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1. INTRODUCTION

Of all the aeroelastic phenomena, flutter is one of the more
important (Dowell, 2015, p. 53) as it leads to dynamic in-
stability, and often leads to catastrophic structural failure
(Dowell, 2015, p. 81). Essentially, it manifests itself when
the airstream is supplying too much energy to the system,
and then the system is not capable of dissipating it. In
that case, the structure experiences divergent oscillations
that might finally lead to catastrophic structural failure
(Garćıa-Fogeda and Arévalo, 2014).

Historically, the flutter problem has been approached by
means of passive methods. These methods rely on directly
modifying the structure (introducing springs, additional
masses, etc.) in order to change its stiffness and mass
properties, so that flutter does not appear within the oper-
ating range of the aircraft (Karpel, 1981). More recently,
active methods for flutter suppression have appeared as
an alternative. These methods take advantage of closed-
loop control engineering, and they are based on controllers
that use the aircraft control surfaces at high frequencies
to suppress flutter. This way, weight is not increased and
the structural design can be enhanced in other aspects.
However, these methods are not widespread in industry
yet, but they will mean a tremendous advance in aircraft
design in the coming years (Livine, 2018).

When designing active methods, we have to take into
account that the flight conditions are rarely constant, but
they change with time during a mission. Therefore, flutter
suppression controllers that adapt to the changing con-
ditions should have improved performance and stability
margins compared to fixed gain linear controllers. Since
the flight condition can be measured, gain scheduling con-
trollers are suitable for flutter suppression since they adapt

themselves to some measurable changing parameters of the
system (Rugh and Shamma, 2000), allowing an increase in
the flight envelope.

Gain scheduling, and in particular, LPV control has been
widely proposed for regulating flutter. Possibly the first
account is Blue and Balas (1997), who present an LFT
model dependant on Mach number and dynamic pressure.
The model is based on the NASA BACT model Scott et al.
(2000). The study is extended in Barker and Balas (2000)
to compare the LFT approach with a standard LPV ap-
proach. In Seiler et al. (2011), the approaches are extended
to a model of the X-53 active aeroelastic wing. Another
early account is Lau and Krener (1999) who develop a
parameter-varying Ricatti equation approach based on the
3-DOF model of Küssner and Schwarz (1941). This model
is the basis for several other studies, for example Prime
et al. (2010), who, like Lau and Krener (1999) based their
controller on LQR methods. Various other LPV modelling
techniques have been used. For example, Al-Jiboory et al.
(2017) use a variation of the gridding-based approach,
whilst Baranyi (2006); Takarics and Baranyi (2013), use
a tensor-product modelling technique.

In this paper, two different gain scheduling controllers are
proposed to suppress flutter for an LPV model of a wing
taken from Wright and Cooper (2007). The controllers are
scheduled for varying-speed conditions between 50 and
200 m/s. The first controller uses splines to interpolate
between a set of LQG compensators designed at different
speeds. The weighting matrices for the LQR sub-problem
are scheduled on the airspeed. The second controller uses
the standard extension of H∞ theory to affine and poly-
topic LPV systems (Apkarian et al., 1995), but a particular
choice of LPV model polytope aids the procedure. The
model schedules on the air velocity, but a subset of the
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overall parameter variation in the LPV model is geomet-
rically constructed to reduce the conservatism.

In the next section, an overview of the dynamic wing
modelling is provided. Sections 3 and 4 describe the LQG
and H∞ controller designs respectively. The disturbance
rejection properties of the controllers are demonstrated
by simulations, some results are presented in Section 5.
Conclusions and further work are discussed in the final
section.

2. DYNAMIC WING MODEL
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Fig. 1. Top, front and side view of the wing model.

A rectangular, untapered and unswept wing with no
dihedral is considered in a flow with air velocity, U∞. The
wing presents a trailing edge control surface distributed
along all the wing-span, b, which covers a fraction, Λ3, of
the wing chord, c. In the wing root, it is subjected to two
rotational springs, one restraining the pitching angle α and
the other one restraining the flapping angle γ. A sketch of
the model is presented in Figure 1.

The flexural axis (FA) is assumed to be located at a
distance Λ1c of the leading edge, and the aerodynamic
centre line (AC) is located a distance Λ2c ahead of the
flexural axis. The mass per unit surface of the wing is
denoted by σ and it is assumed to be uniform for the entire
wing and control surface. The deflection of the control
surface is denoted by δ. The main characteristics of the
model are summarized in Table 1. Note that the spring
stiffness values are parameterized by the natural frequency
of their isolated modes, which is related with the stiffness
by:

ki = Iiω
2

i , i = γ, α, δ. (1)

Small deformations and incompressible flow are consid-
ered, and air density at sea-level is assumed. For the aero-
dynamic forces we consider quasi-steady aerodynamics; it

Table 1. Characteristics of the model.

b (m) 3.5 Λ1 0.4 ωγ (Hz) 5
c (m) 0.7 Λ2 0.15 ωα (Hz) 10

σ (kg/m2) 100 Λ3 0.275 ωδ (Hz) 7.5

is considered that aerodynamic forces do not depend on
past states of the system, and then they can be obtained
using the steady problem formulation, but imposing the
boundary condition corresponding to the unsteady body
(Fung, 1969).

The basis of the model is taken from Wright and Cooper
(2007), but an actuator model is included to model the
phase lag between the demand in control surface deflection
δd and the actual deflection

τaδ̇ = δd − δ. (2)

After some manipulation of the equations, the system can
be expressed as a first-order, descriptor, state-space system

Ēẋ = Ā(U∞)x+ B̄δd (3)

where the state variable vector is x =
[
γ α γ̇ α̇ δ̇

]⊺
, and

Ē =




I2×2 02×2 02×1

02×2 M̂ 02×1

0
1×2

0
1×2

τa


 , (4)

Ā =




02×2 I2×2 02×1

1

µτ2
c
Q̂1 − ω2

α K̂ 1

µτc
Q̂2

1

µτ2
c
Q̄1

0
1×2

0
1×2

−1


 , (5)

B̄ =


04×1

1


 , (6)

and where the matrices M̂, K̂, Q̂1, Q̄1 and Q̂2 are non
dimensional matrices that depend on the mass, stiffness
and aerodynamic properties of the model; the parame-
ter µ is the relation between the mass of the wing and
the mass of an air cylinder of radius c and height b,
µ = mwing/(πc

2bρ∞); τc is the time the air takes to travel
one chord, and ωα is the natural frequency of the isolated
pitching mode. Details of the mathematical development
and expressions for the non-dimensional matrices are pre-
sented in Rosique (2018).

The descriptor state-space system (3) is rearranged to give
a standard state-space model

ẋ = A(U∞)x+Bδd (7)

where the state matrix A depends on the airspeed, so the
model is an LPV system. Because the actuator acts as a
filter, the input matrix B has no dependence on the air
velocity.

It is assumed that the state of the system is not directly
measured, but there is a sensor located at the mid-span
and close to the hinge, measuring vertical displacement
and its derivative (Andrés, 2017). This constitutes the
output of the system ym so that

ym =

[
z
ż

]

x=(1−Λ3)c

y=b/2

(8)

In order to design a controller, the relationship between
the states and the output (matrix C) has to be modelled.
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Considering small deformations, the vertical displacement
of the sensor and its derivative can be expressed as a
function of the states:

ym =


 b⊺

C
0

1×2
0

0
1×2

b⊺

C
0


x = Cx (9)

where b⊺

C
= b/2 [1 2Λ (1− Λ1 − Λ3)].

The open loop flutter speed of the model when the stiffness
of the control surface hinge tends to infinity (for a rigid
aerofoil) is calculated using the k-method (Garćıa-Fogeda
and Arévalo, 2014). It turns out to be 99.55 m/s. This
value decreases for a non-rigid hinge.

3. LQG CONTROLLER

The first controller is consists of state feedback with a Lin-
ear Qaudratic Regulator (LQR) and state estimation using
a Linear Quadratic Estimator (LQE) in a standard Linear
Quadratic Gaussian (LQG) compensator (Maciejowski,
1989, pp 222-227). The structure of the controller is shown
in Figure 2.

Fig. 2. Structure of the LQG compensator including an
LQR for the control and an LQE to estimate the
states from the output.

The LQR is an optimal controller that stabilizes the
system and minimizes a cost function that is dependent
upon the scheduled velocity condition. The cost function is
designed to minimize the mechanical energy of the system,
this is, to dissipate the energy supplied by the air to the
system in order to avoid flutter. Taking into account that
the mechanical energy of the system is given by the sum
of the kinetic and potential energies:

E =
1

2
q⊺Kq+

1

2
q̇⊺Mq̇, (10)

and, after some manipulation, the cost function is ex-
pressed as a function of the normalized energy Ê = E/Iγ
and a regularization term that takes into account the input
of the system (control effort), so that

J =

∫
∞

0

(
x⊺M

Q
x+ u⊺M

R
u
)
dt (11)

=

∫
∞

0

(
2Ê + β

∥∥M
Q

∥∥ δd2
)
dt (12)

where M
R
is a scalar equal to β‖M

Q
‖, with β = 0.05 and

the matrix M
Q
is given by:

M
Q
=




ω2

αK̂ 0
2×2

0
2×1

0
2×2

M̂ 0
2×1

0
1×2

0
1×2

0


 (13)

and is dependent upon U∞.

The controller that minimizes the cost function is different
for each airspeed, so it has to be gain scheduled in order
to adapt to the changes in the system. Although constant
weighting matrices are used for the LQE, the gains of the
LQE also change with airspeed, since these are dependent
upon the state matrix, A(U∞). Sixteen values of U∞

between 50 m/s and 200 m/s are chosen, and LQG designs
obtained. The LQR and LQE gains are interpolated using
splines, in order to obtain a continuous gain scheduling
LQG controller. Figure 3 shows how the gains of the LQR
controller change with airspeed.
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Fig. 3. Gains of the LQR controller as a function of
velocity.

4. H∞ CONTROLLER

The second gain scheduling controller is based onH∞ tech-
niques. H∞-optimal control has been shown to be an effec-
tive and efficient robust design method for Linear, Time-
Invariant (LTI) control systems (Gu et al., 2013); but the
approach has been extended to time-varying systems by
expressing the plant model as an affine combination of
LTI systems multiplied by a set of time-varying coefficients
(Apkarian et al., 1995), that is:

G = G0 +

n∑

i=1

xiGi. (14)
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Fig. 4. Considered domain for the H∞ controller when
linearly decomposing the system.

The coefficients in the model given by (3) — (9) depend
linearly on U∞ and on U2

∞
, so (14) cannot be directly

applied. One possible approach is to assume that the two
parameters, x1 = U∞ and x2 = U2

∞
, are independent of

each other. However that would lead to an excessively con-
servative design since they are clearly not independent. A
depiction of the relationship between x1 and x2 is shown in
Figure 4. Assuming independence extends the parameter
region from a parabola to a rectangle whose vertices are
in the limit values for U∞ and U2

∞
. In order to reduce the

conservatism, we restrict U∞ and U2

∞
to a polytope that

can also be expressed as an affine combination of a set
of parameters expressed as the vector ξ = [ξ1 ξ2 . . .]

⊺
, so

that

U∞ = a0 +
n
∑

i=1

aiξi,

U2

∞
= b0 +

n
∑

i=1

biξi,

(15)

where 0 ≤ ξi ≤ 1. By tuning the values of the coefficients
ai and bi, we can reduce the considered domain and make
it closer to the actual (real) one. We choose n = 3, as the
domain is not significantly reduced for more parameters,
and the controller is not very complicated. Introducing
(15) in the model and after some manipulation, it can be
expressed as the affine LPV model:

G = G0 +

3
∑

i=1

ξiGi. (16)

Values of the coefficients ai and bi are summarized in Table
2, and the new domain is illustrated in Figure 4. The
procedure for obtaining the values of the coefficients is
explained in Rosique (2018). As we can see, the domain
and the conservativeness is considerably reduced with
respect to the first consideration. Note also that there
remains some conservatism resulting from the symmetry
of the envelope.

Given that the model is in the form of (14), we define
the H∞ condition to minimize the error e between the

Table 2. Values of the coefficients ai and bi for
the linear decomposition of the system.

Coefficient 0 1 2 3

ai (m/s) 50.0 37.5 75.0 37.5
bi (m2/s2) 2500 3750 18750 15000

measured output and the null reference w, and also the
control signal u. That leads to a standard S over KS

problem (Gu et al., 2013) in which we search for a
controller such that the following criterion is minimized:

min
K

∥

∥

∥

∥

[

W1S

W2KS

]∥

∥

∥

∥

∞

, (17)

where W1 and W2 are the loop-shaping weighting func-
tions. Therefore, the controller aims to minimize the norm
of the output signal z. The structure of the closed loop
configuration is shown in Figure 5.

Fig. 5. Standard closed loop configuration and output
signals z.

The system has to be expressed in a standard H∞ con-
figuration, which is shown in Figure 6. Hence, we have to
modify the original structure to obtain a plant P suitable
for an H∞-optimal controller.

Fig. 6. Standard H∞ configuration depending on the
parameters ξi.

First, we consider an auxiliary plant P
′ that does not

include the shaping filters Wi and whose state space
representation can be expressed as:

ẋ = A(ξ)x+B1w +B2u

z
′ = C1x+D11w +D12u

e = C2x+D21w +D22u

(18)

where the dependency on the velocity (or equivalently on
the parameters ξi) appears only on the matrix A, because
that is the only matrix that depends on air velocity in (7).
Taking into account (7), (9) and (18), and the structures
presented in Figures 5 and 6, we obtain an expression for
the different matrices characterizing the plant P′ as
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A = A(ξ),

B1 = 0
5×2

, B2 = B,

C1 =

[

−C

0
5×1

]

, C2 = −C

D11 =

[

I
2×2

0
1×2

]

, D12 =

[

0
2×1

1

]

,

D21 = I
2×2

, D22 = 0
2×1

.

Once the plant P
′ is fully defined, P can be obtained by

connecting P
′ in series with the loop-shaping functionsW1

and W2 which are decided to be:

W1 =
2 · 10−3

s+ 10−3
, (19)

W2 =
0.02s

s+ 5000
, (20)

whereW1 is designed asW1 = k/(s+ε) with ε → 0, so that
it is similar to an integrator (Su et al., 2000). When plant
P is fully defined and properly expressed, the H∞-optimal
LPV controller is obtained using the hinfgs routine in
MATLAB.

The variation in the controller gains is shown in Figure
7 by the singular value plots open-loop controllers at the
eight vertices. The gains appear high, but the simulation
results in the next section indicate that they are no exces-
sive, and are of similar magnitude to the LQG controller.
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Fig. 7. H∞ controller singular value plot for the 8 vertices.

5. SIMULATIONS AND RESULTS

Finally, some simulations are carried out to evaluate
the performance of the considered approaches. Presented
simulations test the disturbance rejection properties of
the controllers. It is considered that the disturbances
affect the control surface deflection. Therefore, they are
injected into the system after the actuator dynamics; the
structure is presented in Figure 8, in which the disturbance
input is denoted by d. The transfer functions G1 and
G2 correspond with the actuator model of (2) and the
system of Figure 1 respectively. Equations for G2 are not
presented explicitly; they are similar to (3) but without
including the actuator dynamics.

Fig. 8. Disturbances in the system scheme.
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Fig. 9. Simulation for both LQG and H∞ gain-scheduling
controllers.

Short pulses of 1 degree amplitude and 0.04 seconds of
duration are introduced as periodic disturbances in the
system. The velocity is not constant during the simu-
lations, but it varies linearly between 130 m/s and 190
m/s, first increasing and then decreasing, as it is shown
in Figure 9. Both controllers are tested in the simulation.
The results are presented in Figure 9, where three different
variables are presented as output:

• Vertical displacement at the sensor location, which
gives an estimation of the oscillations magnitude.

• Control surface deflection minus the value of the
disturbances. This is the output of the actuator and
it is an estimation of the control effort.

• Derivative of the previous magnitude. We also check
the rates needed by the actuator, as they could
condition performance.

Both gain scheduling controllers stabilize the system over
the entire simulation, hence increasing the flutter speed
to at least 190 m/s, an increase over the open loop value
of more than 90%. Because the control is time varying,
velocity has a relevant effect on the response; amplitude of
the oscillations and control effort increase at higher speeds,
making clear that is harder to suppress flutter at higher
velocities.

The response of the H∞ controller is more consistent with
velocity; the responses to the different disturbances do not
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present as much deviation among them as the LQG ones.
Hence, this controller presents a higher adaptivity. Besides,
the maximum value of z for this controller is 0.056 m (in
absolute value), while it is 0.083 m for the LGQ regulator.
Hence, H∞ controller is more effective at suppressing the
oscillations.

Regarding to the control signals, the maximum required
control surface deflection is similar for both controllers
(4.7 deg for H∞ and 4.6 deg for LQG); but the required
surface deflection rate is much higher for theH∞ controller
(660 deg/s) than for the LQG (162 deg/s). Although the
H∞ controller was more effective when suppressing oscil-
lations, the LQG controller is more efficient; it obtains an
acceptable performance but with much lower requirements
in control rates. Of course, further tuning of the weighting
functions can reduce the H∞ controller deflection rates.

To summarize, both controllers present advantages and
disadvantages, and it would be better to use one or another
depending on the requirements and the available resources.
Adaptivity of the controller is a key factor to ensure
stability and properly suppress flutter; but the preferred
control depends on each case.

6. CONCLUSIONS

The dynamic model of a generic rectangular wing has been
developed for flutter study and active flutter suppression.
The model is considered to be an LPV system dependent
on airspeed, and the work focuses on the influence of
velocity on flutter and how to handle airspeed variation.
This is a general work that does not provide results for a
single case, but it obtains general conclusions about flutter
suppression. However, the model is considered to be linear
for each certain value of the velocity (LPV), therefore, it is
not valid for large displacements and it is limited to small
disturbances.

Two different gain scheduling controllers based on LQG
and H∞ techniques were designed to suppress flutter.
Both of them were able to increase the flutter speed by
more than 90%, and they achieved stability and good
system performance over the entire considered velocity
range, due to their adaptivity. H∞ controller was more
effective when suppressing disturbance, whilst in this case
the LQG regulator was more efficient as it required a
lower control effort. Note that the MATLAB systune tool
combined with tunable surfaces could be used to design
gain scheduled controller in the structuredH∞ framework.

To conclude, it has been shown that active methods
present a very high potential when it comes to flutter
suppression, and they are capable of achieving very high
increases in the flutter speed besides good performance
in general. Adaptivity of the controllers is a key factor
when the aircraft has to operate in changing conditions;
therefore, gain scheduling control is a highly adequate
technique to combine with closed-loop control for flutter
suppression. Further simulations and robustness analysis
remain for further investigation.
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Garćıa-Fogeda, P. and Arévalo, F. (2014). Introducción a la Aeroe-
lasticidad (Introduction to Aeroelasticity). Garceta, Madrid. In
Spanish.

Gu, D., Petkov, P.H., and Konstantinov, M.M. (2013). Robust
Control Design with MATLAB. Springer, 2nd edition.

Karpel, M. (1981). Design for active and passive flutter suppression
and gust alleviation. Technical Report 3482, NASA.

Küssner, H.G. and Schwarz, I. (1941). The oscillating wing with aero-
dynamically balanced elevator. Technical Memorandum NACA
TM 991, National Advisory Committee for Aeronautics.

Lau, E.Y. and Krener, A.J. (1999). LPV control of two dimensional
wing flutter. In Proceedings of the 38th IEEE Conference on
Decision and Control, 3005–3010. doi:10.1109/CDC.1999.831394.

Livine, E. (2018). Aircraft active flutter suppression: State of the
art and technology maturation needs. Journal of Aircraft, 55(1),
410–452. doi:10.2514/1.C034442.

Maciejowski, J.M. (1989). Multivariable Feedback Design. Addison-
Wesley, Wokingham, U.K.

Prime, Z., Cazzolato, B., Doolan, C., and Strganac, T. (2010).
Linear-parameter-varying control of an improved three-degree-of-
freedom aeroelastic model. Journal of Guidance, Control, and
Dynamics, 33(2), 615–619. doi:10.2514/1.45657.

Rosique, M.A. (2018). Active Flutter Suppression by Gain Schedul-
ing Control. Master’s thesis, Cranfield University.

Rugh, W.J. and Shamma, J.S. (2000). Research on gain schedul-
ing. Automatica, 36(10), 1401–1425. doi:10.1016/S0005-
1098(00)00058-3.

Scott, R.C., Hoadlet, S.T., Wieseman, C.D., and Durham, M.H.
(2000). Benchmark active controls technology model aerodynamic
data. Journal of Guidance, Control, and Dynamics, 23(5), 914–
921. doi:10.2514/2.4632.

Seiler, P., Balas, G., and Packard, A. (2011). Linear parameter
varying control for the X-53 active aeroelastic wing. In AIAA
Atmospheric Flight Mechanics Conference, Guidance, Naviga-
tion, and Control and Co-located Conferences, AIAA 2011-6290.
Portland, OR. doi:10.2514/6.2011-6290.

Su, S.W., Anderson, B.D.O., and Brinsmead, T.S. (2000). Robust
disturbance suppression for nonlinear systems based on H∞

control. Proceedings of the 39th Conference on Decision and
Control, 3013–3018. doi:10.1109/CDC.2000.914281.

Takarics, B. and Baranyi, P. (2013). Tensor-product-model-based
control of a three degrees-of-freedom aeroelastic model. Journal
of Guidance, Control, and Dynamics, 36(5), 1527–1533. doi:
10.2514/1.57776.

Wright, J.R. and Cooper, J.E. (2007). Introduction to Aircraft
Aeroelasticity and Loads. Wiley, Chichester.



Cranfield University

CERES https://dspace.lib.cranfield.ac.uk

School of Aerospace, Transport and Manufacturing (SATM) Staff publications (SATM)

2019-11-23

þÿ�A�p�p�l�i�c�a�t�i�o�n� �o�f� �L�Q�G� �a�n�d� �H"�� �g�a�i�n

scheduling techniques to active

suppression of flutter

Rosique, Miguel Á.

Elsevier

þÿ�R�o�s�i�q�u�e� �M�A�,� �A�l�a�m�i�n� �R�,� �W�h�i�d�b�o�r�n�e� �J�F�.� �(�2�0�1�9�)� �A�p�p�l�i�c�a�t�i�o�n� �o�f� �L�Q�G� �a�n�d� �H"�� �g�a�i�n� �s�c�h�e�d�u�l�i�n�g

techniques to active suppression of flutter. IFAC-PapersOnLine, Volume 52, Issue 12, 2019, pp. 502-507

https://doi.org/10.1016/j.ifacol.2019.11.293

Downloaded from Cranfield Library Services E-Repository


