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Abstract

Operating forces and magnitude of loads from gas-liquid slug flows exerted on

a horizontally orientated 90o bend are investigated. The distributed forces are

either Newtonian, associated with the fluids motion or Configurational, inherent

to the internal distributions of the phases. The forces are derived through the

conventional balances of mass and linear momentum arising from the volume of

fluid (VOF) description of gas-liquid flows. The study uses the integral form of the

momentum balance to estimate the operating forces budget. Invoking dynamical

time scales separation discloses the connection of the Lamb vector (vortex-force)

to the local time rate of momentum. An interesting outcome being an explicit

expression for Favre-Reynolds stress that reveals the contribution of void fraction

fluctuations in the redistribution of the stress across the interface.

Numerical simulations are performed to determine the magnitude of Newtonian

loads on bend using a segmented domain technique to represent the fully estab-

lished slug flow regime. The time-dependent traces of the relevant flow variables

such as liquid hold-up, flow rates and resultant forces on the bend are recorded

and analysed. Compared to the isotropic component, the deviatoric stresses are

shown to have a marginal contribution to the total forces.
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It is also shown that loading cycles on bends are much higher than slugging cy-

cles; this is an important feature for the structural integrity assessment of pipelines

with bends.

Keywords: Slug flow, Slug impact, Singular interface, Lamb vector,

Favre-Reynolds stress



Nomenclature

C∗2ε Empirical parameter

Cσ Contact line of two fluids

C1ε ≈ 1.42 Empirical parameter

C3ε ≈ 1.68 Empirical parameter

Cµ ≈ 0.0845 Experimental constant

D pipe diameter, m

F Surface tension, N/m

Gb Buoyancy term for turbulent kinetic en-

ergy generation

Gk Resolved term for turbulent kinetic en-

ergy generation

Id Identity tensor

Qk Phasic mass flow rate, kg/s

S Entropy, JK−1

Sk Phasic entropy, JK−1

SVk =
pVk
T

Pseudo entropy, JK−1

T Temperature , K

V Mixture specific volume, m3

Vk Phasic specific volume, m3

n̂ Unit normal to the interface

RkF Phasic Favre-Reynolds stress, m2/s2

RF Favre-Reynolds stress, kg m/s2

Rc Compressible Reynolds stress, kg m/s2

Rs Standard Reynolds stress, m2/s2

T The total stress, Pa− s
u Reynolds mean velocity, m/s

ũ Favre mean velocity, m/s

ck Isothermal phasic speed of sound, m/s

g acceleration due to gravity, m/s2

nσ Unit normal to singular interface

nCσ Unit normal to contact line

n∂σ Unit normal to contact line and wall

p pressure, Pa

pk Phasic pressure, Pa

tCσ Unit tangent to contact line

t∂σ Unit tangent to contact line and wall

u mixture velocity, m/s

u′′ Favre fluctuating velocity, m/s

u′k Reynolds fluctuating velocity, m/s

uTS Translational slug velocity, m/s

Greek symbols
αk Phasic volume fraction

β Thermal expansion coefficient, K−1

βε ≈ 0.012 Empirical constant

χ A regular function

δσ Dirac measure over the interface σ(t)

ε Turbulent dissipation, m2/s2

η Bulk viscosity, Pa− s
Γk Phasic Grüneisen parameter

γk Ratio of specific heat coefficient

γij Surface tension per mixture density i

and j, m3/kg

λ Dynamic viscosity, Pa− s
K Turbulent kinetic energy, m2/s2

µ Dynamic viscosity, Pa− s
µt Turbulent viscosity, Pa− s
Ω Domain of control volume, m3

Ωk Phasic control volume, m3

ωk Phasic vorticity, s−1

ψ Reynolds mean value of a field

∂Ω Boundary of the domain, m2

ψ Instantaneous field

ψ′ Fluctuation of instantaneous field

ρ Mixture density, kg/m3

ρk Phasic density, kg/m3

σ(t) Singular interface: time dependent

σε Prandtl turbulent number

σK Prandtl turbulent number

σij Surface tension coefficient

τ Shear stress, Pa

τp Time scale of pressure, s

τS Time scale of entropy, s

τρu Dynamical time scale of mass flow, s

τρ Dynamical time scale of density, s

τu Dynamical time scale of velocity, s

ψ̃ Favre mean value of a field

κi Curvature from phase i, m−1

ξ0 ≈ 4.38 Empirical constant

ξε Ratio of turbulent to mean strain time

ξk Phasic mass fraction

dδCσ Lebesgue measure of contact line Cσ

Subscripts
σ interface

C contact line

g gas

k phase

l liquid



1. Introduction

Two-phase flows are widely encountered in many processes involving chemical

systems, nuclear plants and hydrocarbons transportations. Among the variety of

two phase flow regimes occurring in industrial and engineering applications, the

slug flow regime is of particular interest because of its unstable and intermittent

nature. The analyses of the slug flow regime are approachable through statistical

perspectives only since all the flow characteristics, such as the slug frequency, the

slug length and the slug translational velocity are subject to local fluctuations.

Fluctuating forces and flow-induced vibrations resulting from slug flows are of

concern in industrial facilities for safety and production integrity. Bends and tees

are often present in industrial flow lines and are usually unavoidable in confined

spaces such as laboratories. The primary mechanical design is critical for pro-

longing the life time of such fittings and for preventing their damage and failure.

Identifying natural frequencies of flow lines is also necessary to avoid resonance

with slug flow mean frequencies.

Five decades ago, researchers pioneered investigations on vapour-water two

phase flow interactions in vertical structures [1, 2]. They outlined the importance

of the unsteadiness of the momentum fluxes in exciting appreciable structural

vibrations. More recently, slug flow-induced forces on horizontal bends were in-

vestigated in a series of experiments [3, 4], where forces due to slugs passage in

a bend were measured; a correlation was established between magnitude of loads

and slug dynamics. Their analysis also showed the negligible effects of surface

tension and liquid viscosity on these loads at least at low pressure. In a recent

investigation the same authors validated a 1D Piston Flow Model PFM with their

own data via the traces of transient maximum forces and pressures [5]. A STAR-

OLGA coupling was performed using the 3-D CFD code StarCCM+ and the 1-D

code OLGA in a horizontally oriented 90◦ bend [6]. Results showed reasonable
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agreement of force magnitude on the bend with the data reported in [3].

A study with OpenFoam by [7] predicted instantaneous component of forces on

a bend that were well within the range of the experimental data. The shape of

the power spectral density PSD of the forces was also in agreement with mea-

surements. Although RANS k − ω SST and LES simulations nicely predicted

liquid hold-up distributions, the root mean squared RMS of forces were 30%

under-valued by both methods. Moreover, LES under-predicted the average and

standard deviation of the hold-up compared to RANS k − ω SST .

Measurements of transient forces in bubbly and churn air-water flow regimes in

a vertically orientated elbow and tee were reported in [8]. After assessing the ef-

fects of various are in flow parameters, the authors extended the correlation of the

maximum RMS (root mean square) forces to the Weber number (measure of the

relative importance of the fluid’s inertia compared to its surface tension) provided

in [2]. Experiments in a two-phase vertical tube bundle carried out in [9] showed

that the quasi-periodic drag forces and the quasi-periodic lift forces are correlated

to the fluctuations of the momentum balance and to the oscillations in the wake

of the cylinders, respectively. The authors developed predictive semi-analytical

models correlating their findings. Similarly, the authors in [10] conducted experi-

ments in a vertical system, covering bubbly, slug, churn and annular flow regimes.

After shunting the frequency of the flow induced vibrations, the authors were able

to analyse the fluctuating hydrodynamical variables purely inherent to the flow

mixture. With an elaborated semi-analytical formulation based on a two phase

mixture model, they derived the acting force spectrum on the elbow through a

wave form (Fourier transform). A sudden jump was observed in the force fluc-

tuation at a given liquid flow rate during the transition from a bubbly to a slug

flow regime. It was also found that the elbow damped the high frequency terms

of momentum flux fluctuations. Experiments of gas-liquid stratified wavy flows
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in a horizontal test section are described in [11]. The authors were able to take

into account the collisional effects resulting from gas-liquid waves and structure

interaction and they established that wave collision forces and momentum fluctu-

ations play a major role in the considered regime. Their predictions of both the

peak force fluctuations and the peak frequency were 25% accurate. This work

is directed towards investigations of air-water slugs in a horizontal bend using

the volume of fluid (VOF) approach, where fluid components are separated and

are in pressure-temperature equilibrium with a shared velocity. The first part of

the study focuses on deriving theoretical estimates of forces from the mass and

momentum balances arising from the VOF formulation. The derivation of con-

figurational forces is carried out under the assumption of separated flows in the

framework of smooth singular interfaces which is justified for slug and stratified

flow regimes.

The term “singular interface”, also known as “material interface” is regularly

mentioned here. It is important to note that in singular interfaces, exchanges of

mass between adjacent phases are not permitted, whereas fluid elements can cross

non-material interfaces.

Regarding the estimate of the local time rate momentum, the authors in [10]

made the use of Fourier transform to derive the force spectrum. The current

approach considers that the local time rate momentum operates on distinguishable

dynamical time scales involving pressure waves with fast time scale, and material

waves on slower time scale. Exploiting the separation of slow and fast time scales

permits to ignore the slow time scale component contribution in the local time

rate momentum. To the authors’ best knowledge, such approximation has never

been reported in the literature. Regardless of its restriction, it highlights the

connection of the Lamb vector “vortex-force” with the time rate change of the

momentum as well as with the contact line force.
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For the evaluation of the convective momentum, Reynolds’ decomposition is

invoked for the mixture velocity and the contribution of void fraction fluctuations

is highlighted. Moreover, a useful expression of Favre-Reynolds stress is obtained

using Grüss-type-inequality. This expression sheds light on the compressibility

effect of the fluctuating stress across the interface, which is related to turbulence

redistribution at interfaces, a central phenomenon in fluid dynamics. Detailed

investigations on the subject can be found in [12–16] for instance.

Contrary to the flow in vertical lines, numerical studies in horizontal lines are

highly sensitive to the upstream conditions. In order to eliminate the upstream

effects and to reproduce a fully developed slug flow regime in relatively short lines,

a segmented domain technique (SDT) is implemented where transient flow prop-

erties obtained at the outlet section of a long separate pipe section are introduced

at the inlet of the domain to be studied, thus limiting the required entrance length

and reducing the overall computational time, see [17] for a detailed description of

this approach.

The second aim of the present work is to estimate the resultant of flow forces

on the bend surface via numerical simulations. To that end, flow rates, volume

fractions, magnitude of pressures and total forces are analysed. It is observed

that at low flow rates, a liquid film travelling into the bend experiences a cross-

sectional acceleration when centrifugal forces prevail, inducing a “film inversion”

phenomenon. A correlation for the inception of such phenomenon has been es-

tablished in [18].

2. Mathematical model

The standard volume of fluid (VOF) model, originated in [19], is adopted in

this work on slug flows. As the slug flow regime is commonly characterised by

its turbulent gas phase, the VOF model is used in combination with a turbulence

model. The RNG k − ε model has been selected, this choice being motivated by
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the work presented in [20].

2.1. V olume of F luid model

The VOF model is available in most commercial CFD software. This model is

based on the assumption that two or more fluids are not inter-penetrating. Vari-

ables and properties in each cell are functions of the phase fractions, as detailed

in the ANSYS Fluent user’s guide [21]. Based on this definition, the continuity

equations for liquid and gas volume. fractions, αl and αg, can be written as:

∂tρkαk +∇· (ρkαk ~u) = 0 (1)

where the subscript k = g, l denotes either the liquid or the gas phase. The

momentum equation uses a single velocity ~u acting on the mixture with a density

ρ = αg· ρg + αl· ρl and a viscosity µ = αG·µg + αl·µl. The momentum balance in

conservative form is:

∂tρ~u+∇· (ρ~u⊗ ~u) = ∇· T + ρ·~g + ~F (2)

The symbol ⊗ in Equation 2 stands for the dyadic product, T = T (p, τ) is a

tensor which contains the pressure p and the viscous stress tensor τ given by:

T = −p· Id + τ (3)

with Id is the identity matrix and the shear viscous stress tensor is expressed by

τ = µ· (∇~u+∇~uT ) + (η − 2
3
µ)(∇· ~u)· Id also denoted τ(µ, η, ~u).

The coefficients µ and λ = (η − 2
3
µ) are the dynamic viscosity and the bulk

viscosity of the mixture, respectively.

For Newtonian fluids, the divergence term in τ is usually important in regions

under shocks (compression/expansion). For fluids in confined systems, the shear is

larger and dominant due to the wall boundaries. The last term on the right hand
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side of Equation 2 represents the inter-facial surface tension F between phases i

and j which is given by:

~F = σij·
ρ·κi· ~∇αi

1

2
(ρi + ρj)

(4)

The curvature κi can be expressed in terms of the gradient of the volume fraction

~∇αi = ~ni as:

κi · ~∇αi = −

(
∇·

~∇αi
‖~∇αi‖

)
· ~ni = − (∇· n̂i) · ~ni (5)

Indices i and j represent again the two phases. The surface tension coefficient σij

is assumed constant, and n̂i =
~ni
‖~ni‖

is the unit normal to the interface where the

surface tension is calculated. The expression of the inter-facial force ~F becomes:

~F = − σij
1

2
(ρi + ρj)

· ρ (∇· n̂i) ·~ni

= −γij· (∇· n̂i) ·~ni
(6)

2.2. RNG k − ε turbulence model

The RNG k− ε turbulence scheme belongs to the two-equation eddy-viscosity

turbulence model family. It has been derived from the re-normalisation group

theory [22] with scale expansion for Reynolds stress. It has been a standard in

engineering applications for some time now due to its good balance between nu-

merical demands and stability. The scheme is semi-empirical in its approach. It is

common to decompose instantaneous variables ~ψ following Favre or Reynolds’ de-

composition, into ~ψ = ψ+ ~ψ′. Where the averaged term ψ representing large scales

and fluctuating small scales term ~ψ′. Hence two additional transport equations

need to be solved to compute the Reynolds stresses. The first transport equation

is for the turbulent kinetic energy k = u′⊗u′/2, and the second transport equation

is for the rate of turbulence dissipation ε:

∂tρ· k +∇· (ρ u k) = ∇· ((µ+
µt
σk

)∇k) +Gk +Gb − ρ· ε (7)
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∂tρ· ε+∇· (ρ u ε) = ∇· ((µ+
µt
σε

)∇ε) + C1ε
ε

k
(Gk + C3εGb)− C∗2ε· ρ

ε2

k
(8)

The source term of turbulence Gk appearing in Equations 7 and 8 stands for the

generation of turbulent kinetic energy due to the resolved velocity gradients and

Gb is the generation of the turbulent energy due to buoyancy:
Gb = −g µt

ρ·Pr
∇ρ

Gk = µt· (∇u+∇uT )· ∇uT − 2

3
k· ∇u

(9)

The turbulent viscosity µt is derived from k and ε and involves an experimental

constant Cµ ' 0.0845 [21]:

µt = ρ·Cµ·
k2

ε
(10)

Quantities C1ε = 1.42, C3ε = 1.68 are empirical constants [21] while σε and σk are

turbulent Prandtl numbers. In Equation 8, C∗2ε is function of the scale expansions

for the Reynolds stress ξε as follows:
C∗2ε = 1.92 +

Cµ· ξ(1− ξε/ξ0)

1 + βε ξ3
ε

ρ ξ3
ε

ξε = µt·
√
τ ⊗ τ · k

ε

(11)

where τ = (∇u+∇uT ) is the resolved strain. The parameter ξε gives the ratio of

turbulent to mean strain time scales, and the default constant are βε = 0.012 and

ξ0 = 4.38 [21].

Transport equations are solved for k and ε. The turbulent viscosity µt is

computed and the Reynolds stresses are determined and substituted into the

momentum equations. The new velocity components are used to update the

turbulence generation term Gk, and the process is repeated.
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3. Momentum flux

The mixture flow rate distributions and fluctuations in the elbow are directly

accountable for the forces induced on the bend wall. The analysis of these forces

can be better understood when not looking at the instantaneous local balances in

the governing relations (Equations 1 and 2) but rather at their integral counter-

parts over a specific control volume Ω of the bend, as illustrated in Figure 1. In

the following, the force due to gravity will be omitted from the derivation.

Figure 1: Schematic representation of the control volume Ω of 900 bend

Slug flow is considered in a fixed control volume Ω delimited by its surrounding

control surface ∂Ω = ∂Ωin ∪ ∂ΩL ∪ ∂Ωout, with ∂Ωin, ∂ΩL and ∂Ωout the inlet,

lateral and outlet surfaces, respectively. Taking into account Reynolds’ decom-

position for the convective term, the resulting rate of change of momentum in a

fixed control volume becomes:

∂t

∫
Ω

ρ·u dΩ +

∫
Ω

∇· [ρu⊗ u]dΩ =

∫
Ω

∇· [−pId + τ ]dΩ

+

∫
Ω

ρ·~g dΩ

−
∫

Ω

γlg· (∇· n̂i)~ni dΩ

(12)
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3.1. Contact line momentum on bend

The last term on the right hand side of Equation 12 represents the momentum

exchange between the interface and the control volume. The time dependent

interface between the gas and the liquid is represented by σ(t) = Ωg(t) ∩ Ωl(t)

whereas Cσ(t) = ∂Ω ∩ σ(t) represents the contact line of the two fluids with the

bend wall, see Figure 2.

Figure 2: Representation of the domains and various unit vectors, in perspective (left) and in
orthogonal plane to t∂Ω (right)

Two sets (tCσ , nσ, nCσ) and (tCσ , t∂Ω, n∂Ω) are defined in Figure 2, which are

positively orientated orthonormal basis. The unit vectors defined on the bound-

aries and at the interface σ(t) are defined as follows: tCσ = nσ ∧ n∂Ω and

nCσ = tCσ ∧ nσ are the tangent and normal vectors to the contact line Cσ(t),

and t∂Ω = n∂Ω ∧ tCσ is the tangent vector to the boundary.

If the distribution δσ represents the “Dirac measure” of the interface σ(t),

then its eventual “Lebesgue measure” dσ(s) = dδσ(s) counter part, or Lebesgue

integral for any regular field χ, satisfies:

〈δσ, χ〉 =

∫
Ω

χ(s)· dσ(s) = χ(σ) (13)

Similarly for the contact line Cσ(t), the “Lebesgue measure”, dCσ(s) = dδCσ(s)
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satisfies the following Lebesgue integral:

〈δCσ , χ〉 =

∫
∂Ω∩σ

χ(s)· dCσ(s) = χ(Cσ) (14)

where s stands for a material point on the interface where the mass of the measure

is concentrated. The momentum exchange due to the interface in Equation 12

can be reformulated as:∫
Ω

γlg (∇· n̂i)~ni dΩ =

∫
σ(t)

σlg (∇· n̂σ)~nσ dσ (15)

Following the surface curvature-divergence relation, see [23], the right hand side

of Equation 15 can be decomposed as:∫
σ(t)

σlg (∇· n̂σ)~nσ dσ =

∫
Cσ(t)

σlg·~nCσ dCσ

−
∫
σ(t)

∇σ [σlg] dσ

(16)

The first term in Equation 16 refers to the contact force of the interface boundary

(contact line gas-liquid-wall) with the bend. The second term is a tangential

force, a purely internal force to σ(t), resulting from the non-homogeneous interface

density and has no effect on the bend wall. The surface gradient ∇σ = (I − n̂σ ⊗

n̂σ)· ∇ in the last term of Equation 16 is the orthogonal projection of the total

gradient ∇ onto the tangential space to σ(t).

A constant mixture density along the contact line as well as at the interface is

assumed, ρ(σ) ≈ 1
2
(ρg + ρl) = ρ(Cσ); it follows that the tangential force vanishes.

The forces in Equation 16 can be evaluated for a smooth and regular contact

line as in the case of a film inversion. When the slug body impacts the elbow, the

contact lines become complex and non-measurable.

3.2. Pressure and mean stress momentum on bend

To carry out the estimation of forces in the control volume in Equation 12,

the flows of the two phases are considered continuously distributed into regular
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subsets Ωk(s, t) with k = g, l, denoting again the gas and liquid phases, respec-

tively. These flows are partitioned by an oriented moving singular interface σ(s, t).

The sub-regions Ωk(s, t) are proper subsets contained in the entire domain Ω, i.e.

Ω ⊇ Ωg ∪ Ωl; and Ωg ∩ Ωl = σ as described in Figure 2. It should be noted

that Ωk(s, t) are non material volumes (in a Lagrangian sense). The hypothesis

of continuous phase distributions implies that any mixture variable ψ(s, t) obeys:

lim
s→Ωk

ψ(s, t) = ψk. Under these considerations and on the basis of the extended

Green-Gauss theorem, the stress momentum becomes (see Appendix A):

∫
Ωl∪Ωg

∇· [−pId + τ ]dΩ =
out∑
j=in

∑
k=g,l

∫
∂Ωj

(−pjId + τk)d~Sj

+

∫
∂ΩL

(−pLId + τL)d~SL

+

∫
σ

[[−pId + τ ]] n̂σdσ

(17)

The term [[ψ]] = ψl−ψg stands for the generic finite jump of the quantity ψ across

the interface σ. The first term on the right hand side of Equation 17 represents

the forces applied on the inlet and outlet flows, the second term stands for the

operating load of the flow on the bend, and the last term stands for the internal

force resulting from the jump in the stress across the interface.

3.3. Local time rate of linear momentum on bend

The time scale τρu over which the local time rate of momentum ∂tρu evolves,

arises from interactions of processes of mixture density and velocity evolutions.

To approximate the local momentum, the actual approach is based on time scales

separation between τu of the mixture velocity and τρ of the mixture density (void

fractions). The time scale τu is related to the slow dynamics of material wave while

τρ is associated with characteristic times of pressure p and thermal T (entropy

S) waves. This association follows the connection of continuity equation along

with Gibbs free energy of a mixture in p -T pressure-temperature equilibrium,
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as indicated in Equation 18 for the individual phases k = g, l (see Appendix D,

equation D.9 for details).

1

p
∂tp =

γk
ρk
∂tρk +

Γk
SVk

∂tSk (18)

where γk and Γk stand for the adiabatic exponent and the Grüneisen parameter,

respectively. The quantity SVk =
pVk
T

is the entropy analogue, which is also

homogeneous to a heat capacity coefficient. A direct observation of Equation 18

shows that both entropy and density time rates are driven by pressure time rate.

The following dynamical time-scales are considered, τψ = (∂tψ/ψ)−1, where

ψ = ρk and p. The expression τSk = (∂tSk/SVk)
−1 is their approximate counterpart

for the entropy Sk. Equation 18 thus becomes:

1

τp
=

γk
τρk

+
Γk
τSk

1

τp
=

1

τρk
+ Γk

(
βT

τρk
+

1

τSk

) (19)

where γk = 1 + Γk βT . According to Menikoff and Plohr (1989) in [24] ther-

modynamic consistency imposes the positiveness of the thermal expansion β > 0

away from the phase transition. In addition, the existence of stable shock waves

requires Γk > 0, hence γ > 1. Consequently τp < τρk , implying that phasic density

disturbances undergo dynamic changes slower than pressure changes. Regarding

the entropy disturbances, a similar reasoning holds only for Γk ≥ 1.

The derivation of continuity and momentum equations for compressible tur-

bulent flow are recalled in Appendix C. The integral of instantaneous local time

rate of momentum expressed in terms of dynamical time scales states:

∂t

∫
Ω

ρ ũ dΩ =

∫
Ω

ρ ũ (∂t ( ρ ũ ) / ρ ũ ) dΩ

=

∫
Ω

ρ ũ / τρu dΩ

=

∫
Ω

ρ ũ ( 1/τρ + 1/τu) dΩ

(20)
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where, τρ and τu refer to dynamical time scale inherent to mixture density ρ and

mixture velocity u. In subsonic systems, τρ � τu, hence only the short time scale

(fast dynamics) contribution is preserved in the evaluation of the local time rate

of acceleration.

∂t

∫
Ω

ρ· ũ dΩ '
∫

Ω

ũ ∂tρ dΩ (21)

Note that the assumption outlined in the previous section (smoothly separated

phases), the local momentum approximation becomes (see Appendix B):

∫
Ωg∪Ωl

ũ ∂tρ dΩ = −
∑
k=g,l

∫
Ωk

∇· ρkαk(ũk ⊗ ũk −
|ũk|2

2
Id) dΩk

−
∫
σ

|ũσ|2

2
Id [[ρ α]] n̂σ dσ +

∑
k=g,l

∫
Ωk

ρkαk ωk ∧ ũk dΩk

(22)

The volumetric terms appearing in the Equation 22 are forces resulting from the

interplay between the conservative and the non-conservative convective forces as

is the interfacial force that is due to jump in kinetic energy across the interface.

The last term is the vorticity-velocity cross product term known as the Lamb

vector, also termed “vortex force”, often denoted LBk = ωk ∧ ũk. The Lamb

vector has a large importance in various aspects of fluid dynamics, such as drag

and lift reduction in aerodynamics [25, 26], in turbulence [27–29] as well as in aero-

acoustics, see [30] for instance. For Beltrami flows where the vorticity vector and

the velocity vector are parallel to each other, i.e. when LBk = 0, (∇ ∧ ũk ∝ ũk),

and for irrotational flows, ∇ ∧ ũk = 0, the first volumetric integral on the right

hand side of Equation 22 is reformulated into surface integrals via the extended

Green-Gauss theorem. Hence, Equation 22 reduces to:∫
Ωg∪Ωl

ũ∂tρ dΩ = −
out∑
j=in

∑
k=g,l

∫
∂Ωj

ρkαk(ũk ⊗ ũk −
|ũk|2

2
Id) d~Sj

−
∫
σ

[[ρ α]] ũσ ⊗ ũσ n̂σdσ
(23)
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The continuity of the velocities at the interface is assumed in the jump term of

Equation 23. For non Beltrami flows, the standard vectorial formulation allows

for the Lamb vector LBk 6= 0 to be written as:

LBk = ωk ∧ ũk = ∇· (ũk ⊗ ũk −
|ũk|2

2
Id)− ũk(∇· ũk) (24)

For incompressible phases, incorporating the LBk expression above in the Equa-

tion 22, the approximate local momentum reduces to:

∫
Ωg∪Ωl

ũ ∂tρ dΩ = −
∑
k=g,l

∫
Ωk

(ũk ⊗ ũk −
|ũk|2

2
Id)∇ρkαk dΩk

−
∫
σ

[[ρ α]]
|ũσ|2

2
Id n̂σdσ

(25)

The volumetric terms appearing in the Equation 25 is a dyadic force resulting

from density and volume fraction gradients while the second force is an internal

force on the interface, it results from the change in kinetic energy due to the jump

in density and volume fraction across the interface.

3.4. Convective momentum on bend

The evaluation of convective forces requires a reformulation of the balance

laws in the framework of averaging procedures that distinguish large scales from

small ones, see equation C.3 in Appendix C. The fluctuating components of Favre-

Reynolds stress RF were cast into the momentum balance. The first component

Rs = u′ ⊗ u′, is the standard Reynolds stress, and the second component that is

labelled Rc (see Appendix C), is an immediate consequence of compressibility; it

is turbulent mass flow dependent and relates to variable density effects.

Regrouping averaged and fluctuating momentum terms from inlet and outlet sides,
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with vanishing convective fluxes on the lateral surface ∂ΩL, leads to:∫
Ωl∪Ωg

∇· (ρ ũ⊗ ũ+ ρ RF) dΩ =
out∑
j=in

∑
k=g,l

∫
∂Ωj

ρk αk
(
ũk ⊗ ũk +Rk

F
)
d~Sj

+

∫
σ

( [[ρ α ]]· ũσ ⊗ ũσ + [[ρ α Rσ
F ]]) n̂σ dσ

(26)

where k = g, l and σ. The continuity of averaged tangential and transverse

velocities across the interface is assumed, i.e., ũg = ũl = ũσ. The force includes

the jump in the Favre-Reynolds stress Rk
F at the interface:

Rk
F = u′k ⊗ u′k +

α′k u
′
k ⊗ u′k
αk

− α′k u
′
k ⊗ α′k u′k
α2
k

(27)

This expression in its actual form obscures its analysis due to the presence

of high order statistics and mixed moments. To shun this hurdle, a bounded

approximation is derived in Appendix C through Grüss-type-inequality.

Rk
F ≈ u′k ⊗ u′k· (1 +

√
α′2k
αk

2 −
α′2k
αk

2 ) (28)

The equality holds for flows with measurable fluctuating moments obeying

to non-skewed distributions, i.e statistics of the variables are such that ψ′min ≈

−ψ′max, which presumably corresponds to compressible turbulent flows at moder-

ate Reynolds number. Researchers [31] confirmed that the data from DNS showed

a transition in skewness with an increase in Mach number, while in general the

effect of Reynolds number is weak.

Departures from (incompressible) standard Reynolds stress Rs result purely

from void fraction (or density) fluctuations. The scales of these departures depend

on the conditions and on the side of the interface. This is of importance in the

vicinity of the interface where substantial fluctuations inceptions imply redistri-

butions in turbulent fluxes and kinetic energy. The expression of Rk
F shows that

void fraction fluctuations effects materialize with conflicting contributions of first

and second orders.
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3.5. Elbow forces description

The mechanical force exerted on the elbow can be evaluated through Compu-

tational Fluid Dynamics (CFD). The mathematical structure of the total surface

forces ~FS per unit surface is required in order to understand how these forces

should be represented. An important statement related to the stress tensor is

that the force per unit area exerted by the fluid on a surface, with unit normal

n̂S pointing into the fluid, can be expressed in the present framework by:

~FS = T · n̂S

=
(
−p· Id + µ· (∇~u+∇~uT ) + λ(∇· ~u)· Id

)
· n̂S

(29)

where, n̂S is the outward unit normal vector to the elementary surface dS. The

mechanical pressure pm exerted on the unit surface is defined as the averaged

normal stress, also known as the first invariant of the stress tensor. It is related

to the pressure p as follows, with tr being the trace of the matrix T :

pm = −1
3
tr(T )

= p− η∇· ~u
(30)

The two pressures are equivalent for incompressible fluids: ∇· ~u = 0, or under

Stokes’ hypothesis: η = 0. Thermodynamically, this is equivalent to the reversibil-

ity of the processes (thermodynamic paths). This requirement implies that the

fluid does not dissipate energy under deformations. The expressions of the pro-

jected components of a force ~FS exerted on a unit surface dS with outward unit

normal n̂S that is defined by its local orthonormal components (nSx, nSy, nSz) are

given by:
FSx = T · n̂S|x = (−p+ λ∇· ~u+ τxx)·nSx + τxy·nSy + τxz·nSz

FSy = T · n̂S|y = τyx·nSx + (−p+ λ∇· ~u+ τyy)·nSy + τyz·nSz

FSz = T · n̂S|z = τzx·nSx + τzy·nSy + (−p+ λ∇· ~u+ τzz)·nSz

(31)
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The resultant force FS is simply the Euclidean norm formed by the above com-

ponents.

4. Simulation results

In order to generate slug flows, three simulations were performed separately in

a horizontal pipe of length L = 30 m and diameter D = 0.078 m at atmospheric

pressure, with fluids properties shown in Table 1 and initial conditions of mixture

flow rates specified in Table 2. According to the flow map in [32], the initial

flow conditions for Cases 1-3 in Table 2 correspond to a slug flow regime. A

mesh sensitivity analysis was performed on this horizontal section to check that

numerical slug frequencies were in agreement with experimental-based ones [33].

Fluids Density [kg/m3] Viscosity [Pa s]
Air 1.225 1.789 10−5

Water 998.2 1.004 10−3

Table 1: Fluids Physical properties

Case reference Gas mass flow Qg

[kg/s]
Water mass flow
Ql [kg/s]

Case-1 0.025 2.48

Case-2 0.0493 2.87

Case-3 0.0495 4.97

Table 2: Initial flow conditions in a linear 30m long pipe

Flow data extracted 27 m far from the inlet, were recorded at each time step

of the flow solver (10−3 s) during the simulation. These data, including velocity,

volume fraction and turbulence properties obtained for fully established slug flows

have been used as inlet conditions of the elbow system considered in this work.

20



A similar approach was described by the authors in [17] for the analysis of slugs

into helical pipes.

The elbow system considered here has the same diameter as for the horizontal

section, i.e. D = 0.078 m. Upstream and downstream horizontal sections from

the elbow have lengths of lu = 2 m and ld = 1.15 m respectively, and the elbow

curvature presents a mid-radius of R = 0.0126 m. A structured mesh of ≈ 1.23M

cells comprising ≈ 900 cross-sectional and 64 circumferential cells was built as

shown in figure 1.

Similarly to the horizontal section, velocity-inlet and Pressure outlet boundary

conditions were considered at the inlet and outlet sections of the elbow system.

The pressure-based solver (segregated solver) was selected to run the transient slug

flow simulations. All numerical schemes applied for the VOF-based simulations

are listed in Table 3.

Transient VOF Solver
Pressure-Velocity Spatial Discret. Pressure Momentum

Simple Least Squares
Cell Based

Presto 2nd Order Upwind

Volume Fraction Turbulence
Kinetic rate

Turbulence Dis-
sipation rate

Transient
Formulation

Modified HRIC 2nd Order Up-
wind

2nd Order Up-
wind

1st Order Implicit

Table 3: Volume of fluid solver

The RNG k− ε model, described previously in Section 2.2 was selected along

with non-equilibrium wall functions to capture turbulence effects with a bounded

value of 50 < y+ < 130 obeying the ANSYS Fluent user’s guide [21] recommen-

dation.
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4.0.1. Case 1

Case 1 corresponds to the lowest mixture flow rates; results for this case are

shown in Figure 3. The instantaneous profiles of liquid hold up and flow rate

displayed in this picture indicate a slugging regime at the inlet of the elbow, with

maximum peaks around 26 kg/s. The regime is inherently unstable and it is not

straightforward to distinguish between forces due to slugs, to splashes or resulting

from waves. Subsequently, the analysis of the fluctuating pressures and stresses

based on a visual analysis is incredibly complicated.

Looking at the peak forces signals in an attempt to attribute these to slug

bodies impacting the outer wall of the elbow or to identify those due to waves

from those due to sliding liquid films on the outer bend wall during the inception

of “film inversion” remains vain.
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Elbow Slug Flows and Forces

Figure 3: Inlet mass flow rates and forces in the bend - Case 1

To be able to interpret the results shown in Figure 3, it is crucial to identify

slug entities during the flow. To estimate slug frequencies, it is a common practice

to define a criterion based on the liquid hold-up. This approach has also been

applied here and each peak of liquid hold-up αl ≥ 0.7 has been accounted for as

a slug. In the present case, this corresponds roughly to peaks of mixture flow
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rates Qmix ≥ 18 kg/s. Based on the above criterion, the magnitude of the forces

due to slug body impacts is usually higher than 120 N . There are however slugs

exerting lower impacts, around 90 N , for example peaks at times t = 13.5 s and

t = 26 s. These lower magnitudes can be attributed to unstable slugs which

have a propensity to collapse or to the limitation of the liquid hold-up criterion

established to identify slug impacts.

4.0.2. Case 2

Simulation results for Case 2 are shown in Figure 4. These plots depict forces

with magnitudes and a base line of liquid hold up larger than those exhibited in

Case 1. Based on the liquid volume fraction threshold criterion used previously,

slugs are accounted for when peaks of mixture mass flow rates are such that

Qmix ≥ 22 kg/s. In the present case, the maximum operating loads are higher

than 280 N and slug impacts show forces with magnitudes in the vicinity of 200 N .

As for the previous case, several slug impacts display magnitude forces lower than

160N , although they are accounted for as slugs, see peaks at t = 14.25 s, t = 15 s

and t = 22 s for instance.

It appears clearly that the above paradox results from the deficiency of the

criterion based on the liquid hold-up. Using solely this criterion seems not to be

sufficient to distinguish big waves from slugs. In order to narrow the identification

of forces due to slugs, the criterion has to be supplied with a condition on slug

translational velocities. In an Eulerian formalism, mixture velocities are accessi-

ble while slug translational velocities uTS (which are Lagrangian) are difficult to

evaluate, especially for 3D transient models.
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Elbow Slug Flows and Forces

Figure 4: Inlet mass flow rates and forces in the bend - Case 2

The correlation from [34] could potentially be used as a supplementary crite-

rion:

uTS = 1.2·u + 0.54·
√
g D

with u = αl·ul + αg·ug
(32)

However, the use of such criterion is possible when the mixture velocity u is
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known, i.e. in the case of a slug flow regime, when all slugs are identical; this is

rarely the case in industrial applications. Such remark is in agreement with the

liquid hold-up trace shown here where it appears clearly that all slugs are far from

being regular or identical.

It can also be noticed that the time trace exhibits peaks of resultant force

larger than 200 N , see peaks at times t = 7.9 s and t = 21 s. Although their

corresponding liquid hold-up extrema are not recognized as slugs, these resultant

forces seem to result from the merging of a number of waves.

4.0.3. Case 3

Results for Case 3 are shown in Figure 5. The liquid flow rate is much higher

than in the two previous cases. The traces of liquid hold-up indicate that most

of the slugs traveling into the elbow are preceded by large liquid pools αl ≥ 0.35.

This implies that the flow line is continuously pre-loaded. Based on the hold-up

threshold criterion αl ≥ 0.7, peaks of mixture mass flow rates such that Qmix ≥

24 kg/s are identified as being slugs. The maximum loading in this case reaches

magnitudes higher than 300 N while slug bodies depict impacts of magnitude

higher than 250 N .

In all three test cases investigated, the time traces of shear-stress exhibit re-

sultant loads with magnitudes less than 5.5 % of the total loads due to isotropic

stresses. The time traces of resultant loads contain both compressive and ten-

sional components. As expected, the magnitude of resultant forces increases with

the increase of mixture flow rates.

Slug flows investigated here exhibit slug frequencies of ω1 = 0.40 s−1, ω2 =

0.45 s−1 and ω3 = 0.54 s−1 for Cases 1, 2 and 3, respectively. These frequencies

were established through counting the number of slugs present during a period of

time, here, 30 s. As can be observed from these cases, the resultant loading cycle

is much higher than the slugging cycle, while the severity (maxima) of the load is
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mainly due to slug bodies.
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Figure 5: Inlet mass flow rates and forces histograms in the bend - Case 3

A liquid film inversion in elbows or in coiled pipes is often observed at low

liquid flow rates. During these occurrences, centrifugal forces prevail to control the

redistribution of the phases. Such liquid film inversion and resulting distribution
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of volume fraction for both phases are shown in Figure 6 for Case 3 at t = 13 s. It

can be seen that a transition from a stratified to a core annular flow regime took

place in the elbow.

Figure 6: Film inversion at time t=13 s: transition from stratified to annular flow in the bend;
pure liquid (red colour), pure gas (blue colour), liquid-gas interface (gold colour)

5. Conclusion

This study considered established two-phase gas/liquid slug flows in a hor-

izontal elbow displaying a continuous singular interface. The volumetric forces

budget due to the mixture were obtained through the use of the VOF model.

The distributed Newtonian and Configurational forces expressions were derived.

Contact line force due to surface tension and forces due to jump conditions across

the interface were provided.

The proposed approach uses time scales separation to evaluate the time rate

of local momentum. Neglecting the contribution of the time rate of mean mixture

velocity and keeping only the contribution due to the time rate of the volume
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fraction allows for a derivation showing a close connection between the Lamb vec-

tor (vortex-force) and the time rate acceleration. To the authors’ best knowledge,

such novel procedure has never been reported previously.

Through the use of Grüss-inequalities, it was possible to provide a useful ex-

pression that formulate the deviation of Favre-Reynolds stress from the standard

Reynolds stress. The expression materializes the involvement of fluctuating void

fraction (compressibility) in the mentioned deviation with conflicting contribu-

tions of first and second order (in void fraction fluctuation) and in addition, this

emphasizes the changes in turbulence across the interface.

Exerted Newtonian forces of a slug flow on a bend were estimated through

CFD. The study showed the increase of the magnitude of the force maxima with

the increase of the mixture flow rates, as expected. The resultantes forces obtained

here are one to two orders higher in magnitude than the maximum forces obtained

with PFM model presented in [5]. The actual resultants are however well in

the same range as the forces measured and predicted in [7]. Nevertheless, a

criterion based solely on the liquid hold-up threshold has proved to be insufficient

to distinguish forces due to slug impacts from those due to liquid films and waves.

Identifying individual slugs when travelling through a bend is therefore essential.

The use of a Lagrangian criterion, equivalent to that of [34], which is based on

slug translational velocity, would be useful to correlate slugs and impacts. Such

procedure was successfully applied in [35], where the authors have used two probes

located at close proximity, hence they were able to measure slug translational

velocities, which in turn were correlated to CFD with high accuracy.

The numerical results also showed loading cycles much larger than slugging

cycles, which is important from a dynamical and a structural integrity point of

view.

Finally, the time traces have highlighted the importance of the static pressure
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over the shear stress. The marginal contributions of viscous shear-stresses on the

resultant force was clearly highlighted in all tests presented in this study.

A. Appendix.

For the derivation of the jump law in the following, the field ψ is considered

in term of distributions. ψ is considered as a smooth continuous quantity except

in the vicinity of the singular interface σ where it possesses a finite discontinuity,

see Figure 7, ψk(s) = lim
s→σk

ψ(s) with k = g, l.

Figure 7: Schematic representation of the moving singular interface σ(t)

To regularize the variable ψ(s), two transition sub-layers γk, with k = g, l are

formed by sweeping the elements of σ in the directions ~nσ and −~nσ. Based on the

convention used in Figure 7, ~nσl = −~nσg = ~nσ . The obtained sub-layers γk are

enclosed by σ and σk ≡ σ ± ε/2. The Green-Gauss theorem applied to ψ in the

sub-region γg ∪ γl becomes:∫
γg∪γl

∂zψ d(γl ∪ γg) =

∫
σ

∫ +ε/2

−ε/2
∂z ψ dηdσ (A.1)

The volume element is dηdσ = dηdσk with η = z−zσ, zσ located at the surface

element dσ and z ∈ [−ε/2,+ε/2].
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The extension of the field ψg to γl and ψl to γg can be achieved via the smoothed

Heaviside step function ĥ(z):

ĥ(z) =


1 if z ≥ zσ + ε/2

1/2 if z = zσ

0 if z ≤ zσ − ε/2

(A.2)

The Green-Gauss theorem applied to regularised variable becomes:∫
σ

∫ +ε/2

−ε/2
∂zψ dηdσ =

∫
σ

∫ +ε/2

−ε/2
∂z [ψlĥ(z) + ψgĥ(−z)] dηdσ

=

∫
σ

∫ +ε/2

−ε/2
[ĥ(z)∂z ψl + ĥ(−z)∂zψg] dηdσ

+

∫
σ

∫ +ε/2

−ε/2
(ψl − ψg)∂zĥ(z) dηdσ

=

∫
γl

∂zψl dγl +

∫
γg

∂zψg dγg

+

∫
σ

∫ +ε/2

−ε/2
(ψl − ψg)∂zĥ(z) dηdσ

(A.3)

The Heaviside function derivative ĥ(z) relates to the Dirac δ distribution by

∂zĥ(z) = δε(σ)· n̂σ and lim
ε→0

δε(σ) = δ(σ). This complete the jump law, thus:

lim
ε→0

∫
γl∪γl

∂zψ d(γl ∪ γl) = lim
ε→0

∫
σ

∫ +ε/2

−ε/2
(ψl − ψg)δε(σ)· n̂σ dηdσ

=

∫
σ

[[ψ]]· n̂σdσ
(A.4)

where the generic jump across σ is [[ψ]] = ψl − ψg.

B. Appendix

The mixture velocity u is considered under the hypothesis of separated fluids,

hence lim
αk→1

u = uk, and for the mixture density ρ, lim
αk→1

ρ = ρk . In the following,
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ρk = ρkαk stands for the effective density of the phase k.∫
Ωg∪Ωl

ũ ∂tρ dΩ = −
∫

Ωg∪Ωl

ũ ∇· (ρg αg + ρl αl )ũ dΩ

= −
∑
k=g,l

∫
Ωk

ũk ∇· ρkũk dΩk

= −
∑
k=g,l

∫
Ωk

(∇· ũk ⊗ ρkũk − (ρkũk· ∇)ũk) dΩk

= −
∑
k=g,l

∫
Ωk

(∇· ũk ⊗ ρkũk − ρk(∇
|ũk|2

2
− ũk ∧ ωk)) dΩk

(B.1)

Through the above derivation, vectorial identities ψ∇·ψ = ∇·ψ ⊗ ψ − (ψ· ∇)ψ

and (2ψ · ∇)ψ = ∇|ψ|2 − 2ψ ∧ (∇ ∧ ψ) are used. The symbol ⊗ represents the

dyadic product. The last term contains the vorticity ωk = ∇∧ ũk.

Expanding the vorticity term and using the relation ∇|ψk|2 = ∇· (|ψk|2Id)

yields.∫
Ωg∪Ωl

ũ ∂tρ dΩ = −
∑
k=g,l

∫
Ωk

∇· ρkαk(ũk ⊗ ũk −
|ũk|2

2
Id) dΩk

−
∑
k=g,l

∫
Ωk

|ũk|2

2
Id∇(ρkαk) dΩk +

∑
k=g,l

∫
Ωk

ρkαk ωk ∧ ũk dΩk

(B.2)

The second integral on the right hand side of Equation B.2 simplifies to the

surface integral over the singular interface, where the density and volume fraction

gradients are significant, hence:∫
Ωg∪Ωl

ũ∂tρ dΩ = −
∑
k=g,l

∫
Ωk

∇· ρkαk(ũk ⊗ ũk −
|ũk|2

2
Id) dΩk

−
∫
σ

|ũσ|2

2
Id [[ρα]] n̂σ dσk +

∑
k=g,l

∫
Ωk

ρkαk ωk ∧ ũk dΩk

(B.3)
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C. Appendix

Continuity and momentum balance laws for compressible turbulent flows are

briefly provided here. For detailed derivations, see [36]. Reynolds and Favre aver-

aging methods are usual starting points for turbulence evaluations. Instantaneous

flow variables ψ are split into ψ, averaged and fluctuating Reynolds parts ψ′. Also,

let ψ̂ be a normalized turbulent quantity, hence:

ψ = ψ + ψ′

ψ̂ = ρ′ ψ′ / ρ

(C.1)

Favre averaged and fluctuating components counter parts of ψ are:

ψ = ψ̃ + ψ” with ψ̃ = ρ ψ / ρ (C.2)

Equally, dynamic and bulk viscosities of fluids expand to µ = µ+µ′ and η = η+η′.

Under the above procedures, the conservation laws 1 and 2 may now be recast.

∂tρ+∇· (ρ u+ ρ û) = 0

∂tρ ũ+∇· ( ρ ũ⊗ ũ+ ρ u”⊗ u” ) = ∇· T + ρ·~g + F
(C.3)

The mean stress T = T (p, τ + τ ′) is linear with respect to averaging procedure.

Ignoring fluctuations in viscosities leads to further simplification, i.e τ ′ = 0. With

the use of ψ̃ − ψ = ψ′ − ψ” = ψ̂, the reformulation of the fluctuating convective

term, the Favre-Reynolds stress RF yields:

ρ RF = ρ u”⊗ u”

= ρ u′ ⊗ u′︸ ︷︷ ︸ + ρ′ u′ ⊗ u′ − ρ û⊗ û︸ ︷︷ ︸
= ρ Rs + ρ Rc

(C.4)

with Rs being the standard Reynolds stress and Rc, termed here for a compress-

ible Reynolds stress, relates to compressibility and variable density of the flow.
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Incompressible fluids were considered here, thus the compressibility is shifted to

the volume fractions, αk = αk + α′k; with k = g, l, hence:

ρk = ρk αk and ρ ′k = ρk α
′
k

(C.5)

Consequently, the phasic expression of Favre-Reynolds stress Rk
F states:

Rk
F = u′k ⊗ u′k +

α′k u
′
k ⊗ u′k
αk

− α′k u
′
k ⊗ α′k u′k
αk

2
(C.6)

To derive a clearer expression, firstly, the third order statistics term (phasic nor-

malised Reynolds stress R̂k
s) is approached by using pre-Grüss-inequality, see [37].

From this point in this appendix, ∆ψ′ = (ψ′max − ψ′min), with ψ′ denoting a fluc-

tuating quantity.

| α′ku′k ⊗ u′k −
√
α′2k ·u′k ⊗ u′k | ≤

√
α′2k · ∆u′k⊗u

′
k

2
(C.7)

Secondly, for the fourth order statistics term, the known statistical version of

Grüss-inequality [38], is used, hence:

| α′ku′k ⊗ α′ku′k − α′ku′k ⊗ α′ku′k | ≤
∆α′

ku
′
k
⊗∆α′

ku
′
k

4
(C.8)

Also one has α′ku
′
k ⊗ α′ku′k = α′ 2

k·u′k ⊗ u′k and using Grüss-inequality once more

| α′ 2
k·u′k ⊗ u′k − α′ 2

k·u′k ⊗ u′k | ≤
∆α′2

k
·∆u′k⊗u

′
k

4
(C.9)

Gathering various terms with regard to monotonies of variables α′2k and u′k ⊗ u′k,

a bounded approximation of Rk
F is obtained.

| Rk
F − u′k ⊗ u′k· (1 +

√
α′2k
αk

2 −
α′2k
αk

2 ) | ≤ R̊k
F

R̊k
F =

∆u′k⊗u
′
k

2
· (
√
α′2k

α′k
2 +

∆α′2
k

α′k
2 )

(C.10)

Presuming that measurable fluctuations obey to non-skewed distributions, fluc-

tuating primitive variables are thus such that ψ′min ≈ −ψ′max. For second order

statistics, ∆ψ′ ≈ εψ′ � 1, thus lim
ε→0
R̊k
F = 0.
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D. Appendix

Fluid mixture models which are reduced to a single material formulation (in

the sense that the model is described by a single mixture pressure, velocity, and

speed of sound) are practical because they are well-posed and relatively simple

to implement. The mixture components occupy separate volumes at the same

temperature and pressure. The continuity equation for the individual components

k using the total derivative form becomes:

ρk
dαk
dt

+ αk
dρk
dt

+ ρkαk∇· ~u = 0 (D.1)

Or, in terms of specific volumes, ρk =
1

Vk
and ∇~u =

1

V

dV

dt

dαk
dt

+ αk

(
1

V

dV

dt
− 1

Vk

dVk
dt

)
= 0 (D.2)

Single component volume fractions αk, mass fractions ξk, specific volumes Vk are

related to the mixture density ρ and to the specific total volume V by:

αk ρk = ξk ρ or αk V = ξk Vk with V =
∑
k=g,l

ξk Vk (D.3)

The thermodynamics quantities of mixture are pressure p, temperature T , specific

entropy S(p, V, ξ) and specific internal energy U(p, V, ξ) are expressed as:

S =
∑
k=g,l

ξk Sk(p, Vk) and U(p, V, ξ) =
∑
k=g,l

ξk Uk(p, Vk) (D.4)

The Gibbs identity for the mixture states:

dU = TdS − pdV +
∑
k=g,l

dξk (∂ξkUk)V,p (D.5)

The absence of chemical reaction or phase change leads to vanishing chemical po-

tentials; i.e (∂ξkUk) = 0. The extraction of entropy, pressure and density deriva-

tives of a component k from Gibbs relation along the trajectory of motion leads
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to:

Tk
dSk
dt

= (∂p Uk)V
dpk
dt

+
[

(∂V Uk)p + pk

] dVk
dt

β Tk
Cp

dSk
dt

=
KT CV
Cp

dpk
dt

+
1

Vk

dVk
dt

(D.6)

At this point, some fundamental quantities such as thermal expansion β, specific

heat at constant pressure and temperature Cp and CV respectively, were used:

(∂T V )p = β V , (∂p U)V =
KT CV
β

, (∂V U)p =
Cp
βV
− p

T (∂T S)p,V = Cp,V ,
KS

KT

=
CV
Cp

, KS =
1

ρ c2
=

1

p γ
, Γ =

β V

KT CV

(D.7)

Involving isothermal and is-entropic compressibility factors, KS and KT . The

speed of sound c and Grüneisen coefficient Γ helped for the reformulation of the

Gibbs identity:
1

Vk

dVk
dt

=
1

γk

(
Γk

Tk
pk Vk

dSk
dt
− 1

pk

dpk
dt

)
(D.8)

Considering that pressure and temperature are in equilibrium, i.e, pk = p, Tk = T ,

the Gibbs relation in D.8 takes the form:

1

p

dp

dt
=

γk
ρk

dρk
dt

+
Γk(
pVk
T

) dSk
dt (D.9)
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