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Abstract—This paper investigates a computational framework based

on optimal control for addressing the problem of stochastic trajectory

optimization with the consideration of chance constraints. This design

employs a discretization technique to parameterize uncertain variables

and create the trajectory ensemble. Subsequently, the resulting discretized

version of the problem is solved by applying standard optimal con-

trol solvers. In order to provide reliable gradient information to the

optimization algorithm, a smooth and differentiable chance constraint

approximation method is proposed to replace the original probability

constraints. The established methodology is implemented to explore

the optimal trajectories for a spacecraft entry flight planning scenario

with noise-perturbed dynamics and probabilistic constraints. Simulation

results and comparative studies demonstrate that the present chance

constraint handling strategy can outperform other existing approaches

analyzed in this study, and this computational framework can produce re-

liable and less conservative solutions for the chance-constrained stochastic

spacecraft trajectory planning problem.

Index Terms—Optimal control, stochastic trajectory optimization,

probability constraints, chance constraint handling strategy, spacecraft

trajectory planning.

I. INTRODUCTION

T
HE problem of generating optimal trajectories for spacecrafts,

autonomous vehicles or robots has been an active research topic

for the past several decades. This type of problem has been widely-

researched due to its extensive applications in industry and military

fields [1]–[3]. Such applications include, for instance, unmanned

aerial vehicles (UAV) rescue or observation missions [1], car racing

tasks [2], and multiple autonomous vehicle deployment or motion

planning [3]. Specifically, in [1] the authors calculated the time-

optimal trajectory for a quadrotor with the consideration of multiple

obstacles and physical limitations of the quadrotor. A two-track

car trajectory optimization model was considered in [2], wherein

authors developed an optimal control-based virtual prototyping tool to

calculate the fastest trajectory on a given track. Besides, Hausler et al.

[3] solved an energy-optimal motion planning problem for multiple

wheeled robots by designing a numerical optimization framework.

Nevertheless, the core aim of this kind of problem is to determine

a feasible path or trajectory, for a given vehicle/robot, to achieve

a pre-specified target and optimize a predefined performance index.

During the trajectory planning phase, a number of constraints should

be also taken into account in order to achieve the mission-dependent

requirements and protect the structural integrity.

The problem addressed in this research is an optimal flight

trajectory design for a constrained spacecraft entry flight mission

scenario. Numerous algorithms and strategies have been reported for

solving this type of problem in the past decade [4], [5]. Among

them, the development of optimal control theory-based trajectory
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optimization techniques has received significant attentions [6], [7].

One important feature of using such an approach is that various

mission requirements can be formulated as objectives or constraints

and entailed in the optimization model. Contributions made to

develop or apply this methodology can be found in the literature

[8]–[10]. Misra and Bai [8] addressed a free-floating space-robotic

trajectory planning problem using optimal control theory and convex

quadratic optimization. In their work, the limits on the joint angles as

well as the joint velocities were modeled as physical constraints and

embedded in the optimization formulation. In addition, Pontani et al.

[9] derived the necessary conditions for optimality of a spacecraft

orbital maneuver problem based on the maximum principle, and

calculated the optimal solution via a swarm optimization method.

In their follow-up research [10], a two-loop optimal control structure

based on a modified heuristic method was built so as to address a

spacecraft interplanetary trajectory planning problem.

Although all the previously reported optimal control-based tech-

niques have been shown to be effective and promising tools for gen-

erating optimal trajectories (in particular, optimal control sequences),

they only target at deterministic models. It should be noted that

in many real-world mission scenarios, various model or actuator

uncertainties must frequently be considered during the trajectory

planning phase. As a result, a proper treatment of the dynamics and

constraints affected by stochastic variables is requested, which in turn

brings the development of stochastic trajectory optimization [11]–

[13].

With the introduction of stochastic variables, the vehicle dynam-

ics should be modeled as an uncertain nonlinear system [14]–[17].

It is important to note that due to the nature of uncertain dynamics,

some mission constraints such as the variable boundary conditions

used in the deterministic trajectory optimization model can no longer

be satisfied exactly. One way to handle these constraints is to rewrite

them as robust constraints such that the calculated solution can satisfy

these constraints with respect to any realization of the stochastic

parameters [14], [18]. Another feasible strategy is to use probabilistic

constraints or chance constraints [19]. Compared with the application

of robust constraints, the use of chance constraints offers a number

of advantages [20], [21]. Since this kind of strategy allows constraint

violations to be less than a user-specified risk parameter, the optimiza-

tion algorithms tend to have more flexibility to search optimal or near-

optimal solutions. Moreover, the feasible set defended by the chance

constraints is usually larger than the one determined by its robust

counterpart, which means the chance-constrained method is likely to

be less conservative. Several instances regarding the use/development

of chance constrained optimal control methods can be found in

trajectory planning research [12], [22]. In [22], an autonomous

vehicle chance-constrained trajectory generation problem was solved

by performing a disjunctive convex optimization technique. However,

if the system becomes nonlinear, this approach is no longer effective.

Besides, the chance constraint handling strategy used in [22] tends

to result in large conservatism. Furthermore, a chance-constrained

stochastic optimal control framework was constructed and proposed

by Zhao and Kumar in [12]. However, in their work, only the potential
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feasibility was illustrated but the effectiveness for solving chance-

constrained stochastic optimal control problems was not verified.

To overcome these issues and offer an effective alternative,

we present a computational framework based on optimal control to

address the problem of stochastic spacecraft trajectory optimization

with the consideration of probabilistic constraints. So far to the best

of the authors’ knowledge, there are fewer results have been re-

ported to generate the chance-constrained spacecraft flight trajectory.

Consequently, the present investigation is an attempt to address this

concern. The main contributions of this paper can be summarised

into the following three aspects. First, a new computational optimal

control framework that can be applied to solve stochastic chance-

constrained optimal control problems is designed. Second, in order

to provide reliable gradient information to the optimization algorithm,

a smooth and differentiable chance constraint approximation method

is proposed to approximate the original probability constraints. By

applying this chance constraint handling strategy, the overall frame-

work can have the feasibility to be combined with standard optimal

control solvers where gradient-based optimizers are used to generate

the optimal solution. Third, a novel spacecraft entry flight planning

mission scenario with noise-perturbed dynamics and probabilistic

constraints is constructed and employed to verify the effectiveness

of the proposed computational framework.

The structure of this paper is organised as follows. Section

II presents the mathematical formulation of the chance-constrained

stochastic optimal control problem. In Section III, the proposed

computational framework as well as the chance constraint handling

strategy is detailed. A new chance-constrained stochastic spacecraft

entry trajectory planning model is demonstrated in Section IV. Section

V presents a comprehensive simulation study. In Section VI, the

concluding remark is drawn.

II. MATHEMATICAL FORMULATION OF THE PROBLEM

The chance-constrained stochastic optimal control problems
(CCSOCPs) to be considered through this investigation is established
as follows:

minimize
u(t)

𝐽 = E[Φ(𝑥(𝑡0), 𝑡0, 𝑥(𝑡f ), 𝑡f )

+

∫︁ tf

t0

𝐿(𝑥(𝑡), 𝑢(𝑡), 𝜉)𝑑𝑡]

subject to �̇� = 𝑓(𝑥(𝑡), 𝑢(𝑡), 𝜉)

𝜓(𝑥(𝑡0), 𝑡0) = 0

ℎ(𝑥(𝑡), 𝑢(𝑡), 𝜉) = 0

𝑔(𝑥(𝑡), 𝑢(𝑡), 𝜉) ≤ 0

𝑃𝑟{𝜑(𝑥(𝑡f ), 𝑡f ) ≤ 0} ≥ 𝜖φ

𝑃𝑟{𝐺(𝑥(𝑡), 𝑢(𝑡), 𝜉) ≤ 0} ≥ 𝜖G

(1a)

(1b)

(1c)

(1d)

(1e)

(1f)

(1g)

where E(·) denotes the expectation operator, whereas 𝑃𝑟(·) is the

probability. The performance index 𝐽 is defined in an expectation

form, which can be described as Eq.(1a). Here, the term Φ denotes

the terminal cost and the term 𝐿 is the process cost.

In the CCSOCP formulation, 𝑥(𝑡) ∈ R
nx and 𝑢(𝑡) ∈ U ⊂ R

nu

represent, respectively, the state and control variables defined on

the time domain 𝑡 ∈ [𝑡0, 𝑡f ]. Here, U is a compact set. 𝜉 stands

for the uncertain variable which is assumed to have a known

probability density function (PDF) 𝑅(𝜉) supported on Ω, where Ω is

a measurable open set (e.g. 𝜉 ∈ Ω ⊂ R
np ).

In Eq.(1), it is assumed that the functions 𝑓 , 𝜑, and 𝐺 need

at least to be measurable functions in 𝜉. Additionally, assuming an

optimal solution 𝑢∗(𝑡) exists, the solution 𝑥(𝑡, 𝑥(𝑡0), 𝑢
∗(𝑡), 𝜉) needs

to be a measurable function in 𝜉.

The stochastic dynamics of the system are then defined by

the nonlinear function 𝑓 : R
nx × U × Ω ↦→ R

nx . Besides,

ℎ : R
nx × U × Ω ↦→ R

nh and 𝑔 : R
nx × U × Ω ↦→ R

ng are

the stochastic equality and inequality constraints, respectively. 𝜓 :
R

nx × R ↦→ R
nψ is the initial boundary condition. Eq.(1f) and

Eq.(1g) are referred to as chance constraints or probabilistic con-

straints with an acceptable probability of occurrence 𝜖. These t-

wo constraints can be explained that the valid state and control

trajectories should fulfill the inequalities 𝜑(𝑥(𝑡f ), 𝑡f ) ≤ 0 and

𝐺(𝑥(𝑡), 𝑢(𝑡), 𝜉) ≤ 0 with probability 𝜖φ and 𝜖G. The conditions

for 𝜑 and 𝐺 are 𝜑 : Rnx × R ↦→ R and 𝐺 : Rnx × U × Ω ↦→ R,

respectively. Moreover, we have Φ : Rnx × R× R
nx × R ↦→ R and

𝐿 : Rnx × U× Ω ↦→ R. It is further supposed that the functions 𝐿,

𝑓 , ℎ, 𝑔 and 𝐺 are at least one-time continuously differential with

respect to (𝑥, 𝑢, 𝜉) ∈ R
nx × U × Ω.

Based on the CCSOCP formulation given by Eq.(1), the overall

objective of this problem is to search the optimal control sequence

𝑢(𝑡) such that the performance index 𝐽 can be optimized subject to

constraints (1b)-(1g).

III. METHODOLOGY

This section discusses the proposed computational optimal

control framework that is applied to solve the CCSOCP formula-

tion introduced in Section II. Firstly, an initial transformation of

the chance constraints is introduced. Following that, the stochastic

quadrature formulas are presented in Section III.B so as to discretize

the uncertain variables. Then, the resulting discretized CCSOCP

formulation is constructed in Section III.C to create the trajectory

ensemble. In order to deal with the probabilistic constraints, a smooth

and differentiable probabilistic constraint approximation strategy is

employed in Section III.D. The chance constraint handling method,

together with the created trajectory ensemble, is used to transcribe

the original CCSOCP formulation into a discretized CCSOCP model

which can be solvable for standard gradient-based optimal control

solvers in Section III.E.

A. Initial Transformation of Chance Constraints

In problem (1), the chance constraints described by Eq.(1f) and

Eq.(1g) can be transformed to a more transparent form. Take Eq.(1g)

as an example, the associated probability function can be defined by:

𝑃 (𝑢) = 𝑃𝑟{𝐺(𝑥, 𝑢, 𝜉) ≤ 0} = 1− 𝑃𝑟{𝐺(𝑥, 𝑢, 𝜉) > 0} (2)

Considering the inequality 𝐺(𝑥, 𝑢, 𝜉) ≤ 0 as an event, the probability

function 𝑃 (𝑢) can be further written as

𝑃 (𝑢) = 1− E[𝐻(𝐺(𝑥, 𝑢, 𝜉))] (3)

where 𝐻(·) denotes the unit jump function (also known as Heaviside

function) with respect to 𝐺(𝑥, 𝑢, 𝜉):

𝐻(𝐺(𝑥, 𝑢, 𝜉)) =

{︂

1 if 𝐺(𝑥, 𝑢, 𝜉) ≥ 0
0 if 𝐺(𝑥, 𝑢, 𝜉) < 0

(4)

Hence, Eq.(1f) and Eq.(1g) have the equivalent expressions:

E[𝐻(𝜑(𝑥(𝑡f ), 𝑡f ))] ≤ 1− 𝜖φ

E[𝐻(𝐺(𝑥(𝑡), 𝑢(𝑡), 𝜉))] ≤ 1− 𝜖G

(5a)

(5b)

B. Stochastic Quadrature Formulas

To solve the stochastic optimization problem (1), an important

procedure is to approximate the uncertain variables appearing inside

the dynamics and constraints. To do this, a certain stochastic quadra-

ture formula (SQF) should be used to obtain the approximation with

a desired error order (raft of convergence).

Definition 1. An SQF of degree 𝑁 can be regarded as a set of

one-dimensional weighted parameters {𝑤k}, 𝑘 ∈ {1, 2, ...𝑁} and
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𝑛p-dimensional uncertain variables {𝜉k}, 𝑘 ∈ {1, 2, ...𝑁}, 𝜉k ∈ Ω
such that the equation

∑︀N
k=1 𝑤k𝑓(𝜉k) =

∫︀

Ω
𝑓(𝜉)𝑑𝑃 (𝜉) holds true.

Here, 𝑃 is the probability measure. Supposing 𝑅(𝜉) is the PDF of

𝜉, it is obvious to get 𝑑𝑃 (𝜉) = 𝑅(𝜉)𝑑𝜉. 𝑓 ∈ 𝐿2
R, where 𝐿2

R is given

by

𝐿2
R = {𝑓 : Ω ↦→ R|

∫︁

Ω

𝑓2(𝜉)𝑅(𝜉)𝑑𝜉 <∞}

With the introduction of SQF, an estimation of the stochastic

integral can be built such that

𝐼 = E[𝐺(𝜉)] =

∫︁

Ω

𝐺(𝜉)𝑅(𝜉)𝑑𝜉 =

N
∑︁

k=1

𝑤k𝐺(𝜉k) (6)

It is worth noting that based on this approximation, one can

easily obtain other statistical quantities. For example, the variance of

𝐺(𝜉) can be calculated by:

𝑉 𝑎𝑟(𝐺(𝜉)) = E[𝐺2(𝜉)]− E
2[𝐺(𝜉)]

=

N
∑︁

k=1

𝑤k𝐺
2(𝜉k)− (

N
∑︁

k=1

𝑤k𝐺(𝜉k))
2

Until now, there are many effective SQF methods and their

variances that have been reported for approximating the uncertain pa-

rameters. Among them, generalized polynomial chaos (gPC) theory-

based approaches have attracted great attentions due to their ability

in decomposing the stochastic variables into a convergent series

of polynomials. gPC methods have been widely applied in various

engineering applications [11], [23]. The general procedure of this

SQF is to use deterministic orthogonal polynomials and coefficients

for deriving the expression of stochastic systems. It was shown in [23]

that the gPC-based techniques can be efficient for optimal control

problems (OCPs) containing a relatively small number of stochastic

variables. However, for the uncertain trajectory optimization problem

given by Eq.(1), the uncertain effect in the dynamics and constraints

must be considered during the entire time domain, which means the

random variable will appear at each time instant. Specifically, if the

uncertain dynamics contain 𝑛p random variables and 𝑁j number

of temporal nodes are selected to discretize the time interval, the

resulting number of uncertain variables becomes 𝑁j𝑛p. Commonly,

for practical trajectory planning problems that have a long time

duration, a large 𝑁j will be chosen in order to produce desired

solution accuracy. Consequently, for problem (1), gPC-based methods

are no longer suitable for representing the uncertainty.

Another well-developed class of SQF techniques is the

sampling-based methods. Typical examples include the Markov chain

Monto Carlo (MCMC) approach and quasi-Monto Carlo methods.

The motivation for the use of sampling-based methods relies on

their simplicity and the fact that the approximation error order is

independent with respect to the dimension of 𝜉. Take MCMC as

an example, a stochastic variable ensemble {𝜉}Nk=1 can be con-

structed by randomly sampling from the probability distribution

(e.g. {𝜉}Nk=1 ∼ 𝑅(𝜉)). Each sample will be weighted equally (e.g.

𝑤k = 𝑁−1), thereby producing an 𝒪(1/
√
𝑁) convergence rate in

terms of the approximation error. Therefore, in this paper the MCMC

technique is employed to model the uncertain parameters.

C. Discretized CCSOCP Formulation

Following the discussion stated in Section III.B, it is now
assumed that an SQF technique is selected with a fixed number
of 𝑁 . This indicates that the uncertain variable ensemble {𝜉k}Nk=1

will correspond to a trajectory ensemble {(𝑥k, 𝑢k)}Nk=1. In other
words, each 𝜉k, along with the initial condition 𝜓(𝑥k(𝑡0), 𝑡0), defines
a unique trajectory and the trajectory ensemble is constructed by

collecting all these trajectories. More precisely, the 𝑘th trajectory is
determined by the following equations:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

�̇�k = 𝑓(𝑥k, 𝑢k, 𝜉k)

𝜓(𝑥k(𝑡0), 𝑡0) = 0

ℎ(𝑥k, 𝑢k, 𝜉k) = 0

𝑔(𝑥k, 𝑢k, 𝜉k) ≤ 0

E[𝐻(𝜑(𝑥k(𝑡f ), 𝑡f ))] ≤ 1− 𝜖φ

E[𝐻(𝐺(𝑥k, 𝑢k, 𝜉k))] ≤ 1− 𝜖G

(7a)

(7b)

(7c)

(7d)

(7e)

(7f)

A more compact form of the stochastic system (7) can be

obtained by defining the augmented state, control and uncertain

vectors described as follows:

𝑥A = [𝑥1, 𝑥2, ..., 𝑥k, ..., 𝑥N ]T

𝑢A = [𝑢1, 𝑢2, ..., 𝑢k, ..., 𝑢N ]T

𝜉A = [𝜉1, 𝜉2, ..., 𝜉k, ..., 𝜉N ]T
(8)

Consequently, the functions 𝑓 , 𝜓, ℎ and 𝑔 are rewritten as:

𝑓A(𝑥A, 𝑢A, 𝜉A) 𝜓A(𝑥A(𝑡0), 𝑡0)

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑓(𝑥1, 𝑢1, 𝜉1)
.
.
.

𝑓(𝑥k, 𝑢k, 𝜉k)
.
.
.

𝑓(𝑥N , 𝑢N , 𝜉N )

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜓(𝑥1(𝑡0), 𝑡0)
.
.
.

𝜓(𝑥k(𝑡0), 𝑡0)
.
.
.

𝜓(𝑥N (𝑡0), 𝑡0)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

ℎA(𝑥A, 𝑢A, 𝜉A) 𝑔A(𝑥A, 𝑢A, 𝜉A)

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ℎ(𝑥1, 𝑢1, 𝜉1)
.
.
.

ℎ(𝑥k, 𝑢k, 𝜉k)
.
.
.

ℎ(𝑥N , 𝑢N , 𝜉N )

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑔(𝑥1, 𝑢1, 𝜉1)
.
.
.

𝑔(𝑥k, 𝑢k, 𝜉k)
.
.
.

𝑔(𝑥N , 𝑢N , 𝜉N )

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(9)

In terms of the objective function, based on the SQF and the

constructed trajectory ensemble, one can rewrite the terminal cost as:

ΦA(𝑥A(𝑡0), 𝑡0, 𝑥A(𝑡f ), 𝑡f )

=

N
∑︁

k=1

𝑤kΦ(𝑥k(𝑡0), 𝑡0, 𝑥k(𝑡f ), 𝑡f )
(10)

Analogically, the process cost term is expressed by:

𝐿A(𝑥A, 𝑢A, 𝜉A) =

N
∑︁

k=1

𝑤k𝐿(𝑥k, 𝑢k, 𝜉k) (11)

Based on Eq.(10) and Eq.(11), the overall cost function of the

discretized problem can be defined by

𝐽A = ΦA(𝑥A(𝑡0), 𝑡0, 𝑥A(𝑡f ), 𝑡f ) +

∫︁

tf

t0

𝐿A(𝑥A, 𝑢A, 𝜉A) (12)

Regarding the probabilistic boundary condition 𝜑 and path
constraint 𝐺, two similar expressions are obtained, which can be
given by:

E[𝐻A(𝜑(𝑥A(𝑡f ), 𝑡f ))] =
N
∑︁

k=1

𝑤k𝐻(𝜑(𝑥k(𝑡f ), 𝑡f ))

E[𝐻A(𝐺(𝑥A, 𝑢A, 𝜉A))] =

N
∑︁

k=1

𝑤k𝐻(𝐺(𝑥k, 𝑢k, 𝜉k))

(13a)

(13b)

According to all the definitions and transformations given by
Eqs.(8)-(13), the discretized version of the original CCSOCP formu-
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lation can be written as:

minimize
uA

𝐽A = 𝐽Φ + 𝐽L

subject to �̇�A = 𝑓A(𝑥A, 𝑢A, 𝜉A)

𝜓A(𝑥A(𝑡0), 𝑡0) = 0

ℎA(𝑥A, 𝑢A, 𝜉A) = 0

𝑔A(𝑥A, 𝑢A, 𝜉A) ≤ 0

E[𝐻A(𝜑(𝑥A(𝑡f ), 𝑡f ))] ≤ 1− 𝜖φ

E[𝐻A(𝐺(𝑥A, 𝑢A, 𝜉A))] ≤ 1− 𝜖G

(14a)

(14b)

(14c)

(14d)

(14e)

(14f)

(14g)

where 𝐽Φ and 𝐽L are the abbreviations of the first and second

terms of Eq.(12). This discretized formulation will be applied as an

approximant to the original CCSOCP problem.

Remark 1. According to the sampled approximation equations, the

hard constraints are approximated by requiring that the constraints are

satisfied for all sampled disturbance realizations. This might result

in some approximation errors. In fact, depending on the number of

samples, stochastic bounds for the probability of constraint violation

can be derived [24]. Take ℎ(·) as an example, by introducing two

constants 𝑐1 and 𝑐2, we have:

|
∫︁

Ω

ℎ(𝜉)𝑅(𝜉)𝑑𝜉 −
N
∑︁

k=1

𝑤kℎ(𝜉k)| ≥ 𝑐1‖ℎ‖𝑁−1

Moreover, the mean square bound can be written as:

{E[
∫︁

Ω

ℎ(𝜉)𝑅(𝜉)𝑑𝜉 −
N
∑︁

k=1

𝑤kℎ(𝜉k)]
2}1/2 ≥ 𝑐2‖ℎ‖𝑁−1/2

Here, 𝑐1 and 𝑐2 are implicitly depended on 𝜉.

D. Chance Constraint Handling Strategy

In this investigation, we are interested in applying standard

optimal control solvers to optimize the state and control trajectories.

However, the discretized CCSOCP formulation shown in Eq.(14) is

not solvable in its present form. This is because the evaluation of

Eq.(14f) and Eq.(14g) does not provide reliable gradient information.

It is important to remark that for most typical optimal control

solvers, gradient-based optimization strategies are used to search the

optimal decision variables. As a result, due to the requirement of

derivative information, it is desired to find a smooth and differentiable

approximation for replacing the chance constraints (e.g. Eq.(14f) and

Eq.(14g)).

In order to remove any ambiguous annotations, the general

expectation form of chance constraints (shown in Eq.(5)) is recalled

in the following analysis. Taking Eq.(5b) as an instance, as can be

seen from this equation, the approximation of E[𝐻(𝐺(𝑥, 𝑢, 𝜉))] even-

tually becomes finding an approximation of 𝐻(𝐺(𝑥, 𝑢, 𝜉)). More

precisely, the key idea of the approximation is to design a function

Ψ(𝑐,𝐺(𝑥, 𝑢, 𝜉)) : [1,∞)× R ↦→ R such that Ψ(𝑐,𝐺(𝑥, 𝑢, 𝜉)) is

upper bounded and strictly greater than the unit jump function

𝐻(𝐺(𝑥, 𝑢, 𝜉)) (e.g. 𝐻(𝐺(·, ·, ·)) < Ψ(𝑐,𝐺(·, ·, ·)) ≤ 𝐶 <∞, where

𝐶 is a positive constant). If Ψ(𝑐,𝐺(𝑥, 𝑢, 𝜉)) is employed to replace

𝐻(𝐺(𝑥, 𝑢, 𝜉)), then the associated probability function is changed to

𝑃 (𝑢) ≥ 1− E[Ψ(𝑐,𝐺(𝑥, 𝑢, 𝜉))] (15)

The corresponding feasible set associated with the chance constraint

should be defined as:

F (𝑐) := {𝑥 ∈ R
nx , 𝑢 ∈ U |E(Ψ(𝑐,𝐺(𝑥, 𝑢, 𝜉))) ≤ 1− 𝜖G} (16)

It is obvious that any (𝑥, 𝑢) ∈ F (𝑐) can be feasible for the

original chance constraint, which means F (𝑐) is a subset of

O := {𝑥 ∈ R
nx , 𝑢 ∈ U |E(𝐻(𝐺(𝑥, 𝑢, 𝜉))) ≤ 1− 𝜖G}

Several approximation functions were reported and verified in

the literature. For instance, in [25] a modified exponential function

in the form of Ψ1(𝑐,𝐺(𝑥, 𝑢, 𝜉)) = 𝑒
1
c
G(x,u,ξ), 𝑐 = [0,∞) was

analyzed. Besides, a function Ψ2(𝑐,𝐺(𝑥, 𝑢, 𝜉)) = 𝑞d(𝐺(𝑥, 𝑢, 𝜉))
was proposed and verified in [26]. In Ψ2, 𝑞d(·) is the solution of a

polynomial optimization problem. 𝑑 is the degree of the polynomial

and 𝑐 = 1/𝑑. Ψ1 and Ψ2 were shown to be upper approximations

of 𝐻 . However, for Ψ1, the corresponding feasible set is relatively

small, thereby producing poor solution optimality. As for Ψ2, when

𝐺(𝑥, 𝑢, 𝜉) has strong nonlinearities, the polynomial optimization

problem becomes hard to solve. To avoid these problems and provide

an effective alternative, in this study we suggest an approximation

function in the following form:

Ψ(𝑐,𝐺(𝑥, 𝑢, 𝜉)) =
𝑐+𝑚1

𝑐+𝑚2𝑒−cG(x,u,ξ)
(17)

where 𝑐 ∈ [1,∞) is a control parameter; 𝑚1 and 𝑚2 are two positive

constants with the relationship 𝑚1 ≤ 𝑚2. Based on Eq.(17), the

derivative of Ψ(𝑐,𝐺(𝑥, 𝑢, 𝜉)) with respect to 𝐺 can be evaluated by:

𝜇(𝑐,𝐺(𝑥, 𝑢, 𝜉)) = ∂
∂G(x,u,ξ)

Ψ(𝑐,𝐺(𝑥, 𝑢, 𝜉))

=
𝑐(𝑐+𝑚1)(𝑐+𝑚2𝑒

−cG(x,u,ξ))

(𝑐+𝑚2𝑒−cG(x,u,ξ))2

(18)

The approximation function (17) has several properties:

(a) Ψ(𝑐,𝐺(𝑥, 𝑢, 𝜉)) is positive for any value of 𝐺(𝑥, 𝑢, 𝜉).
(b) If 𝐺(𝑥, 𝑢, 𝜉) ≥ 0, then Ψ(𝑐,𝐺(𝑥, 𝑢, 𝜉)) ≥ 1.

(c) Ψ(𝑐, ·) is a monotonically increasing function with respect to

𝐺(𝑥, 𝑢, 𝜉).
(d) Ψ(𝑐,𝐺(𝑥, 𝑢, 𝜉)) tends to become closer to 𝐻(𝐺(𝑥, 𝑢, 𝜉)) as the

control parameter 𝑐 increases.

Properties (a)-(c) guarantee that Ψ(𝑐,𝐺(𝑥, 𝑢, 𝜉)) is a strict

upper bound of 𝐻(𝐺(𝑥, 𝑢, 𝜉)). To better show Property (d), a figure

illustrating Ψ(𝑐,𝐺(𝑥, 𝑢, 𝜉)) and Ψ1(𝑐,𝐺(𝑥, 𝑢, 𝜉)) approximations is

plotted (see Fig.1).
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Fig. 1: Different approximation functions

Obviously, the approximation accuracy obtained by applying

Ψ(𝑐,𝐺(𝑥, 𝑢, 𝜉)) becomes higher as 𝑐 increases, thus making this

approximation less conservative.

E. Solvable CCSOCP Model

Applying the chance constraint handling strategy developed in
Section III.D, Eq.(13) can be further transformed to

E[𝐻A(𝜑(𝑥A(𝑡f ), 𝑡f ))] < E[ΨA(𝑐, 𝜑(𝑥A(𝑡f ), 𝑡f ))]

=

N
∑︁

k=1

𝑤kΨ(𝑐, 𝜑(𝑥k(𝑡f ), 𝑡f ))

E[𝐻A(𝐺(𝑥A, 𝑢A, 𝜉A))] < E[ΨA(𝑐,𝐺(𝑥A, 𝑢A, 𝜉A))]

=

N
∑︁

k=1

𝑤kΨ(𝑐,𝐺(𝑥k, 𝑢k, 𝜉k))

(19a)

(19b)
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Hence, the derivative of Eq.(19b) with respect to the state and

control variables can be calculated by:

N
∑︁

k=1

𝑤k∇xkΨ(𝑐,𝐺(𝑥k, 𝑢k, 𝜉k))

=
N
∑︁

k=1

[
𝜕

𝜕𝑠
Ψ(𝑐, 𝑠)∇xk𝐺(𝑥k, 𝑢k, 𝜉k)]|s=G(xk,uk,ξk)

(20)

and

N
∑︁

k=1

𝑤k∇ukΨ(𝑐,𝐺(𝑥k, 𝑢k, 𝜉k))

=
N
∑︁

k=1

[
𝜕

𝜕𝑠
Ψ(𝑐, 𝑠)∇uk𝐺(𝑥k, 𝑢k, 𝜉k)]|s=G(xk,uk,ξk)

(21)

where ∂
∂s

Ψ(𝑐, 𝑠)|s=G(xk,uk,ξk) is calculated according to Eq.(18).
Combining Eq.(14) and Eq.(19), the updated CCSOCP model

which is solvable for standard gradient-based optimal control solvers
can be established. This solvable version is demonstrated in Eq.(22).

minimize
uA

𝐽A = 𝐽Φ + 𝐽L

subject to �̇�A = 𝑓A(𝑥A, 𝑢A, 𝜉A)

𝜓A(𝑥A(𝑡0), 𝑡0) = 0

ℎA(𝑥A, 𝑢A, 𝜉A) = 0

𝑔A(𝑥A, 𝑢A, 𝜉A) ≤ 0

N
∑︁

k=1

𝑤kΨ(𝑐, 𝜑(𝑥k(𝑡f ), 𝑡f )) ≤ 1− 𝜖φ

N
∑︁

k=1

𝑤kΨ(𝑐,𝐺(𝑥k, 𝑢k, 𝜉k)) ≤ 1− 𝜖G

(22a)

(22b)

(22c)

(22d)

(22e)

(22f)

(22g)

IV. CHANCE-CONSTRAINED STOCHASTIC SPACECRAFT ENTRY

TRAJECTORY PLANNING: SYSTEM MODELING

In this section, an application of the proposed computational

framework to the problem of spacecraft trajectory planning is present-

ed. A time-optimal spacecraft entry trajectory optimization problem

studied in [27] is further extended by considering the uncertainties in-

volved in the vehicle dynamics, terminal state conditions, and control

actuation. These uncertainties are modeled into stochastic dynamics

and chance constraints, which are then entailed in the optimization

model and adopted to search the optimal state and control profiles.

Therefore, to solve the problem, the CCSOCP optimization model

associated with it should be firstly constructed.

A. Stochastic Dynamics and Objective Function

Prior to introducing in detail the stochastic optimization model,

it is worth recalling some backgrounds of this mission scenario.

The spacecraft re-enters the atmosphere at a pre-specified position

and descends down to an target altitude point for observation and

gathering of information of inaccessible areas [27]. Once the obser-

vation mission is completed, the vehicle starts the ascending phase,

existing the atmosphere and returning back to the original orbit. Since

most path constraints are likely to be violated during the descending,

the most challenging entry phase is considered in this study. The

dynamics of the spacecraft are, therefore, given by the following

system of stochastic differential equations:

�̇� = d
dt

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑟
𝜃
𝜙
𝑉
𝛾
𝜒

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑉 sin 𝛾 + 𝜉r
V cos γ sinχ

r cosϕ
+ 𝜉θ

V cos γ cosχ
r

+ 𝜉ϕ

−D(α)
m

− 𝑔 sin 𝛾 + 𝜉V
L(α) cosσ

mV
+ (V

2
−gr

rV
) cos 𝛾 + 𝜉γ

L(α) sinσ
mV cos γ

+ V
r
cos 𝛾 sin𝜒 tan𝜙+ 𝜉χ

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(23)

where 𝑥 = [𝑟, 𝜃, 𝜙, 𝑉, 𝛾, 𝜒]T are the state variables representing the

radial distance, longitude, latitude, speed, flight path angle (FPA)

and azimuth angle, respectively. The control variables are composed

by the angle of attack 𝛼 (AOA) and bank angle 𝜎. 𝑚 denotes the

vehicle’s mass, whereas 𝑔 stands for the gravity acceleration. 𝐷(𝛼)
and 𝐿(𝛼) are the drag and lift forces and they are functions of

AOA. 𝜉x = [𝜉r, 𝜉θ, 𝜉ϕ, 𝜉V , 𝜉γ , 𝜉χ]
T are the uncertain disturbances

caused by error modeling or varying flight conditions. For brevity,

this uncertain system is abbreviated as �̇� = 𝑓(𝑥, 𝑢) + 𝜉x.

Since it is desired to fulfill the entry mission in the shortest time,

minimizing the final time instant is chosen as the objective function

𝐽 = min 𝑡f .

Remark 2. Different from the dynamics used in our previous work

[28], the vehicle’s engine model is dropped out from Eq.(23), which

means the spacecraft only uses the aerodynamic forces to manoeuver

during the atmospheric flight. Although the vehicle can fire its engine

so as to achieve a shorter time duration, it was found in [29] that this

design tends to result in a significant mass fraction and the spacecraft

might have no fuel to carry out the continuing mission. Therefore, it

is suggested to use the aero-assisted model given by Eq.(23) during

the atmospheric entry flight.

B. Hard Constraints and Chance Constraints

In the stage of entry flight, a number of limitations should be

taken into account in the design of optimal flight paths. The first

constraint is to limit the angular rate of control variables such that

the control sequence and its derivative cannot vary significantly.

To achieve this, two rate constraints are formulated, which can be

illustrated by:
{︂

�̇� = 𝑘α(𝛼c − 𝛼)
�̇� = 𝑘σ(𝜎c − 𝜎)

{︂

𝛼c ∈ [𝛼minc , 𝛼maxc ]
𝜎c ∈ [𝜎minc , 𝜎maxc ]

(24)

where [𝛼min
c , 𝛼max

c ] and 𝜎c ∈ [𝜎min
c , 𝜎max

c ] define the allowable

regions of the controls. As can be observed from Eq.(24), the control

variable now becomes the demanded AOA 𝛼c and bank angle 𝜎c.

Eq.(24) is adhered to Eq.(23), thus increasing the state space order

by two.

To protect the structure of the spacecraft, several path constraints

should also be considered in the optimization process. These require-

ments are required to satisfy during the entire time history and can

be expressed as:

𝑔(𝑥, 𝑢) =

⎡

⎣

�̇�(𝑥, 𝑢)
𝑃d(𝑥, 𝑢)
𝑛L(𝑥, 𝑢)

⎤

⎦ =

⎡

⎢

⎣

𝐾Q𝜌
0.5𝑉 3

1
2
𝜌𝑉 2

√
L2+D2

mg

⎤

⎥

⎦
≤

⎡

⎣

�̇�max

𝑃max
d
𝑛max
L

⎤

⎦ (25)

in which �̇�, 𝑃d and 𝑛L are, respectively, the heat flux, dynamic

pressure and normal acceleration. Their maximum allowable values

are given by [�̇�max, 𝑃max
d , 𝑛max

L ]T .
For the deterministic version of this problem [27], [28], one

objective is required for the spacecraft to strike the the pre-specified
terminal boundary conditions (e.g. 𝑥f = 𝑥(𝑡f ) = [𝑟f , 𝛾f ]). However,
when the problem is extended to the stochastic version, this require-
ment might not be achieved exactly due to the nature of stochastic
dynamics. Therefore, the terminal state chance constraints are applied
such that the final state variables can be restricted to a region of
𝑥f = [𝑟f , 𝛾f ] with a prescribed violation rate value.

{︃

𝑃𝑟(|𝑟(𝑡f )− 𝑟f | ≤ 𝛿1) ≥ 𝜖1

𝑃𝑟(|𝛾(𝑡f )− 𝛾f | ≤ 𝛿2) ≥ 𝜖2

(26a)

(26b)

where 𝛿1 and 𝛿2 are the maximum allowable deviation between the

actual terminal state values and the pre-determined final state values.

1− 𝜖1 and 1− 𝜖2 are the corresponding risk values.
Similarly, in practice, the maximum attainable control actuation

of the spacecraft may not be fixed. and is usually influenced by some
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uncertainties. These effects are modeled as probabilistic constraints
which can be described as:

{︂

𝑃𝑟(𝛼c + 𝜉α ≤ 𝛼max
c ) ≥ 𝜖α

𝑃𝑟(𝜎c + 𝜉σ ≤ 𝜎max
c ) ≥ 𝜖σ

(27a)

(27b)

in which 𝜉α and 𝜉σ are two uncertain variables associated with the

demanded AOA and band angle, respectively. 𝜖α and 𝜖σ are the

acceptable probability of occurrence.

V. SIMULATION STUDY AND ANALYSIS

A. Parameter Specification

This section simulates the chance-constrained stochastic s-

pacecraft entry trajectory planning problem modeled in Sec-

tion IV by applying the methodology developed in Section II-

I. The variable initial boundary values are assigned as: 𝑥0 =
[80𝑘𝑚, 0𝑑𝑒𝑔, 0𝑑𝑒𝑔, 7802.9𝑚/𝑠, −1𝑑𝑒𝑔, 90𝑑𝑒𝑔]T . Other mission-

dependent/vehicle-dependent variables used for the experiments are

tabulated in Table.I.

TABLE I: Parameters used in the experiments

Parameters Values/ranges Parameters Values/ranges

Altitude, h [80km, 50km] Azimuth, χ [−90∘, 90∘]
Longitude, θ [0∘, 90∘] Mass, m 89160kg
Latitude, ϕ [0∘, 90∘] AOA, α [0∘, 40∘]
Speed, V [3km/s, 8km/s] Bank angle, σ [−90∘, 1∘]
FPA, γ [−10∘, 10∘] αc [0∘, 40∘]

σc [−90∘, 1∘] Q̇max 160BTU

Pmaxd 13406.46Pa nmaxL 2.5

In terms of the uncertain model, the stochastic dynamics is set

in the form of �̇� = 𝑓(𝑥, 𝑢) + 𝜉x𝑓(𝑥, 𝑢), where 𝜉x is supposed to

have a normal distribution (e.g. 𝜉x ∼ 𝑁(0, 0.12)). The uncertain term

𝜉x𝑓(𝑥, 𝑢) is augmented to the nominal dynamics and 𝜉x determines

the magnitude of the model error. Besides, the vehicle’s mass is also

considered as an uncertain variable and is perturbed uniformly up to

2.5%.
As for the control actuation and terminal state chance con-

straints, their approximate form which is illustrated in Eq.(28) can
be obtained based on Eq.(19).

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Eξ1 (Ψ(𝑐, |𝑟(𝑡f )− 𝑟f | − 𝛿1)) ≤ 1− 𝜖1

Eξ2 (Ψ(𝑐, |𝛾(𝑡f )− 𝛾f | − 𝛿2)) ≤ 1− 𝜖2

Eξα (Ψ(𝑐, 𝛼c + 𝜉α − 𝛼max
c )) ≤ 1− 𝜖α

Eξσ (Ψ(𝑐, 𝜎c + 𝜉σ − 𝜎max
c )) ≤ 1− 𝜖σ

(28a)

(28b)

(28c)

(28d)

In Eq.(28), the acceptable probabilities of occurrence are set as:

𝜖1 = 𝜖2 = 0.95, and 𝜖α = 𝜖σ = 0.90. The target final conditions

are [𝑟f , 𝛾f ] = [50𝑘𝑚, 0𝑑𝑒𝑔], while [𝛿1, 𝛿2] = [300𝑚, 0.02𝑑𝑒𝑔].
The uncertain variables 𝜉α and 𝜉σ are supposed to have exponential

distributions, whose PDFs are given by 𝑓(𝑥, 𝜆) = 𝜆𝑒λx, 𝑥 ≥ 0 with

the rate parameter 𝜆 = 1.5. The sample size as well as the control

parameters with respect to the chance constraints handling method

are assigned as 𝑁 = 2× 105, 𝑚1 = 1.0, 𝑚2 = 0.5 and 𝑐 = 10000,

respectively.

Following the transformation process discussed in Section III,

the original chance-constraint stochastic spacecraft entry trajectory

problem is reformulated to a deterministic CCSOCP, which can be

solved by standard optimal control solvers. Currently, there are many

possible optimization solvers such as the heuristic-based optimizer

[9], [10] and the interior point-based optimizer [4], [19]. In this

investigation, all the experiments were carried out by performing a

newly-developed hybrid optimal control solver reported in [28]. The

motivation of the use of this specific optimizer relies on its improved

convergence ability in finding optimal solutions under perturbed

environment.

B. Performance of the Chance Constraint Handling Strategy
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Fig. 2: Optimal AOA results obtained using different methods

The performance of the chance constraint handling strategy is

tested and verified in this subsection. The negative effects caused by

the noise-perturbed dynamic model are firstly eliminated. That is, the

spacecraft entry problem is considered to find the chance-constrained

optimal control profiles of the deterministic dynamical system. The

optimized control solutions of the chance-constrained problem are

depicted in Fig.2 and Fig.3. Specifically, Fig.2(a) and Fig.2(b) present

the evolution of the AOA and bank angle, whereas Fig.2(c) and

Fig.2(d) depict the demanded AOA and bank angle commands. In

addition, the control actuation chance constraint violation trajectories

are plotted in Fig.2(e) and Fig.2(f), where the permissable risk value

(e.g. 1− 𝜖) is indicated by the red line.

It should be noted that for the mission scenario considered in

this study, it can be expected for the control variables to have a

bang-bang behaviour. This is because the demanded controls are not

involved in the path constraints explicitly, which means the optimal

control sequence might contain corners and will switch between the

allowable boundary values. This conclusion can be validated via

the Proposition 3 derived in [28]. As can be observed from Fig.2,

although the chance-constrained solutions are able to keep a switching

structure, the magnitude cannot reach the allowable boundary values

exactly. This can be explained that under the consideration of actuator

uncertainty, 𝑢∗(𝑡) tends to be smaller than the allowable value.

According to the results shown in Fig.2(e) and Fig.2(f), the chance

constraint handling strategy is able to produce optimal solutions

without violating the probabilistic constraints, which confirms that

the effectiveness of this approach can be guaranteed.

A comparative simulation was carried out to compare the

constraint violation histories achieved by performing the present

technique and other typical strategies. For example, an exponential

function-based approach (denoted as EF-based) investigated in [25],

and a kinship function-based method (denoted as KF-based) reported

in [26]. The results of these two approaches are plotted in Fig.2,

from where it can be seen that compared with other methods,

the method investigated in this study can produce a violation rate

history that is closer to the pre-assigned risk value. Furthermore,

the objective function value associated with it is 𝐽∗ = 584.73s,

which is again more optimal than that of the EF-based approach

with 𝐽EF = 592.99s and KF-based method with 𝐽KF = 586.31s.

C. Sensitivity With Respect to Control Parameter 𝑐

An attempt is made to analyze the sensitivity of the control

parameter 𝑐 with respect to the chance constraint handling strategy.

This sensitivity analysis has been performed by taken into account

several variations of 𝑐 (e.g. 𝑐1 = 200, 𝑐2 = 500, 𝑐3 = 1000, 𝑐4 =
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TABLE II: Maximum violation rate achieved (10% allowable)

Sample size N N1 N2 N3 N4 N5

c = 10000 9.04% 9.04% 9.07% 9.11% 9.01%

c = 5000 7.79% 7.81% 7.81% 7.76% 7.84%

c = 2000 6.50% 6.36% 6.22% 6.42% 6.45%

c = 1000 4.59% 4.39% 4.27% 4.39% 4.37%

c = 500 2.17% 2.32% 2.23% 2.25% 2.45%

c = 200 0.31% 0.33% 0.15% 0.29% 0.21%

N size ×105
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Fig. 3: Sensitivity results with respect to 𝑐 and 𝑁
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Fig. 4: State and path constraint results (500 dispersed trajectories)

2000, 𝑐5 = 5000 and 𝑐6 = 10000, respectively). The constraint

violation histories achieved with different 𝑐 are shown in Fig.3(a)

and Fig.3(b).

From Fig.3(a) and Fig.3(b), it is obvious that the optimal

solution tends to be sensitive with respect to the selection of the

control parameter 𝑐. Specifically, the obtained objective values are

𝐽∗

1 = 611.80, 𝐽∗

2 = 594.83, 𝐽∗

3 = 588.98, 𝐽∗

4 = 587.18,

𝐽∗

5 = 585.61 and 𝐽∗

6 = 584.73, respectively. A more aggressive

constraint violation history can be achieved by increasing the value

of 𝑐. This follows the discussion stated in Section III. However,

based on our experiments, it was found that a large 𝑐 might result in

numerical difficulties for the nonlinear programming (NLP) solver.

Since 𝑐 does not contain any physical meaning, it is usually hard

to select a proper 𝑐 that can balance the computational difficulty

and the solution accuracy. This paper applies a fixed 𝑐 = 10000 to

generate the all the solutions. However, an adaptive strategy should

be designed in the follow-up research.

D. Sensitivity With Respect to Sample Size 𝑁

It should be noted that another important factor that might influ-

ence the solution accuracy is the sample size 𝑁 . Hence a sensitivity

study of the sample size 𝑁 to the chance constraint approximation

method has also been carried out. By setting 𝑁1 = 1 × 105,

𝑁2 = 2 × 105, 𝑁3 = 3 × 105, 𝑁4 = 4 × 105 and 𝑁5 = 5 × 105

for different values of 𝑐, the solutions are generated and shown in

Fig.3(c) and Table.II.

Fig.3(c) illustrates the results on the objective function value

versus the number of sample 𝑁 plane, while Table.II summarised

the maximal violation rate values achieved for different cases. From

Fig.3(c) and Table.II, it can be observed that for a fixed control

parameter 𝑐, the objective value does not vary significantly as the

sample number 𝑁 increases. A similar behaviour can also be found in

terms of the maximum violation rate. Therefore, it can be concluded

that compared with the sample size 𝑁 , the optimal results tend to be

more sensitive with respect to the control variable 𝑐 of the developed

method for solving the chance-constrained spacecraft entry trajectory

planning problem.

Remark 3. It is important to note that although Fig.3(c) and Table.II

display a less sensitive behaviour of 𝑁 , this is only valid for the

example considered in this paper and a counterexample can be easily

constructed. Actually, since the Monte-Carlo sampling is known to

have slow convergence, if a higher risk value is desired for the

problem, a relatively large number of realization is usually required.

E. Optimal Trajectories for the Stochastic Entry Problem

From the previous subsections, it can be concluded that the

chance constraint handling strategy studied in this research is reliable

to produce more aggressive allowable rate values, which in turn offers

more optimality of the solutions. As a result, the newly-developed

technique for chance constraints is applied to solve the spacecraft

CCSOCP for noise-perturbed dynamic systems. Fig.4 presents the

trajectories of the state variables and path constraints. Fig.5 displays

the time evolution of the demanded control variables as well as

the chance constraint violation rate. Each single line denotes the

trajectory corresponding to an ensemble number 𝑘, and it is worth

noting that in order to preserve the quality of the figure, only 500

dispersed trajectories are presented in Fig.4 and Fig.5.
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Fig. 5: Control and chance constraint results

It can be seen from Fig.4 that the uncertain variables appearing

in the dynamics and constraints cause some deviations of the optimal

trajectory. But the optimal control structure can still be preserved.

This can be observed from the demanded AOA and band angle

ensembles shown in Fig.5(a) and Fig.5(b). In terms of the stochastic

terminal state chance constraints given by Eq.(26), it is evaluated

that all the violation rates corresponding to the terminal state chance

constraints are less than the pre-assigned risk parameter. More
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precisely, the average violation rate values for constraint (26) are

0.043 and 0.046, respectively.

Moreover, the stochastic control actuation constraints depicted

in Fig.5(c) and Fig.5(d) convey that the actual violation rates for

each individual trajectory are below the maximum allowable rate. The

aggressive behaviour of the constraint violation trajectories, together

with the switching control structure obtained, validates that each

individual flight trajectory among the trajectory ensemble can be

a near-optimal solution for the stochastic spacecraft entry problem

under the consideration of control and terminal state probabilistic

constraints. This further indicates that the deterministic CCSOCP

framework constructed in Section III is well-suited for the newly

developed hybrid optimal control solver.

VI. CONCLUDING REMARKS

In this paper, a deterministic CCSOCP framework which can

generate near-optimal flight trajectories for the stochastic spacecraft

entry trajectory planning problem with the consideration of chance

constraints was presented. The proposed framework discretized the

uncertain variables in the dynamics and constraints and created the

trajectory ensemble such that the resulting discretized formulation can

be tackled by standard optimal control solvers. To effectively calcu-

late the gradient information and apply gradient-based optimization

algorithms, a smooth and differentiable approximation function was

applied to replace the chance constraints, thereby providing reliable

gradient information. A detailed simulation study was carried out to

illustrate the effectiveness and key features of the chance constraint

handling strategy. In addition, the stochastic trajectory ensemble of

the spacecraft entry problem was also generated by performing the

proposed method to solve the chance-constrained model for noise-

perturbed dynamical systems. The results demonstrated the advan-

tages of the proposed method in terms of its reliability, optimality

and conservatism.

In our follow-up work, we will extend the proposed CCSOCP

optimization framework by exploring other types of uncertainty. For

example, the system will be affected by a time-dependent random

process rather than the random variable. Moreover, based on the

obtained trajectory ensemble, we will develop a deep artificial neural

network in order to achieve the optimal state feedback for the

investigated problem.
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