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Abstract: India is facing the worst water crisis in its history, and major Indian cities which 22 

accommodates about 50% of its population will be among highly groundwater stressed cities 23 

by 2020. In past few decades, the urban groundwater resources declined significantly due to 24 

over exploitation, urbanization, population growth and climate change. To understand the role 25 

of these variables on groundwater level fluctuation, we developed a machine learning based 26 

modelling approach considering singular spectrum analysis (SSA), mutual information (MI), 27 

genetic algorithm (GA), artificial neural network (ANN), and support vector machine (SVM). 28 

The developed approach was used to predict the groundwater levels in Bengaluru, a densely 29 

populated city with declining groundwater water resources. The input data consist of 30 

groundwater levels, rainfall, temperature, NOI, SOI, NIÑO3 and monthly population growth 31 

rate, and were pre-processed using mutual information, genetic algorithm and lag analysis. 32 

Later, the optimized input sets were used in ANN and SVM to predict monthly groundwater 33 

level fluctuations. The results suggest that the machine learning based approach with data pre-34 
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processing predict groundwater levels accurately (R>85%). It is also evident from the results 35 

that the pre-processing techniques enhances the prediction accuracy and results were improved 36 

for 66% of the monitored wells. Analysis of various input parameters suggest inclusion of 37 

population growth rate is positively correlated with decrease in groundwater levels. The 38 

developed approach in this study for urban groundwater prediction can be useful particularly 39 

in cities where lack of pipeline/sewage/drainage lines leakage data hinders physical based 40 

modelling.   41 

Keywords: Machine Learning, mutual information, genetic algorithm, artificial neural 42 

network, support vector machine, urbanization. 43 

1. Introduction  44 

Groundwater is an important fresh water resource for drinking, agricultural, and industrial 45 

purposes in many countries (Boulton and Hancock, 2006; Kulkarni et al., 2015; Mukherjee, 46 

2018). Variation in groundwater levels are subjected differences between the supply and 47 

release of groundwater, gaining/loosing stream flow variations, tidal effects, urbanization, 48 

earthquake, land subsidence and meteorological phenomena as well as global climatic changes 49 

(Todd and Mays, 2005; Taylor et al., 2013; Fendorf and Benner, 2016; Levanon et al., 2017; 50 

Tang et al., 2017; Suryanarayana and Mahammood, 2019). A study conducted by Loáiciga 51 

(2003) concluded that the rise in groundwater use associated with predicted population growth 52 

would pose a higher threat to the aquifer than climate change. The groundwater level response 53 

to the hydro(geo)logical (such as groundwater recharge and discharge), meteorological (such 54 

as precipitation and temperature) and anthropogenic (such as urbanization and climate change) 55 

factors  is highly nonlinear and complex (Khatri and Tyagi, 2015; Sapriza-Azuri et al., 2015; 56 

Zeng et al., 2017; Liu et al., 2018; Minnig et al., 2018). However, enhanced understanding of 57 

complex groundwater level response mechanism considering socio-hydrological heterogeneity 58 

is critical for sustainable planning and management of urban water supply (Barthel et al., 2016; 59 
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Rathnayaka 2016; Shekhar et al., 2013; Sekhar et al., 2018). In urban areas, water resources 60 

management is of utmost importance as its dependency on groundwater for domestic and 61 

industrial water supply is increasing due to rapid population growth, increasing per capita water 62 

use and limited surface water from distant sources (Eckstein and Eckstein, 2003; Foster et al., 63 

2011).  64 

The advanced numerical methods are capable in modelling complex groundwater flow 65 

processes within a given domain. Groundwater level fluctuation has been modelled using 66 

physical-based numerical models in several studies (Kim et al., 2008; Wang et al., 2008; Borsi 67 

et al., 2013; Yousefi et al., 2019), however, large number of parameter to represent all the 68 

physical processes makes groundwater simulations with physical based modelling complex. 69 

Moreover, a reliable prediction of groundwater fluctuations requires physical properties of the 70 

domain and model parameters to calibrate the model simulations. ). Also, uncertainty 71 

associated with hydrological, geological, topographical, meteorological and climatic data 72 

makes numerical model calibration and validation challenging (Yoon et al., 2011; Barzegar et 73 

al., 2017). Further, limitation of data availability, associated cost and time results in model 74 

uncertainty and poor model performance (Kumar, 2015; Woodward et al., 2016; Valocchi et 75 

al., 2017. Also, assumptions involved in solving the governing equations using the physical 76 

based modelling makes the approach less competent in prediction as most of the variables (e.g. 77 

groundwater level, evapotranspiration, rainfall) are less predictable. As a result, numerical 78 

models tend to produce imperfect results in spite of the capturing the physical processes 79 

successfully (Sun et al., 2016). Contrary to that, nonlinear based interdependencies feature of 80 

machine learning based models overcomes the requirement of explicit characterization of the 81 

physical properties, or accurate representation of physical parameters (Sahoo et al., 2017; 82 

Yadav et. al., 2017) and need not to model the underlying physical processes. Over the last 83 

decades, machine learning based models have been used in diverse research areas due to their 84 
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advantages over numerical models and have been proved efficient in capturing the complex 85 

physical processes especially in the data scarce regions (Yoon et al., 2011). However, both 86 

physical and data based modelling are based upon different philosophies complement each 87 

other with respect to their inherent strengths and limitations (Pandey et al., 2016).. While the 88 

important hydrological processes involved in a physically based model make up the black-box 89 

feature of a machine learning based model, the difficulty in accurate physical modelling can be 90 

alleviated by the powerful machine learning based models (Panda et al., 2010; Napolitano et 91 

al., 2010). 92 

A review of literature reports a wide application of machine learning models in 93 

modelling nonlinear processes that are complex in nature (Chau et al. 2005; Sivapragasam et 94 

al. 2008). Artificial neural network (ANN) has been widely used in past decade for problems 95 

related to groundwater level predictions (Coppola et al., 2003; Coulibaly et al., 2001; 96 

Daliakopoulos et al., 2005; Nayak et al., 2006; Mohanty et al., 2010; Mohanty et al., 2015). 97 

Yoon et al., (2011) and Gong et al., (2016) used ANN in comparative studies while predicting 98 

the groundwater level fluctuations. ANN has been adopted by many researchers in the past to 99 

predict groundwater levels, however, its high sensitivity to the trained data, overfitting and 100 

dependency on hidden neurons are some major drawbacks (Hsu et al. 2002; Wu and Chau, 101 

2011). Similarly, support vector machine (SVM) a relatively newer technique has also been 102 

used for the groundwater level prediction in various site conditions (Yoon et al., 2011; He et 103 

al., 2014; Gong et al., 2016; Zhou et al., 2017). More recently, fuzzy theory and genetic 104 

programming (GP) have also been used to study the groundwater levels (Kurtulus and Razack, 105 

2010; Güler et al., 2012; Shiri and Kisi, 2011; Fallah-Mehdipour et al., 2013; Kasiviswanathan 106 

et al., 2016). Further, latest techniques like extreme learning machine (ELM) which are much 107 

simple in design and application then ANN or SVM have also been used in groundwater 108 

modelling studies (Yadav and Eliza, 2017; Alizamir et al., 2018). Further, Suryanarayana et 109 
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al., (2014) developed a wavelet (WA) based integrated WA-SVM model to predict monthly 110 

groundwater levels and their results suggest that WA-SVM performs better than auto regressive 111 

integrated moving average (ARIMA), ANN and SVM. Similarly, s study conducted by Sahoo 112 

et al., (2017) used a data pre-processing approach in developing a hybrid artificial neural 113 

network model (HANN) to predict seasonal groundwater level change in agricultural region of 114 

high plains and the Mississippi river valley alluvial aquifer. 115 

Accuracy of machine leaning based groundwater level simulation or prediction, 116 

predominately depends on the type of input data used. It was pointed out in many studies that 117 

the generalization ability of machine learning based models are significantly influenced by 118 

selection of appropriate input variable (Maier and Dandy, 2000; Galelli et al., 2014; Quilty et 119 

al., 2016; Sahoo et al., 2017). The most obvious input variables in groundwater level 120 

predictions studies are rainfall, evaporation, temperature and pumping patterns (Yoon et al., 121 

2011; Singh et al., 2014; Mohanty et al., 2015; Kasiviswanathan, 2016; Chang et al., 2016; 122 

Barzegar et al., 2017; Wunsch, 2018). Further, groundwater levels are also partially controlled 123 

by interannual to multidecadal climate variability (Kuss and Gurdak, 2014; Sahoo et al., 2017; 124 

Velasco et al., 2017). Therefore, appropriate input variable along with the application of pre-125 

processing techniques has resulted in improved groundwater level prediction accuracy by 126 

capturing the seasonal variability and reducing the impact of noisy data (Wu et al., 2009; Wang 127 

et al., 2014; Sahoo et al., 2017). Overall, these studies have demonstrated the ability of data 128 

based modelling for developing a generalized non-linear relationship among 129 

hydro(geo)logical, meteorological and climatic input variables and groundwater. 130 

In most studies, application of simple to complex groundwater models have been demonstrated 131 

in large agricultural catchments and there are very few studies predicting groundwater levels 132 

in urban areas (Coulibaly et al., 2001; Daliakopoulos et al., 2005; Wang et al., 2014; Shaoo et 133 

al., 2017; Wunsch  et al., 2018; Yousefi et al., 2019). A study by Lerner (2002) describes how 134 
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urbanization affects groundwater cycle by way of changes to both the total water budget, and 135 

to pathways recharge. Groundwater management in such circumstances is crucial to control the 136 

decline groundwater levels and therefore, this requires a scientific understanding of urban 137 

groundwater systems based on a hydrological, meteorological, climatological and 138 

anthropogenic factors. In this study, we studied the impact of population growth, climatic 139 

variability and hydro-meteorological variables on the groundwater level fluctuations by 140 

combining the pre-processing techniques and advanced machine learning models. To study the 141 

groundwater level fluctuation of a complex urban catchment, we have selected variables like 142 

population growth rate (P), rainfall (R), temperature (T) and climatic variables. To the best 143 

knowledge of the authors, this study is the first to couple SSA and SVM considering variables 144 

like population growth rate to study an urban catchment. The novelty of the research work is 145 

to study a highly urbanized catchment with limited groundwater resources using hydro-146 

meteorological, climatic and population data in hybrid SSA-MI-GA-ANN and SSA-MI-GA-147 

SVM models to predict the monthly groundwater level fluctuations. Henceforth in this article 148 

‘H’ (SSA-MI-GA) will be used as a prefix in front of ANN and SVM to represent hybrid 149 

models. The objectives of this research was to study the performance of original (ANN, SVM) 150 

and hybrid (HANN, HSVM) models to predict groundwater levels of Bengaluru urban district 151 

for one and two months ahead. 152 

2. Material and Methods 153 

2.1 Study Area  154 

The study area (Fig. 1) is located in the south-eastern part of Karnataka and have geographical 155 

extent of 2174 km2. Total population of the area is 9.622 million (2011) with population density 156 

of 4,378 people per km2. The average annual rainfall of the area is 970 mm getting contribution 157 

from the South-Western monsoon (54.18%), the North-Eastern monsoon (26.53%) the pre-158 

monsoon showers (18.53%) (Bengaluru water supply and sewerage board, Report, 2017). The 159 

average maximum and minimum temperature is about 38˚C during summer and 15 ˚C during 160 
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winter, respectively. The relative humidity is about 86% during monsoon and 63% during dry 161 

months.   162 

Physiography of the area comprises of rocky upland, plateau and flat topped hills 163 

(approx. 900m above mean sea level). Soils of the area could be categorised into red loamy 164 

soil and lateritic soil. This type of soil can be found in the eastern and southern part of study 165 

area which have hilly to undulating topography with granite and gneissic terrain. Further, 166 

lateritic soils are observed in western part of the study area where the terrain is undulating and 167 

gently sloping topography of peninsular gneissic region (Bengaluru water supply and sewerage 168 

board, Report, 2017). Groundwater occurs in phreatic conditions in weathered zones and under 169 

semi-confined to confined conditions in fractured and jointed rock formations. 170 

Granites and Gneisses of peninsular gneissic group form the primary aquifers in the study area. 171 

Alluvium of thickness 20–25 m thick occur along the river courses possessing substantial 172 

groundwater potential. About 90% of groundwater structures tapping as shallow aquifers are 173 

yielding less than 1 litter per second. While, deep aquifers of yield ranged from 2 to 8 litter per 174 

second are located in parts of Bengaluru north and Anekal taluks. Transmissivity ranged from 175 

10 to 280 m2 /day (CGWB, 2008; Gulgundi and Shetty, 2018).  176 

The study area contains Archean crystalline formation (Dharwar Province of the 177 

southern Indian peninsula) comprising peninsular gneiss's complex with small patch of 178 

hornblende schist in the northern part and intrusive closepet granites all along the western part 179 

(Chadwick et al. 1997; Mukherjee et al. 2018). The eastern edge of the Bengaluru  city 180 

dominates to laterite of tertiary age, which occur as isolated patches capping crystalline rocks. 181 

Some small stretch of about 25km comprising unconsolidated sediments (Channapatna and 182 

Devanahalli) are found in study area. 183 

Groundwater levels vary seasonally and found deepest during summer (April-May) and 184 

shallow during post monsoon (October-November). In general, decline in groundwater level 185 
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across the study area starts from late November and this falling trend in during post monsoon 186 

can be attributed to erratic monsoon and rapid urbanization and land use change thus 187 

minimizing groundwater recharge (Bengaluru water supply and sewerage board, Report, 188 

2017).  189 

The modelling approach using ANN, SVM, HANN and HSVM were assessed in 190 

Bengaluru urban district to predict monthly groundwater levels changes. Monthly groundwater 191 

level data of 2010 to 2017 (8 years) for 24 wells were acquired from the District Groundwater 192 

Office, Groundwater Directorate Bengaluru, Karnataka. The selected wells are uniformly 193 

distributed in the study area and represents the groundwater conditions across the district. 194 

Monthly gridded rainfall data with a resolution of 0.25°×0.25° (Pai et al., 2014, 2015) and 195 

average temperature time series with a resolution of 1°×1° (Srivastava et al., 2009) was also 196 

collected for the period of 2010 to 2017. Further, the climatic parameters such as Southern 197 

Oscillation Index (SOI), Northern Oscillation Index (NOI), and Niño3 were collected also 198 

collected for each month for years 2010 to 2017 from National Oceanic and Atmospheric 199 

Administration (NOAA, 2018a, 2018b and 2018c).  SOI and NOI relate variability in the 200 

atmospheric forcing of climate change in northern and southern mid-latitude hemisphere 201 

regions and show interesting relationships in equatorial and extratropical teleconnections and 202 

represent a wide range of local and remote climate signals (Schwing et al., 2002). Niño3 is an 203 

index which is used to define El Niño and La Niña events covering large spatial area and with 204 

different seasonal evolution. Apart from the climatic and hydro-meteorological data, we also 205 

considered population growth rate to consider the impact of urbanization on groundwater 206 

levels. The annual population growth rate data was obtained from World Population Review 207 

(2018) and later was converted into monthly growth rate.  208 

 209 
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 210 

  211 

Fig. 1 Study area map of Bengaluru urban district with the monitoring well locations 212 

 213 
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2.2 Data processing and parametric optimization 214 

 The input data for the groundwater level prediction consist of groundwater levels, rainfall, 215 

temperature, NOI, SOI, NIÑO3 and monthly population growth rate. Data for the rainfall and 216 

temperature were processed and converted into time series. The input variables were pre-217 

processed using singular spectrum analysis (SSA). Singular spectrum analysis decomposes the 218 

time series into a sum of a small number of interpretable components such as a slowly varying 219 

trend, oscillatory components and noise (Marques et al., 2006; Wang et al., 2015).  SSA is a 220 

non-parametric technique of time series analysis based on principles of multivariate statistics 221 

(Vautard & Ghil, 1989; Dettinger et al., 1995). The given time series is decomposed into a set 222 

of independent time series to represent either a trend, periodic or quasi-periodic component or 223 

noise. As pointed out by Hanson et al., (2004) and applied by Sahoo et al. (2017) the variability 224 

of a hydrologic time series can be captured in first 10 reconstructed components (RCs) which 225 

are associated with the trend, oscillations or noise of the original time series.  In this study, first 226 

10 RCs of each input variable were extracted and later further processed using MI-GA 227 

approach to identify the most relevant RCs with respect to the groundwater levels.  228 

The decomposed time series were further processed using mutual information and 229 

genetic algorithm to minimize the redundancy in the input data. Mutual information measure 230 

linear and non-linear dependencies between input and output variable. In this study, MI was 231 

used to establish nonlinear dependence between reconstructed components of the input variable 232 

and groundwater water levels. The interdependence between input and output variable using 233 

information theory obtained by measuring marginal entropy, conditional entropy and joint 234 

entropy. It takes a minimum value zero when there is no dependence between two variables, 235 

while a positive value suggest strong dependence among the considered input and output 236 

variables.     237 
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The entropy of a discrete random variable 1 1( , ... )Nx x x x is denoted by ( )H X . Where ix refers 238 

to the possible values that X can take. ( )H X  is defined as (Vergara and Estévez, 2014): 239 

2
1

( ) ( ) log ( ( ))
N

i i

i

H X p x p x


      (1) 240 

where ( )ip x is the probability mass function. For any two discrete random variable X and 241 

1 1( , ... )MY y y y , the joint entropy is defined as (Vergara and Estévez, 2014): 242 

2
1 1

( , ) ( , ) log ( ( , ))
M N

i j i j

j i

H X Y p x y p x y
 

      (2) 243 

where ( , )
i j

p x y  is the joint probability mass function of the variables X and Y . The 244 

conditional entropy of the variable X  given Y  is defined as (Vergara and Estévez, 2014): 245 

2
1 1

( | ) ( , ) log ( ( | ))
M N

i j j i

j i

H Y X p x y p y x
 

      (3) 246 

The joint entropy has values in the range, 247 

 248 

max( ( ), ( )) ({ , }) ( ) ( )H X H Y H X Y H X H Y    249 

H (Y|X) is the amount of uncertainty left in Y  when X is introduced, so it is less than or equal 250 

to the entropy of both variables, however it can be equal to the entropy if, the two variables 251 

have absolutely no dependencies.  252 

Mutual information measures the level of interdependencies between two random 253 

variables. In case of feature selection, the approach is useful as it gives a quantifiable estimate 254 

of relevancy for a feature with respect to the output. Mutual information between two random 255 

variables is defined as (Vergara and Estévez, 2014): 256 

1 1

( , )
( ; ) ( , ).log

( ). ( )

M N
i j

i j

j i i j

p x y
I X Y p x y

p x p y 

 
   

 
     (4) 257 

 258 
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where ( ; )I X Y is mutual information between input X and output Y . For more information on 259 

information theory reader can refer to Vergara and Estévez (2014). 260 

The relevancy of feature is counted if it provides information about output individually 261 

or together with other variables. However, the variable is counted redundant if it doesn’t 262 

provide much information. Following the principle of maximum relevance (Eq. 5) and 263 

minimum redundancy (Eq. 6), most relevant RC of every input parameter was obtained using 264 

mutual information values and a genetic algorithm (Ludwig et al., 2009). 265 

 266 

1

1
R [ ; ],

N

el i

i

I X Y
N 

                               (5) 267 

2
1 1

1
[ ; ],

N N

ed i j

i j

R I X X
N  

                 (6) 268 

max ,el edF R R       (7) 269 

where R el V represents average mutual information values showing the level of relevance 270 

between input (RCs) and output (groundwater levels) variables. edR  represents average of all 271 

the mutual information values of the individual inputs. A fitness function maxF was solved using 272 

genetic algorithm to maximize the relevance and minimize the redundancy of the inputs.   273 

In genetic algorithm variables are represented as chromosomes containing information 274 

about various decision variables that represent a decision or a solution. The fitness of randomly 275 

generated chromosomes is evaluated individually with respect to a target value. In this study, 276 

40 randomly generated chromosomes were used for generation of 10 RCs. Objective function 277 

maxF was used to calculate the fitness of each chromosomes and later cross-over was performed, 278 

which introduces diversity in the population of the programs signifying the internal information 279 

exchange between the structures in the new and old population.  The best model is identified 280 

by repeating the runs for a certain number of generations (80 in this study) or until a good 281 
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solution is obtained with fixed values of the controlling parameters. The optimization approach 282 

gave two best RCs that maximize the value of fitness function. Lastly, the pre-processed and 283 

optimized input variables were used in ANN and SVM to predict the monthly groundwater 284 

level. 285 

3. Model Development  286 

3.1 Artificial Neural Networks (ANN)  287 

Artificial Neural Networks is a machine learning approach established as a robust tool for many 288 

hydrologic processes as simulation and prediction tool particularly when the underlying 289 

processes have complex nonlinear interrelationships (Govindaraju, 2000; Hsu et al., 2002). A 290 

common network of ANN comprises interconnected nodes called neurons arranged into input 291 

layer, hidden layer and output layer. The information is entered into data entry layer (input 292 

layer) which forwarded into hidden layer for the data processing and thereafter into output layer 293 

which generate the results for the given input (Dawson and Wilby, 1998). This type of network 294 

is called feed forward back propagation (FFBP) network in which the information passes only 295 

in forward direction from input layer, through hidden layer and finally to the output layer. The 296 

input vectors are n
RD  where   ,,...,, 21

T

nXXXD   the outputs of N neurons in the hidden 297 

layer are  TnZZZZ ,...,, 21 and the output from output layer are m
RY  where298 

 TnYYYY ,...,, 21 . The weight and the threshold between the input layer and the hidden layers 299 

are ijw  and jy , respectively. The following equations represent the neuron outputs in the 300 

hidden and output layer (Schalkoff, 1997): 301 









 



n

i

iijj XwfZ
1

     (8) 302 









 



N

j

jkjk ZwfY
1

     (9) 303 
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where a transfer function f  is used to offer the rule for mapping the neuron’s total input to its 304 

output.  305 

 306 

 307 

Fig. 2 A typical three-layer feed-forward ANN. 308 

In this study, a three layer (input layer, hidden layer and output layer) ANN model (Fig 2) is 309 

developed to predic the groundwater level flectuations in Bengaluru urban district. The input 310 

and output data variables were divided into three groups training (70%), validation (15%) and 311 

testing(15%). The input layer consist of 7 neurons each for both models (ANN, HANN) and 1 312 

output neuron (groundwater level). The developed model utilizes “newff” function to assign 313 

the initial weights randomly. An hyperbolic tangent sigmoid transfer function was used to 314 

process informtaion between input and hidden layer. Later, a linear transfer funtion “purelin” 315 

was used to transform the procssed infoirmation from hidden layer to the output layer (Schmid, 316 

2009). The key parameters such as the learning rate and momentum in the network are obtained 317 
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by a trial and error procedure for each locations (wells). The model perfeormance was assessed 318 

using correlation coefficient (R), Root mean squared error (RMSE) and Normalised Mean 319 

Square Error (NMSE). 320 

3.2 Support Vector Machine (SVM) 321 

Support vector machine (SVM) is a machine learning approach proposed by Vapnik (1995) 322 

and as classification and regression procedure. SVM which based on the structural risk 323 

minimization principle has good generalization ability and is less prone to overfitting, (Vapnik 324 

and Vapnik, 1998; Vapnik, 2000; Yao et al., 2008). In regression problems, SVM uses kernel 325 

function to map the input vector in to a high dimensional feature space where the input vector 326 

is linearly separable (Wu et al., 2014). The developed SVM in this study was used to find a 327 

regression function that estimate the functional dependence between input and output variables328 

    nn txtx ,,...,, 11 . Where n

i Rx  in this study represents input variable (rainfall, temperature, 329 

past groundwater level, SOI, NOI and Niño3, population growth rate) while and n

i Rt   330 

referred to as space of target output (groundwater level) value of n data lengths. SVM 331 

calculates the linear regression by solving (Vapnik, 1995) the following equations:  332 

    bxwxf            (10) 333 

   



n

i

iiSVM txL
n

CwCR
s

1

2
,

1

2

1
               (11) 334 

where  x  is non-linear mapping function of x ; w is weight vector and b is a bias term; 335 

 


n

i

ii txL
n

C
1

,
1

 is the error component. To estimate the weight vector and bias, two positive 336 

slack variables 𝜉 and 𝜉∗ are added to limit the estimation error by the  -insensitivity loss 337 

function (Vapnik and Vapnik, 1998) thus: 338 
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 



n

i

Cw
1

*2

2

1
min        (12) 339 

Subject to 

 
 















li

tbxw

bxwt

ii

iiiii

iiiii

,...,1,0, *

*






   340 

where C is the positive trade-off parameter for the degree of empirical error and l is the 341 

factor number in the training data.  342 

 343 

 344 

Fig. 3 The schematic representation of SVM 345 

In previous hydrological prediction studies, radial basis functions (RBF) has been 346 

recommended as the most suited kernel function due to its capability to process highly complex 347 

parameter space (Rajasekaran et al., 2008; Yang et al., 2009; Wang et al., 2009; Yadav et al., 348 

2016, Yadav and Eliza, 2017; Himanshu et al., 2017a; Yadav and Mathur, 2018). RBF is 349 

defined as: 350 
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   2
exp, jiji xxxxK            (13) 351 

where ix  and jx  are vectors in the input space, such as the vectors of features computed from 352 

training and testing.   is defined by, 
22

1


  for which  is the Gaussian noise level of 353 

standard deviation. Figure 3 shows the schematic representation of SVM. 354 

The SVM models for monthly groundwater level prediction using the pre-processed 355 

input data obtained from SSA and MI-GA approached was developed using LIBSVM toolbox. 356 

The model structure (Eq. 14 and 15) which were used in ANN, HANN model were kept same 357 

for SVM and HSVM as well. Prediction accuracy of SVM model depends on the suitable 358 

selection of kernels and parameters. It has been suggested in many studies that the radial basis 359 

function (RBF) performs well in hydrological forecasting problems and is hence it was 360 

considered in this study as well. The parameter of radial basis function was obtained using trial 361 

and error method for each well location. The developed models were used predict the monthly 362 

groundwater level using raw (SVM) pre-processed (HSVM) input variables for one and two 363 

months ahead.  364 

3.3 The Ensemble Model  365 

The ensemble prediction model using SSA, MI-GA, ANN and SVM was developed in 366 

MATLAB2014a. A separate code was written for SSA to decompose the input time series. MI-367 

GA model was developed following the approach suggested by Ludwig et al., (2009).  Further, 368 

ANN and SVM models were developed in MATLAB using ‘newff’ function and LIBSVM 369 

library, respectively. The input variable, monthly population growth rate, SOI, NOI, Niño3 370 

were recorded as monthly time series. Temperature and rainfall data were extracted from the 371 

gridded (0.25°×0.25°) IMD data set and converted into monthly time series. The area covered 372 

under the gridded data for latitude 12.75° to 13.25° and Longitude 77.25° to 77.75° produced 373 

nine-time series for both temperature and rainfall, however, initial analysis revealed little 374 
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variability among them, therefore only one-time series for each temperature and rainfall was 375 

considered during groundwater level prediction. Lastly, the monthly groundwater level for the 376 

past two months was also added in the input data set. Each input variable was first decomposed 377 

using SSA and converted in 10 RCs. These RCs were supplied to an integrated MI-GA based 378 

model with the objective function to maximize the relevancy and minimize the redundancy 379 

resulted into two best RCs with respect to output variable (groundwater level). This procedure 380 

was repeated for each input variable and all the well locations. Once the optimized RCs with 381 

respect to each well water level was identified, the input-output combination was divided into 382 

training (70%), validation (15%) and testing (15%) data set.  These combinations were used in 383 

both HANN and HSVM to predict the groundwater level at each location for one month and 384 

two months ahead. These hybrid models were later compared with the original model ANN 385 

and SVM in which raw input data was used for training, validation and testing. Figure. 4 depicts 386 

the procedure followed: 387 

 388 

Fig. 4 Ensemble model using SSA, MI-GA and Machine learning models (ANN, SVM) to 389 

predict the groundwater levels. 390 

4. Result and Discussion  391 

4.1 Input selection and model development  392 

In this study, a machine learning based approach considering data pre-processing techniques 393 

were developed to predict the groundwater level fluctuations in an urban area. The input data 394 
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consist of rainfall (R), temperature (T), SOI, NOI, Niño3, population growth rate (P) and 395 

groundwater level (GWL). Temporal lag correlational analysis was preformed among the best 396 

RC of groundwater and the best RC of population growth rate, southern oscillation index, 397 

Northern oscillation index, Niño3, rainfall, temperature and past groundwater level, 398 

respectively. Population growth rate was found to be strongly correlated with groundwater 399 

levels at zero lag, which suggest that the increasing population and hence increased 400 

groundwater abstraction had immediate impact on the groundwater level. Similarly, 401 

temperature and Niño3 also showed strong correlation with groundwater level at zero-time lag, 402 

however SOI time lag was found to be three months. Further, resulting time lags for NOI index 403 

and R were two months. The obtained prediction model for one month (eq. 14) and two months 404 

(eq 15) expressed as follows:  405 

 406 

1 2 3 2( , , , 3 , , , )
tt t t t t t t

GWL f P NOI SOI Nino T R GWL      (14) 407 

2 2 3 2 1( , , , 3 , , , )
tt t t t t t t

GWL f P NOI SOI Nino T R GWL       (15) 408 

Later, all input variables were processed using SSA which generated 10 RCs of each input 409 

variable. Subsequently, the obtained RCs were optimized using MI-GA approach 410 

corresponding to each well locations. The optimized RCs of all the input variables were then 411 

used in ANN and SVM model to predict the groundwater level for one and two months ahead. 412 

ANN model was developed for each well location and hidden neurons were optimized using a 413 

trial and error method. Hidden neurons play very significant role in the model prediction 414 

accuracy and large number of input variable with high variability requires more hidden 415 

neurons. The minimum hidden number 7 were obtained for Chikkabanavara well location, 416 

however the highest number 21 was obtained at Thimmenahalli. Wells with the groundwater 417 

level standard deviation more than 7 (Fig. 5) required 15 to 21 neurons. However, if the 418 
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groundwater level standard deviation varied between 1 to 5, resulting optimum neurons varied 419 

from 5 to 9.  420 

 421 

Fig. 5  Groundwater level during 2010 (a) and 2015 (b). Standard deviation in the 422 

groundwater level from 2010 to 2015 (c). A common colobar is shown for map (a) and (b) in 423 

the right. 424 

Similarly, SVM model parameters namely regularization constant, insensitive loss function 425 

and RBF parameter ( ) were also obtained corresponding to each well location. Regularization 426 

constant varied between 1.42 to 2.65 for all the location while insensitive loss function values 427 

between 0.032 to 0.098. Tuning of regularization constant is crucial for successful model 428 

development as it is a trade-off between the model complexity (flatness) and the degree to 429 
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which deviations larger than insensitive loss function are tolerated in optimization formulation. 430 

Value of C was kept low to achieve a balance output where the empirical error was minimized 431 

considering the model complexity. Insensitive loss function values were kept low for all the 432 

well locations as larger value can cause fewer selection of support vector which will result in 433 

less complex regression estimate. The parameter obtained during the model development 434 

(ANN and SVM) were kept similar for the prediction (1 month and 2 month) as well.  435 

4.2 Groundwater level predicton 436 

Long term simulations (2010-2015) were run to predict the 1-month and 2-months ahead 437 

groundwater depths for eighteen different locations across Bengaluru  city in India. A 438 

substantial difference in predicted groundwater levels were observed under different machine 439 

learning approaches (Figures 6-9). Results presented here as box plots indicates the significant 440 

variability in simulated results across the simulation period under different machine learning 441 

approaches. The horizontal line and small solid square inside the box indicate the median and 442 

mean, respectively, and the ends of boxes indicate the 25th and 75th percentiles. Small line 443 

outside the boxes represent outliers or values greater than 1.5 interquartile ranges away from 444 

the 25th or 75th percentiles. In general, the simulated results were significantly improved under 445 

hybrid approaches (HANN and HSVM) as compared to conventional ANN and SVM 446 

approaches for both 1-month and 2-months ahead predictions. The results of the simulations 447 

are consistent with several other studies, which reported that the model predictability was 448 

further improved under hybrid approaches as compared to conventional machine learning 449 

approaches (Sahoo et al., 2017; Himanshu et al. 2017b; Yadav and Eliza, 2017). The results 450 

showed that 1-month ahead predictions were very precise and shows a better agreement with 451 

the observed groundwater level data. However, for 2-months ahead predictions, the predicted 452 

results were not very close to observed values, especially under conventional ANN and SVM 453 

approaches. Among HSVM and HANN, performance of HSVM was found better than HANN 454 
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at most of the locations for both 1-month and 2-months ahead predictions, except at Sarjapura, 455 

Talaghattapura and Manduru locations for 2-months ahead predictions, where perforance of  456 

HANN was found better (Figure 8d, 9d, 9g). In general, among all the four approaches, 457 

performance of ANN was comparatively not found good for both 1-month and 2-months ahead 458 

predictions at all the locations. 459 

 460 

Fig. 6: 1-Month ahead predicted groundwater depths for locations a) Anekal, b) Jigani, c) 461 

Bannerughatta, d) Sarjapura, e) Chandapura, f) Thimmenahalli, g) Byadarahalli, h) 462 

Chikkabanavara, and i) Rajanukunte 463 
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 464 

Fig. 7: 1-Month ahead predicted groundwater depths for locations a) Sondekoppa, b) 465 

Yelahanka, c) Adikemaranahalli, d) Talaghattapura, e) Tavarekere, f) Marenahalli, g) 466 

Manduru, h) Devarabeesanahalli, and i) K.Narayanapura 467 

 468 

Fig. 8: 2-Month ahead predicted groundwater depths for locations a) Anekal, b) Jigani, c) 469 

Bannerughatta, d) Sarjapura, e) Chandapura, f) Thimmenahalli, g) Byadarahalli, h) 470 

Chikkabanavara, and i) Rajanukunte 471 
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 472 

Fig. 9: 2-Month ahead predicted groundwater depths for locations a) Sondekoppa, b) 473 

Yelahanka, c) Adikemaranahalli, d) Talaghattapura, e) Tavarekere, f) Marenahalli, g) 474 

Manduru, h) Devarabeesanahalli, and i) K.Narayanapura 475 

Table 1 show the average statistics of model performance during 1 and 2 months ahead 476 

groundwater level prediction. The results show that the performance of ANN model was 477 

improved significantly when used with pre-processed data (HANN). Performance statistics of 478 

ANN during 1 month ahead prediction improved approximately by 55%, 35% and 64% for R, 479 

RMSE and NMSE, respectively. In case of SVM, the improvement was 1.85%, 0.36% and 480 

17% for same statistical indicators. Similar improvements were observed when the models 481 

were used for 2 months ahead prediction, the performance of ANN improved upto 50%, 31% 482 

and 56 % for R, RMSE and NMSE, respectively. However, the improvement in case of SVM 483 

was 0.97%, 3.77% and 11% for R, RMSE and NMSE, respectively. HSVM is the superior 484 

method to predict groundwater fluctuations throughout the study area and fortifies that model 485 

could map these complex interdependences of climatic variations, population growths on 486 

groundwater level fluctuations. These results indicate that the HSVM and SVM model of this 487 
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study is more likely to learn the complex relationship of groundwater fluctuation with urban 488 

environment for the given data than the ANN. The evaluation of the proposed technique in an 489 

urban area having a complex hydrological regime shows that the technique provides improved 490 

results for groundwater level prediction when compared to traditional techniques.  491 

Table 1 Original and hybrid model comparison for one and two month prediction using 492 

average statistics for 19 well locations  493 

1 Month ahead prediction 

 ANN SVM HANN HSVM 

R 0.22 0.862 0.492 0.88 

RMSE 6.01 1.361 3.861 1.36 

NMSE 16.97 0.83 5.96 0.68 

2 months ahead prediction 

R 0.14 0.71 0.29 0.72 

RMSE 7.49 2.01 5.16 1.94 

NMSE 27.00 1.32 11.63 1.17 

 494 

4.3 Groundwater Condition with Urbanization  495 

Change in groundwater level was investigated utilizing water level record of 22 wells during 496 

2010 and 2015 which shows considerable decline in the levels (Fig. 10 (a)). Groundwater 497 

decline in the study area ranges from 5 to 37 m bgl (below ground level) where the decline is 498 

highest at Chikkabanavar and Sarjapura locations, as highlighted in red color on the map. 499 

Whereas, increase in water levels were also observed at some locations in the Southern part of 500 

the study area. The urbanization could be a major cause behind the depleting groundwater 501 

mainly because urbanization has led to incresed groundwater pumping due to increased water 502 

demand. Although  the water needs of the city is mainly met by surface water imported from 503 

the Cauvery River, it has been unable to catch up with the increasing water demand due to 504 

rapid population growth and expansion of the city. As a result, groundwater satisfies a large 505 
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proportion of current water need. Further, increased impervious surface, which is associated 506 

with urbanization, has led to decreased groundwater recharge in the area. Figure 10 (b) shows 507 

the impervious surface fractions within 30 m × 30 m grids derived using Landsat image (Fig. 508 

10 (b)). The comparison of groundwater change map and the impervious surface map shows 509 

that the higher declines are not at the urban centre, but towards the urban periphery. This is 510 

mainly due to the fact the groundwater pumping is happening mainly at peri-urban areas 511 

(Sekhar et al., 2018). This also indicates that the dominating factor behind the decline in the 512 

study area is pumping as compared to decreased groundwater recharge due to urbanization. 513 

Furthermore, the decreased recharge could have been componsated by the leaking pipes and 514 

wastewater to some extent in the study area. The competitive demands of water from various 515 

sectors put additional pressure on groundwater resources. Kapetas et al. (2019) found that the 516 

increasing competition for water has led to a water deficit in the agricultural sector, an unmet 517 

environmental flow and a reduced capacity for urban supply during drought conditions. 518 

Therefore, to manage water resources where competitive demands co-exist, coordinated multi-519 

level institutional relationships are important to improve water management practices and 520 

water allocations (Kapetas et al., 2019).  521 
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 522 

Fig. 10 Groundwater change map overlaid with observation wells (a) and impervious surface 523 

map (b). The values in map (b) shows the fraction of impervious surface within the 30 m × 30 524 

m grids for the year 2010. 525 

Though the hybrid HANN and HSVM models predicts the groundwater level fluctuations 526 

accurately, it does not give information about the corresponding physical processes in the 527 

aquifer. Further, the impact of additional input variables such as groundwater recharge from 528 

pipes leakage/sewers/drains has not been included in this study which could help in reducing 529 

the prediction error.  Therefore, there are environments and applications for which each model 530 

type excels. In future studies, the methodology can be improved further by considering more 531 

advanced and efficient machine learning techniques, like deep algorithms, random forest, etc. 532 

Further, there is a scope in optimizing the number of parameters using other advanced 533 

optimization approaches. 534 

 535 

 536 

(a) (b) 
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5. Conclusion  537 

In this study, we proposed an ensemble machine learning based modelling approach using input 538 

data pre-proceesing for prediction of grounwater level fluctuations. The developed approach 539 

was applied and assesed for monthly groundwater level prediction at an densly populated urban 540 

city (Bengaluru) in India. The selected area has been under severe water stress and groundwater 541 

table has declined significantly in last 10 years due to urbanization and heavy pumping. The 542 

hybird models (HANN and HSVM) perform better than the orginal models (ANN and SVM)  543 

while predicting grounwater level fluctuations. It was also found that prediction accuracy 544 

decreases as we increase the time lead for both orginal and hybird models. 545 

It is intresting to observe that the population growth rate provided positive information 546 

and captured the impact of urbanization on the groundwater level flectuations. Further, analysis 547 

of groundwater level decline (2010-2015) along with impervious surface suggest that the 548 

reason for declining trend in groundwater of urban centers is increased groundwater pumping 549 

rather than the decreased groundwater recharge due to urbanization. The results obtained from 550 

this study would be useful in indetifying the causes for groundwater decline in urban centers 551 

under various climatic conditions. The developed appraoch would be useful perticularly in the 552 

urban areas where physical based modelling is challenging due to scarcity of pipeline leakage 553 

or sweage/drainage line leakage data.    554 
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