available). It should be pointed out that

the threshold values are coupled to the definitions adopted for the features PDF: only

when these are defined it is possible to establish the thresholds on the basis of the

available knowledge. Assuming equal likelihood10 for all the feature values smaller or

greater than the threshold, it is possible to define the following likelihood functions:

P0(ξ) = P (ξ|θ0) ∼ U [0, γ] (6.18)

P1(ξ) = P (ξ|θ1) ∼ U [γ, 1] (6.19)

where U [a, b] indicates a uniform probability distribution over the interval [a, b]. These

likelihood functions are depicted in Fig. 6.3 for the case of γ = 0.8, together with an

example for the feature PDF.

The second step has been addressed considering the PDF values as weights for the

likelihood values and integrating over the feature space. The resulting ratio is taken

into account for the definition of a test policy referred in the remainder of the thesis

10Uniform distributions with constant likelihood across the considered interval have been chosen since,
on the basis of the available information, there is no reason for stating that, e.g., given the fact that
the target is “regular” a feature value of 0.5 is more likely than 0.2. From a simplistic analysis of the
problem, bell-type PDFs appears as not motivated, while sigmoidal functions could be appealing. The
latter, however, are not commonly leveraged for expressing probabilities distributions.
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as Extended Likelihood-Ratio Test (ELRT)11. The decision test in (6.17) can thus be

written as





H0 if
∫ 1

0
P0(ξ)f(ξ)dξ

∫ 1

0
P1(ξ)f(ξ)dξ

> π1

π0

H1 otherwise

(6.20)

where the arbitrary threshold T ′ has been set to 1 for the sake of simplicity without

affecting the generality of the method12. Considering the definitions provided for the

likelihood functions, the Left-Hand Side (LHS) of the inequality in (6.20) can be written

as:

∫ 1
0 P0(ξ)f(ξ)dξ∫ 1
0 P1(ξ)f(ξ)dξ

=

∫ γ
0

1
γ f(ξ)dξ∫ 1

γ
1

1−γ f(ξ)dξ

=

1
γF (γ)

1
1−γ

(
1− F (γ)

) (6.21)

thus leading to the following test inequality:

F (γ) >
π1γ

(1− γ)π0 + γπ1
=⇒ H0 (6.22)

where F (γ) is the Cumulative Distribution Function (CDF) for the random variable Ξ

at the threshold value γ:
∫ γ
0 f(ξ) dξ.

Figure 6.3: Uniform likelihood functions and feature distribution

11To be noticed that the ELR has the same form of the the Bayes factor that would result from
considering a continuous decision space (Θ = [0, 1]) and the feature distribution as prior information.

12Different values for T ′ can be enforced by simple multiplication of the final test threshold.
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(a) Single feature distributions (b) Joint distribution for the features

Figure 6.4: Example distributions for the two-features case

6.3.3 Two Features Case

The approach outlined in Section 6.3.2 can be easily extended to account for two

features. In the two-features case, the feature space is a 2-dimensional surface Ψ ={(
ξ1, ξ2

)
| 0 ≤ ξ1, ξ2 ≤ 1

}
divided into two sub-regions: Ψ0 =

{(
ξ1, ξ2

)
| ξ1 < γ1, ξ

2 < γ2

}

and Ψ1 = Ψ−Ψ0 (Fig. 6.4b). Given two features, their conditioned13 probabilities can be

reasonably considered independent, while the joint likelihood function cannot be consid-

ered as the simple product of the two previously defined likelihoods. The joint likelihood

functions for the two hypotheses are again members of the uniform distributions family,

and can be defined as follows:

P (ξ1, ξ2|H0) = P0(ξ
1, ξ2) = U

[
{0, γ1}, {0, γ2}

]
= φ0 (6.23)

P (ξ1, ξ2|H1) = P1(ξ
1, ξ2)

= U
[
{{γ1, 1}, {0, 1}} ∪ {{0, γ1}, {γ2, 1}}

]

= φ1 (6.24)

where

φ0 =
1

γ1γ2
(6.25)

φ1 =
1

(1− γ1) + γ1 (1− γ2)
(6.26)

The extended likelihood ratio over the joint probability for the features is calculated in

(6.27).

13Conditioned respect to the information provided from measurements, f
(

ξ|Z
)

. This conditioning
has not been made explicit in the features PDFs definition for the sake of notational simplicity, but is
obviously present.
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1

2

3

Figure 6.5: Joint PDF examples associated with three different targets

∫∫
ξ

P0

(
ξ1, ξ2

)
f
(
ξ1, ξ2

)
dξ

∫∫
ξ

P1

(
ξ1, ξ2

)
f
(
ξ1, ξ2

)
dξ

=
φ0
∫ γ1
0

∫ γ2
0 f

(
ξ1
)
f
(
ξ2
)
dξ2dξ1

φ1

[∫ 1
0

∫ 1
γ2
f
(
ξ1
)
f
(
ξ2
)
dξ2dξ1 +

∫ 1
γ1

∫ γ2
0 f

(
ξ1
)
f
(
ξ2
)
dξ2dξ1

]

=
φ0F (γ1)F (γ2)

φ1

[∫ 1
0 f
(
ξ1
) (

1− F (γ2)
)
dξ1 + F (γ2)

∫ 1
γ1
f
(
ξ1
)
dξ1
]

=
φ0F (γ1)F (γ2)

φ1

[(
1− F (γ1)

)
+
(
1− F (γ2)

)
F (γ1)

] (6.27)

∆ =

∫
· · ·

∫

ξ

P0 (ξ) f (ξ) dξ
1 . . . dξn

∫
· · ·

∫

ξ

P1 (ξ) f (ξ) dξ
1 . . . dξn

=

φ0

∫ γ1

ξ1=0

∫ γ2

ξ2=0
· · ·

∫ γn

ξn=0

n∏

i=1

f
(
ξi
)
dξ1 . . . dξn

φ1

[∫ 1

γ1

∫ 1

0
· · ·

∫ 1

0
f (ξ) dξ +

∫ γ1

0

∫ 1

γ2

· · ·

∫ 1

0
f (ξ) dξ + · · ·+

∫ γ1

0

∫ γ2

0
· · ·

∫ 1

γn

f (ξ) dξ

]

=

φ0

n∏

i=1

F (γi)

φ1

n∑

i=1


(1− F (γi)

) i−1∏

j=1

F
(
γj
)



=

φ0

n∏

i=1

F (γi)

φ1


1−

n∏

j=1

F (γi)




(6.28)

The decision test can thus be written as:

F (γ1)F (γ2)

1− F (γ1)F (γ2)
>

π1γ1γ2
π0 (1− γ1γ2)

(6.29)

Consider, for example, the case of the feature distributions depicted in Fig. 6.4, with
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γ1 = γ2 = 0.75 and prior for the null hypothesis (“ordinary” target) π0 = 0.75. Under

these conditions the test threshold for the decision-making process is 0.43, while the

Right-Hand Side (RHS) term of the test is 0.91; on the basis of the assessment policy

previously described the target is then classified as ordinary.

Fig. 6.5 shows three examples of joint probability distributions for the two features

introduced in 6.2.2.2. These are relative to the state of three target vehicles at a given

time instant, simulated by means of the simulation environment described in Section

6.4.1.1. Distribution 1 is relative to a regular target, moving at 5.2 km/h below the

speed limit and positioned on the first lane on the left. Distribution 2 represents a

vehicle moving on the same lane but exceeding the speed limit by 8 km/h. Finally, the

third distribution is relative to a vehicle moving at the limit speed on the overtaking

lane: the distance from the closest vehicle behind the target is 600m, while the distance

from the preceding vehicle is 120m, which corresponds to a reasonable stopping distance.

The target could be thus considered in the beginning of an overtaking manoeuvre, or

waiting to achieve a greater distance from the car in the front before to move on the

left-side lane. For these reasons the Wrong Lane feature assumes a medium-high value,

yet not leading to a TOI assessment. For the three cases presented, the decision test

described in this section classifies as TOI only target 2.

6.3.4 Generic Multiple Feature Case

The posterior odds ratio test described by Inequality (6.29) can be easily extended to the

generic multi-variable case, where a set of n features ξ = {ξ1, ξ2, . . . , ξn} is considered.

This generalisation should be carried out bearing in mind the two main conditions

previously introduced:

• The PDFs for the features values (conditioned to the measurements)are indepen-

dent

f(ξ) =

n∏

i=1

f(ξi)

• For each feature a threshold value γi is defined, distinguishing the allowed values

from those indicating a possible threat. The multi-dimensional feature space can

thus be divided into two disjoint sets Ψ0 and Ψ1 such that

ξ̃ ∈ Ψ1 ⇔ ∃ i : ξ̃i > γi.
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Under these assumptions the values for the uniform likelihood functions result:

φ−1
0 =

n∏

i=0

γi (6.30)

φ−1
1 =

n∑

i=1


(1− γi)

i−1∏

j=1

γj


 = 1−

n∏

i=1

γi (6.31)

The ELR for the multiple-feature case is obtained in (6.28)14. The decision test can thus

be finally written as :

n∏

i=1

F (γi)

1−
n∏

j=1

F (γi)

>

π1

n∏

i=0

γi

π0


1−

n∏

j=1

γj




=⇒ H0 (6.32)

6.3.5 Context Information Influence

The influence of the information about the contextual aspects affecting the targets be-

haviour on the decision-making process can be modelled through the prior probabilities

for the two hypotheses. A similar approach has been described by Blacknell in [16], but

with reference to a standard likelihood ratio test based on actual measurements.

Considering the ELRT-based decision approach previously described, context informa-

tion (e.g. traffic congestion) suggesting an increased alert state would lead to a modifi-

cation in the prior probability for the ‘TOI’ hypothesis, that is:

π′1 = π1 + ζΛ (6.33)

π′0 = 1− π′1 (6.34)

where the parameter ζ indicates the maximum modification accepted for the prior based

on the context, while the parameter Λ = g (λ) is function of the context information

considered. Possible implementations for the g function are the product or the maximum,

depending on the desired level of conservativeness for the taken approach. Considering

the numerical example presented in Section 6.3.3, and assuming π0 = 0.75 and π1 = 0.25,

the influence of the context information on the decision-making process is shown in Fig.

6.6. This depicts the space of all the possible15 couples (ζ,∆) and the boundary between

those leading to a classification as ‘regular target’ and those that classify the target as

TOI (blue and white regions, respectively).

14In this equation and (6.31) holds
∏0

j=1
g(i) = 1 and F (γi) =

∫ γi
0

f
(

ξi
)

dξi.
15Parameter ζ is limited to 0.74 by design.
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Figure 6.6: Effect of the context-related parameters on the target classification for a
fixed feature value: switching from ‘regular’ assessment (blue area) to TOI (white area)

For the road-monitoring application considered, an example of relevant context infor-

mation could be the traffic condition λt, defined as:

λt =

∑n
i=1 λ

t
i

n
(6.35)

where

λti =

∑
j∈wi

1
di,j

λ̃
(6.36)

λ̃ = 2
n̄∑

k=1

1

kd̄
(6.37)

n̄ =
w

d̄
(6.38)

In the previous equations, n is the number of monitored targets, w is the assumed

dimension for the distance window within which the presence of other vehicles affects

the conduct of a driver, wi denotes the road section beginning at the position of target

i with extension w, d̄ is the minimum assumed distance among vehicles (still permitting

a continuous traffic flow). Then, λ̃ is the sum of the inverse distances between a vehicle

and all the other vehicles within its influence window in the worst congestion condition,

while λti represents the same quantity for the actual vehicle i normalised by λ̃. The final

traffic index λt is then obtained as simple average of the local indexes λti.
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6.4 Validation

In this section, results are presented from an extensive set of simulations. These have

been performed in order to validate the effectiveness of the proposed assessment method

and its sensitivity to some of the various tuning parameters involved. Both synthetic

and real-world data have been taken into account within the simulations: this has al-

lowed testing the assessment framework under sensibly different conditions and thus for

obtaining more general indications about its performances.

6.4.1 Application to Synthetic Data

6.4.1.1 Simulations Description

In the synthetic data case, the vehicles trajectories are produced by means of the traffic

simulator described in Section 4.3.1. A section of a three-lane highway with a fixed

number of cars moving along is considered, where the vehicles can perform overtak-

ing manoeuvres, switch among the three lanes, accelerate, decelerate or keep constant

speed. The total number of vehicles moving along the road is 50, partitioned among the

following types16 with the following probabilities:

1. Regular driver (60%): maintains a speed below the limit and behave correctly

respect to the overtaking policy, the stopping distance and the lane occupation;

2. Cowboy driver (10%): can travel at a speed up to the limit, overtakes on both the

side and can occupy the second and third lane even if not overtaking;

3. Snail driver (10%): similar to the type 1 driver, but maintains a speed significantly

under the limit;

4. Cautious driver (10%): similar to the type 1 driver but keeps a greater stopping

distance;

5. Racer driver (10%): can overtake on both the sides and is capable of travelling at

speed higher than the limit;

The monitoring objective is to identify vehicles of classes 2 and 5 since they represent

possible threats for the traffic. A GMTI-equipped UAV is assumed to monitor the road

section, taking position and velocity measurements about the targets. The noise on

these readings is assumed to be Gaussian with variance σ2p and σ2v , respectively. The

tracking task is then performed by a classic KF. It is assumed that data-to-track and

16The drivers characterisation is here repeated for convenience.
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track-to-track association processes are performed perfectly as they are not the main

focus of this study.

On the basis of the targets tracks, the assessment technique described in Section 6.3 is

applied, taking into consideration the two features introduced in Section 6.2.2: Irregular

Speed and Wrong Lane. The hypothesis testing approach adopted indicates whether

the target should be considered a TOI with respect to just the last target state, and

thus to a single time step; in the following, this event is referred to as Target Of Interest

Warning (TOIW).

The final decision about an individual vehicle, that is to classify it as TOI or regular

target, can be taken considering a threshold Γ on the number of TOIW generated by

that specific vehicle. This approach has the twofold purpose of:

• Introducing some flexibility in the assessment process: one or more TOIWs can

be issued to vehicles that do not represent an actual threat to the traffic flow.

Consider, for example, a target that exceeds the speed limit just for a very short

time interval, e.g. during an overtaking manoeuvre;

• Accounting for the common-sense, imperfect knowledge leveraged: as previously

mentioned the hypothesis testing process is based on a subjective interpretation

of what is “correct” and what is “wrong”, but this is not necessarily the only

reasonable interpretation. For example, with reference to the specific implementa-

tion proposed, a type-4 (‘cautious’) driver tends to maintain large distances from

the preceding vehicle, and could thus start an overtaking manoeuvre with great

advance: it could thus move to the overtaking lane when the distance from the pre-

ceding vehicle is so big that the assessment process (tuned on what are considered

as common practises) generates a warning due to Wrong Lane condition.

6.4.1.2 Ground Truth Definition

The lack of a physical, indisputable GT against which to compare the assessment results

provided by the monitoring technique is a relevant problem that has been borne in

mind since the very beginning of the thesis (Section 1.3). The approach adopted in

the simulations here reported is to define the GT on the basis of the actual simulation

implementation rather than on the behaviours exhibited during the simulation itself.

This means that if a target is capable, by its type definition, to exhibit concerning

behaviours it is considered a TOI within the GT regardless whether these behaviours are

manifested or not during the simulation. Such approach is implemented by comparing

the number of the vehicles recognised as TOI with the number of class 2 and class 5

vehicles created by the simulator, regardless of the actual simulation evolution.
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This approach clearly represents the simplest solution from a practical point of view,

but the reasons for this choice involve also more subtle considerations. Even if there is

no apparent reason to classify a target as a threat until it actually performs a concerning

manoeuvre, it should be noted that it could be meaningful to implement a “predictive”

GT where a TOI is defined as a vehicle with the “potential” to be a threat. This

approach could be particularly suitable to critical contexts (e.g., counter-terrorism),

where the threat manifestation and the actual damage are almost simultaneous, and

thus preemptive actions are required. A further reason to adopt this “predictive” GT is

that the use of the “non-predictive” type would limit the performance of the automated

assessment system to that of a human operator, which indeed can classify a vehicle

as TOI just after that it has exhibited some alarming behaviour. Consider the case

where an automated assessment policy would be capable of identifying17 a TOI before it

explicitly manifests (from an human-operator point of view ) its character: with a non-

predictive GT it would be instead classified as false alarm, thus unreasonably bounding

the assessment performances.

Because of the characteristics so far described for the assumed GT, the numerical re-

sults provided in the following may not be considered “absolute”, but depending on a

personal interpretation of the problem. This particular interpretation is reflected in the

γi thresholds and other features parameters and affects the final detection values.

6.4.1.3 Simulation Results

Simulation results for the scenario described in 6.4.1.1 are here reported, aiming at

testing the framework capabilities under different simulation conditions. The results

indicate the number of ‘correct identifications’ (type 2 and 5 vehicles classified as TOI)

or ‘false alarms’ (vehicles of different types indicated as TOI) as a function of the Γ

adopted for the final decision criteria. In all the reported plots, the values on the x

axis (threshold Γ) have been normalised respect to the number of the simulation times

steps18 and thus lie in the range [0, 1].

With this approach, it is possible to i) Easily understand the influence of the threshold Γ

on the technique performances ii) Identify the most suitable threshold value for actual on-

line implementations. In most of the cases, indeed, this threshold requires to be defined

by means of a trade-off process between correct detections and false alarms constraints.

Bearing in mind the supporting (not autonomous) role of the proposed framework, the

need for modifying the threshold Γ could be signalled by a human operator in actual

implementations. This could be the case, e.g., where the amount of false alarms would

be higher than what expected from the system design.

17For example by considering multiple features at the same time.
18That is twice the duration of the single iteration expressed in seconds.
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The simulations considered in the following are aimed at testing the assessment perfor-

mances when the key parameters for the simulation and the decision policy change. The

tests have been implemented by means of a Monte-Carlo approach, that is by averaging

the results from a high number of independent simulation iterations; in so doing, the

results are conferred with statistical relevance.

Preliminary Tests Two preliminary tests have been performed to verify the validity

of the conditions adopted for the simulations that are presented in the remainder of

the chapter and for ensuring the generality of the numerical results reported. As pre-

viously stated, an actual implementation of the proposed approach requires to choose

a method for selecting a single numerical value from the lower-level distributions. For

the simulations reported in the following, this choice has been done by comparing the

outcomes provided by three different methods: distribution mode value, distribution

mean value and random sampling from the distribution. The results depicted in Fig.

6.7 are obtained by averaging over 100 simulations with duration 10mins each. These

results suggest that mean and mode operators perform similarly, while an unacceptably

low ratio of correct detections is obtained when random sampling is adopted. For these

reasons, for the evaluation of the Irregular Lane feature, the mode operator has been

adopted for inferring the level 3 PDF from the level 2 PDFs .

Then the cases of two different distributions for the vehicle types have been tested and

compared:

Case 1: It is the one described in Section 6.4.1.1 and adopted in all the following

simulations: the vehicles capable of behaviours of interests are the 20% of the

total.

Case 2: The following drivers distribution is adopted:

1. Regular drivers (30%);

2. Cowboy drivers (25%);

3. Snail drivers (10%);

4. Cautios drivers (10%);

5. Racer drivers (25%);

where the vehicles capable of behaviours of interests are the 50% of the total.

The differences in the assessment performances for the two cases are depicted in Fig.

6.8 and appear to be negligible since below 1/1000 over a [0, 1] range. This result sug-

gests that the simulation outcomes presented in the following sections can be considered

valid for generic distributions of vehicle types and not only for the one adopted for the

simulation.
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(a) Correct detections

(b) False alarms

Figure 6.7: Results for Monte-Carlo simulations adopting different aggregation meth-
ods

Figure 6.8: Performances comparison for two different distribution of vehicle types

Simulation Iterations Sensitivity The purpose of this test is to find out how many

Monte-Carlo simulations appear to be necessary for having statistically relevant results.

Simulation parameters adopted are:

• Simulation duration: 10mins;

• Null hypothesis prior: 0.5;

• Position error standard deviation: 0.3m;
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(a) Correct detections

(b) False alarms

Figure 6.9: Results for Monte-Carlo simulations with different number of iterations

The results depicted in Fig. 6.9 are based on up to 400 simulations of 10 minutes each,

thus considering 66.6 hours (2.7 days) of monitoring data. These simulations clearly

indicate a trend for increasing numbers of iterations, showing that the differences for

values greater than 100 are negligible. For this reason, all the following sensitivity anal-

yses has been performed on the basis of 100 Monte-Carlo iterations, thus relying19 on 16

hours of monitoring data. This approach is likely more relevant than a single simulation

of equivalent duration, since each simulation is initialized with different random traffic

conditions.

Simulation Duration Sensitivity This test is aimed at describing the relationship

between the target identification ratio and the length of monitoring interval. Since a

single monitoring interval is considered, its length corresponds with that of the whole

simulation. Other simulation parameters are:

• Simulation iterations: 100;

• Null hypothesis prior: 0.5;

• Position error standard deviation: 0.3m;
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(a) Correct detections

(b) False alarms

Figure 6.10: Monte-Carlo simulations with different iteration duration
(
[mins]

)

With reference to correct detections (Fig. 6.10a) the responses for durations below

40mins converge to a well-shaped curve exhibiting two plateaus in the intervals [0.1, 0.5]

and [0.7, 1]. By further increasing the simulation duration, the first plateau is replaced

by an almost constant slope (evident in the 160mins duration case). Results for false

alarms are depicted in Fig. 6.10b and appear fairly straightforward: as the monitoring

time increases the threshold Γ required for reducing the fraction of false alarms under a

given level decreases.

A conclusion that could be drawn from these results is that it appears convenient to

adopt a monitoring interval duration such that the first plateau on the characteristic

curve is still present (in the proposed case, 40, 20 or even 10 minutes), and then impose

a Γ corresponding with the right extreme of such plateau. In so doing the ratio of correct

detection is maintained high, while false alarms are drastically reduced. Obviously, the

actual duration of the monitoring interval could result from the trade-off with further

specification, e.g., the need for quick detection and intervention.

Prior Sensitivity The prior probabilities for the null and alternative hypotheses

allow making the TOI identification less or more tolerant. As indicated in Section 6.3.5

19Considering 10 minutes as the duration of the single iteration, which is almost always the case.
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these probabilities can be leveraged to account for context information, and thus to make

the assessment process dependent on the environment conditions affecting the vehicles.

This test allows analysing the effect of the prior information by considering the cases

where it strongly rejects, strongly suggests or gives the same odds to the null hypothesis

respect to the alternative one. Other simulation parameters adopted are:

• Simulation iterations: 100;

• Simulation duration: 10mins;

• Position measurement error standard deviation: 0.3m;

(a) Correct detections

(b) False alarms

Figure 6.11: Monte-Carlo simulations with different prior probabilities for the null
hypothesis

As expected, lower priors for the null hypothesis lead to higher correct detection rates

(Fig. 6.11a): the curve associated with a given prior is almost always above those related

to higher priors for the null hypothesis. Similar trends can be noticed for the false alarms

(Fig. 6.11b). Actually, in this case, the curve for π0 = 0.5 does not look exactly how

expected within the range (0.2,0.5) since it should be lower than the one associated with

π0 = 0.1; the differences in the three characteristics, however, are so small (< 1%) that

they can probably be influenced by numerical aspects.
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Measurement Error Sensitivity As indicated in Section 6.2.2 the information

about the measurement error covariance is leveraged for qualitatively tuning the PDFs

selectiveness for features affected by that specific measurement. The influence of such

aspect on the final identification results is here analysed by varying the position mea-

surement error covariance σ = σr = σs within the range [0.1, 1]. Other simulation

parameters are:

• Simulation iterations: 100;

• Simulation duration: 10mins;

• Null hypothesis prior: 0.5;

(a) Correct detections

(b) False alarms

Figure 6.12: Monte-Carlo simulations with different standard deviations for the po-
sition measurement error

(
[m]
)

Fig. 6.12 shows that the bigger is the covariance, the higher are the identification

curves, both for correct and erroneous detections. Note, however, that a relatively small

increment in the correct identification ratio corresponds to a substantial raise in false

alarms. For this reason, it is possible to conclude that, as expected, bigger uncertainties

lead to overall worst assessment performances. From these results, it is clear that when

bigger covariances are considered, the assessment framework is more keen to classify the

vehicles as TOI, probably because of the minor selectiveness of the feature PDFs and
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the fact that noisy measurements tends to collocate the vehicles on the overtaking lanes

even if they are on the first lane.

In this case, the trade-off for the definition of the Γ relies heavily on the system require-

ments. If it is requested to identify the majority of the targets of interest, a medium-value

threshold should be adopted (between 0.3 and 0.5)20. On the other hand, if it is more

important to not overwhelm the operator with a huge number of false alarms, Γ should

be chosen so that the false detections ratio falls at least under 0.5 (between 0.5 and 0.6),

inevitably leading to a reduced amount of correct detections.

6.4.2 Application to Real Data

In this section, the proposed assessment approach has been applied to data collected

from a real-world scenario. For the simulation here presented 5200 trajectories provided

by the NGSIM project (Section 4.3.2) have been taken into consideration. These tracks

belong to the US101 dataset and take place in the period of time between 7.50am and

8.35am. Before undertaking the assessment process, the original NGSIM data have been

corrected by applying the technique described by Montanino et al. in [91], which allow

removing outliers and unfeasible acceleration profiles due to measurement errors.

Similarly to the synthetic data case, also for the NGSIM data no GT is available about

the behaviours of interest (e.g., to occupy an overtaking lane for no good reason). Fur-

thermore, the target trajectories are not generated within a controlled environment

anymore21. This implies that for the real-world case is not possible to distinguish be-

tween correct detections and false alarms. What is possible to do, however, is to check

whether the overall detections amount generated in the case of NGSIM data follows the

trends seen for the synthetic data case or not. More specifically, the aim of the test

is to compare the actual detections obtained by assessing the NGSIM trajectories with

the number of detections expected from the percentages indicated, e.g., in Fig. 6.9 (

400-iterations case) applied to the new number of vehicles. The expected detections

amount is calculated as:

de = nv

(
0.2ϕpc + (1− 0.2ϕ) pf

)
(6.39)

where pc and pf are the percentages, as a function of Γ22, for correct detections and

false alarms, respectively, and ϕ is an adaptation coefficient associated with the fraction

of vehicles representing a TOI. The resulting de is the number of expected detections

20With specific reference to the case of σ = 1.
21The fact that, in the previous case, the data was generated within a controlled environment has

allowed defining a sort of “expected” GT, which was based on how the vehicles are expected to behave.
22Similarly to the case of synthetic data, Γ is expressed as fraction of the overall monitoring time for

the vehicle.
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expressed as a function of the threshold Γ adopted within the assessment process. The

use of the coefficient ϕ is due to the fact that, within the simulator of Section 6.4.1.1,

it has been arbitrarily decided for the 20% of the vehicles to be possible TOIs: this,

however, does not necessarily hold for the real-world data. By simple trials, it has

been found out that the trend for actual detections become very similar to that of the

expected detections for ϕ = 0.025, as depicted in Fig. 6.13.

Figure 6.13: Detection results for NGSIM data

The existence of a difference between actual and expected detections, especially for low

values of the threshold Γ, does not represent an actual problem since the purpose of this

analysis is not to validate the traffic simulator on the basis of real data. What is impor-

tant to note, however, is that the detections trends obtained by varying the threshold are

similar for the two cases. This suggests that the trends for correct detections and false

alarms reported in Section 6.4.1.3 can be considered valid, to some extent, also for real

traffic data. The actual detection percentages could be significant as well for the case of

NGSIM trajectories, but this cannot be stated for sure without knowing the underlying

ground truth. Nonetheless, the proven similarity in the number and trend of detections

generated by the analysis of real data and those expected from the results obtained for

synthetic data allows having a qualitative indication of the technique performances also

for actual implementations. The assessment performances varying Γ for this last case

are indeed expected to follow similar trends to those reported in Section 6.4.1.3.

6.5 Conclusion

In this chapter the behaviour assessment problem has been considered, with the aim

of identifying possible TOIs. These are targets exhibiting peculiar characteristics and

could represent a threat to other vehicles. The proposed assessment approach is based

on the concept of ‘features’, which are described by means of a probabilistic framework.

Decisions about the most likely classification for the targets, i.e. regular target or TOI,

are lastly taken utilising a hypothesis testing technique.

The main contribution here provided is the definition of a novel general approach to

target assessment and TOI identification. This consists of two main components: i)
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a hierarchy of probability distributions representing high-level, not directly-measurable

aspects of the target behaviour ii) a decision test specifically designed for dealing with

the considered type of features and denoted as ELRT. The proposed approach has been

applied to a road-monitoring scenario, but it seems to be extremely general since no spe-

cific model (mathematical, kinetic, etc ... ) is leveraged within the assessment process.

This should allow applying the proposed method also to completely different contexts,

such as maritime environments or for human activities monitoring. Furthermore, the

proposed approach appears to be highly flexible since it allows: (i) representing arbi-

trarily complex behavioural characteristics, (ii) reproducing both rigid and permissive

assessment processes by tuning the feature PDFs parameters and the hypotheses prior

probabilities and (iii) adapting to different conditions for the monitored scenario by

accounting for context information.

The main issues that have arisen during the proposed work deal with the analytical

modelling of a subjective assessment process. This has required to make assumptions

about what should be considered “regular” and what “suspicious” on the basis of qual-

itative available knowledge. For this reason, and for the fact that a single, subjective

interpretation of the reality is being considered, it appears hard to claim an “absolute”

validity for the identification results provided by any type of assessment method and

thus for its performances. This is also the case for the proposed assessment framework.

Nonetheless, the results obtained can still be compared, and thus somehowvalidated,

with a definition of ground truth based on the simulation implementation: this defini-

tion is maybe not above criticism, yet seems reasonable as it is based, to a large extent,

on the actual simulation implementation. Under these assumptions, the results pre-

sented in Section 6.4 demonstrate the effectiveness of the proposed method, achieving,

under specific simulation conditions, the 80% of correct detections with almost no false

alarms. The application to real-world data has also been taken into account, suggesting

that the numerical results obtained for synthetic data can reasonably be generalised

to actual targets trajectories. Useful indications for an actual implementation are also

provided from the performances analysis for different values of the threshold Γ on the

number of warning events.



Chapter 7

Behaviour Monitoring Using

Regular Expressions Based

Pattern Matching

7.1 Introduction

In this chapter, the problem of identifying “possible threats” or, more generally, TOIs

is tackled by considering the time-correlated behaviour of targets.

As mentioned in Section 2.2, a vehicle is considered “misbehaving” when it does not

comply with a given definition of “normality”, which is related to either pieces of knowl-

edge provided by domain experts or inferred from a set of data constituting the available

information. Given this twofold characterisation provided for the concept of “regular-

ity”, two main different approaches have been considered in literature for tackling the

anomaly detection problem: the detection of particular patterns of interest in the be-

haviour exhibited by the target or the recognition of behaviours that do not comply

with what is considered usual and thus implicitly accepted. The former approach is

usually adopted in the cases where the monitoring action is focused on spotting just a

few well-known behaviours of interest or when a comprehensive description of all the

unacceptable manoeuvres is provided by experts. With reference to this approach, tech-

niques widely adopted in literature include probabilistic frameworks ([4, 54, 177]), fuzzy

systems ([61]) and pattern matching ([99]). When however no specific knowledge about

the monitored events is available, it is necessary to implement learning techniques en-

abling the extraction of behaviour models from previous observations (the second case

previously mentioned). In this case, any pattern that stands out with respect to the other

data points within the considered dataset is classified as an anomaly. This approach is

107
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probably the most considered by current researchers because of the large availability of

data provided by modern computer systems.

This chapter proposes an approach to the TOI identification problem that relies on a

novel pattern matching technique based on Regular Expressions (regexes). These are a

popular search tool that is widely adopted in the information technology field ([144]),

e.g., within operating systems, programming languages, etc.. The proposed solution

addresses both the anomaly detection approaches previously discussed1 and can thus be

adopted under different circumstances and monitoring conditions. As a preliminary step,

a simple approach to manoeuvres detection is described: this consists in analysing the

speed and curvature of target trajectories by means of differential geometry techniques

([99, 111]), enabling the classification of these as discrete values. The result of this

process is then matched with either pre-defined reference patterns representing specific

behavioursof interest or sets of patterns representing what is considered “normal” to

various extents. These latter patterns, in the proposed solution, are retrieved by means

of an automated learning process and organised as a dictionary of regexes.

The proposed solution for manoeuvres detection is intended as part of the , decentralised

monitoring framework described in Chapter 4, with specific reference to the outlined case

study.

The techniques outlined in this chapter are inspired by the approach introduced by Oh et

al. in [99]. However, a more powerful, flexible and robust technique for pattern-matching

is here developed, which is based on regular expressions. Furthermore, the approach

proposed by Turchi et al in [157] is extended by introducing a whole new learning

component that allows generating regexes representing commonly observed behaviours.

7.2 Trajectory Classification

In the proposed approach, the first step necessary to achieve behaviour recognition is

the classification of the trajectories exhibited by the target. The purpose of this step

is to translate a general trajectory into a set of predefined motion categories; these are

referred in the following as Driving Modes (DMs). This can be done by identifying and

analysing a few, simple quantities (e.g., position, velocity, heading rate, etc.) capable of

characterising the trajectories and using this information for selecting the most suitable

driving mode.

Two main steps can thus be identified within the trajectory classification process:

Curvature Analysis: allows extracting from the target track the quantities of interest:

trajectory curvature, speed and acceleration;

1That is, the one based on ‘a priori’ knowledge and the one based on learning techniques.
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Manoeuvre Classification: on the basis of the quantities previously extracted, this

step produces a classification of the target trajectory within a predetermined set

of driving modes.

7.2.1 Curvature Analysis

The proposed approach to curvature analysis is based on a moving-window-based tra-

jectory approximation ([99]) and exploits a third-order polynomial function generating

a trajectory with a virtually increased sampling frequency([97]).

Given a window composed of NT original samples taken at time instants2

[
0, Ts, 2Ts, . . . , (NT − 1)Ts

]
,

a new samples sequence is generated by means of a resampling process, taking place at

instants [
0, Tn, 2Tn, . . . , (NT − 1)cTn

]
,

where the final instant of the two time sequences is the same, that is

(NT − 1)cTn = (NT − 1)Ts. (7.1)

In the previous description, Ts and Tn are the original3 and “artificial” sampling times

respectively, and c is the ratio between the two times. In the following, the case is

considered where Tn < Ts (c > 1): this allows defining a sequence of data generated at

‘virtually increased’ sampling frequency. The resampling process has been performed

with the purpose of applying the curvature analysis procedure to finer-grained, even if

approximated, information, which leads to a more effective identification of DMs.

The polynomial function leveraged for the trajectory approximation has the following

form:

p(x) = pnx
n + pn−1x

n−1 + . . . + p1x+ p0 (7.2)

where n is the desired order, and the coefficients p0, . . . , pn are chosen so as to minimise

the approximation error in a ‘least squares’ sense. Such optimisation can be formulated

as:

P̃ = argmin
[p0,...,pn]

T∑

k=T−m+1

(
p (k)− x(k)

)2
(7.3)

where P̃ = [p̃0, . . . , p̃n] is the vector of optimal coefficients for the polynomial , T is

the current time step and X =
[
x(1), . . . , x(m)

]
is the history of the target position

2Time instants are expressed as offset respect to the window initial time.
3It could be the time step of a tracking filter or simply the sampling time of a discrete measurement

process.
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(a single coordinate) within the considered time window of dimension m. With this

approach two polynomial functions are defined for approximating the target trajectory

in the two coordinates of motion4, referred as px(t) and py(t). The target position

at discrete time instants within the time window [T −NTTs, T ] is then obtained by

sampling from the two polynomial approximating functions. This process is performed

at a “higher rate” respect to the sensing frequency, that is with time step Tn instead

of the original value Ts; in the following, indices k and i make reference to original and

virtual samples respectively within the considered time window. After this, the velocity

(ẋ(i), ẏ(i)) and acceleration (ẍ(i), ÿ(i)) values relative to the two coordinates of motion

are derived by simple differentiation of the re-sampled position and velocity profiles

respectively. These profiles are then used to calculate the forward acceleration af (i),

the orientation rate of change θ(i) and the minimum speed U of the vehicle for each i:

U = min v(i) = min
√
ẋ(i)2 + ẏ(i)2 (7.4)

θ(i) = v(i)κ(i)

=
√
ẋ(i)2 + ẏ(i)2

ẋ(i)ÿ(i)− ẏ(i)ÿ(i)
(
ẋ(i)2 + ẏ(i)2

)3/2 (7.5)

af (i) = ẍ(i) cosψ(i) + ÿ(i) sinψ(i) (7.6)

where κ is the curvature, and ψ = tan−1(ẋ/ẏ) is the heading angle from North.

7.2.2 Manoeuvre Classification

Given the quantities defined in Section 7.2.1, the following driving modes ([99]) can be

identified from the analysis of the data within a single time window:

• Stopping(0) : this state is detected when U < Umin, indicating that the target is

stationary, stopping or moving;

• Left Turn (1): recognised when max (θ) > θth,1 > 0 and max (θ)min (θ) > 0.

• Right Turn (8): min (θ) < −θth,1 < 0 and max (θ)min (θ) > 0;

• Left Lane Change (2): this kind of manoeuvre is detected when





max (θ)min (θ) < 0

max |θ| > θth,2

θ(0) > 0

4Since the thesis is focused on ground vehicles, a bi-dimensional motion is assumed, but the approach
proposed can be easily extended to the case of 3D trajectories.
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The difference respect to a ‘Left Turn’ consists in the detection of a sign change5

for the orientation rate of change;

• Right Lane Change (7): characterised by





max (θ)min (θ) < 0

max |θ| > θth,2

θ(0) < 0

The inspection of the sign change of θ is used to distinguish a lane change from a

pure ‘Right Turn’ manoeuvre;

• Straight (9): in this mode, the monitored target is moving straight at constant

speed, i.e. max(|θ|) < θth,3 and max(|af |) < ath;

• Closing Gap (6): characterised by af (0) > ath and max(af )min(af ) < 0. In

the case where a target gets closer to the preceding vehicle6, the monitored target

will exhibit positive and negative accelerations in the beginning and in the end,

respectively, of the considered time window;

• Widening Gap (3): af (0) < −ath and max(af )min(af ) < 0. Considerations

about this driving mode are similar to those for the ‘Closing Gap’ case, with the

difference that the initial acceleration is negative;

• Accelerating Ahead (5): this driving mode is recognised when max(af )min(af ) >

0 and af (0) > ath. The sign of acceleration is positive during the whole time win-

dow;

• Decelerating Ahead (4): in this case

max(af )min(af ) > 0 and af (0) < −ath, i.e. the sign of the acceleration is negative

over the whole time window;

• U-Turning (A): detected when max |θ| > θth,4. A U-turn manoeuvre, where

the vehicle inverts the direction of motion through a 180◦ rotation, can indeed be

associated with large values for the orientation change.

In the previous classification, the quantities Umin, θth,1,θth,2, θth,3, θth,4 and ath are

threshold values that need to be tuned on the basis of the estimation accuracy and

expected target dynamics.

5As shown in Fig. 7.1, during a left lane change the curvature sign changes from positive to negative
values.

6This vehicle is assumed to move at constant speed.
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Figure 7.1: Right lane change and left lane change manoeuvres during an overtaking

7.2.3 Test Patterns Definition

The classification introduced in Section 7.2.2 enables the definition, at each time step

k, of a driving mode mk. This is chosen among the set of pre-defined modes M =

[0, 1, . . . , 9, A] and describes the behaviour of the monitored target during the consid-

ered time window. These modes can then be leveraged for defining classes of complex

behaviours that could draw the attention on the monitored target.

In the proposed approach, complex behaviours are defined as specific strings of driving

modes, and the behaviour detection relies on string matching techniques. More specif-

ically, given the modes set M , a symbolic time-series of driving modes yk = {mj ∈

M |j = k−Nw +1, k−Nw +2, . . . , k} is generated at each time-step k, where Nw is the

adopted window dimension for behaviour detection. This last quantity depends on the

expected duration of the events that have to be detected: assuming to be interested in

events that last no longer than tw, Nw can be calculated as follows:

Nw =

⌊
tw
Tn

⌋
− (NT − 1) (7.7)

7.3 String Pattern Matching

The list of DMs extracted from the target trajectory is then compared with pre-defined

strings associated with peculiar behaviours that have to be detected, referred in the

following as reference patterns. Such comparison process is indicated as patterns (or

strings) matching, and, in the proposed approach, it is implemented employing both

basic strings of characters and regexes. These two techniques are thoroughly described

and analysed in Sections 7.3.1 and 7.3.2, respectively.
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7.3.1 Edit Distance Based Matching

Given a reference and an observed pattern, it is clear that the simple exact matching

of the strings would represent an excessively strict policy to pattern recognition. This

approach would not account for minor differences in the compared strings, which do

not sensibly affect the overall interpretation of the target behaviour. The concept of

‘edit distance’ has been introduced as a generalised measure of the difference between

two strings: this allows defining a discrete level of similarity between patterns instead

of a binary matching value. In [155] the edit distance between two strings Sr and St

(reference and tested strings respectively) is defined as the minimum total number of

changes C, insertions I and deletions R required to turn string St into Sr, that is:

D(Sr, St) = min
j

[
C(j) + I(j) +R(j)

]
(7.8)

where j runs over all possible combinations of symbol variations in order to obtain Sr

from St. The main drawback of this simple approach is that the same relevance is given

to missing, excess, wrong or misplaced terms within the analysed pattern.

Considering, for example, the case where the monitoring agent is interested in detecting

overtaking manoeuvres performed by a target, an example of pattern to look for could

be ‘755992’, that is the overtaking car moves to the right (overtaking) lane, accelerates

for achieving a velocity greater than that of the preceding car, keeps a constant speed

until it passes the other vehicle and then moves back to the left lane. Obviously, lots

of similar patterns should be recognised as “overtaking manoeuvre”, e.g. ‘755552’ and

‘799992’, both characterised by edit distance 2 respect to the reference string.

Setting a threshold on the edit distance value allows recognising these slightly different

patterns, but does not consider adequately the characterising peculiarities of each ma-

noeuvre. Paradoxically, by adopting a threshold value equal to 2, a perfectly straight

trajectory ‘955999’ would be recognised as overtaking manoeuvre. This happens be-

cause no emphasis is given to the fact that the characterising features of an overtaking

are the two specular lane changes at the beginning and end of the manoeuvre. In the

cases where these two driving modes are not detected, it makes no sense to consider the

pattern an overtaking. A possible solution to this problem could account for different

coefficients for the components of the edit distance (C,R and I). However, it is impor-

tant to note that weights-tuning is often a tricky process requiring in-depth insight into

the considered problem. The previous considerations suggest that it is probably worthy

to investigate for new, flexible approaches to reference patterns definition.
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7.3.2 Regular-Expressions Based Matching

The matching approach proposed in this chapter consists in expressing the reference

patterns as regexes: this allows defining a fixed binding structure for the behavioural

patterns of interest, specifying mandatory and optional terms. With this approach, a

reference pattern consists of any combination of the following components:

• Specific Symbol, e.g. 1: indicates a driving mode that must be present in the

tested string;

• Character Class, e.g. [65]: gives multiple possibilities, equally acceptable, for

a term of the tested string (6 and 5 in the example);

• Upper Unbounded Character Sequence, + : one or more instances of the

preceding element are allowed;

• Unbounded Character Sequence, * : zero or more instances of the preceding

element are allowed;

• Bounded Character Sequence, {n, m}: a number between a minimum n and

a maximum m of instances of the preceding element are matched.

In the cases where the reference string is expressed by means of a regex, the matching

result is a value representing an extension of the previously described edit distance:

• Dr(Sr, St) = −1: the tested string does not match the reference pattern;

• Dr(Sr, St) = minj I(j) ≥ 0: the edit distance indicates the number of insertion

required for the test string to comply with the reference pattern;

With this approach, a possible reference pattern for an overtaking manoeuvre is:

Sr,o = ‘ [12345689] ∗ 7 + [34569] {4, 16}2’

where the monitored vehicle moves to the overtaking (or outer) lane (‘7+’), maintains

a straight direction for at least four time steps (regardless of the acceleration profile,

‘[34569] {4, 16}’) and then moves back to the left (or inner) lane (‘2’). The use of

the unbounded sequence term (‘*’) allows decoupling the length of the reference and

tested strings without affecting the edit distance: strings ‘99799992’ and ‘799992’ define

pretty similar behaviours, returning, however, different edit distances if the classical

approach is applied. By adopting regexes, instead, the symbol ‘*’ can be used to reject

the influence of driving modes detected before the manoeuvre of actual interest, which

entails Dr

(
Sr,o, ‘99799992’

)
= Dr

(
Sr,o, ‘799992’

)
. As suggested by this last example,

the use of bounded and unbounded sequences appears to be particularly useful when



Pattern Matching based Behaviour Monitoring 115

the target dynamics is uncertain, and thus the length of the time interval needed by the

target to exhibit the behavioural pattern of interest is not exactly known a priori. In

the case of the overtaking manoeuvre, for example, the time interval between the two

lane changes, and thus the number of characters between modes 7 and 2, depends on

the relative velocity of the two vehicles involved. Consider the following three reference

strings:

Sr,o1 = ‘755992’ (7.9)

Sr,o2 = ‘ [12345689A] ∗ 7 + [34569]{4, 16}2’ (7.10)

Sr,o3 = ‘ [12345689A] ∗ 7 + [34569]{4, }2’ (7.11)

where Sr,o1 is expressed with the basic approach, while Sr,o2 and Sr,o3 are defined as

regexes. Sr,o1 clearly represents a strict reference pattern: indeed, if it would be com-

pared only to strings of the same length, the matching approach would not be robust

respect to little variations in the expected target dynamics since, for example, an over-

taking that takes slightly longer, e.g. ‘75599992’, would not be recognised. Even by

comparing Sr,o1 with strings of different length, the ability to detect the overtaking ma-

noeuvres is drastically reduced as more the target dynamics differs from the expected:

the edit distance calculated for ‘75599992’, a clear overtaking manoeuvre just a little

slower than expected, would be indeed the same associated with the string ‘955999’,

which is definitely not an overtaking. Sr,o2 is a regex where both upper and lower

bounds are defined on the target dynamics: because of the term {4, 16}, a lower bound

of four time-steps is imposed where the target has to move straight along the overtaking

lane. Similarly, the value 16 defines an optional extension of this interval, and thus an

upper bound beyond which the pattern is not matched. Similar considerations can be

made about the reference pattern Sr,o3 , where however there is no upper bound for the

duration of the manoeuvre. It is thus clear how the proposed approach leads to greater

flexibility in pattern recognition respect to the classic edit distance.

7.4 Approaches to Reference Patterns Definition

7.4.1 Knowledge-Based Reference Patterns

The simplest and most intuitive way to implement the pattern matching approaches de-

scribed in Sections 7.3.1 and 7.3.2 is to define one or more patterns representing particu-

lar behaviours considered “concerning” or, more generally, “of interest’. With reference

to the traffic monitoring scenario discussed so far, such behaviours could consist in any

manoeuvre representing a danger for the regular traffic flow: e.g., to continuously switch

from a lane to another, to suddenly brake after an overtake manoeuvre or to overtake

on the left. It is clear that this approach requires exploiting the knowledge of domain
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experts for defining the patterns that have to be spotted. On the one hand, a monitoring

application designed for matching KB reference patterns is able to precisely identifying

particular behaviours of interest. On the other hand, with this kind of approach it is

not possible to detect general unexpected manoeuvres that differ significantly from those

regularly exhibited by the targets.

7.4.2 Learning-Based Reference Patterns

To overcome the limitations due to considering only KB reference patterns, a new com-

ponent is taken into consideration within the assessment process: reference patterns

defined on the basis of previously observed target behaviours.

7.4.2.1 Basic Concepts

The rationale behind the use of a Learning-Based (LB) component is that the detection

of manoeuvres that are rarely observed, even if not ‘a priori’ classified as ‘concerning’,

should anyway raise the attention level on the associated vehicle. This approach ap-

pears justified assuming that a sufficiently large amount of target manoeuvres has been

analysed, and thus that almost any legit manoeuvre has been observed a fair amount

of time. Such approach is not conceptually different from that of Gaussian processes

([119]), where the observed samples of a process define the expected mean and covariance

values for future outcomes.

With reference to the string matching approach described in Section 7.3.2, the purpose

of the learning component is to infer a set of regular expressions from the observed

sequences of driving modes. This set is referred in the following as ‘dictionary ’ and

is considered capable of summarising all the “frequent”, and thus assumed “regular”,

target manoeuvres. In so doing, when a pattern observed during the monitoring process

does not match any of the expressions in the dictionary, the relative vehicle can be

reasonably considered a TOI.

7.4.2.2 Learning Technique

The objects of the proposed learning process are patterns of driving modes, that is se-

quences of alpha-numerical characters with no ordinal meaning. Given this characterisa-

tion, the most suitable learning approach appears to be the use of a neural network. This

tool, if properly trained, can accept a sequence of driving modes of fixed length as input

and produce a single value denoting to what extent the pattern can be assumed “regu-

lar”. Various learning techniques have been considered in addition to neural networks,
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e.g. Hidden Markov Model and Gaussian processes, but these did not fit satisfactorily

to the examined problem.

For these reasons, in the proposed approach, a NN is leveraged for implementing the

learning process and, subsequently, for defining groups of regular expressions constituting

the regex dictionary. This NN is denoted in the following as ‘supporting neural network ’

since its role is solely to support the creation of the dictionary, and it is not meant to

be further executed during the actual functioning of the assessment framework.

7.4.2.3 Neural Network Implementation and Training

The structure of the neural network adopted in the remainder of the chapter (Figure 7.2)

is composed of three layers: the first one, the ‘input layer’, is made of n neurones, where

n is the size of the input vectors. This layer has the sole purpose of ‘presenting’ the

input data to the network7 (that means distributing the input values to the neurones of

the following layer) and thus does not entail any calculation (passive nodes). The second

layer, referred as ‘hidden layer’, is composed of n neurones as well, while the third, or

‘output’, layer has a single neuron connected to all those within the hidden layer.

...

...

I1

I2

I3

In

H1

Hn

O1

Input
layer

Hidden
layer

Ouput
layer

Figure 7.2: Structure of the adopted supporting neural network

In the proposed approach, the dataset used for training the neural network (NN-training

set) entirely or partially consists of synthetic data and is composed as following:

• A set of “assumed regular” patterns, associated with output value 1. These can

be obtained: i) by utilising a Markov Model, designed for producing sensible se-

quences of driving modes, ii) by logging patterns generated from a traffic simulator

(described in Section 7.5.1.2) or iii) by analysing real traffic data. Different sources

of data have been considered for testing the effectiveness of the proposed methods

7The presence of the input layer has more to do with the description of the neural network than with
its actual implementation, and it is in some cases neglected.
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under differentconditions. In the last two cases, since the traffic simulator imple-

ments a dynamic model that evolves from random initial conditions and since the

real-word data is not labelled, some “irregular” patterns could be presented to the

network8. Nonetheless, since these “irregular” sequences likely represent a tiny or

non-existent part of the “assumed regular” patterns dataset, their effect on the

training process can be expected to be negligible.

• A set of “irregular” sequences of driving modes, associated with the output value

0. These patterns are produced in an automated manner, by including within a

random sequence of driving modes a sub-sequence representing a manoeuvre that is

known to be concerning, e.g., multiple lane changes in quick succession, prolonged

braking or continuously switching between acceleration and deceleration.

7.4.2.4 RegEx Dictionary Creation

Once the neural network has been trained to distinguish between “regular” and “suspi-

cious” behaviours, it can be used to derive one or more sets of regular expressions that

allow summarising and generalising the observed behavioural patterns. This can be done

by providing a new set of patterns as input to the neural network. These patterns are

denoted as RD-training set (where RD stands for Regex Dictionary) and are defined

following the same procedure used for the NN-training set. Noticing that the network

outputslie in the [0, 1] range, the RD-training patterns can be split among a pre-defined

number of bins on the basis of the NN output associated with each of them, as follow:

nn (pi) > γ ∧ nn (pi) ∈
[
1− (j − 1) sb, 1− jsb

]
⇒ pi ∈ bj (7.12)

where the ‘nn’ operator represents the neural network, pi is the i-th pattern of the RD-

training set , γ is the threshold9 on the NN outputs for the patterns to be considered

within the regexes creation process, sb = (1− γ) /Nb is the step between the values

associated with two successive bins, Nb is the number of bins adopted and bj denotes

the j-th bins, with j = 1, . . . , Nb.

The set of patterns associated with the j-th bin can thus be denoted as pbj = {pi :

pi ∈ bj}, and it can be used to define one or more regexes capable of expressing all the

behaviours related to patterns pbj . This is done through a newly-developed algorithm

that, given a set of patterns pbj , returns a set of regexes rbj = {ri,j}, with i = 1, .., nrj
where nrj is the number or regexes generated for the j-th bin. By applying this procedure

to each bin, a dictionary of regular expressions is built from the RD-training patterns

and the output values provided by the supporting NN. Each of the Nb bins constituting

8This is why the expression ‘assumed regular’ has been used for this type of patterns.
9The whole range [0, 1) is considered when γ = 0.
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the dictionary is associated with a different level of “regularity” assumed for the patterns

matched by the regular expressions contained in the bin.

Given a regex dictionary d structured as described, the assessment process for a generic

pattern p simply consists in finding the first bin from the top (index 1) containing a

regex that matches the pattern. Assuming k as the result of the search, the assessment

for the considered pattern can be formulated as follow:

l (k) = l
(
srch (p,d)

)
= 1− (k − 1) sb (7.13)

where the function srch() returns the index of the first bin containing a regex that

matches the input pattern.

The novel approach proposed to on-line monitoring of targets consists in querying a

dictionary of regexes like if it were the supporting10 NN. As stated, the dictionary is

created ‘offline’ on the basis of the NN outcomes and is characterised by a granularity

that is function of the number of bins Nb and the threshold γ adopted. This approach

can be adopted under the assumption that

nn (p) ≃ l
(
srch (p,d)

)

that is, that the dictionary-query technique represents a valid approximation of the

neural network. If and to what extent this assumption can be considered correct is

investigated through a comprehensive set of tests in Section 7.5.2.

7.4.2.5 Real-Time Dictionary Update

A relevant advantage of using a dictionary of regexes respect to a neural network is that

the former can be easily updated in real-time: this means that the system can match

patterns that were not accounted for during the system design phase but appears to be

of considerable importance during the operational phase. In so doing, the monitoring

application can quickly adapt to different scenarios or temporary conditions influencing

the targets behaviour.

For example, a prolonged slowdown on a motorway could be a priori considered as a

suspicious manoeuvre, but if all the vehicles were doing that, e.g. because of a closed

lane, the assessment for that pattern should be updated to “regular”. Such result can

be obtained by adding, during the monitoring process, new regular expressions to the

dictionary or by moving an existing regex to a different bin in the dictionary hierarchy.

10The NN used for the dictionary creation.
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7.4.2.6 Assessment Framework structure

Given the two proposed approaches to TOI detection (Knowledge-based and Learning-

based), an hybrid assessment framework for supporting operator decisions can be consid-

ered, whose structure is outlined in Fig. 7.3. In this representation on-line components

are depicted in violet, while the off-line part is in orange. It is possible to notice that the

TOI warnings (TOIWs) produced by the pattern matching techniques are not directly

forwarded to the operator but are provided to a further processing block indicated as

‘Target Assessment Process’: its role is to apply some kind of filtering action to the

automatic TOIWs, accordingly with the operator specification and requests. From the

practical point of view this component could:

• Implement the logic sum of the two input signal11;

• Impose a threshold on the number of warnings necessary for classifying a vehicle

as a TOI;

• Implement any arbitrarily complex policy.

The functionalities related to this component are not further analysed since they are

strictly related to the operator choices and its personal interpretation of what represents

an actual threat.

Sensor Stored Data

Tracking Process Dictionary Building

Trajectory Analysis

KB-Pattern Matching LB-Pattern Matching

Target Assessment Process

Operator

Measurements

Target Tracks

Driving Modes Pattern Driving Modes Pattern

Patterns

Patterns Dictionary

KB TOI warning LB TOI warning

TOI Assessment

Figure 7.3: Schematic representation of the proposed assessment approach

11In the case that the operator is interested in each possible “irregular” behaviour exhibited by the
targets.
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Table 7.1: Markov chain for patterns generation, KB approach

Driving Modes

(2) (7) (5) (4) (9)

D
ri
v
in
g
M
o
d
es

Left Lane Change (2) 1/2 1/6 1/6 0 1/6

Right Change (7) 1/6 1/2 1/6 0 1/6

Acceleration Ahead (5) 1/6 1/2 1/6 1/6

Deceleration Ahead (4) 1/6 0 2/6 2/6

Constant Speed (9) 2/6 1/6 1/6 1/6

Table 7.2: Numerical result for simulations based on Markov Chain and Dynamic
Model (%)

Markov Chain Dynamic Model

Consistent Knowledge Inaccurate Knowledge
regex Basic

regex Basic regex Basic

Correct Detections 90.5 16 63.8 22 84.4 15.4

Missed Detections 9.5 49.5 36.2 58 15.6 84.6

False Detections 0 34.5 0 20 0 0

7.5 Simulations

This section reports the results from an extensive set of simulations and tests performed

for checking the effectiveness of the pattern matching approaches proposed in Section

7.3. Knowledge-Based and Learning-Based matching solutions have been tested sepa-

rately, allowing to compare the proposed solutions with corresponding well-established

techniques. The final target assessment step has not been taken into consideration in

the following tests, since it entails a non-univocal interpretation of the problem and no

labelled datasets or similar assessing techniques can be easily retrieved.

7.5.1 Knowledge-Based Matching

The two string-matching techniques described in the Section 7.3 have been tested and

compared for assessing whether the approach based on regexes performs better than

the basic technique. Two different methods have been considered for generating the

strings to be tested against the reference patterns. As first approach, a Markov chain

has been leveraged, which produces sequences of DMs accordingly with some reasonable

probabilities. Then, a dynamic system simulating a car moving on a two-lane highway

has been implemented: in this case, the strings of driving modes have been produced

through the analysis technique described in Section 7.2.
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Figure 7.4: Numeric results for regex and simple-strings based approaches: a “con-
sistent” case simulation, b “inaccurate” case simulation, c, dynamic system simulation
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7.5.1.1 Simulations Based on Markov Chain

TheMarkov chain described in Table 7.1 has been used for generating plausible sequences

of driving modes: probability values are defined with a simple approach12, taking into

account some basic considerations:

• Manoeuvres time correlation suggests that the probability of remaining in the same

state must be higher than switching to any other state;

• After the target has moved to the outer lane, it will not reduce its speed immedi-

ately;

• After the target has moved back to the inner lane, it will not reduce its speed

immediately;

Lastly, notice that when in states 4, 5 or 9 the probabilities of switching to modes 7 and

2 have been aggregated, since they depend on the lane occupied, i.e.:

lane = left =⇒





P (2) = 0

P (7) = P
, otherwise





P (2) = P

P (7) = 0

where P is the probability reported in the table.

By means of the considered Markov chain, a sequence of one hundred thousand driv-

ing modes has been produced and analysed leveraging the two string-matching ap-

proaches, with the aim of identifying overtaking manoeuvres. The considered reference

pattern for the simple-string approach is Sr,o1 = ‘755992’, assuming a threshold value

of two for the edit distance. This means that only strings with edit distance smaller

or equal to two have been considered matching the reference pattern. For the regex-

based approach, the regular expression adopted for describing an overtaking manoeuvre

is Sr,o2 = ‘ [12345689] ∗ 7 + [345689]{4, 16}2’, assuming a zero threshold on the edit

distance, i.e. just exact matching have been considered. This is because the use of

metacharacters and character classes already provides a sufficient degree of flexibility.

Given the sequence of driving modes produced by the Markov model, the GT about the

number of overtaking manoeuvres has been defined in two different cases:

Consistent Knowledge: just the sub-sequences with at least four “straight-direction”

DMs between the left-lane-change and right-lane-change modes have been counted

as actual overtaking manoeuvres. The term “consistent” is used since the assess-

ment of the ground truth complies the definition of the reference patterns Sr,o1 and

Sr,o2 . With this approach, the DMs sequence exhibits 3412 overtaking manoeuvres.

12Driving modes ‘widening gap’, ‘closing gap’ and ‘U-turn’, codified as ‘3’,‘6’ and ‘A’ respectively, are
not considered in the following for simplicity.
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Inaccurate Knowledge: sub-sequences with two or more straight-direction DMs be-

tween the two lane changes have been considered as actual overtaking manoeuvres.

In this case, a non-exact knowledge of target dynamics is simulated since overtak-

ing manoeuvres are executed much faster than expected (the reference patterns

account for four straight-direction driving modes). With this approach, 6253 over-

taking manoeuvres have been counted.

The results for the two cases are shown in Fig. 7.4a, 7.4b and summarised in Table

7.2: in the consistent case the correct detection rates are 90% and 16% for the regex-

based and simple-string approaches, respectively. In the case of inaccurate knowledge

the regex-based technique lowered its success ratio to 63.8% and the performance of

the simple-string approach remains almost the same. False positive detections are not

a problem concerning the regex-based technique (absent in both the cases), while in

the simple-string case their fraction is not negligible: it is indeed of the same order of

magnitude respect to correct detections.

7.5.1.2 Simulations Based on Dynamic Model

A second test for the two string-matching techniques has been carried out using a

dynamic-system model representing an individual car moving on a two-lane highway;

the car switches between the two lanes, accelerating, decelerating or keeping a constant

speed. An “always-straight” road is considered for simplicity’s sake; however, this can

be extended to the more complex case of a generic road by making reference to the

abstract representation introduced in Section 4.3.1.1.

The car trajectory has been simulated for fifty thousand seconds (corresponding to one

hundred thousand driving modes, assuming a sample time Ts = 0.5 s), on the basis of

the following procedure:

I) The car moves along the inner lane for a randomly distributed time interval

tin ∼ N (30, 16). The acceleration profile during tin is defined dividing the in-

terval into nin randomly distributed13 sub-intervals tin,j ∼ N
(
2, 6.25 × 10−2

)

with j = 1, 2, . . . , nin. For each interval tin,j the vehicle can decide to accelerate,

decelerate or maintain a constant velocity;

II) The car starts to move towards the outer lane with constant velocity;

III) The vehicle arrives on the outer lane and determines how long it will stay on this

lane: to ∼ N (5, 4). The acceleration profile during this period is defined using the

same procedure as in step I;

IV) The car moves back to the lane on the right;

13The length of the last sub-interval tin,nin
is constrained by the length of interval tin.
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V) The procedure restarts from the first step.

Other simulation parameters are:

• Maximum forward speed: 30m/s;

• Minimum forward speed: 5m/s;

• Lateral speed: ±1.75m/s;

• Acceleration: ±2m/s2

All the ‘inner-to-outer lane’ events followed by ‘outer-to-inner lane’ have been considered

as overtaking manoeuvres regardless of the time interval spent on the outer lane; with

this approach 1262 overtaking manoeuvres have been identified. The reference patterns

for the two matching techniques are the same of the previous example (Section 7.5.1.1),

and the numeric results obtained from the simulation are reported in Table 7.2 and

Fig. 7.4c. Again, the regex-based approach undoubtedly outperforms the simple-string

technique: 84% instead of the 15% of correct detections.

7.5.1.3 Computation Complexity Analysis

The time complexity for edit distance calculation is O(n ·m) ([163]) where n and m are

the lengths of the compared strings. On the other hand, for classical regular expressions

(the type here considered) the time complexity can be reduced to O(n), with n length of

the tested string, by the use of aDeterministic Finite Automata (DFA), thus representing

a less complex solution.

7.5.2 Learning-Based Matching

The learning approach for behavioural patterns has been tested under the same two cases

considered in Section 7.5.1, and has been further applied to real-word vehicle trajectories

(made available by the NGSIM project). The objective of the simulations reported in

the following is to establish whether or not the use of a regex-dictionary represents a

suitable solution for replacing a neural network, i.e. if these two methods have compa-

rable outcomes. This analysis appears to be more meaningful than considering actual

detection capabilities since: i) No GT is available for most14 of the data ii) A neural

network is assumed to be an effective tool for patterns recognition and thus its outputs

are considered to be valid references.

14Only patterns produced by means of the Markov model are associated with an actual GT.
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7.5.2.1 Markov Model

Similarly to the KB case, a Markov model (Fig. 7.5) has been defined for producing

DM sequences associated with “regular” behaviours.

S0/‘9’

S1/‘4’ S2/‘5’ S3/‘7’

S4/‘2’ S5/‘5’ S6/‘9’
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Figure 7.5: Markov model for patterns generation, learning-based approach

However, unlike the KB case, “irregular” patterns are also required for properly training

the neural network. Each irregular pattern is generated as a random sequence of driving

modes where a sub-sequence is added15 that represent a known irregular behaviour.

The following datasets have been produced on the basis of the criteria just described:

NN-training set: 20,000 patterns, used to train the neural network;

RD-training set: 20,000 patterns, used to query the trained network and populate the

regex dictionary;

Test set: 2000 patterns, used to query both the neural network and the dictionary-

based matching technique, thus allowing to compare the results provided by the

two approaches.

All the datasets are composed of regular patterns for the 75% and irregular patterns for

the remaining part. This ratio for the two components of the dataset, clearly privileging

the regular patterns, has been chosen considering that the simulation focus is in learning

regular, typical behaviours by examples, while irregular patterns are provided to the

network just for training purposes. The proposed approach consists indeed in trying to

learn what is regular and considering then everything else irregular. Using these datasets,

a test accounting for various numbers of bins for the dictionary-based technique have

been performed, and the results are depicted in Fig. 7.6.

15As example, assuming a prolonged deceleration (4) as an irregular behaviour, irregular patterns
could be: ‘5792444959’, ‘9544497254’, ‘24724449’, etc., where 444 is the considered sub-sequence and
the other driving modes are randomly chosen.
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Figure 7.6: Results for the regex-dictionary against neural network approaches con-
frontation, Markov-model data: 7.6a multiple bins test, 7.6b detail of the results for

the highest number of bins considered (100)

The aim of the test consists in verifying for what percentage of the input patterns the

regex and the NN approaches provide the “same” result. With “same”, it is here meant

that the difference in the outcomes of the two methods lies within a given error threshold,

which represents the second parameter of the test.

The numeric results indicate that the proposed dictionary-query approach has been able

to reproduce the NN outputs for a fair portion of the test patterns: approximately 85%

of correct matching assuming an error threshold of 20%.

7.5.2.2 Dynamic Model

The test described in Section 7.5.2.1 has also been performed using data from the dy-

namic simulator described in Section 7.5.1.2 instead of patterns from the Markov model.
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Figure 7.7: Results for the regex-dictionary against neural network approaches con-
frontation, dynamic model: 7.7a multiple bins test, 7.7b detail of the results for the

highest number of bins considered (100)
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The test results for this different case are depicted in Fig. 7.7 and, from a qualitative

point of view, are not substantially different from those obtained for the Markov model

data. The resulting curve (Figure 7.7b) exhibits, indeed, a trend similar to that of Figure

7.6b, but it is possible to note a considerably less pronounced slope. This could be due

to the fact that the dynamic-model simulator has probably produced a set of patterns

with lower ‘entropy’, that is a smaller variety of DM sequences is used for training the

network and thus to produce the regex-dictionary.

7.5.2.3 Real Data Analysis

In this section, the case is considered where the dictionary of reference patterns is inferred

from real-word traffic data: 5200 trajectories have been extracted from the NGSIM

US101 dataset, within the period of time between 7.50am and 8.35am. For the test, the

original NGSIM data have been corrected utilising the technique described by Montanino

et al. in [91], allowing to remove outliers and infeasible acceleration profiles due to

measurement errors.
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Figure 7.8: Results for regex-dictionary against neural network approaches confronta-
tion, real-world data: 7.8a matching ratio as a function of error threshold and training
set portion, 7.8b detail of the results for different dimensions of the training set (fraction

of the whole dataset).

On the basis of these target trajectories and by employing the analysis technique de-

scribed in Section 7.2, 3563 driving patterns have been identified. These have been then

leveraged for the definition of a dictionary accounting for 30 regular expressions dis-

tributed among 100 bins16. For this example test, the dictionary threshold γ has been

set to 0, thus allowing to have a granularity of 1/100 in the representation of the NN out-

puts by means of the regex-dictionary. The test results are depicted in Fig. 7.8, where

the ratio of correct matching between NN and regex-dictionary outcomes are plotted

16For the sake of simplicity and since the previous tests suggest that the number of bins does not sig-
nificantly influence the matching ratio (causing though an underlying quantization error), the matching
performances for a single value for the number of bins have been analysed.
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against the training set portion17 and error threshold. The numeric results clearly show

that, even with a relatively small amount of data dedicated to the training process, the

proposed regex-dictionary based approach is capable of replicating the outcomes of the

neural network, exhibiting matching percentages between 90% and 95%. It is further-

more possible to notice that, apart from the case of extremely small training sets, the

matching performance is not sensibly affected by the error threshold, which means that

for most of the patterns in the test set the dictionary-query technique either provide a

perfect match or it does not recognise the pattern at all.

7.5.2.4 Computation Time Analysis

A comparison of the computational efficiency for the dictionary-query and neural net-

work techniques is here presented.
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Figure 7.9: Distribution of the computation times for the 3563 patterns obtained
from NGSIM data

The test has considered the real-word data case (Section 7.5.2.3), and the neural network

and the regex dictionary have been defined on the basis of a training set portion equal

to 0.5. Then, each pattern in the dataset has been assessed through both the considered

techniques and the actual computation times18 have been recorded. The neural network

outputs have been calculated by means of the Matlab built-in net() function, while

the dictionary-query approach relies on a newly-implemented function that browses the

dictionary and checks for the first regex matching the pattern under assessment.

17Notice that, for the test here reported, the training set portion is equally distributed between the
NN-training and RD-training sets.

18The reported time values make reference to a Matlab 2015 environment on an Intel i7-3770 16 GB
RAM machine, with no parallel computation enabled.



Pattern Matching based Behaviour Monitoring

The measured time intervals19 for the two approaches are reported in the histogram in

Fig. 7.9. This figure clearly shows that the regex-dictionary based technique is always

faster than the neural network. Furthermore, it can be noticed that the use of a neural

network leads to quite evenly distributed time values, while the dictionary-query has

taken the minimum observed elaboration time for most of the patterns. This aspect can

be attributed to the fact that, assuming to browse the dictionary from the top bin, the

regular patterns, which are the most frequent, are usually matched almost immediately

by a regex located in the first few bins. On the other hand, irregular patterns take longer

since they require most or all of the dictionary to be browsed. Regarding the overall

performance, however, this does not seem to be a problem, since irregular patterns are

expected to be observed far less frequently than regular ones. The measured mean value

and standard deviation for the elaboration times in the two cases are t̄NN = 5.9ms,

σNN = 1.5ms and t̄RD = 0.12ms, σRD = 0.49ms for the neural network and regex-

dictionary approaches, respectively.

7.6 Conclusions

This chapter has considered the problem of manoeuvres detection and behaviour recog-

nition through the definition of a 2-step approach:

1. Classification of the target trajectories in sequences of driving modes;

2. Comparison of the driving modes sequences with reference patterns either defined

a priori on the basis of specific knowledge or automatically learned by utilising a

supporting NN.

These two different approaches to pattern matching have been tested and compared to

well-established techniques in the field, leading to promising matching results.

Concerning the KB component, the proposed regex-based approach has clearly provided

better results than the simple-string based method in all the tests that have been per-

formed. The definition of reference patterns as simple-strings leads, indeed, to a lack of

robustness against small variations in the actual string under assessment. The concept of

‘edit distance’, used as a threshold for the matching, tries to alleviate such problem, but

appears to be not so effective, especially for long reference patterns. The use of regexes,

on the other hand, allows achieving greater flexibility through the definition of optional

and multiple-choice terms within the pattern of interest. This intuitive idea has been

confirmed by all the tests presented in Section 7.5.1: the regex-based approach exhibits

high rates of correct detections while the simple-string based method performances are

19The reported time values accounts only for pattern evaluation, and thus do not consider the network
training and dictionary creation processes. These procedures are executed just once, probably off-line,
and are thus not of interest for the on-line monitoring performance assessment.
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always at an inadequate level. On the basis of these results, it is possible to affirm that

the simple-string based technique seems not suitable to a minimally robust detection

approach. On the other hand, regex-based string matching appears as an effective tech-

nique for implementing KB target assessment, allowing to detect anomalous behaviours

when expressed as partially known sequences of driving modes.

For the learning-based component, a comparison has been proposed between the pat-

tern matching results provided by the regex-based approach and the neural network.

It has been shown that the use of a properly defined dictionary of regexes provides

results very similar to those of a neural network in most of the cases, at far smaller com-

putational costs. Furthermore, considering a distributed multi-agent environment, the

regex-based approach allows to easily update and share the knowledge locally available

to the monitoring agents (i.e. the regular expressions dictionary). Such process would

be considerably more complex if a neural network would be adopted as pattern match-

ing tool, making the regex dictionary approach represent a more flexible and practical

solution for actual implementations.

The main contributions of the work presented in this chapter:

• The application of a regex-based matching technique to the field of automated

monitoring, specifically to the problem of behaviour classification;

• The definition of a procedure for the automatic creation of a dictionary of regexes

representing the behaviours commonly observed in a monitored scenario.

The regex-dictionary enables assessing to what extent an observed pattern can be con-

sidered regular and thus detecting uncommon and unexpected manoeuvres that should

be considered possible threats.

It is worthy to remark the flexibility and generality of the proposed approach: this, by

employing the pattern matching technique described, is capable of detecting a great va-

riety of events other than the considered overtaking manoeuvre. The proposed method

can thus be easily applied to various monitoring scenarios by defining appropriate ref-

erence patterns and driving20 modes; these can depend on the specific application field

(e.g., maritime, highways, urban roads) and on the behaviours of interest (e.g., fickle

speed, suspicious stops, periodic behaviours).

20In a general context the term “driving” should be replaced by “moving”, thus fitting to the problem
of, e.g., boats or people monitoring.





Chapter 8

Conclusions and Future Works

8.1 Conclusions

This thesis has investigated the problem of ‘target assessment ’ and ‘Target Of Interest

(TOI) identification’ taking into account solely the behavioural characteristics of the

monitored vehicles. The proposed approach also enables to integrate ‘context informa-

tion’ into the assessment process, thus taking into account environmental conditions

possibly influencing the target behaviour.

The analysis approach considers the monitoring functionalities segmented into three

different layers: ‘sensor level ’, ‘monitoring level ’ and ‘decision level ’. The proposed

work has focused on the analysis and implementation of the monitoring level, which takes

into account ‘refined’ information (not simple sensor measurements) and makes decisions

about the target classification. Because of this layered approach and the declared focus

on the middle layer, the assessment of target behaviours has been performed by defining

high conceptual-level (almost abstract) features. These have been utilised for quantifying

the ‘regularity’ of complex aspects of the target dynamics by means of normalised values.

The use of high-level, behavioural features has allowed decoupling the assessment process

from the specific target considered: since dynamic models or prior information about

the target type are not involved in the analysis, the proposed method seems to be widely

adaptable to different scenarios and target classes.

The techniques proposed in the thesis have been developed with the aim of being general,

flexible and adaptable to a variety of monitoring conditions and scenarios. The traffic-

monitoring scenario considered within the thesis, indeed, just represents a particular case

study, which has been adopted for defining clear and understandable test conditions.

Huge effort has been put into providing meaningful numerical results and performance

indexes for the proposed techniques. As thoroughly explained in the thesis, the general

assessment problem does not have an actual Ground Truth (GT) associated, and any
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numerical result is affected by a subjective component due to the artificially-defined,

adopted GT. Nevertheless, all the assumptions at the basis of the numerical results

provided within the thesis can be considered well motivated and consistent with common

knowledge.

In the thesis, firstly, a basic distributed implementation of an assessment framework

has been proposed, with the purpose of investigating the effects of consensus techniques

applied to different layers of the monitoring hierarchy. Simulation results show that, in

the considered scenario, reaching an agreement about local assessments leads to better

distributed-assessment performances than having consensus on target tracks. This result

is one of the main contributions of the thesis, confirming the effectiveness of the novel

proposed approach based on: (i) the definition of high conceptual-level features and

(ii) the implementation of consensus techniques dealing with assessments rather than

individual measurements.

Then, the basic approach previously adopted for the feature characterisation and target

assessment has been replaced by a more articulated and formal solution. This involves

a stochastic, hierarchic representation for the features and a decision policy based on

hypothesis-testing. The contribution of this novel proposed approach consists in pro-

viding: (i) An analytical description of arbitrarily complex behavioural features and

(ii) An assessment criterion that jointly takes into account the whole set of considered

target features . The described approach has been extensively tested trough numerous

simulations: the obtained results demonstrate the efficacy of the proposed assessment

technique and provide indications on the sensitivity of the method to different simu-

lation conditions. An analysis of the framework performances on real-world data has

been furthermore performed, the results of which suggest that the performance indexes

obtained for simulated data can be qualitatively extended to the case of actual target

trajectories

Lastly, the identification of possible TOIs has been performed utilising pattern matching

techniques. Two different solutions have been presented with reference to this approach:

the detection of known “irregular” patterns and the automated definition of a “dictio-

nary” of “assumed-regular” patterns, which can be queried for assessing the regularity

of observed behaviours. The main contribution, with reference to this part of the thesis,

is the adoption of Regular Expressions (regexes) for implementing the pattern match-

ing functionalities. This approach has allowed achieving better performances respect

to well-established techniques for both the cases previously mentioned. More specifi-

cally, for the problem of matching a priori known patterns, the novel approach based

on regexes has exhibited higher identification capabilities than the ‘Edit Distance’ tech-

nique. For the second case, where a list of regexes is inferred from trajectories data, the

novel dictionary-based approach has provided similar performances respect to a properly

trained neural network, requiring however sensibly shorter computation times.
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In conclusion, general approaches for the target assessment task have been developed

and analysed within the thesis. The outlined solutions are meant for a preliminary

investigation of the problem, avoiding optimised and target-specific methods. For this

reason, an actual implementation of the proposed framework could benefit from further

analysis of the key issues underlying the assessment problem and from a refinement of

the adopted techniques. This matter is considered in the next section.

8.2 Future Works

The problem of reproducing the generic human assessment process appears extremely

challenging, especially when domain-specific knowledge about the monitored scenario is

not available. The work presented within this thesis represents an experimental investi-

gation of such problem, expecting to pave the way for further analyses and developments.

A first possible development of the proposed work is the application of consensus tech-

niques to the assessment/detection processes described in Chapter 6 and Chapter 7. For

the former, consensus protocols could be applied to the considered beta distributions

so that an agreed stochastic representation for the behavioural features associated to

a given target can be cooperatively defined by the network agents. A way for achiev-

ing this result could be, e.g., to define a distributed approach to the calculation of the

Kullback-Leibler Average: this is indeed the distribution that minimise the sum of the

Kullback-Leibler Distances respect to a set of input distributions. In so doing, the result

of the consensus process would be the “closest” beta distribution to those suggested by

the individual agents. For the TOIs detection approach introduced in Chapter 7, with

reference to the Learning-Based (LB) matching case, agreement between agents could

be simply obtained by applying an average-consensus protocol to the “regularity” values

returned by the dictionary-query technique. Monitoring agents would be thus classifying

a target as ‘regular’ or TOI on the basis of the (possibly weighted) average of the local

assessments.

In the thesis some fundamental issues have been addressed, e.g. “Which granularity (i.e.

level of detail) to adopt for the target representation?”, “What is the most convenient

approach to assessment decentralisation?”, “How to represent articulated characteristics

of a target behaviour?”, “How to assess a target on the basis of multiple aspects of

its conduct?”, “How to detect anomalies in time-correlated behaviours?”, etc.. The

answers provided in the thesis to these questions are supported by numerical results

from an extensive set of simulations, yet they cannot be considered “unquestionably

true” because of the inherent subjectivity of the assessment process. For this reason, the

fundamental problem to be addressed in future works is the identification of a technique

that allow defining a somehow ‘objective’ GT. This would make it possible to actually

validate the proposed approach, leading to performance indexes above criticism. Because
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of the subjective nature of the assessment process, a fully objective GT can maybe hardly

be defined, yet the author’s opinion is that some relevant steps in this direction can be

done using a proper analytical approach.

A related but different problem encountered within the research project is that of per-

formancecomparison against different assessment techniques. In this case, the subtlety

consists in the fact that the underlying knowledge (that is, the subjective definition

of what is regular and what is not) that defines the severity of the assessment must

be the same for the two techniques considered, otherwise the comparison would not

be meaningful. Two approaches could, indeed, be equally effective and yet identifying

a different number of targets, since “tuned” to be severe to different extents. A rele-

vant investigation could thus concern the ‘severity equalisation’ issue between different

techniques.

The issues just described deal more with the “interpretation” of the assessment prob-

lem than with actual implementation details. However, with regard to the techniques

presented in the thesis, future works could also be aimed at refining and extending the

current functionalities.

A possible future work involves the hierarchic approach proposed for the features repre-

sentation (Chapter 6). In the adopted implementation, the beta functions at any level

m are defined on the basis of single numeric values, each of which is associated with

a distribution located at level m − 1. It would be however extremely significative to

develop an analytical approach for the definition of the highest-level distribution (the

one associated with the actual feature) that take into account the full distributions at

the lower level instead of single aggregating values.

Furthermore, an actual implementation for the dictionary-update process mentioned in

Section 7.4.2.5 can be easily integrated into the framework assessment. The real, prob-

lem, again, is more “philosophical” than technical: how to guarantee that behaviours

becoming frequent during the monitoring process can be assumed to be legit? In light

traffic conditions, e.g., left overtaking manoeuvres are likely to be rarely observed, while

their frequency could significantly rise under heavy traffic conditions: this, of course,

does not entail that such behaviour should be tolerated. The availability of a reliable GT

could mitigate this problem, providing feedbacks about the benefits resulting from such

update action. The GT definition remains thus a binding, sensible issue, to be addressed

before efficient and sophisticated technical solutions can be taken into account.

Similar considerations can be made regarding the integration of contextual information

in the assessment process. This topic has been briefly addressed in the thesis, but

its contribution has not been quantitatively described. Changes in the environment

conditions reasonably entail a shift in the GT, but how this should alter the assessment

process can hardly be evaluated in an objective manner.



Appendix A

Linear Algebra and Matrix

Theory

Definition A.1. Matrix A =
[
aij
]
is defined ‘positive’ (A > 0) if aij > 0,∀i, j.

Definition A.2. Matrix A =
[
aij
]
is defined ‘nonnegative’ (A ≥ 0) if aij ≥ 0,∀i, j.

Definition A.3. MatrixA ∈ R
n×n is is said to be ‘positive-definite’, ‘positive-semidefinite’,

‘negative-definite’ or ‘negative-semidefinite’ if, respectively:

• xTAx > 0

• xTAx ≥ 0

• xTAx < 0

• xTAx ≤ 0

for every non-zero column vector x composed of n real numbers.

Theorem A.1. (Rank-Nullity Theorem) Let V and W be vector spaces over a field F ,

and let T : V → W be a linear transformation. Assuming the dimension of V is finite,

then:

dim(V ) = dim(Ker(T )) + dim(Im(T )), (A.1)

where dim is the dimension of a vectorial space, Ker is the kernel, and Im is the image.

Note that dim(Ker(T )) is called the ‘nullity ’ of T and dim(Im(T )) is denoted as the

‘rank ’ of T .

Definition A.4. Matrix A ∈ R
n×n is said to be ‘diagonally dominant ’ if, for every row

of the matrix, the magnitude of the diagonal entry is larger than or equal to the sum of
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the magnitudes of all the other (non-diagonal) entries in that row. More precisely, the

matrix A is defined diagonally dominant if:

|aii| ≥
∑

j 6=i

|aij |, ∀i = 1, . . . , n

Definition A.5. A nonnegative n × n matrix A =
(
aij
)
is defined ‘row stochastic’ or

‘right stochastic’ if
n∑

j=1

aij = 1, ∀i

A row stochastic matrix is referred, for the purpose of this thesis, simply as stochastic

matrix.

Definition A.6. A nonnegative n× n matrix A =
(
aij
)
is defined ‘column stochastic’

or ‘left stochastic’ if:
n∑

i=1

aij = 1, ∀j

Definition A.7. A nonnegative n×n matrix A =
(
aij
)
is defined ‘doubly stochastic’ if

it is both row stochastic and column stochastic:

n∑

j=1

aij =

n∑

i=1

aij = 1, ∀(i, j)

Definition A.8. A nonnegative square matrix A =
(
aij
)
is said to be ‘primitive’ if

∃k ∈ N : Ak > 0, i.e. if there exist a k such that all the elements of Ak are positive.

Definition A.9. A stochastic matrix A is defined ‘Stochastic, Indecomposable and Ape-

riodic (SIA)’ if limi→∞Ai is a matrix of rank 1, i.e.

lim
i→∞

Ai = 1vT

where 1 is a column vector of ones, and v is a generic column vector, both of suitable

dimension.

Definition A.10. An ‘invariant subspace’ of a linear mapping T : V → V from some

vector space V to itself, is a subspace W ⊆ V such that T (W ) ∈ W . An invariant

subspace of T is also said to be T invariant.

Definition A.11. Given matrix A, one of its eigenvalues λ and the associated eigen-

vector w, is defined ‘generalized eigenvector ’ the vector w′ such that:

(A− λI)w′ = w

where I is the identity matrix.
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Graph Theory

Definition B.1. A ‘Graph’ is defined as G = (V, E), where V = {v1, v2, ..vn} is a finite

nonempty set of ‘nodes’ (or ‘vertices’) and E ⊆ V × V is the set of ‘edges’ (or ‘arcs’)

connecting the graph nodes. The pair (i, j) ∈ E if it exists an edge linking node i and j.

Self edges are generally allowed, so pair (i, i) is a valid element of E . The ‘graph order ’

n corresponds to the number of nodes in the graph, i.e. n = |V|.

Definition B.2. A ‘directed graph’ or ‘digraph’ is a graph where edges are ordered pairs,

i.e (i, j) ∈ E indicates that node j can be reached from node i, but not necessarily vice

versa: in such case i is referred as ‘parent node’ and j as ‘child node’.

Definition B.3. An ‘undirected graph’ is one in which edges have no orientation. The

edge (i, j) corresponds to the edge (j, i), i.e., they are not ordered pairs. This type of

graph can be seen as a special case of a digraph, where (i, j) ∈ E ⇒ (j, i) ∈ E .

Definition B.4. A ‘simple graph’ is a graph with no self-loop, i.e. (i, j) ∈ E only if

i 6= j.

Definition B.5. Given a graph G = (V, E), it is defined ‘adajacency matrix ’ A
′

of G,

the n× n matrix with elements

a
′

ij =





1, (j, i) ∈ E

0, (j, i) /∈ E

where n = |V|.

Definition B.6. The ‘neighbor set ’ of node v in graph G = (V, E) is defined as Nv ={
j ∈ V : (j, v) ∈ E

}
.

Definition B.7. The ‘degree’ or ‘valence’ of a graph node v is the number of incident

edges for that vertex, and it is referred as deg(v).
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Definition B.8. The degree or valence of a node v of a digraph is the sum of the number

of edges entering the node (‘in-degree’ degin(v)) and edges exiting the node (‘out-degree’

degout(v)).

Definition B.9. A node v of a digraph is defined ‘topologically balanced ’ if it has the

same in-degree and out-degree, i.e., degin(v) = degout(v). Nodes in an undirected graph

are topologically balanced by definition.

Definition B.10. A (di)graph is defined topologically balanced if each vertex vi ∈ V is

topologically balanced.

Definition B.11. a ‘weighted (directed) graph’ is a triple (V, E , w) where (V, E) is a

(di)graph and w : E → R+ is a map associating each edge (i, j) to a strictly positive

weight wij . For undirected graphs, edges (i, j) and (j, i) are allowed to assume different

weights.

The weights map w is usually expressed as a modified version of the adjacency matrix,

i.e A =
[
aij
]
where aij = wij ∀i, j : a

′

ij 6= 0. In this thesis a weighted (directed)

graph is thus referred as a triple G = (V, E ,A). Must be noticed that the adjacency

matrix introduced in definition B.5 is a particular case of the one just defined, where

wij = 1 ∀i, j. In this thesis, the adjacency/weight matrix A here defined is adopted.

Definition B.12. The ‘weighted in-degree’ and ‘weighted out-degree’ of a node vi of a

weighted digraph are respectively defined as degin,w(vi) =
∑n

j=1 aij and degout,w(vi) =∑n
j=1 aji.

Definition B.13. A node v in a weighted digraph is said to be ‘weight-balanced ’ if

degin,w(v) = degout,w(v). Vertices of a weighted non-directed graph are weight-balanced

by definition.

Definition B.14. A weighted (di)graph is said to be weight-balanced if each vertex

vi ∈ V is weight-balanced.

Definition B.15. a ‘subgraph’ G′ = (V ′, E ′) of a graph G = (V, E) is graph with V ′ ⊂ V

and E ′ ⊂
(
E
⋂(

V ′ × V ′
))

.

Definition B.16. a ‘spanning subgraph’ G′ = (V ′, E ′) of a graph G = (V, E) is a subgraph

of G with V = V ′.

Definition B.17. Given a collection of graphs {G1,G2, ...,Gm}, is defined ‘union’ of the

graphs in the collection, the graph Gu = (Vu, Eu), with Vu = ∪i=m
i=1 Vi and Eu = ∪i=m

i=1 Ei.

Definition B.18. Given a (di)graph G = (V, E), a ‘(directed) path’ between nodes vi1

and vik is a sequence of edges of the form

((
vi1 , vi2

)
,
(
vi2 , vi3

)
, . . . ,

(
vik−1

, vik

))
where

vij ∈ V ∀j and (ij , ij+1) ∈ E ∀j 6= k.
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Definition B.19. The ‘geodesic distance’ d(vi, vj) between two nodes in a (di)graph is

the number of edges in the shortest (directed) path connecting them.

Definition B.20. The ‘eccentricity ’ ǫ(v) of a vertex v in a (di)graph is the greatest

geodesic distance between v and any other vertex. It can be thought of as how far a

node is from the node most distant from it in the graph.

Definition B.21. The ‘radius’ r of a (di)graph is the minimum eccentricity of any

vertex, i.e. r = minv∈V ǫ(v).

Definition B.22. The ‘diameter ’ d of a (di)graph is the maximum eccentricity of any

vertex in the graph. That is, d it is the greatest distance between any pair of vertices:

d = maxv∈V ǫ(v).

Definition B.23. A ‘cycle’ in a digraph is a non-trivial directed path that starts and

ends at the same vertex.

Definition B.24. A node of a digraph is ‘globally reachable’ if it can be reached from

any other node by traversing a directed path.

Definition B.25. An ‘Euler tour ’ of a digraph G is a cycle that visits all the edges of

the digraph exactly once. A digraph is ‘Eulerian’ if it has an Euler tour.

Definition B.26. A (di)graph is ‘(strongly) connected ’ if there is a (directed) path

between every pair of distinct nodes.

Definition B.27. A digraph is ‘weakly connected ’ if each pair of nodes is connected by

an undirected path.

Definition B.28. A digraph is ‘strongly semiconnected ’ if the existence of a directed

path from a vertex i to a vertex j implies the existence of a directed path from j to

i. Strongly semiconnected digraphs that are also weakly connected must be strongly

connected.

Definition B.29. The ‘strongly connected components’ of a directed graph G are its

maximal strongly connected subgraphs.

Definition B.30. A ‘directed tree’ is a digraph where every node, except one special

vertex without any parent (the ‘root node’), has exactly one parent, and the root vertex

can be connected to any other node through directed paths

Definition B.31. A ‘spanning tree’ of G is a spanning subgraph of G that is also a

directed tree. This means that graph G has (or contains) a spanning tree if a subset of

the edges in E forms a spanning tree.

Definition B.32. A ‘(directed) graphs sequence is a (di)graph G(t) = (V, E(t)) with a

fixed set of nodes and a time-varying set of edges, where t ∈ N.
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Definition B.33. The ‘weighted (directed) graphs sequence’ definition is obtained from

definitions B.11 and B.32, i.e. is a triple G(t) = (V, E(t),A(t)) with time-varying edges

and weights sets.

Given the nodes set V, it can be useful to define the set of graphs that can be defined

on V, i.e G =
{
Gi : Gi = (V, Ei) ,∀Ei ⊆ (V × V)

}

Definition B.34. A ‘graph switching signal ’ σ(t) for a set of graphs G defined on a

common vertex set V is a function σ : R → P, where P =
{
i : Gi ∈ G

}
is the set of

indices for graphs in the set G.

It must be noticed that the function σ has been defined on the graphs set G, previously

introduced as the set of all possible graphs sharing a given nodes set V. This has been

done with the purpose of considering the most generic graphs set possible, but the

function σ could be defined on any set collecting graphs that share a common node set,

for example Q = {G1,G2, ...,Gk} ⊂ G

Considering the function σ(t) introduced in B.34, the definition for a graphs sequence

(previously given in B.32 and B.32 ) can be reformulated as:

G(t) = Gσ(t) ,
(
Gi, i = σ(t)

)

Definition B.35. The ‘vertex connectivity ’ of the (di)graph G = (V, E) is the mini-

mum number of nodes κ(G) whose deletion make the graph disconnected. The vertex

connectivity is sometimes referred to as ‘point connectivity ’ or simply ‘connectivity ’.

Definition B.36. A (di)graph G = (V, E) is said to be ‘k-connected ’ if there does not

exist a set of k − 1 vertices in V whose removal makes the graph disconnected, i.e., the

vertex connectivity of V is ≥ k.
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NGSIM Details

C.1 NGSIM Data Structure

Each entry of the Next Generation SIMulation (NGSIM) dataset represents a single

X,Y,T data point for a vehicle (specified by the vehicle identification number), with

further associated information. Each data point is characterised by the following infor-

mation fields:

1. Vehicle ID

Vehicle identification number (ascending by time of entry into section)

2. Frame ID

Frame Identification number (ascending by start time)

3. Total Frames

Total number of frames in which the vehicle appears in this data set.

4. Global Time

Elapsed time since Jan 1, 1970.

5. Local X

Lateral (X) coordinate of the front centre of the vehicle with respect to the left-

most edge of the section in the direction of travel.

6. Local Y

Longitudinal (Y) coordinate of the front centre of the vehicle with respect to the

entry edge of the section in the direction of travel
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7. Global X

X Coordinate of the front centre of the vehicle based on CA State Plane III in

NAD83.

8. Global Y

Y Coordinate of the front centre of the vehicle based on CA State Plane III in

NAD83.

9. Vehicle Length

Length of the vehicle.

10. Vehicle Width

Width of the vehicle.

11. Vehicle Class

Vehicle type: 1 - motorcycle, 2 - auto, 3 - truck.

12. Vehicle Velocity

Instantaneous velocity of the vehicle.

13. Vehicle Acceleration

Instantaneous acceleration of the vehicle.

14. Lane Identification

Current lane position of the vehicle. Lane 1 is farthest left lane; lane 5 is farthest

right lane. Lane 6 is the auxiliary lane between Ventura Boulevard on-ramp and

the Cahuenga Boulevard off-ramp. Lane 7 is the on-ramp at Ventura Boulevard,

and Lane 8 is the off-ramp at Cahuenga Boulevard.

15. Preceding Vehicle

Vehicle Id of the lead vehicle in the same lane. A value of ’0’ represents no preceding

vehicle - occurs at the end of the study section and off-ramp due to the fact that

only complete trajectories were recorded by this data collection effort (vehicles

already in the section at the start of the study period were not recorded).

16. Following Vehicle

Vehicle Id of the vehicle following the subject vehicle in the same lane. A value

of ’0’ represents no following vehicle - occurs at the beginning of the study section

and on-ramp due to the fact that only complete trajectories were recorded by this

data collection effort (vehicle that did not traverse the downstream boundaries of

the section by the end of the study period were not recorded).
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17. Spacing (Space Headway)

Provides the distance between the front-centre of a vehicle to the front-centre of

the preceding vehicle.

18. Headway (Time Headway)

Provides the time to travel from the front-centre of a vehicle (at the speed of the

vehicle) to the front-centre of the preceding vehicle. A headway value of 9999.99

means that the vehicle is traveling at zero speed (congested conditions).

C.2 NGSIM Data Reconstruction Process

The data-fixing procedure considered for correcting NGSIM data ([91]) is composed of

four main steps:

1. Outliers Removal

• Speed and acceleration profiles are obtained from position in time by succes-

sive differentiations (original speed and acceleration values are discarded);

• Data points exhibiting an acceleration higher than a sensible threshold value

(yet far higher than common vehicle capabilities, e.g., ) are identified and

modified. This happens by replacing each identified position value with the

one suggested by a spline interpolation of a given number of position values

preceding and following the data point considered;

• Velocity and acceleration profiles are then obtained by successive integration.

2. Medium- and High-Frequency Responses Removal Within the Speed Profile

• Low-pass filtering of the current speed profile;

• Definition of the position and acceleration profiles by integration and differ-

entiation respectively.

3. Residual Unphysical Acceleration Values Removal

• Identification of the data points exhibiting acceleration (in absolute value)

above a threshold defined on the basis of the expected target dynamic;

• For each of these points a time window allowing covering the same distance

travelled in the current data but with a feasible acceleration profile is calcu-

lated;

• The speed profile is reconstructed over the previously defined time-window.

This is obtained by means of a polynomial interpolant defined accounting for

some kinematic/dynamic constraints, for example:
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– Constraint on the space travelled;

– Boundary condition on the derivatives;

– Boundary condition on the sign inversions of the jerk over a given time-

window.

4. Removal of the high- and Medium-frequency Responses Introduced at Step 3

• The low pass filter introduced in Step 2 is reapplied for removing medium- and

high-frequency components possibly introduced by the interpolation process

(e.g. angles in the speed profile leading to discontinuities for the acceleration)

• Definition of position and acceleration profiles by integration and differentia-

tion respectively.

This approach to trajectory correction seems to perform better than a standard low-pass

filtering for the following reasons:

• The preliminary correction of the outliers by means of spline interpolation allows

adopting a wider-band low-pass filter (step 2), thus preserving quick dynamics of

the vehicle (velocity profiles during stopping manoeuvres, gear shifting, etc., )

• The proposed trajectory reconstruction approach allows removing unphysical val-

ues, guaranteeing at the same time internal consistency for the resulting trajectory

(with reference to position, speed and acceleration profiles).
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