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Volumetric SAR near-field upsampling and
basebanding

J. Elgy, D. Andre, and M. Finnis

Highly sampled imagery offers many benefits to the radar practitioner,

ranging from easier image coregistration to simple visual appeal.

However, it is often overlooked due to the computational burden forming

such an image imposes. Fast image formation typically imposes

restrictions on the imaging scenario, for example synthetic aperture radar

(SAR) far-field, and exploits parallelism through use of modern multi-

core architecture. Imposing a SAR near-field requirement on the image

formation limits the applicability of several of the faster algorithms, thus
there is a need to create a general process to achieve highly sampled

imagery, regardless of the imaging regime. In this letter, a method for

accurately upsampling near-field (SAR) imagery is presented. This is

applicable to both SAR near-field and SAR far-field scenarios. The

methodology is discussed, and an example is provided in the form of a

SAR near-field volumetric image of a miniature tank. The limitations to

the approach are discussed and prospects for future work given.

Introduction: Within the broad field that is synthetic aperture radar

(SAR), there is a desire for finely sampled imagery, be it for removing

ambiguities, for improved interferometry, or for the simple visual appeal.

The limiting factor is the computational time it takes to form such an

image.

There are several methods for reducing the computation time, mostly

focusing on effective parallelisation by dividing the image into sub-

domains [1, 2], or by utilising different image formation algorithms in

each subdomain for example, Doppler Beam Sharpening as opposed to

Backprojection [3].

In this letter, a rapid method for reliable SAR resampling, applicable to

both SAR near-field and far-field, is introduced. This method is reliant

upon a new spatially variant basebanding technique described here, and

is demonstrated using a measured volumetric SAR near-field image,

formed via standard Backprojection [4].

Spatially Variant Basebanding: The aim of basebanding is to shift the

complex spatial frequency support of an image, such that it is centred

around the origin, thus reducing overall phase gradient across the image

[5]. While conventionally used in interferometry to improve results, it has

the additional benefit of reducing the chance of gaps or discontinuities,

occurring in the Fourier domain during the upsampling process, and

eliminating the need for any ad hoc circular shifting of the data in the

frequency domain [6].

It has been shown in [5, 7] that conventional basebanding is ineffectual

in the SAR near-field regime, herein defined as ݀ ൏ ଶܮʹ ିߣ ଵ for an
image cross range extent ܮ and a centre wavelength .ߣ Here,
wavefronts are significantly curved across the scene so that separate areas

of the image have significantly different Fourier domain image supports.

These sub-supports make the bulk shift used in conventional basebanding

sub-optimal. An alternative SAR near-field basebanding approach was

proposed in [5, 7] which operates on a per pixel basis.

Consider an image geometry defined by a pixel position P, the mean

synthetic aperture position T̄ and the scene centre S.

Fig. 1 Simplified image geometry showing the unit vectors necessary for

both conventional and spatially variant basebanding.

To centre the spatial frequency image support around the origin, the

support is usually shifted, via a phase ramp applied in the image domain,

along the unit vector ,ෝ࢛ where ࢛ ൌ ࡿ െ ,ࢀ which is not spatially variant
over the image. While this works well in the SAR far-field regime, it has

been found that in the SAR near-field regime, a spatially variant

basebanding implementation produces a substantially reduced phase

gradient [5, 7]. A unit vector ′ෝ࢛ is introduced, which is obtained from࢛ᇱ ൌ െࡼ Ԣഥࢀ , where ᇱഥࢀ ൌ ࢀഥ െ .ࡿ This unit vector Ԣ࢛ varies with pixel
position, and is used in the construction of the basebanding phase screen

applied to the image,

(ࡼ)ܴ = ݁ସగೣ ௨ᇲೣ × ݁ସగ௨ᇲ × ݁ସగ௨ᇲ (1)

(ࡼ)ܴ = ݁ସగ ᇲ࢛∙ࡼ (2)

where fc is the centre frequency for the SAR collection and c is the speed

of light. The original complex SAR image is multiplied on a per pixel

basis by R to give the new basebanded image. For any given region on

the SAR image, this has the effect of shifting the corresponding energy

in the Fourier domain along Ԣ࢛ towards the origin of the spatial frequency
domain. Overall, this substantially reduces phase gradients over the SAR

image and will compress the overall spatial frequency support so that it

has approximately the extent of its far-field equivalent. Equations (1) and

(2) are valid for both two and three-dimensional imagery.

To extend the formalism to bistatic geometries, Ԣ࢛ in (1) and (2) is

replaced by the mean of the two Ԣ࢛ vectors obtained from considering the
transmitting and receiving antenna synthetic apertures separately.

Volumetric Upsampling:

Similarly to [6, 8], the imagery is upsampled via zero-padding in the

spatial frequency domain. First, a coarsely sampled image undergoes

basebanding. This image is then Fourier transformed into the spatial

frequency domain.

Zero-padding in the frequency domain acts as a sinc interpolation in the

image domain, so that by symmetrically zero-padding the dataset to a

desired sampling, the image is interpolated. This does not introduce any

new information, thus this method cannot be used to improve resolution.

Finally, inverting the Fourier transform produces an image that has been

upsampled to the desired voxel density.

This process is illustrated in Fig 2.

Fig 2 Flowchart illustrating the upsampling process.

For a high quality interpolation result, the initial image should be formed

at least in agreement with the Nyquist criterion. This can be achieved by

ensuring each voxel, of dimensions ߂ ௫ܲ ǡ ߂ ௬ܲǡ ߂ ௭ܲ, is the same size or less
than a resolution cell. For a broadside collection with horizontal aperture߶ and vertical aperture ,ߠ the voxel sizes are as follows,

Δ ௬ܲ ≤ ܿ
௪ܤ2 (3)Δ ௫ܲ ≤ ܿ

4 ݂ sin ቀ߶2 ቁ (4)Δ ௭ܲ ≤ ܿ
4 ݂ sin ቀߠ2 ቁ (5)
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Where ௪ܤ is the bandwidth, ߶ and ߠ are the azimuth and polar aperture
extent angles.

If the above criterion is met, once appropriately basebanded, the spatial

frequency extent of measured data is contained within the unambiguous

frequency extent of the image.

Laboratory Data Example: As stated, this approach described above was

developed with the aim to improve the computation time for high quality

SAR near-field volumetric SAR images.

The approach is demonstrated using a monostatic volumetric SAR image

of a 20th scale T72 tank, shown in Fig 4a. Using a 0.5m by 0.5msynthetic

aperture and a 21.5GHz to 50GHz frequency range provides resolutions

of approximately 5mm in the three dimensions. For a full-scale T72 tank,

this would be equivalent to 10cm resolution.

Converting this image to the Fourier domain reveals that the image

support is larger than the unambiguous frequency extent of the image, as

seen in figures 3a and 3c, and therefore wraps around. This is due to the

SAR near-field nature of the radar collection, where each patch of the

image has its own differently shaped and positioned Fourier domain

image sub-support. Applying the spatially variant basebanding, both

centres and compresses the overall support, as seen in figures 3b and 3d,

leading to the overall support being visibly contained within the

unambiguous frequency extent. In effect, the Fourier domain image sub-

supports have all been centred by this spatially variant basebanding

process.

Fig 3 Projections of the non-basebanded image frequency support are

shown on the left in a) and c), whereas those for the basebanded support

are shown on the right in b) and d).

Since the basebanded support does not wrap around, it can be padded

with zeros without introducing any gaps or sharp discontinuities in the

Fourier domain data, avoiding the introduction of image artefacts and

maximising the upsampled image quality. Figure 4 shows the result of

this upsampling. The spatial frequency has been zero-padded by a factor

of 4 in each dimension, resulting in 64 times as many voxels in the time

domain image. Figure 4a shows the original coarse image whereas figure

4b shows the upsampled version. When zooming in to this high radar

resolution image, it can be seen that there is a definite improvement in

image quality between Figure 4a and 4b, thus validating the approach.

Fig 4 An upsampled image generated by spatially variant basebanding

and zero-padding of the frequency support (shown in Figure 3b and 3d)

by a factor of 4 in each dimension.

Given that the upsampling process relies on the Fast Fourier Transform

of a coarsely sampled SAR image, the computational efficiency is

independent of the number of pulses. Due to this, the upsampling process

is significantly faster than standard Backprojection. This trend is shown
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in Fig 5, where the execution time taken to form an ܰ ×ܰ × ܰ image
from 10201 radar measurements, is compared for direct Backprojection

and this upsampling method. The computations were carried out using

Matlab and two Intel Xeon Gold 12 core processors. The results show

that for this example, the upsampling process is significantly faster when

N is sufficiently large: approximately twice as fast when N = 212 and ten

times as fast when N = 478.

Fig 5 Comparison of the computation times between standard

Backprojection and the proposed upsampling process when used to form

and ܰ × ܰ ×ܰ image from 10201 radar pulses.
A best fit curve has been added to both methodologies in the form of ܶ ܰܣ= + .ܥ The standard Backprojection algorithm follows a cubic curve
ܣ) = 6.62 × 10ିଽ,ܤ = 3.124, ܥ = 0.046), whereas the upsampling

process follows a square curve ܣ) = 3.181 × 10ି,ܤ = ܥ,2.042 =
0.066) and as such, the growth rate of the function is shown empirically

to be substantially smaller.

Window Weighting: Due to possible discontinuities between the image

spatial frequency support and zero-padded elements of the upsampled

image, the upsampling process is susceptible to the Gibb’s Phenomenon.

A window function is typically applied over the Fourier domain image

support to counteract this effect, for example, the power window used in

[8]. Such windows, implemented post image formation, are often sub-

optimal in the SAR near-field due to the large spread of the Fourier

domain image support, which can cause it to wrap around the

unambiguous frequency extent. Additionally to this however, as noted

earlier, in the SAR near-field regime, the overall image support is

composed of many sub-supports, each pertaining to a local patch in the

image. As these sub-supports are in different locations, without the

spatially variant basebanding, the window weighting procedure cannot

be effectively implemented post image formation, over all image patches.

With spatially variant basebanding however, all the Fourier domain

image sub-supports are brought together, so that the window weighting

can be effectively implemented, post image formation, over all of them

and achieve the desired sidelobe suppression across the whole image.

Conclusions: As a means of achieving highly sampled imagery, the

method presented provides an attractive option in terms of achieving

faster image formation times. This approach is less restrictive than the

prior art in that it operates in both SAR near-field and SAR far-field,

although it retains the need to satisfy the Nyquist criterion for the initial

image formation.

It is noted that when implementing this approach prior to interferometric

processing, one should apply the same phase screen to both SAR images

in order to retain the phase relation between them. This phase screen may

be calculated from the SAR geometry of one image, and will be then sub-

optimal for the other image. Alternatively, one can assume a mean SAR

geometry for both collections, and calculate the spatially variant phase

screen from that.

As well as allowing the zero-pad interpolation process, the spatially

variant basebanding described, also allows the application of a window

weighting across all the centred Fourier domain image sub-supports,

providing sidelobe suppression across the whole image.

In through-wall and ground penetrating radar scenarios, the wavefronts

of the electromagnetic pulses are refracted. This refraction can be

corrected for by applying the appropriate delay in the image formation

[9]; however, this leads to a greater spread in the frequency support of

the image. Future work should entail developing the basebanding

process, such that it operates optimally through a combination of different

media, in order to reduce the sampling rate needed when imaging through

inhomogeneous media. E.g. sedimentary layers.
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