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Abstract 

Technology transfer involves the flow of knowledge from technology developers or possessors to technology 

acquirers that benefit from the knowledge. This article proposes a model for the evaluation of knowledge flow 

in complex technology transfer projects from developed to developing countries. The proposed knowledge flow 

model is built by combining the concepts of knowledge viscosity and velocity with the concepts of architectural 

and component knowledge. The model rests on the idea that the transfer of knowledge to resource-limited 

organisations such as those in developing countries requires a balance between viscosity and velocity on one 

hand, and between architectural and component knowledge on the other. The knowledge flow model has been 

tested on data sourced from three Earth-observation small satellite collaborative projects leveraged by Algeria 

in order to acquire small satellite technology from abroad and build local capability. The implementation of the 

model revealed that the collaborative projects enabled only the acquisition of a shallow form of architectural 

knowledge detached from the local environment. The findings are reflective of the limitations of the 

collaborative projects mechanism and the challenge faced by the technology acquirer to strike the appropriate 

component/architectural and viscosity/velocity balance.  

 

Keywords: small satellite technology transfer; technology transfer modelling; developing countries; complex 

technology transfer; knowledge flow. 

 

1- Introduction 

In the context of knowledge-based theory [1], this article examines knowledge flow in projects where 

complex technology is transferred from developed to developing countries.  For the purpose of this 

study, technology transfer refers to knowledge generated in an organisation in a developed country 

and acquired by an organisation in a developing country, where the acquirer’s intention is to build 

indigenous technological capability. The latter refers to the acquirer’s “ability to make effective use of 

technological knowledge in efforts to assimilate, use, adapt and change existing technologies. It also 

enables one to create new technologies and to develop new products and processes in response to a 

changing economic environment.” [7, p.4].  

The knowledge-based approach is adopted in this study to transcend limitations of the traditional 

literature on international technology transfer and technological capability building. This literature 

remains highly influenced by a mono-dimensional economic perspective, where much of the evidence 

stems from studies related to mass-produced goods [73, 74, 75]. By contrast, the present study 

emphasises knowledge-intensive, complex, and one-off products, such as Earth observation small 

satellites, where the economic perspective is restrictive because the direct and immediate economic 

potential of earth observation satellites manufacturing is not yet proven and remains the least  

commercially driven segment in the satellite industry [76]. 

Complexity is one of the chief barriers to entry in the high technology industry. To circumvent the 

need to address complexity, some developing countries have forged ahead with programmes 

designed to acquire complex technology directly from developed countries in order to build local 

technological capability and generate local technological value. Many of these countries have not 
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progressed beyond mere assembly (or screwdriver) operations. A few have succeeded in acquiring 

technology and building local technological capabilities, emerging as potential competitors to 

developed countries [60, 61, 62]. Given the lukewarm results after numerous attempts, this transfer 

process is a contentious yet topical subject, with implications for both developing and developed 

countries.  

Developing countries take a two-pronged approach to technology transfer: firstly, acquiring 

technology from abroad, and, secondly, diffusing that technology locally. This article evaluates 

knowledge flow during the phase of technology acquisition from abroad. The acquisition occurs via 

collaborative projects in which the transferor and transferee teams are mixed for a limited time. The 

local diffusion of technology, which is not the focus of this article, occurs through post-collaborative 

projects knowledge transfer. The local diffusion of technology was evaluated as part of a broader 

empirical study aimed at evaluating small satellite technology transfer to Algeria, with the results 

presented in a separate publication [77].  

This article decomposes the apparent complexity of the process of technology transfer during 

collaborative projects employing what is termed a knowledge flow model. The concepts of knowledge 

viscosity and velocity [2] are combined with the concepts of architectural and component knowledge 

[3] to evaluate knowledge flow in complex technology transfer projects. The model is in line with the 

resource-based view of the organisation [71], where knowledge is viewed as a resource at the core of 

developing and assembling other resources within the organisation [72]. The model rests on the idea 

that the transfer of knowledge to resource-limited organisations such as those in developing countries 

requires a balance between viscosity and velocity and also between architectural and component 

knowledge. To enhance the validity of evaluation, the model is based on theory ‘triangulation’, by the 

combination of two theoretical perspectives from which the typologies (Viscosity/Velocity and 

Architectural/Component) stem [65]. These dual perspectives contribute to the enrichment of the 

discipline of representing complexity, which is still in its infancy [17, 63, 64].  

The knowledge flow model is tested on the popular mechanism of international collaborative projects, 

as used to transfer Earth observation small satellite technology from developed to developing 

countries [4]. A few studies have focused on technology transfer in space (or satellite) technology, 

addressing the issue either from a developed-to-developed country perspective (i.e. technology 

transfer between organisations situated in developed countries) [55, 56], or a developed-to-

developing country perspective [4, 57, 58]. But none of these studies attempted to evaluate (or 

measure) the flow of transferred knowledge, even those studies grounded in knowledge-based theory 

[55].   

The knowledge flow model is applied herein to three small satellite collaborative projects leveraged 

by Algeria in order to build local small satellite capability, where the satellites are micro- or mini-

satellites [51]. The purpose of this study is to evaluate and characterise the knowledge flow enabled 

by collaborative projects, and guide the transfer process whose success depends on a multiplicity of 

political, socio-economic and organisational factors, and combines exogenous and endogenous 

factors [78].     

This article is organised as follows. Section 2 describes the knowledge typologies used to build the 

proposed model. Section 3 examines the characteristics of complex technologies, particularly 

technological systems called complex product systems (CoPS). The core elements underpinning the 

creation of local value through the establishment of a complex technology supply chain in developing 

countries are discussed in Section 4. The proposed knowledge flow model is formulated in Section 5 

and applied in the context of small satellite technology transfer to Algeria in Section 6. Sections 7 and 

8 discuss the findings resulting from the application of the knowledge flow model and offer concluding 

remarks and a set of recommendations. 

 

2- Knowledge flow in a technological context  
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Knowledge flow is addressed herein by combining two distinct knowledge typologies. The first is 

drawn from the concepts of knowledge velocity and viscosity [2]. These concepts are rarely 

operationalised in the technology management and innovation literature, and a systematic literature 

review identified only one set of researchers making partial operationalisation of these concepts in 

two published papers [5, 6]. In terms of nomenclature, velocity refers to the “…speed with which 

knowledge moves through an organisation. How quickly and widely is it disseminated? How quickly 

do the people who need the knowledge become aware of it and get access to it?” [2, p.102]. Viscosity 

in turn represents the “…richness (or thickness) of the knowledge transferred. How much of what we 

try to communicate is actually absorbed and used? To what extent does the original knowledge get 

pared down? Does what was absorbed bear little resemblance to what we tried to transmit and retain 

little of its original value?” [2, p.102]. 

Information and communication technology (ICT) enhances knowledge velocity, whereas factors such 

as the transfer mode influence viscosity [2]. A knowledge transfer mode that fosters a lengthy process 

of apprenticeship or the formation of a mentoring relationship enhances the depth or viscosity of 

knowledge through subtle knowledge sharing. Viscosity is reduced if knowledge is made accessible 

only via scientific journals or online databases [59]. The absorption of new knowledge in technology 

transfer is a slow, sometimes long and laborious process [2,8]. Successful knowledge transfer requires 

a delicate balance between velocity and viscosity, which tend to be inversely proportional [2]. Indeed, 

the adopted transfer mode generally represents a compromise between high velocity and acceptable 

viscosity [59, p.159].  

The delicate balance between velocity and viscosity required for effective transfer is closely tied to 

the nature of the knowledge and the actors involved in its transfer. In a technological and industrial 

context, knowledge is very often thought of as a resource that includes two complementary 

components: tacit and explicit knowledge [9, 10]. 

Another typology that is relevant in a technological context is the division between component 

knowledge, relating to the core design concepts for each component of the product, and architectural 

knowledge relating to the manner in which components are put together to form the system or 

product [3]. With technology-oriented industries in mind, component knowledge has been described 

as “relatively coherent and definable, and … usually acontextual” [11, p.264]. Component knowledge 

remains subject to incremental changes and is managed explicitly [3], and therefore has the potential 

to be transferred to informed learners [11, 12]. However, the flow remains dependent on the 

explicitness of the knowledge, and whether it is simple or complex, independent or systemic, and 

tangible or intangible [13, 14]. Component knowledge is considered to be related to subroutines or 

parts of the organisation’s operations rather than the whole [15]. Both individuals and groups within 

the organisation can hold this type of knowledge. 

Unlike component knowledge, architectural knowledge refers to “organisation-wide routines and 

schemas for coordinating the various components of the organisation and putting them to productive 

use” [15, p684]. Architectural knowledge is built collectively over time, shaped by idiosyncratic events 

within the organisation and its evolutionary path, and is built by encouraging interactions [16, 53]. 

This knowledge is typically complex, intangible, tacit, and organisation-specific, which makes it difficult 

to transfer [11]. Baldwin [17] stressed that architectural knowledge is a function-centred concept. It 

includes “knowledge about how the system performs its functions (the function-to-component 

mapping)” (p.3), knowledge about “how the components are linked together (i.e. through interfaces)” 

(p.4), and knowledge about how the system performs or behaves in both planned and unplanned 

situations and in different environments.  

Architectural knowledge originates from the design [33, 17] so it is dynamic and intense at the 

beginning of the design phase [40]. Once the design of a technological system is accepted (dominant 

design), architectural knowledge becomes stable and implicitly embedded in the organisation [3]. 

Stability in this context does not mean rigidity because a dominant design can still be subject to 
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modifications. Tasks conducted during the advanced stage of system assembly, integration and 

test/verification (AIT/AIV) can identify design deficiencies requiring corrective action, particularly 

when the AIT/AIV approach is incremental, conducted from the outset and throughout the project 

[20, p.364-370]. AIT/AIV tasks are generally carried out when there is sufficient insight into the 

conceptual, preliminary or detailed design [30, p.160-191, 42]. In this article, AIT/AIV knowledge is 

described as integrative knowledge, or a form of architectural knowledge. AIT/AIV or integrative 

knowledge, like architectural knowledge, is inherently functional because it targets the system as a 

whole that performs its functions and it relates to the design because it can guide design 

modifications. In this article, we consider AIT/AIV knowledge in the context of complex technology 

transfer project from developed to developing countries, where the knowledge shared (or 

transferred) is mainly related to AIT/AIV [4, 30, 62]. 

In order to acquire technology, the literature on strategy and innovation suggests that organisations 

with limited resources (including knowledge), such as those in developing countries, need to make a 

trade-off between architectural and component knowledge. The trade-off is not easy, because these 

concepts are entangled and influence each other [3, 17].  Indeed, faced with the inherent complexity 

of a technological system, the organisation can engage deliberately in a multitude of strategies, 

combining both architectural and component knowledge [17, 19]. It can also be dragged inadvertently 

towards a kind of exclusivism [17]. It may be so focused on building architectural knowledge (through 

integrative capabilities) that component knowledge is neglected, or the quest for component 

knowledge may lead to the neglect of architectural knowledge. For simplicity, this article considers 

the interplay between architectural and component knowledge without considering their mutual 

influences in detail. Based on transaction cost economics, small firms (with a limited scope of 

resources, including knowledge) may generate autonomous innovation more efficiently than large 

companies (possessing a larger scope of resources, including knowledge) [18]. Such innovation relates 

to the development of new components that fit comfortably into the existing system. Conversely, 

large firms are better placed for the development of systemic innovation, which relates to new 

architectures and thus leads to further coordination problems. 

In similar vein, Jacobides and Winter [19] show that the optimal choice for firms with financial 

constraints is to narrow their initial scope.  Baldwin [17] recognises the difficulty of striking the right 

balance and proposes a strategy in which resource-limited firms narrow their initial scope by focusing 

on learning internally about certain components, i.e. crucial components, sometimes called 

‘bottleneck’ components, and outsourcing non-bottleneck components. From a systems engineering 

perspective, a system with n components may require up to n² interfaces that need to be considered 

in the design [54] and ultimately integrated and tested [20, p.362]. Thus, if the number of components 

increases (which may be regarded as an increase in component knowledge), coordination problems 

increase by corollary (which may be regarded as a decrease in architectural knowledge). 

Consequently, the literature acknowledges the inversely proportional relationship between the 

number of components (or component knowledge) and architecture knowledge in resource-limited 

firms. A similar situation exists with respect to the delicate balance sought between velocity and 

viscosity to achieve successful knowledge transfer. 

Why combine the two typologies (velocity/viscosity and component/architecture)?  

Combining the two typologies deploys multiple theoretical perspectives (or theory triangulation)1 in 

the same evaluation study in order to improve validity [65] as one perspective’s strengths can offset 

another’s weaknesses. As the present evaluation lies within the knowledge-based tradition [1], the 

proposed approach primarily examines knowledge flow, or learning, in which complex technology is 

transferred. Knowledge is more than data and information [68]; It is rather a continuous “fluid mix of 

                                                           
1 Triangulation is used to improve the validity of a study. Theory triangulation refers to the use of multiple 

theoretical perspectives. Three other basic types of triangulations are identified: Data triangulation, 

Methodological triangulation, and Investigator triangulation [65]. 
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framed experience, important values, contextual information, and expert insight” [68, p205], while 

data are discrete facts, with information constructed around a body of data [2]. Knowledge has 

different dimensions, and knowledge flow in technology transfer goes beyond technological 

considerations, as the social organisation matters [68, 69]. Davenport and Prusak’s typology captures 

this inclusive definition of knowledge and can be used to characterise the flow (through velocity and 

viscosity) regardless as to whether the knowledge flows in a technological system (e.g. between 

components of a technological systems) or within a social organisation (e.g. between individuals 

within a group, functions or departments within an organisation) [6, 68]. This is particularly important 

when the type of knowledge is complex, systemic and has a significant tacit dimension [2, 68]. 

Moreover, Davenport and Prusak’s typology, with suitable adaptations (as shown in the proposed 

model), captures further dimensions in the knowledge flow such as the breadth and depth of the 

transferred knowledge.  

On the other hand, Henderson and Clark’s typology (Architecture/Component) derives from the 

concept of modularity [33]. “Modularity is based on relationships among structures, not functions” 

[40, p63]. The typology Architecture/Component was built on the assumption that organisations 

possess bounded rationality and their formal structure mirrors the internal structure of the product 

[3]. It is built by “taking as the unit of analysis a manufactured product” [3, p10], and by making “This 

distinction between the product as a whole — the system — and the product in its parts — the 

components—“ [3, p11]. This typology is therefore product-centred2 and not necessarily ‘knowledge-

centred’. An attempt to bypass Henderson and Clark’s typology limitation is made through combining 

this approach with the typology of Davenport and Prusak, because of the need to focus on knowledge 

flow. 

The present study attempts to evaluate knowledge flow quantitatively, which has always been a 

question that needs to be addressed in social sciences [6, 66]. Each knowledge area requires its own 

heuristic methods to evaluate knowledge quantitatively [67]. In this respect, Davenport and Prusak’s 

knowledge-centred typology has rarely been operationalised [5, 6] and lacks maturity. However, the 

product-centred perspective of Henderson and Clark’s typology has been operationalised in several 

studies, employing a generation of methods, approaches, tools and techniques [3, 17, 33].  The 

present study offers an alternative intermediate way that combines some of the strengths of the 

product-centred approach to bypass some of the weaknesses of the knowledge-centred approach and 

vice-versa. For instance, it borrows techniques from the product-centred operationalisation 

approaches and applies them in order to operationalise some facets captured by knowledge-centred 

approach. It can therefore open up the debate on the operationalisation of knowledge 

velocity/viscosity concepts.  

 

3- Complexity of technological systems  

Complexity poses one of the main barriers to entering advanced and high-technology industries. 

Successful transfer of high technology requires that the transferee learns how to effectively manage 

complexity, which is seen as a socio-cultural phenomenon reflecting interactions among products, 

processes and organisations [21, p.57]. Drawing on this perspective, a group of scholars led by Hobday 

and Rush [22] recognised the peculiarities of certain technological activities characterised by 

complexity, and laid down a number of principles for a new holistic approach known as complex 

product systems (CoPS). This approach goes beyond a purely technical understanding and includes 

managerial and political considerations. Hobday [23] defines CoPS as ”high-cost, engineering-intensive 

products, systems, networks and constructs” (p.690) and explains that CoPS are often produced “in 

one-off projects (or small batches) and the emphasis of production is on design, project management, 

systems engineering and systems integration” (p.690).  

                                                           
2 A product can be a physical good, an intangible good, or a service 
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Three important aspects describe the complexity characteristics of a product. The first is the number 

of components we need to know about, which relates to the diversity (or breadth) of component 

knowledge that the system integrator requires [24]. In this respect, we should not overlook the depth 

of knowledge associated with each component, which is the knowledge required to generate it [24, 

25]. Indeed, the components of complex systems are not simple components but are in themselves 

architectures (e.g. modules or subsystems) connecting the sub-components. Therefore, components 

as knowledge-gathering entities can be seen as a microcosm of the larger system, because they share 

common features with it. The second aspect of complexity refers to the level of proficiency (or depth) 

needed to manage the interdependencies between components. This is the concern of architectural 

knowledge [17]. The third aspect relates to the novelty of the knowledge required to build a complex 

system, and it concerns both component and architectural knowledge. Indeed, acquiring new 

knowledge hinges largely on the absorptive capacity of learners [26]. This can be broken down into 

the abilities enabled by prior knowledge (i.e. knowledge accumulation) and the intensity of the 

learning effort. The intensity of organisational effort, through actions leading to both continuous and 

discontinuous learning, is proposed to have a more prominent role than prior knowledge, particularly 

for long-term learning [27]. 

Davies [28] and Hobday [23] propose categories of products that might be classed as CoPS. They 

explain that standalone products such as satellites, which are made of interconnected components, 

can be considered as CoPS. Consequently, a CoPS framework has been used to analyse satellite 

projects. Moody and Dodgson [29] draw heavily on the CoPS approach to analyse a small satellite 

collaborative project in Australia. Wood [30, p.78] considers the managerial challenges related to a 

CoPS project in exploring technological capability-building within satellite programmes in developing 

countries. 

 

4- Building a supply chain for a complex product in developing countries 

Organisations acquiring technology in developing countries do not act alone but operate in a network 

of other actors that influence their activities. Lundvall [31] argued that interactions with these actors 

can largely explain the effectiveness of knowledge transfer. In the context of complex technology, the 

effectiveness of knowledge transfer is reflected in the local value created, stemming in particular from 

a well-established supply chain [32, p.20]. CoPS often require the coordination of several producers 

working together, but the density and continuity of interactions often prove insufficient. Baldwin [17] 

claims that the technical architecture of complex systems shapes the strategy of the organisation and 

determines whether parts of the system are insourced or outsourced. Based on modularity theory [33 

p.7], Baldwin [17] claims that the knowledge flow between an organisation and its suppliers is 

influenced by the system architecture (i.e. architectural knowledge) and particularly by the strength 

of the coupling between its components (i.e. component knowledge). It is less complicated to 

outsource production when the coupling is loose, whereas production is often insourced when the 

coupling is strong.  

Furthermore, the knowledge that enables the organisation to make the choice between outsourcing 

and insourcing has its roots in the product’s architectural knowledge. This originates from knowledge 

of the product design [33, 17], which means that it emerges during the design phase of the project 

and then “become[s] embedded in the structure and information-processing procedures of … [the] 

organisation” [3, p.9]. This knowledge is not confined to the organisational level, but thrives on inter-

organisational interactions [11].  

Weak interactions are a major handicap in developing countries, mostly because of institutional 

barriers, the lack of flexibility and cumbersome procedures [34, 35]. On the other hand, in the context 

of complex technology transfer, the technological product which is transferred is often the result of a 

pre-existing stable and accepted design, known as the dominant design, developed by the transferor 

over a long period of time [3]. Given the high value of the design, sharing the related knowledge (i.e. 
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architectural knowledge) with any third party (e.g. partner, customer or supplier) is extremely difficult, 

because it might fuel competition and constitute a threat [36, 37].  

The sourcing decision also depends on the complexity of the individual components or modules [38]. 

The challenge posed by the architectural knowledge of those components can be viewed similarly to 

that of the main system. Further consideration should be extended to the trade-off between using 

custom or standard sub-components (e.g. off-the-shelf components). Ulrich and Ellison [39] and 

Baldwin and Clark [40] discussed this trade-off along with some other factors that influence the 

sourcing decision, including cost, performance and production, or simply integration. Novak and 

Eppinger [38] highlighted the wide range of possibilities reflected in the complexity of the sourcing 

decision, and thereby the complexity of building a supply chain for complex products. 

 

5- The proposed model   

This section brings together the concepts presented in Sections 2 and 3 to form a knowledge flow 

model that can be used to evaluate the transfer of complex technology from developed to developing 

countries. Building on the knowledge typology of Henderson and Clark [3] and on complex technology 

characteristics [22], it can be postulated that the successful transfer of a technological system is akin 

to effective learning in respect of the system architecture and components. The technology acquirer 

should therefore acquire the knowledge that relates to the core design concepts of each component, 

and to the architectural knowledge required to put together (or integrate) these components to form 

a system. Even though integration is only a form of architectural knowledge (as explained in Section 

2), it is more practical to use the terms architectural and integrative knowledge interchangeably, 

particularly during the implementation of the model.  

In accordance with the systems engineering view, a technological system is a decomposition-

integration process. A technological system is an architecture gathering together various components, 

and each component is further decomposed into sub-components. The decomposition continues 

down to the lowest level (e.g. hardware, software). On the other hand, the lowest-level entities are 

integrated together, validated and tested to form higher-level entities, and the process flows up to 

the systems level. The selection of the decomposition approach is often driven by the need to 

integrate, upgrade, and develop more easily, or to simplify management accountability [20].  

To explain the proposed model, a product breakdown structure (PBS) is used to illustrate the 

decomposition-integration process associated with the transfer of a technological system (Figure 1). 

System complexity is highlighted by the multiple levels of decomposition and the number of 

components at each level. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Component and architectural (integrative) knowledge in the product 
breakdown structure 
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Source: Authors. 

 

Let S denote the components of the technological system. At the highest level, S0 denotes the final 

integrated product (or the technological system). S1, S2, …, Sn denote sub-components of S0. At the 

second level, Si1, Si2, …, Sim denote sub-components of Si. At the third level, Sij1, Sij2, …, Siju denote sub-

components of Sij, and so on until the lowest level of decomposition is reached.3 For example, the 

systems engineering handbook of the International Council on Systems Engineering-INCOSE defines 

seven decomposition levels: system, segment, element, subsystem, assembly, subassembly and part 

[41].  

Based on the knowledge typology of Henderson and Clark [3], it is posited that each component of 

the technological system can be related to two types of knowledge: component knowledge C and 

integrative (or architectural) knowledge I. The pair (C0 , I0) refers to component and integrative 

knowledge related to component S0. (C1 , I1), (C2 , I2), …, (Cn , In) therefore refer to the component and 

integrative knowledge related to components S1, S2, …, Sn.  At the second level, (Ci1 , Ii1), (Ci2 , Ii2), …, 

(Cim , Iim) refer to the component and integrative knowledge related to components Si1, Si2, …, Sim. At 

the third level, (Cij1’ , Iij1), (Cij2 , Iij2), …, (Ciju , Iiju) refer to component and integrative knowledge related 

to components Sij1, Sij2, …, Siju.       

There is an assumption that component knowledge C of any component is the entire knowledge that 

is needed in order to build this component. This is the combination of the knowledge of its constituent 

elements (or its sub-components) along with the knowledge required to integrate these elements. In 

other words, the knowledge that needs to be acquired (or transferred) in order to build the 

component is simply its component knowledge. Let KT denote the knowledge acquired (or 

transferred), then for each component of the system:  

KT0 = C0 = C1 + C2 + …. + Cn + I0            (1), where C1, C2, …., Cn refer to sub-component knowledge and I0 

is the knowledge required to integrate these sub-

components. 

                                                           
3 n, m and u refer to the numbers of components at each level of decomposition. 
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… 

KT2 = C2 = C21 + C22 + …. + C2m + I2          (2)  

… 

KT22 = C22 = C221 + C222 + …. + C22u + I22   (3) 

…. 

The proposed model illustrates the interplay between component and architectural knowledge during 

technology transfer. The flow of knowledge from transferor to transferee can be viewed differently 

by borrowing the concepts of knowledge viscosity and velocity. As discussed in Section 2, Davenport 

and Prusak’s [2] typology, with suitable adaptations in order to operationalise concepts rarely 

operationalised in the technology management and innovation literature, captures further 

dimensions in the knowledge flow such as the breadth and depth of the transferred knowledge. For 

the purposes of the model, viscosity refers to the flow, in terms of depth of knowledge transferred, 

and it specifically provides an indication of the depth of integrative (or architectural) knowledge 

required to put components together. Let KVis denote the volume or quantity of knowledge that flows 

as a result of viscosity,4 then:  

KVis0 = I0  (4) (This equation shows the link between viscosity and architectural 

knowledge) 

… 

KVis2 = I2    (5) 

… 

KVis22 = I22   (6)  

… 

 

On the other hand, velocity refers to the speed with which knowledge moves during a technology 

transfer project. For the purposes of the model, it is posited that the knowledge which moves during 

the lifetime of a project can be gathered into knowledge blocks formed according to subjects. Each 

subject (or knowledge block) relates to one component. Let assume that the lifetime of a project 

corresponds to one unit of time. If during a lifetime of a project (or one unit of time), the technology 

acquirer learns about n knowledge blocks or components, the velocity can refer to the volume (or 

quantity) of the n knowledge blocks that moves during one unit of time (project lifetime). Velocity, 

therefore, provides an indication as to the number of subjects (or components) learned about during 

the course of the project and the corresponding volume (or quantity) of knowledge. In other words, 

velocity provides an indication of the breadth of component knowledge transferred. This knowledge 

is reflected in the quantity and/or diversity of component knowledge transferred and, implicitly, the 

depth of knowledge associated with each component. Let KVel denote the volume or quantity of 

knowledge that flows as a result of velocity,5 then: 

KVel0 = C1 + C2 + ….. + Cn                             (7) (This equation shows the link between velocity and 

component knowledge) 

… 

                                                           
4 Caveat: KVis is not the viscosity, it refers to the knowledge that flows as a result of viscosity. 
5 Caveat: KVel is not the velocity, it refers to the knowledge that flows as a result of velocity. 
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KVel2 = C21 + C22 + ….. + C2m   (8) 

… 

KVel22 = C221 + C222 + ….. + C22u  (9) 

…. 

 

The knowledge transferred is a combination of two inversely proportional factors: breadth and depth 

(or knowledge resulting from velocity and knowledge resulting from viscosity, respectively). Figure 2 

shows this delicate balance. The depth of integrative (architectural) knowledge is indicated in Figure 

2 along the vertical y axis. The breadth of component knowledge is indicated in Figure 2 along the 

horizontal x axis. The authors argue that the knowledge acquired for any component varies along the 

curve labelled set of combinations in Figure 2. Consequently, the knowledge transferred (KT) for each 

component of the system is given by:  

KT = KVis + KVel    (10) 

 

 
Figure 2: Velocity vs viscosity (breadth vs depth) of knowledge 

 
Source: Authors. 

 

 

It is noteworthy that the velocity-viscosity balance is sought across all of the components of the 

technological system and at all levels of decomposition-integration (Figure 3). The knowledge 

transferred through each component can thus be represented by an equation combining two variables 

KVis (knowledge resulting from viscosity) and KVel (knowledge resulting from velocity): 

KT0 = KVis0 + KVel0     (11) 

… 

KT2 = KVis2 + KVel2     (12) 

… 

KT22 = KVis22 + KVel22     (13) 
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… 

The accumulation of balancing games,6 along with the reciprocal effect between components, reflects 

the challenge of effective knowledge acquisition. This is particularly relevant in the context of 

technology transfer, where balancing choices are insufficiently well informed because of initial 

constraints on the knowledge acquirer (i.e. developing countries), such as insufficient prior 

knowledge. 

 

 

 
Figure 3: Velocity vs viscosity throughout the product breakdown structure 

 
Source: Authors. 

 

 

Interplay between component and architectural knowledge  

In the interplay between component and architectural (or integrative) knowledge, the technology 

acquirer’s objective is assumed to be maximisation of transferred knowledge. It is therefore clear from 

Equation (11) that an increase in knowledge transfer (KT0) related to the technological system requires 

a corresponding increase in either the depth of knowledge (KVis0) or the breadth of knowledge (KVel0) 

given the inverse relationship between these factors.  

The first scenario is to increase the depth of knowledge (KVis0) which implicitly means the depth of 

integrative knowledge. This knowledge can increase up to a point, but beyond a certain threshold the 

extent of component knowledge impedes further deepening [3]. In other words, it offers a margin for 

progress, but remains limited because it cannot go beyond a certain level of integration unless more 

is known about the components. Consequently, in order to know more about the components, there 

is a need to explore the second scenario.  

The second scenario is to increase the breadth of knowledge (KVel0), which implicitly means 

knowledge about the components. From equation (7), an increase in KVel0 requires an increase in C1, 

C2, …, or Cn. Component C2 is considered as an example.   

Equation (2) shows that increasing the knowledge about component C2 requires more knowledge 

about its sub-components C21, C22, …, C2m, which is equivalent to KVel2 (Equation (8)) or its integrative 

knowledge I2, which is equivalent to KVis2 (Equation (5)). KVis2 remains limited and cannot go beyond 

                                                           
6 The concept of ‘balancing games’ is borrowed from game theory to show the difficulty of seeking the balance 

between velocity-viscosity [79]. 
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a certain threshold because it is bound to the sub-components. KVel2 and KVis2 are inversely 

proportional, so as KVel2 increases, KVis2 decreases, and vice versa. Likewise, the example of 

increasing knowledge about one of C2’s sub-components (C22) is examined below. 

Equation (3) indicates that an increase in knowledge about sub-component C22 requires an increase in 

knowledge about its sub-subcomponents C221, C222, …, C22m, which is equivalent to KVel22 (Equation 

(9)) or its integrative knowledge I22, which is equivalent to KVis22 (Equation (6)). Similarly, KVis22 

remains limited and cannot rise above a certain threshold, because it is bound to the sub-

subcomponents. Furthermore, KVel22 and KVis22 are inversely proportional. In order to increase 

knowledge, the same rationale can be applied down to the lowest level of decomposition.  

It is clear from the above that intra-level factors are interwoven. For example, integrative knowledge 

at one level depends on the component knowledge at the same level. Likewise, inter-level factors are 

related to each other, given that any attempt to increase knowledge about a single component 

requires a corresponding knowledge increase at lower levels (i.e. among the sub-components). The 

challenge is even greater when it comes to increasing knowledge about several components.  

Graphically, the range of balancing options offered to the technology acquirer is represented in Figure 

2 by the curve labelled set of combinations. In other words, any technology acquirer making the trade-

off to increase either depth of knowledge (KVis0) or breadth of knowledge (KVel0) will likely have to 

traverse this curve. The challenge of disentangling component knowledge and integrative knowledge 

suggests that a third scenario can be adopted in order to increase transferred knowledge, i.e. KT0 (see 

Equation (11)). This involves increasing both the depth of knowledge (KVis0) and the breadth of 

knowledge (KVel0), or increasing one of them without decreasing the other. 

Because the two factors are inversely proportional, increasing both factors simultaneously is only 

possible by achieving the kind of shift represented in Figure 4. Such a shift is achieved through 

structural, multi-dimensional and systemic measures (e.g. creating an innovative environment, 

investing in education, fostering collaborative work, or improving absorptive capacity of learners) 

involving political, socio-economic and organisational factors. At a project level, the shift could be 

implemented by improving the prior knowledge of the transferee’s engineers (e.g. academic and 

professional background, preparatory activities ahead of the project, appropriateness of knowledge 

compared to requirements) and intensity of effort they invest in the learning process (e.g. 

appropriateness of effort for tacit or explicit learning, and incentives).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4: Increasing knowledge breadth and knowledge depth 
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Source: Authors. 

 

 

 

6- Applying the model to small satellite technology transfer to Algeria 

The knowledge flow model formulated in Section 5 can be used to evaluate complex technology 

transfer from developed to developing countries. It was tested as part of a broader empirical study 

aiming to evaluate small satellite technology transfer to Algeria. Since the early 2000s, Algeria has 

used the mechanism of collaborative projects in order to build up its small satellite capabilities. The 

question that currently arises is how effective were collaborative projects?  

The model was applied to three collaborative small satellite projects (Alsat-1, Alsat-2, and Alsat-1B) 

used by the Centre for Satellite Development (CSD), one of the Algerian Space Agency’s affiliates, to 

acquire small satellite technology and build local capabilities. The declared objective of CSD is to build 

local capabilities to integrate satellites (but with no further detail on the nature of these capabilities). 

Alsat-17 and Alsat-1B8 are small satellites built in 2000 and 2014, respectively, in conjunction with 

SSTL-UK. They were launched in 2002 and 2016, respectively. Alsat-2 is a pair of identical satellites 

(Alsat-2A and -B)9 built jointly with Airbus-France. The Alsat-2 project is perceived as one system, 

because most project phases began in 2005 and involved both satellites. Alsat-2A was completed and 

launched in 2010, whereas the integration and test phase of Alsat-2B commenced in 2012. Alsat-2B 

was launched in 2016. The selection of the partners (SSTL, Airbus) was based, inter alia, on satellites 

built using approved technologies with a proven space heritage. Satellite projects are generally 

conducted as per two major phases: (i) the design (Mission analysis/needs identification, Feasibility, 

Preliminary Definition, Detailed Definition), and (ii) implementation (Manufacturing (or procurement), 

Assembly and Testing, Launch and operations, Disposal) [20]. The design knowledge was not the focus 

of the collaborative projects under study because projects involved mature technologies inherited 

from previously approved designs. Algerian engineers were involved only in the implementation 

phase. 

                                                           
7 Alsat-1 is classed as a micro-satellite (mass = 92 kg) 
8 Alsat-1B is classed as a mini-satellite (mass = 110 kg) 
9 Alsat-2A and Alsat-2B are classed as mini-satellites (mass = 120 kg) 
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Algerian engineers involved in the projects were selected according to their academic (selection of 

recent top graduated engineers) and professional backgrounds. For each project, a new team was 

formed of engineers with no previous experience in satellite projects. It was CSD choice to expand the 

number of its engineers possessing certain experience in satellite projects. Each team was managed 

by an engineer selected from the previous project. Preparatory activities were conducted ahead of 

projects in order to assign a role to each member. The study evaluated this aspect by measuring the 

prior knowledge possessed by engineers. Prior knowledge is measured by evaluating the 

appropriateness of academic and professional backgrounds of participants in the project, the 

appropriateness of preparatory activities ahead of the project, and the appropriateness of knowledge 

possessed to requirements during the project (through the Likert scales).  

The collaborative mechanism applies to projects where a combination of academic and hands-on 

technical training was provided to the client’s engineers [4]. During the implementation phase with 

Algerian Space Agency, the academic teams10 were separated from the hands-on technical teams. The 

latter received some lecture-based classes, and then spent time working together as teams with 

supplier engineers to build and launch the satellite. The mentoring provided by the supplier’s 

engineers enabled the client’s engineers to commence work on complex systems and to acquire and 

hone the diverse set of skills required for satellite development. The knowledge flow model was 

applied to the project teams involved in hands-on technical training (through mentorship). 

 

6-a- Data collection 

A mixed-method quadrilateral data acquisition method was used, incorporating four mutually 

reinforcing methods: secondary data, structured/semi-structured interviews, semi-structured/in-

depth interviews, and participant observation. Staged fieldwork was conducted in three campaigns, 

spread over a 13-month period from April 2016 to May 2017, to gather data from participants at three 

levels of analysis: individual and team level (micro-level), organisational and inter-organisational level 

(meso-level) and sectoral, national and international level (macro-level). The original aim was to 

conduct 65 interviews, representing the entire population involved in small satellite projects (i.e. a 

census and not a sample). However, only 48 interviews were conducted, representing a participation 

rate of 73.84%.  

At the micro and meso levels, 40 mixed (structured and semi-structured) interviews were conducted. 

Five interviews with representatives of entities involved in satellite capability-building in Algeria and 

their foreign satellite suppliers, and 35 interviews with members of satellite project teams involved in 

the hands-on technical training through mentorship. The targeted number of interviews was 52, of 

which 47 were engineers who participated in the hands-on technical training in the satellite projects, 

Alsat-1, Alsat-2A & 2B and Alsat-1B. Eight semi-structured and in-depth interviews were held at both 

the meso and macro levels. Questions were addressed to representatives from the CSD and the 

Algerian Space Agency’s local partners and top management. To ensure validity and reliability, the 

questions were sent to the interviewees well before the interviews. They were self-administered in 

the initial stage, and later they were interviewer-administered. Interviews were administered in 

French and English, as interviewees use one or both of these languages in their everyday professional 

activities. Each interview lasted 90-180 minutes. Participants were assured that only aggregate data 

would be presented, to encourage full disclosure.  

                                                           
10 The academic teams were used later in local Algerian projects (but were not part of the collaborative projects 

presently under study). 
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Participant observation was also used as a data collection method. It was conducted by the first author 

of the present paper, who has worked in the Algerian space sector for the last 16 years at both the 

technical and managerial levels. Accordingly, his role has been a mixture of participant-as-observer 

(i.e. involved in space activity, overt observation) and observer-as-participant (i.e. uninvolved in space 

activity, overt observation) [43, p.88; 44, p.454]. The overlapping roles reflect interrupted 

involvement, i.e. previous or sporadic engagement over time and revealed identity [45, p.144]. The 

participatory observation generated data consisting of primary and secondary observations as well as 

experiential data. Primary observational data relate mainly to proceedings in meetings held between 

the CSD and suppliers. Secondary observational data relate to a number of informal conversations 

conducted in the first author’s presence. Experiential data relate to perceptions formed by the author 

during observation. 

 

6-b- Earth observation small satellite architecture 

The knowledge transfer model in this article considers typical Earth observation small satellite 

architectures, including satellites developed for Algeria [29, 46-49]. A small satellite can be divided 

into a ground segment and a space segment (Figure 5). The ground segment refers to the components 

used to operate the satellite once in orbit and to receive and process data such as satellite images. 

The space segment refers to the satellite itself (or a constellation of satellites like Alsat-2A/B). The 

satellite comprises a platform which carries one or several payloads consisting of optical 

instrumentation (e.g. cameras) and related modules used to capture images (e.g. control and 

processing electronics). The platform provides services through the following subsystems: (i) data 

handling system or on-board computer (OBC) linked to the majority of satellite subsystems in order 

to manage satellite operations and complete the objectives of the mission; (ii) attitude and orbit 

control system (AOCS), consisting of attitude (position and behaviour) modules allowing the attitude 

of the satellite to be determined and actively controlled; (iii) power system capable of generating, 

storing and managing the power needed for mission operations; (iv) propulsion system used to move 

the satellite; and (v) communication system used to communicate with the ground station. 

In addition to these components, the ground support equipment is also considered part of the space 

segment. This includes all electrical and mechanical items and software used to support the assembly, 

integration and testing of the platform and payload. Typically, this also includes the mechanical 

ground support equipment (MGSE) and electrical ground support equipment (EGSE). The latter is 

similar or identical to that of the actual ground segment and is used to test satellite subsystems (e.g. 

the communication, power and attitude control systems).  

The knowledge flow model is applied to three collaborative small satellite projects: Alsat-1, Alsat-2 

and Alsat-1B. It was applied to project teams involved in hands-on technical training (through 

mentorship). Knowledge flow with regard to the ground segment is not evaluated by this model, 

because all Algerian collaborative projects have focused on the space segment. Ground segments 

were acquired only to exploit the space segments. No joint development or integration activities were 

carried out in the ground segments. Eight components of the satellite were identified, and to maintain 

anonymity and confidentiality, they are referred to as C1, C2, …, C8. Component identification stems 

from the fieldwork and takes into account the development philosophies of Alsat-1, Alsat-1B, Alsat-

2A and Alsat-2B. The structure presented in Figure 5 refers only to a subsumptive containment 

hierarchy (or taxonomic hierarchy), which classifies components of a “generic” satellite [70].  
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Figure 5: Small satellite structure  

 
Source: Authors 

 

6-c- Application of the model to the Alsat-1 project 

As shown in Section 5 (Equation (11)), the transferred knowledge equates to KT0 = KVis0 + KVel0.       

KVis0 = I0, providing an indication of the depth of integrative knowledge required to put satellite 

components C1, C2, …, C8 together. Furthermore, KVel0 = C1 + C2 + ... + C8, providing an indication of the 

breadth of knowledge transferred during the project’s lifetime. This is reflected in the number and/or 

diversity of components involved in the transfer process, along with the depth of knowledge 

associated with each component. 

The following calculations aim to measure three quantitative findings: the depth of integrative 

knowledge (KVis0) and the breadth of knowledge (KVel0) in this section (6-c), as well as the transferee 

absorptive capacity (AC) in section 6-e. It is worth recalling that the focus of the proposed model is 

not how fast did engineers learn. The focus is what did they learn (the type and quantity/volume of 

knowledge). The concepts of Viscosity and Velocity are rarely operationalised in the technology 

management and innovation literature. In the proposed operationalisation, these concepts are not 

used as a measurement of “speed” in which there is a need to incorporate the requirement of “time”. 

Instead, the knowledge that flows as a result of viscosity (KVis), and velocity (KVel) is used (footnotes 

4 and 5 in section 5 highlight caveats so as to avoid misunderstanding). This is why the knowledge 

transferred (KT) for each component of the system is given by the equation (10): KT (as a metric of a 

quantity or volume of knowledge) = KVis (as a metric of a quantity or volume of knowledge, and not 

speed) + KVel (as a metric of a quantity or volume of knowledge, and not speed). 
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Measuring the depth of integrative knowledge: 

The depth of integrative knowledge is measured using two metrics: the intensity of interactions 

between Algerian team members (as a proxy for group work), and their degree of involvement during 

the project in the integration and test operations. The average of these two measures (giving equal 

weight to each metric) is calculated as the value of integrative knowledge.  

With regard to the intensity of interactions, the N2 diagram (Figure 6) is used to illustrate interactions. 

This matrix is built by the components of the studied satellites arrayed along rows and columns. The 

interactions between individuals or teams in charge of these components are recorded in the cells. If 

the individual or team in charge of the component Ci receives inputs (or information) from Cj, then the 

cell (i,j) is shaded. If the individual or team in charge of the component Ci provides outputs (or 

information) to Cj, then the cell (j,i) is shaded. The interaction is not symmetric unless Ci receives inputs 

from Cj and provides outputs to Cj.11 

This matrix is compiled from the analysis of the individual/team work packages and tasks,12 

substantiated by responses to interview questions about joint tasks during the course of the project 

(e.g. what are your interactions with individuals or teams working on other components? What are 

the inputs you received from them? What are the outputs you send to them? How frequent are these 

interactions? How deep are these interactions?). As mentioned in section 6-a, to ensure validity and 

reliability, the questions were sent to the interviewees well before the interviews. They were self-

administered at the initial stage, but later were interviewer-administered. The shaded cells in the 

matrix indicate interactions between components (or the individuals or teams in charge of them).13  

Interactions for each project are assigned values from 0 (low) to 1 (high). The following assumption is 

made: when the interaction value tends towards 0, it means that Algerian engineers (as learners) work 

separately without interactions. On the other hand, when the interaction value tends towards 1, it 

means that interaction is very intense. This interaction is expressed by the ratio: number of shaded 

cells/total cells.14 For Alsat-1 team members, the final score is calculated as the number of shaded 

cells divided by the total number of cells (19/64 = 0.29) 

 

 

 

 

 

 

 

 

 

 

Figure 6: Interaction matrix for the Alsat-1 project 

                                                           
11 These interactions do not include any parameters other than “inputs” and “outputs”. 
12 Work packages are documents describing tasks undertaken by members of the project.  
13 If more than one individual is in charge of a component, an average value is calculated (giving equal weight to 

all individuals). 
14 We choose to include the matrix diagonal, implying that an individual or team in charge of a component 

interacts with itself. 
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Source: Authors 

To ascertain degree of involvement during integration (i.e. putting components together) and testing 

operations, each team member was asked to quantify their level of involvement during the project 

(through the Likert scales). On a scale of 0-to-1, the participants gave an average rating of 0.37. 

Integrative knowledge was calculated as the average intensity of interaction and degree of 

involvement in integration and test operations. Consequently, the depth of integrative knowledge for 

Alsat-1B was calculated as follows:  

KVis0 = I0 = (interaction score + involvement score)/2 = (0.29 + 0.37)/2 = 0.33  

 

Measuring the breadth of knowledge: 

The transferred component knowledge, or breadth of knowledge transfer, during the project is 

reflected by the number and/or diversity of components involved in the transfer process, along with 

the depth of knowledge associated with each component. 

Eight components were used in the Alsat-1 project, corresponding to the highest component score 

(=1). This means that there were eight components that could be learned about (i.e. C1, C2,  ... , C8). 

With respect to the depth of knowledge associated with each component, it was determined by 

comparing the number of Algerian engineers who participated in the development of each component 

to the number of engineers required for the development, ceteris paribus.15  It was difficult to collect 

data about the number of engineers required for the development of each component (mainly 

because the mandates of the required engineers overlapped and it was easy to get confused).16 To 

overcome this constraint, an aggregated metric was used, namely the number of Algerian engineers 

who participated in the development of all components compared to the number of engineers 

required for the development of all components. According to the participants interviewed from the 

transferor and transferee’s side, 65 individuals were typically required by SSTL-UK to build all the 

                                                           
15 For simplicity and practicality, it is assumed that transferee and transferor’s engineer have the same 

absorptive capacities (i.e. same prior knowledge and intensity of effort). 
16 In general, Algerian engineers didn’t rotate and worked on the same satellite component throughout their 

time. This is due to their background, their low number and the limited exposure to the system (duration of the 

project). 
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components of the system, whereas only eight Algerian engineers took part in this project. This gives 

the following ratio: 

number of Algerian engineers/the required number = 8/65 = 0.14 

Consequently, breadth of knowledge for Alsat-1 could be calculated as follows:  

KVel0 = actual number of participants / required number of participants = 8/65= 0.14 

 

Graphical representation of the knowledge flow: 

The transferred knowledge for the Alsat-1 satellite can therefore be calculated as follows: 

KT0 = KVis0 + KVel0 = 0.33 + 0.14 = 0.47 (Figure 7). 

 

Figure 7: Knowledge flow in the Alsat-1 project 

 

Source: Authors 

 

 

6-d- Application of the model to the Alsat-2 and Alsat-1B projects 

The steps outlined above for the application of the model to the Alsat-1 project were subsequently 

applied to the Alsat-2 and Alsat-1B projects. Table 1 summarises the value of the transferred 

knowledge according to the proposed model. Figure 8 shows interaction matrices for Alsat-2 and 

Alsat-1B. 
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Table 1: Knowledge flow values for the Alsat-2 and Alsat-1B projects 

Alsat-2  Alsat-1B 

KVis0 

Depth of integrative 

knowledge = 

(0.25+0.90)/2=0.57 

Intensity of interaction = 0.25 KVis0 

Depth of integrative 

knowledge = 

(0.5+0.65)/2=0.57 

Intensity of interaction = 0.5 

Degree of involvement = 0.90 Degree of involvement = 0.65 

KVel0  

Breadth of knowledge 

= 0.11 

Number of components = 7 * KVel0 

Breadth of 

knowledge = 0.18 

Number of components = 8 

The ratio number of Algerian 

engineers/the required 

number = 8/70=0.11 

The ratio number of Algerian 

engineers/the required number = 

13/70=0.18 

Prior knowledge 0.62 ** Prior knowledge 0.78 ** 

KT0 = KVis0 + KVel0 = 0.57+0.11=0.68  KT0 = KVis0 + KVel0 = 0.57 + 0.18 = 0.75 

* Calculations are based on a 7x7 matrix. 

** See section 6-e for calculations. 

 

Source: Authors 

 

 

 

 

 

Figure 8: Interaction matrices for the Alsat-2 and Alsat-1B projects 

  

Alsat-2 Alsat-1B 

 

 

Source: Authors 

 

Based on the values in Table 1, the knowledge flow during the Alsat-2 and Alsat-1B projects can be 

graphically represented as shown in Figures 9 and 10. 
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Figure 9: Knowledge flow in the Alsat-2 project 
 

 

Source: Authors 

 

 

 

Figure 10: Knowledge flow in the Alsat-1B project 
 

 
Source: Authors 

 

 

 

6-e- Impact of transferee absorptive capacity on knowledge flow 

The graphical representation of the knowledge flow model applied to the three projects shows that 

there are shifts in terms of initial values on the ordinate axis. These shifts relate to the initial value of 

knowledge. These shifts are denoted IV (for Initial Value) and are highlighted in Figure 11. Even though 

the shifts are not significant, the graphical representation shows that IVAlsat-1B > IVAlsat-2 > IVAlsat-1. 
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Figure 11: Effect of absorptive capacity in the Alsat-1, Alsat-1B and Alsat-2 projects  

 

 

Alsat-1 Alsat-2 Alsat-1B 

 

Source: Authors 

 

 

These data suggest that the initial value of knowledge correlates with the absorptive capacity of 

learners involved in the satellite projects. The value of the absorptive capacity of learners is estimated 

below, where AC denotes absorptive capacity. According to Cohen and Levinthal [26], the absorptive 

capacity of learners is reflected through the prior knowledge possessed by the learner (denoted by 

PK) and the intensity of effort invested in the learning process (denoted by Inty).    

AC = PK + Inty     (14) 

Prior knowledge (PK) is measured by evaluating the appropriateness of the academic and professional 

backgrounds of project participants, the appropriateness of preparatory activities ahead of the 

project, and the appropriateness of knowledge possessed against requirements during the project 

(through the Likert scales). On a scale of 0-to-1, the average PK ratings of the three projects were 

PKAlsat-1 = 0.58, PKAlsat-2 = 0.62, and PKAlsat-1B = 0.78. 

With regard to the intensity of the learning effort, it is important to recall that technological 

knowledge includes two complementary elements: tacit and explicit knowledge [9,10]. Intensity of 

effort is therefore a combination of the intensity of tacit learning and the intensity of explicit learning. 

Because it is difficult to estimate the two elements and their appropriate combination quantitatively, 

the intensity of effort during the three projects was assumed to be similar.  Consequently, the learners’ 

absorptive capacity is reflected only by their prior knowledge in each project. The prior knowledge in 

Alsat-1B (PKAlsat-1B = 0.78) was more significant than that in Alsat-2 (PKAlsat-2 = 0.62) and Alsat-1 (PKAlsat-

1 = 0.58). The increased value over time reveals a tendency towards improving prior knowledge of the 

project participants. This was confirmed, as managerial-level participants in this empirical study have 

observed improvements in the selection of team members and their preparation for the project, 

through for instance, selection of recent top graduated engineers along with longer preparatory 

activities for the project.  

 

7- Discussion 

The application of the knowledge flow model to the three Algerian small satellite collaborative 

projects was only possible at the upper level of the decomposition-integration process (Figure 12). No 

significant activities were measured at lower levels because the model was not applicable, given that 

only a few of the transferee’s engineers worked at component levels S1, S2, …, Sn. Thus, it was not 

possible to measure the architectural/component knowledge pairs at these levels. In other words, 
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knowledge that flows as a result of velocity and viscosity was only measured at the upper level S0 

(Figure 12).     

 

Figure 12: Upper level of the decomposition-integration process 

 

Source: Authors 

 

The application of the model reveals that Algerian teams involved in the process slightly improved 

their level of architectural knowledge as required for the integration of small satellites. Figures 7, 9 

and 10 illustrate the increase in terms of architectural knowledge (or knowledge that flows as a result 

of viscosity KVis0). However, component knowledge (or knowledge that flows as a result of velocity 

KVel0) remained limited across all projects. This result matches the responses received during 

managerial-level interviews regarding the knowledge acquired by Algerian teams. Indeed, the 

interviewees highlighted the fact that, unlike the initial satellites (Alsat-1 and Alsat-2A), the Algerian 

teams locally integrated the two subsequent satellites (Alsat-2B, and Alsat-1B) at Algerian facilities, 

demonstrating greater independence. The interviewees emphasise that the integration process was 

carried out under minimal supervision from transferor representatives, a deliberate move intended 

to enhance local team confidence. 

On the other hand, responses concerning the ability to build components locally (i.e. acquiring 

component knowledge at lower levels in Figure 12 such as S2, S21, S22…) were less categorical. At the 

individual and team levels, there was a general consensus that human resources were well below the 

requirements for building such components. Interviewees reported that only 14% of the human 

resources required for component development were allocated to the projects. Consequently, due to 

the low number of individuals taking an active part, the absorptive capacity of the acquirer was limited 

from the outset. The limited number of Algerian engineers, added to the constrained duration of the 

projects, prevented them from engaging in work rotation on other satellite components that could 

have given them multi-component vision experience, facilitating the acquisition of more integrative 

knowledge.   

Another aspect that particularly affects component knowledge acquisition is the slight difference in 

terms of component knowledge (or knowledge that flows as a result of velocity KVel0) acquired in 

projects conducted with SSTL-UK (Alsat-1 and Alsat-1B) and Airbus-France (Alsat-2). Component 

knowledge in the Alsat-1 and Alsat-1B projects was slightly higher than in Alsat-2, partly due to the 

company size and business model adopted by the technology transferor. In the Alsat-1 and Alsat-1B 
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projects, the bulk of component development, satellite integration and testing were insourced at 

SSTL-UK. This high level of vertical integration, which goes a long way towards explaining the durability 

of SSTL-UK [50], provided an opportunity for Algerian engineers in collaborative projects to be in direct 

contact with component technology, and to increase their own knowledge. On the other hand, data 

collected on the Alsat-2 project highlight that the Airbus approach to building satellites is different. It 

is a large company which focuses on building integrative knowledge (or knowledge that flows as a 

result of viscosity flows only at higher level of decomposition/integration) and outsourcing component 

development [51].17 This business model seems to inadvertently steer Algerian participants away from 

acquiring component knowledge. 

With regard to the indigenisation of the acquired knowledge, the data indicate it is premature to 

broach questions about technological local value creation, for example by establishing a local supply 

chain. Some initiatives involved local industry as part of collaborative projects to manufacture non-

core elements of the satellite system. However, the density and continuity of interactions have been 

insufficient, and local companies must upgrade to comply with space-industry quality requirements 

(e.g. specification definition, accuracy, traceability of measurements, test procedures) and 

management practices. Concerns also extend to the incentives offered by the Algerian Space Agency 

and the broader policy towards local actors.  

Building a local supply chain is also influenced by the technical architecture of the satellite and 

whether its components can be insourced or outsourced. Algerians acquired a shallow18 form of 

satellite architectural knowledge, mostly oriented around engineering and development. The design 

knowledge was not the focus of the collaborative project, because each project involved mature 

technologies inherited from previously approved designs. Rather, the focus was on the project 

implementation phase [22]. The data revealed that the emphasis in collaborative projects was on 

developing an integrative knowledge, or a form of architectural knowledge. The latter originates from 

knowledge of the product design [33, 17], yet design knowledge is largely overlooked in the 

mechanism of collaborative projects. This may represent one of the main contradictions or limitations 

of the collaborative mechanism. Another downside is that projects are conducted based on mature 

technologies held by the transferor. The transferor logic prevails, sometimes reducing the transferee’s 

engineers to the level of trainees without active participation. These limitations can also be explained 

by the non-alignment of objectives between the transferor and transferee. The transferee was driven 

by non-economic and developmental goals whereas the transferor was driven by economic goals 

(profit-seeking). The transferor thus adopts a restrictive posture (e.g. Intellectual property protection) 

to prevent the risk of technological leakage that might fuel future competition.   

 

8- Conclusion and recommendations 

The Algerian Space Agency uses collaborative projects to acquire small satellite technology from 

abroad and to build local capability. The implementation of the knowledge flow model revealed that 

the collaborative projects enabled only the acquisition of a shallow form of architectural knowledge 

(where the knowledge does not go deeper), detached from the local environment. The findings 

underscore the limitations of this mechanism and the challenge faced by the CSD to find the 

appropriate balance of component/architectural knowledge and knowledge ‘resulting from’ 

velocity/viscosity across all levels of the decomposition-integration spectrum. 

The CSD is a limited-resource organisation. The literature on strategy and innovation suggests, as 

explained in section 2, that the optimal choice for organisations with limited resources is to narrow 

                                                           
17 Despite the acquisition of SSTL by Airbus Group in 2008, SSTL’s approach to building satellites remains different 

from that of Airbus. 
18 Knowledge that flows as a result of viscosity does not flow beyond the upper level of decomposition/ 

integration process (it remains shallow). 
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the scope of their activities. Therefore, one recommendation is that CSD narrows the scope of its 

activities. A plausible option would be the development of internal satellite design capabilities along 

with assembly, integration and test capabilities (i.e. deepening the flow of viscosity at upper levels of 

the satellite system – some architectural knowledge). In parallel, some crucial components should be 

insourced (i.e. deepening the flow of velocity of a limited number of components – some component 

knowledge is insourced), whereas non-bottleneck components should be outsourced.  

This strategic choice might be perceived as inconsistent with Algeria’s objective of generating local 

value through establishing a national satellite industry. However, assembly, integration, and test 

operations in the particular case of small satellite technology should not be underestimated and 

viewed as mere screwdriver operations. The ability to conduct such operations is vital in small satellite 

development, notably when the industry trend is towards integrating commercial off-the-shelf 

components, which require little in the way of component knowledge [52]. On the other hand, given 

the interwoven nature of satellite architectural and component knowledge, and the knowledge that 

flows from velocity and viscosity, the choice of components to insource should be based on how 

strongly coupled they are to the architectural capabilities deemed important to build. Further research 

should address the choice of components for adoption by the technology acquirer and their interplay 

with both the satellite architecture, and the organisational structure of the technology acquirer. This 

would require a review of emerging trends in small satellite technology (for which technological 

forecasting techniques would be critical) and the appropriateness of such trends for developing 

countries (e.g. characteristics of organisations in developing countries, the mirroring of technical 

dependencies and organisational ties).  

This article is one of a small number of empirical research reports addressing satellite technology 

development in developing countries at a finer level of aggregation. The proposed knowledge flow 

model was tested within the setting of small satellites in Algeria. However, it may also be applicable 

to other complex technologies in different contexts (e.g. transfer from developed-to-developed 

countries), provided that it can be empirically tested, enriched and adapted through further research.  

Finally, it is important to recall that the proposed model can be used to evaluate and characterise the 

knowledge flow enabled using joint-projects as a technology transfer mechanism, and to guide 

transfer processes whose success depends on multiple political, socio-economic and organisational 

factors, as well as exogenous and endogenous factors.     
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