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1. INTRODUCTION

Nowadays, Unmanned Aerial Vehicles (UAVs) have be-
come a reality and they are being introduced into daily
life. One of their most critical points is safety. Since there
are no human pilots inside UAVs, it is very important
that they are capable to ensure safe flights even in unex-
pected situations such as when an obstacle appears in the
trajectory. UAV Sense and Avoid is the artificial system
equivalent of a human pilot detecting and avoiding hazard
situations. The operation of UAVs requires an Equivalent
Level of Safety (ELOS) to existing manned air vehicles.
Hence, Sense and Avoid systems must have at least the
same See and Avoid capabilities.

Air vehicles have usually got many different sensors on-
board in order to be aware of the surrounding environ-
ment. Passive sensors such as cameras have not been
usually used just on their own because of the limiting
information that they are able to extract directly. However,
technology advancements are allowing more powerful tech-
niques to process the information provided by cameras so
that they can be used for collision avoidance applications.
Electro-optical cameras have low size, weight, cost and
power consumption as well as a fast scan rate, however,
an additional infrared camera may be required to operate
under low light conditions or difficult weather conditions
such as rainy, cloudy or fog presence.

Several post-processing solutions have been used to detect
and track objects when using only one electro-optical cam-
era. Some of them have been morphological based methods
with additional temporal filtering, dynamic programming
or support vector machines (SVM); bio-inspired methods
such as optical flow and saliency methods; and, most
recently, deep learning solutions.

It is possible to calculate the relative angular measure-
ments making use of camera information such as the
focal length or the Field of View. However, relative
range and velocity cannot be measured from a single
2D image so passive ranging techniques are needed. The
most common technique has been to filter the measure-
ments making use of Kalman filters (KF). Common KF
used for this purpose have been Modified Spherical (MS-
EKF), Range-Parametrised (RP-EKF), Log-Polar Coor-
dinate (LPC-EKF) and Unscented (UKF) (Mcfadyen and
Mejias (2016)). A known issue is the observability. De-
pending on the relative motion between vehicle and target,
it is possible that the range cannot be estimated from the
line of sight (LOS) measurement. It has been shown that
the range and the range rate are only observable when
the vehicle performs a manoeuvre with an acceleration
component perpendicular to the LOS vector (Shakernia
et al. (2005)).

With respect to the conflict decision, it can be taken de-
terministically (Bareiss et al. (2015)) or probabilistically,
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which can be performed by Monte-Carlo samplings (Nord-
lund and Gustafsson (2011)) or analytical approximations
(Irvine (2001)).

Deep learning solutions have also been used to process the
data gathered from electro-optical cameras. Convolutional
Neural Networks (CNN) have been the most common
approach to computer vision applications with networks
such as GoogLeNet (Szegedy et al. (2015)) and ResNet (He
et al. (2016)). Some extensions have also been designed in
order to locate objects in addition to detect and classify
them. Some of the best performances were reported with
Faster R-CNN (Ren et al. (2017)) and You Only Look
Once (YOLOv3) (Redmon and Farhadi (2018)). Recurrent
Neural Networks (RNN) are a different type of neural
networks that are able to learn temporal information
(Lipton et al. (2015)). A combination of these two types of
neural networks are hybrid Convolutional and Recurrent
Neural Networks (CRNN) (Donahue et al. (2017) Yang
and Chan (2018)).

In this study, a Sense and Avoid system considering an
electro-optical camera to capture the environment and hy-
brid Convolutional and Recurrent Neural Networks as pro-
cessing solution is designed. The complete system consists
of the obstacle detection and tracking, a conflict evaluation
procedure and an avoidance manoeuvre generation. The
considered processing approach have only recently started
to be used in computer vision applications. After several
years studying CNN and RNN in depth, a solution that
combine the advantages of these both techniques can be
very useful in tracking applications. Hence, the main aims
of this work are to analyse the feasibility of using this new
kind of neural networks in Sense and Avoid applications
for UAVs, to identify possible issues that might occur and
to suggest future directions in its research.

In the next section, the designed object detection and
tracking technique based on a hybrid CRNN is described.
Then, the collision avoidance strategy is explained. This
includes angle measurements, range estimation using and
Extended Kalman Filter (EKF), conflict probability cal-
culation and geometric avoidance manoeuvre. The next
section contains the obtained results. The last section
includes the main conclusions extracted from the project.

2. OBJECT DETECTION AND TRACKING

The main objective of the study is to analyse the perfor-
mance of hybrid CRNN in Sense and Avoid applications.
Therefore, no neural network training is carried out so the
designed technique is based on state-of-the-art open-source
solutions that has been previously trained. The hybrid
CRNN used is Re3 (Gordon et al. (2017)). However, that
network is a tracker but not an object detector. Hence,
YOLO9000 (Redmon and Farhadi (2017)) is selected as
CNN with object localisation to generate the initial bound-
ing box around the object. The new technique is named
ReLO and it includes a combination of the previous net-
works with additional parameters.

2.1 YOLO9000: You Only Look Once

YOLO is capable of detecting and classifying objects using
a single neural network. It generates a certain number of

bounding boxes and assigns a detection score to each one
of them so only the ones with the highest values are the
output.

2.2 Re3: Real-time Recurrent Regression Network

Re3 can track any object with a bounding box around it.
It works by comparing two consecutive frames. It consists
of a first CNN stage to extract features from a crop of
the image. The output of the CNN consists of the object
features so it is possible to track any object, independently
of the classes which it was trained on. Furthermore, it
is capable of tracking objects that change their features
over time such as when they are rotating or that are
temporally occluded. That is possible thanks to a second
stage consisting of a special kind of RNN called Long
Short-Term Memory (LSTM).

2.3 ReLO

The working idea of the proposed approach consists of
using YOLO to detect and classify objects generating
a bounding box around them and then using Re3 to
keep tracking them. A design parameter called refresh
parameter is introduced. With this new parameter, YOLO
is applied every certain number of frames so the objects in
the FOV are refreshed and tracked using Re3 for the next
frames until YOLO is run again. The refresh parameter
is the number of frames between two YOLO runs and
it can be tuned as a trade-off between processing load
and detection performance. Furthermore, this parameter
can be adjusted accordingly to the environment where the
vehicle operates.

3. COLLISION AVOIDANCE

The designed collision avoidance strategy assumes an
initial positive detection and consists on the following
procedure. Once an object is detected, an EKF is used
to estimate the relative range between the vehicle and
the object, which is initially considered as a mass point.
With that information, the conflict decision is made by a
stochastic method. The probability of conflict is estimated
by an analytical expression so an avoidance trajectory
is performed when this probability is over a predefined
threshold. The considered avoidance trajectory is gener-
ated by a geometrical approach. The required command
is applied and the next object position measurement is
taken so a new decision with a new trajectory are proposed
according to the relative velocity of the object with respect
to the vehicle.

3.1 Angle Measurements

The EKF uses the relative bearing and elevation angles to
estimate the relative range. However, ReLO outputs the
object position as a pixel location in the frame. Therefore,
a conversion from pixels to bearing and elevation angles is
performed as in Fig. 1 where ph and pv are respectively the
horizontal and vertical pixel locations with respect to the
centre of the frame, W and H are the width and height of
the frame in pixels (i.e. the resolution), FOVh and FOVv

are the horizontal and vertical FOVs of the camera and
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Fig. 1. Basic graphical scheme for angle measurements
extraction.

θm and γm are the measured bearing and elevation angles
respectively. Assuming that the camera characteristics are
known (camera-specific adjustment required), the relative
bearing and elevation angles are measured as:

θm =
phFOVh

W
(1)

γm =
pvFOVv

H
(2)

3.2 Range Estimation

The range estimator used is an EKF due to the non-
linearity of the process. In Ahmadian and Pezeshk (2014),
an EKF is designed to estimate the relative range in 2D
from a bearing measurement. In this case, it is extended
making use of the elevation angle to estimate the relative
range in 3D. The considered definitions and equations can
be found in the previous paper. To those equations, an
extra z coordinate is added, defining an elevation angle γ
as:

γ = arctan

(

z
√

x2 + y2

)

(3)

Initial UAV trajectory The UAV needs to perform a
manoeuvre with an acceleration component perpendicular
to the LOS vector to ensure range observability (Shakernia
et al. (2005)). Otherwise, it may be impossible to estimate
the range with a Kalman filter. However, the optimal
manoeuvre depends on the relative velocity. In this work,
a sinusoidal trajectory in the x-y direction is considered
during the first seconds after an object has been detected
in order to allow time for the range to converge.

3.3 Conflict Probability

The expression to calculate the conflict probability is NP-
hard but it can be approximated by some analytical ex-
pressions, what requires much less computational power
than Monte Carlo samplings. In Sense and Avoid applica-
tions, processing speed is critical since later a conflict is
detected, lower the available time to avoid that conflict.
Therefore, an analytical approximation is used so the con-
flict probability can be assessed quickly to allow enough
time to execute an avoidance manoeuvre if needed.

Fig. 2. Avoidance manoeuvre technique.

All the proposed approximations are usually very similar
but with different noise modellings. In this case, a simple
expression extracted from Krozel and Peters (1997) is
used. Derivation details can be found in the mentioned
paper, which approximates the probability of conflict as:

P (c) =
1

2
erf

(

Rsafe + r̄f
√

2σrf

)

+
1

2
erf

(

Rsafe − r̄f
√

2σrf

)

(4)

where Rsafe is the minimum safe distance between the
UAV and the obstacle, r̄f is the miss distance vector,
σrf is the variance of the miss distance and erf(x) is the
Gaussian error function:

erf(x) =
2
√

π

∫ x

0

e−u2

du (5)

The conflict is defined as the situation when the distance
between the UAV and the obstacle is below Rsafe. This
parameter Rsafe must be set accordingly to the required
distance that should be kept in order to ensure safety. The
bounding box size given by ReLO can also be considered
to define Rsafe.

3.4 Avoidance Manoeuvre

When the probability of conflict is over certain threshold,
an avoidance manoeuvre should be executed in order to
avoid a collision. A geometric approach is considered in
this case. The proposed technique is based on the solution
from Park et al. (2008). In that case, it was designed to
be used with a deterministic conflict assessment and with
two aircraft that could execute a cooperative avoidance
trajectory. However, it is adjusted now to be used in this
new application where the UAV is the unique responsible
to avoid the collision. In this approach, it is assumed that
the UAV is following certain trajectory and the command
required to modify that trajectory in order to avoid the
collision is the designed parameter.

If the conflict probability is high, it means that the UAV
is likely to cross the Rsafe distance with respect to the
obstacle. Therefore, the proposed avoidance trajectory
consists of modifying the UAV velocity direction so it goes



64 Daniel Vidal Navarro  et al. / IFAC PapersOnLine 52-12 (2019) 61–66

through the surface of the safe sphere and, thus, going
further from the obstacle, as can be visualized in Fig. 2.

The UAV flies with a velocity V̄ . Propagating that velocity
until the time-to-closest-approach τ , the miss distance
vector r̄f is obtained as discussed before. The distance
vector for obstacle avoidance r̄ov can be obtained by simple
geometry as:

r̄ov = (Rsafe − rf ) ·

(

−
r̄f

‖r̄f‖

)

(6)

Hence, the unitary vector for the new velocity direction to
point through the safe circumference can be expressed as:

Ū =
V̄ · τ + r̄ov

‖V̄ · τ + r̄ov‖
(7)

Once the desired velocity vector is obtained, it is only
needed to generate the required control commands in order
to execute this new velocity. It is assumed that changing
only azimuth and/or elevation angles would generate the
desired velocity direction so no thrust control is needed.
Hence, the wished trajectory angles can be obtained from
the director vector of the new goal velocity:

α = arctan

(

Uy

Ux

)

(8)

ψ = arctan





Uz
√

U2
x + U2

y



 (9)

Therefore, this trajectory variation is generated only when
the conflict probability is over a threshold. Once the UAV
gets further from the obstacle, the conflict probability
decreases and the avoidance manoeuvre is not generated
any more, returning the UAV to its previous trajectory.

4. RESULTS

ReLO and the collision avoidance technique performances
are assessed separately and then an experimental test is
carried out to merge both parts of the Sense and Avoid
method.

4.1 Object Detection and Tracking

The object detection and tracking performance using
ReLO is assessed using videos of objects that a UAV would
likely find during its operation. A common CPU with Intel
i7 and 8 GB RAM has been used for this purpose. First,
YOLO9000 is compared to Re3 in order to obtain orders of
magnitude of the processing speed so ReLO performance
can be analysed in relation to these values. A video of an
aircraft in the sky as in Fig. 3 is considered. A processing
speed of 1.3 fps (frames per second) is obtained using
YOLO at every frame whereas the processing speed is
12.2 fps when YOLO is used only at the first frame and
Re3 in the rest of frames. Therefore, it is shown that
hybrid CRNN trackers such as Re3 can work almost ten
times faster than one of the fastest CNN as YOLO is.

Fig. 3. Frame of a video used to analyse YOLO and Re3.
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Fig. 4. Tracking speed for different refresh parameter
values.

Furthermore, according to Gordon et al. (2017), Re3 could
work at 150 fps with an Intel Xeon CPU E5-2696 v4 @
2.20GHz and an Nvidia Titan X (Pascal). Hence, it is
assumed that the obtained processing speeds could be up
to 12 times faster with more powerful processing units.

In order to have a safe performance assessment of ReLO,
more complex scenarios are considered. In these new
videos, several objects are constantly present in the FOV
so high computational power is required and, furthermore,
objects are continuously coming in and out from the
FOV. Different values of the refresh parameter are tested
obtaining the results of Fig. 4. It can be seen that lower
the refresh parameter slower the speed since YOLO is
run more frequently, what requires more computational
load. However, in such complex environments, high refresh
parameters affect the detection performance since it takes
longer to start tracking new objects appearing in the
FOV and bounding boxes remain for longer after the
corresponding objects have disappeared. In this case, a
value for the refresh parameter of 30 fps reports good
detection and tracking performance and a mean tracking
speed of 4.2 fps is achieved, what could be up to 50 fps
with a more powerful processing unit. Assuming a speed of
30 fps to work in real time operations, ReLO is capable of
working in demanding real time applications such as Sense
and Avoid systems of UAVs. Moreover, this example shows
a very complex scenario that a UAV would probably never
find so the refresh parameter could be tuned larger in most
of the cases and, thus, the speed would be even higher.
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Fig. 5. 3D simulation scenario. The green line represents
the UAV trajectory, the blue circumferences represent
the safety distance and the cyan line represents the
estimated object location obtained from the EKF.

4.2 Collision Avoidance Simulations

A MATLAB simulation is also designed to assess the
performance of the collision avoidance strategy. The sce-
nario can be seen in Fig. 5. Simulations are performed at
several UAV and object initial locations, initial heading
and elevation angles and linear speeds. Both dynamic and
static obstacles are simulated. The design parameters are
the safety distance and the conflict probability threshold.
The safety distance is represented by three blue circum-
ferences around the vehicle but it is actually a sphere.
An example of one of the results is shown in Fig. 6.
The noise parameters in the EKF are guessed in order
to get accurate relative range estimations. An optimal
probability of conflict of 50% is detected since very low
values deviates the UAV further from the predefined de-
sired trajectory whereas very high values may generate a
command to avoid the collision too late, generating very
aggressive manoeuvres that the UAV may be unable to
perform. However, simulations with all kind of different
parameters show that a UAV can always avoid the collision
with an obstacle with this kind of strategy if the EKF does
not diverge and detects correctly the obstacle location.
Hence, the EKF plays a key role in the proposed collision
avoidance technique.

4.3 Experimental Tests

Due to the criticality of the EKF performance on the over-
all Sense and Avoid technique, an additional experimental
test is performed to combine both the object detection and
tracking and the collision avoidance parts. The objective
is to measure the noise of the object location measurement
with ReLO and to use that real noise to check the colli-
sion avoidance behaviour since guessed values were used
previously. A GoPro Hero 4 camera mounted on a remote
controlled rover is selected for this purpose. Different tra-
jectories are executed by the rover while the camera is
recording a keyboard. The recorded videos are run through
ReLO so the measured object location is obtained. This
experiment is carried out in an experimental laboratory
equipped with a VICON navigation system at Cranfield
University so the processed results are compared to the

Fig. 6. True and EKF-estimated relative range over time
with safety distance.

Fig. 7. Experiment set up in the flying lab at Cranfield
University equipped with a VICON navigation sys-
tem.

Fig. 8. Considered 2D scenario with dynamic object.The
green line represents the UAV trajectory, the blue
circumference represents the safety distance and the
cyan line represents the estimated object location
obtained from the EKF.

accurate VICON measurements and noise information can
be extracted. The experiment set up is shown in Fig. 7.

The average standard deviation of the bearing angle after
12 tests is σθ = 4.97 deg. Since the vehicle in the
experimental test is a rover, a 2D version of the EKF with
the measured noise is considered. 2D simulations with the
resulting filter are carried out in a 2D scenario as the one
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Fig. 9. True and EKF-estimated relative range and safety
distance over time.

in Fig. 8. An example of the results is shown in Fig. 9 and
it can be seen that the EKF can accurately estimate the
true relative range so the collision is always avoided.

5. CONCLUSIONS

A Sense and Avoid technique for small UAVs using only an
electro-optical camera as sensor has been designed. This
technique uses a hybrid CRNN to detect and track objects
named ReLO, an EKF to estimate the relative range, a
probabilistic conflict decision and a geometrical avoidance
manoeuvre. ReLO shows to work efficiently in complex
scenarios, what ensures safety which is critical in Sense
and Avoid applications, but the detection performance still
relies in a CNN such as YOLO. The collision avoidance
strategy shows to be quite reliable where fine EKF perfor-
mance is critical.

In general terms, results show that hybrid CRNN can be a
feasible solution for the considered Sense and Avoid prob-
lem. The processing speed is higher while the detection
performance remains the same. Furthermore, the proposed
approach is adaptable to different scenarios since some de-
sign parameters are considered so the technique behaviour
can be adjusted according to the expected UAV operation.
The main limitations are the detection performance and
the relative range estimation so further research is sug-
gested in those fields.
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