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Abstract: In this paper, we present challenges and achievements in development and use of a
compact ultrasonic Phased Array (PA) module with signal processing and imaging technology for
autonomous non-destructive evaluation of composite aerospace structures. We analyse two different
sets of ultrasonic scan data, acquired from 5 MHz and 10 MHz PA transducers. Although higher
frequency transducers promise higher axial (depth) resolution in PA imaging, we face several signal
processing challenges to detect defects in composite specimens at 10 MHz. One of the challenges
is the presence of multiple echoes at the boundary of the composite layers called structural noise.
Here, we propose a wavelet transform-based algorithm that is able to detect and characterize defects
(depth, size, and shape in 3D plots). This algorithm uses a smart thresholding technique based on the
extracted statistical mean and standard deviation of the structural noise. Finally, we use the proposed
algorithm to detect and characterize defects in a standard calibration specimen and validate the
results by comparing to the designed depth information.

Keywords: ultrasonic NDE; autonomous inspection; ultrasonic phased array; NDT; composite
materials; depth resolution; defect sizing

1. Introduction

This work is part of the EU-H2020 FET-OPEN CompInnova project [1] that aims to develop an
innovative solution for the automatic Non-Destructive Testing (NDT) inspection, sizing, localization
and repair of damages on aircraft composite structures [2,3]. For the NDT inspection phase,
the CompInnova solution employs two different and complementary technologies: (i) Infrared
Thermography (IRT) to detect near-surface defects, and (ii) ultrasonic Phased Array (PA) for sub-surface
defects. The combination of these two methods in the overlapping areas is also considered as the future
work in CompInnova, in order to improve the accuracy of detection. These modules are mounted on a
vortex robot for autonomous inspection of composite structures [4].

There is an increasing use of ultrasonic phased array [5–12] in recent years in comparison to
conventional single transducer ultrasonic inspections for NDT, due to their flexibility, speed of
operation and good imaging performance. Ultrasonic phased arrays are able to capture multiple
A-scans (full waveform) and provide a B-scan (a cross-sectional view of the specimen to show depth
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and size information of defects) at each measurement [5,6]. The authors in [6] showed that ultrasonic
wheel arrays can produce C-scans (a top-view of the material to illustrate location and size of defects)
with a comparable quality to an immersion system, with a much shorter scanning time. A recent study
has compared the ultrasonic inspection of composite materials using single element and phased array
ultrasonic testing methods [13]. This study highlighted that, although both methods can be used for
inspecting materials with a thickness of up to 25 mm, the phased array provides more stable signal
parameters and a higher chance of detection for lower signal strength.

The use of autonomous systems for non-destructive testing utilising a wide range of sensing
techniques has been explored by several researchers in the literature. For instance, robotic platforms
have been designed and developed for the inspections of long welded lines [14]. A relatively
recent literature review about climbing robots was carried out by Schmidt et al. [15]. The use
of unmanned aerial systems for the visual inspection of aircraft wing panels was described by
Malandrakis et al. [16]. The application of ultrasonic phased array for automated inspections has
been recently explored in [17,18], leveraging different technologies such as robotic manipulators and
robots for in-pipe inspections [19,20]. The solution proposed in the CompInnova project aims to step
change NDT inspections during scheduled maintenance C-check and D-check (heavy maintenance
checks), allowing faster repeatable inspections and accurate localization, sizing and classification of
defects. Having these maintenance checks automated, we can achieve a significant reduction in both
costs and inspection time [3]. A vortex-based robotic platform [21] is the solution chosen for the PA
and IRT automation of scanning process.

However, when the inspected material is not homogeneous, conventional ultrasonic imaging
techniques are not effective, and we need to employ signal processing techniques to improve the
temporal resolution of the ultrasonic signal [22]. Some studies suggest to use a combination of Wiener
filtering and autoregressive (AR) spectral extrapolation to improve signal-to-noise ratio (SNR) and
temporal (axial) resolution of the ultrasonic inspection [23–25]. They use Wiener filter for deconvolution,
then, using a part of the deconvolved spectrum with high SNR, an AR model of the process is built.
Next, the rest of the spectrum is extrapolated by the obtained AR model. However, performance of this
method strongly depends on the width of the frequency window and order of the AR filter [23,25].

Some other works assume that back-scattered ultrasonic echoes can be modeled as
superimposition of multiple Gaussian echoes and try to estimate multiple unknown parameters
of such model from the received signals [26,27]. This solution needs a multi-dimensional signal
optimization over multiple parameters, which requires extra processing power and may not converge
to the optimal solution [28].

Wavelet analysis is another method that has been widely used in many signal processing
applications for signal estimation, classification, compression and de-noising. [29]. Due to its
multi-resolution characteristics for signal decomposition, it has attracted significant attention from
many researchers in the area of ultrasonic NDT [30–36].

1.1. Challenges of Automated Post-Processing of PA Data

In general, phased arrays are able to electronically control their beam to scan, steer or sweep their
beams. One of the main advantages of the PA inspection with full waveform data capture and storage
is the ability to extract the depth information using sliding gate (window) analysis. Depth information
is crucial in the assessment of the defect, the state of the component and to decide whether repair,
replacement or no-action is needed. In addition, for the CompInnova concept, the depth information
is very valuable because it allows an accurate calculation of the volume and area of material that the
laser will remove during repair process.

Dead zone and limited axial (depth) resolution are the main drawbacks related to the use of
lower frequency PA ultrasonic transducers for defect detection and characterization of thin composite
structures [37]. The physical background of this limitation is related to the length of the wave packet
transmitted into the material by the PA transducer. When the distance between the echoes in the
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analysed A-scan is comparable or less than the width of the wave packet, the separation of these
echoes becomes a challenging task for the operator or automation of defect detection. The problem can
be illustrated by the following examples. Let us consider a pristine case, characterized by the A-scan
shown in Figure 1a, where the front surface and back wall echoes are clearly separated. In the presence
of a defect, with a large distance between the front surface and the back wall echoes (comparable
or greater than the width of the wave packet), we can make a clear distinction between all echoes,
i.e., localize each echo correctly. However, when echoes are partial overlapping, for example as it is
shown in Figure 1b, there is overlap between the defect echo and the back wall echo and proper defect
localization is either not possible or it will have a significant error when performed by conventional
gating methods. Because of this phenomenon, the depth of defects that are close to the front or back
walls is difficult to estimate. In addition, even when there is no echo overlap, due to the limited time
resolution of A-Scan signals, the defects in C-Scan obtained from unprocessed A-Scans may appear
to be much larger than the actual defects. In order to solve this problem, time resolution of A-Scan
signals needs to be improved.

Figure 1. Two different A-scans using 5 MHz PA transducer: (a) at a non-defective location, and (b) at
a location with defect close to back wall.

1.2. Necessity of High Frequency 10 MHz PA Transducer

There are fundamentally two resolutions in two different scanning axes which determine the
imaging performance of a PA C-scan image. One is the lateral resolution, and another is the axial
resolution. Furthermore, for thin composite structures, near surface resolution is also considered as an
important factor in PA transducer selection for estimating the defect depth accurately. Near surface
resolution depends on the extent of the dead zone of the transducer which in turn depends on the
pulse-width. The lateral resolution of the transmitted ultrasound beam depends upon the centre
frequency, bandwidth, and active aperture, near field distance from the transducer, material thickness
and material attenuation properties. Having a larger aperture and higher frequencies results in
a smaller beam width, which in turn causes a higher lateral resolution and sharper image [38,39].
The axial resolution is directly affected by the excitation frequency of PA transducers and the pulse
width. For example, given the velocity of longitudinal ultrasonic wave of 3000 m/s in a specimen
made of carbon fiber reinforced polymer (CFRP) and using 5, 10, and 15 MHz excitation frequencies,
the wavelength of longitudinal waves are 0.6, 0.3 and 0.2 mm, respectively. For a layer thickness of
0.18 mm, we have an axial (depth) resolution for the above frequencies in C-scan approximately equal
to the thickness of 3, 2, and 1 layers, respectively. We have observed that, with 5 MHz frequency, we
were able to detect and accurately quantify the lateral extent of embedded inserts and impact damages
in thin composites [37]. However, we were not able to resolve individual layers or plies at near surface
or far surface for such a frequency, without signal processing (because the excitation pulse contains 2
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to 3 cycles). Hence, a PA transducer frequency of at least 10 MHz is needed for defect depth estimation
in thin composites.

However, increasing the frequency of PA transducer results in the increase of the ultrasonic
attenuation and scattering noise from the material. The scattering noise is due to wavelength
being much closer to ply thickness, which causes internal reflections at each resin-ply interface
and results in a train of continuous noise-like signatures between the front wall and back wall of the
specimen [40]. This noise is known as structural noise and has the same spectral characteristic as the
defect echoes [41,42], and adds coherently as the ultrasound propagates in the material. Therefore, it is
necessary to improve the performance of the echo localization algorithm [37] in the presence of noise
by dedicated signal processing.

Another concern is about the interpretation of the PA data. Although manual interpretation is
the de facto standard for composite inspections, it is time-consuming, expensive, and represents the
major bottleneck of a PA inspection process. Advances in PA, full waveform data acquisition and
ease of application of signal processing during post-processing, have led to a new area of research in
semi-automated defect detection. Using this approach vast amount of data collected can be processed
efficiently using dedicated signal processing algorithms with only the most important information
presented to the NDT inspector. Additionally, 3D visualisation of defect in composite structures can
lead to better defect characterisation. One further challenge of post-processing PA ultrasonic data are
that the acquired phased array data of a larger area is presented by multiple strips of data. In the case
of manual phased array inspection, an experienced technician spends significant amount of time for
merging, aligning, stitching and adjustment of the individual strips before displaying a C-scan image
of the large structure. In manual inspection, re-scanning is sometimes required, due to lack of couplant,
variation of load applied on the probe or not capturing data along a straight line. However, scanning
the structure by a manipulator or robot is less prone to these problems since required pressure on the
wedge and uniform distribution of couplant is ensured. Thus, post processing of PA data can help to
automate or eliminate some of the manual post processing needs.

In this paper, we propose an algorithm based on wavelet transform for detection and localization
of defect echoes during the inspection of composite components using the high frequency ultrasonic
phased array. The proposed solution offers improved axial resolution while maintaining sensible
performance. We analyse two sets of scan data using 5 MHz and 10 MHz PA transducers, and address
the benefit of using higher frequency ultrasonic PA transducers. Subsequently, the signal processing
challenges of this choice is presented. Then, we propose solutions for the challenges and smooth the
way toward semi-automated PA inspection of composite structures at high frequency 10 MHz. Finally,
the paper is concluded in Section 4. The remainder of the paper is organized as follows. Section 2
begins with a short review of our echo localization algorithm with 5 MHz PA transducer presented
in [37], followed by the necessity and signal processing challenges for the use of high frequency
10 MHz PA transducers. Then, a modified version of our algorithm is proposed for 10 MHz. Next,
Section 3 illustrates how the algorithm is capable of visualizing echo location and post-processing
results in three-dimensional plots, which can be very helpful and easy to understand by the inspector.

2. Echo Detection and Localization

2.1. Composite Material and Phased Array Configuration

The material used for the experiment consists of a carbon reinforced epoxy resin laminate of
size 200×200 mm which is manufactured through a hand layup process using cross-ply (0/90)12 as
stacking sequence with uni-directional pre-preg IMS-977-2-34-24KIMS-196 material (with the following
material properties: E1 = 125 GPa, E2 = 8.68 GPa, G12 = 4.7 GPa) from CYCOM and cured in an
autoclave. The phased array module for data acquisition consisted of Sonatest (16:64) VEO+ series.
A Sonatest PA wheel probe 5 MHz with 64 elements and 0.8 mm pitch along with a longitudinal wave
10 MHz 64 element linear phased array transducer with a pitch of 0.6 mm from Sonatest X3 series
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with a custom developed flat elastomer wedge, are used to acquire data at two different frequencies.
Electronic scanning is performed with a group of eight active elements as active aperture, and full
waveform data are acquired at 125 MHz sampling frequency during NDT inspection. The total number
of A-scans that can be acquired with one line-scan of a PA transducer is equal to M = (number of
elements – active sub-aperture +1). Therefore, for a 64-element transducer and choosing 8 elements as
an active sub-aperture, the total number of A-scans will be M = 64− 8 + 1 = 57.

2.2. Baseline Echo Localization Algorithm

The baseline echo localization algorithm extracts the peak information for all echoes, following the
stages according to the flowchart shown in Figure 2 was initially presented in [37]. It builds a reference
echo model based on back wall echoes from a scanned area with no defects (later in the text, we may
call it reference model). Then, with the help of wavelet transform, it searches for all echoes having an
absolute amplitude above a certain threshold. Next, it finds the actual phase information of the echo
and calculates exact location of the defect by analysing the phase information from the defect echo and
the reference echo model. For the threshold, we use the following definition:

Threshold =
α

N

N

∑
n=1
|x(n)|, (1)

where α is a scaling parameter to control the threshold and N is the total number of samples of the
original signal x(n).

Figure 2. Flowchart of our baseline echo localization algorithm.

Having the echo reference model, the algorithm operates as follows:

• Compute the complex continuous wavelet transform of the signal x(t) to obtain the wavelet
coefficients - scalogram W(τ, f );

• The maximum value in the scalogram W(τ, f ) and its τW position is located over time axis;
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• An echo estimate is created by scaling the reference echo model and shifting to τW ± L (for a small
L) to find the best possible approximate of the echo of x(t). In other words, we have a window
with a width of 2L + 1.

• The echo estimate is removed from the original signal and the maximum amplitude (absolute)
value within the residue (remainder signal) is found and compared to the threshold. If this is
larger than the threshold, the resulting signal will become the input of the next iteration until the
maximum value of the residue is smaller than the threshold.

The above algorithm offers the following benefits:

• All echoes with an amplitude above the defined threshold are detected and localized considering their phase
information. In comparison, the conventional C-scan image generation method used only one
maximum peak using an absolute value of the rectified signal in the defined gate. In the best
case, this gate covers the whole distance between front wall and back wall echoes. When multiple
echoes are present in this gate, manual processing extracts only the strongest echo, other echoes
are missed. Furthermore, phase information of the strongest echo is missed.

• Overlapped echoes are also localized by the algorithm. Figure 3 shows an example of using our
algorithm for data obtained with 5 MHz PA transducer and its capability of localizing echoes,
even partially overlapped ones. Two cases of (i) having well separated echoes and (ii) echoes
with overlap are shown in Figure 3a,c. Comparing the results in Figure 3b,d, we can find the
relative depths of inserts by measuring the time of flight for the front wall (τf ), defect (τd) and
back wall (τb) echoes, and knowing the velocity of sound in the material. For example, assuming
the ultrasonic wave velocity is 3000 m/s, the thickness of the test specimen in the areas with no
inserts from Figure 3b, can be calculated as

x = v(τb − τf )/2 = 2.1 mm. (2)

The defect depth can be obtained by using τd instead of τb and it equals to 1.8 mm for the sample
with insert in Figure 3d. Having the insert thickness less than 0.1 mm, and each layer thickness of
0.183 mm, and knowing that each insert is placed between layer 10 and 11 (specimen consists of
12 layers), the above measures are reasonable.

Figure 3. Two different A-scans using 5 MHz PA transducer: (a) one at non-defective location, and (c) an
A-scan at a location with defect close to back wall; localisation results of the baseline localisation
algorithm for (a,c) are shown in (b,d) respectively, providing time-of-flight for the front wall (τf ), defect
(τd) and back wall (τb) echoes.
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In order to provide a clearer view for the inspector on the defect profile over the material
depth, visualization of the localization results has been implemented. Section 3 describes this part in
more detail.

2.3. Processing Data from the 10 MHz PA Transducer

The use of 10 MHz ultrasonic transducers promises higher resolution of defect (depth) detection,
which will be useful in thin skin-stiffer panel and step-repaired panel to separate the echoes and
characterize damages.

It was found, however, that post-processing of inspection data using 10 MHz transducer is more
challenging in comparison with inspection data at 5 MHz. This is mostly due to structural noise,
affected also by higher sensitivity to distribution of couplant (sprayed water) and surface roughness.
A previously proposed algorithm was not performing well for this data from transducer with 10 MHz
and required some modifications to address the above issues.

Figure 4 illustrates some of the challenges for automated defect characterization with ultrasonic
scanning at 10 MHz. Figure 4a shows 3D plot of a frame of scan data, and Figure 4b presents three
different A-scans from the above set. We note that one frame corresponds to a single linear scan of the
PA probe over the specimen. Each frame consists of 57 A-scans in our PA device set up, and B-scan can
be provided as a two-dimensional image of each frame information. We use longitudinal full waveform
(A-scans) data captured by a portable linear PA transducer having 64 elements with 0.8 mm pitch.
In comparison to 5 MHz scan data (an example shown in Figure 3), we observe the following:

• The first challenge is the existence of multiple echoes between front wall and back wall,
i.e., structural noise, corresponding to the boundaries of layers. Due to this noise, detection
of defect echoes is much harder compared to the 5 MHz case, and we can only detect echoes
stronger than the structural noise (i.e., having higher amplitudes).

• Another issue is the higher attenuation of the propagating wave at a higher frequency. As a result,
defect echoes closer to the back wall have lower amplitudes. One practical solution found in the
literature is to apply a time gain compensation that increases signal amplification with depth.

• With the 10 MHz PA transducer, the amount of couplant (water) should be as small as possible
and it should be evenly distributed. Furthermore, a constant pressure should be applied to the
wedge. Excess of couplant causes reverberation of the signals and increases the front wall echo
length and hence the dead zone.

Figure 4. (a) 3D plot of full waveform scan data using 10 MHz PA transducers for a frame (one line-scan)
having defect echoes, and (b) three selected A-scans from this frame.

Due to increased sensitivity to a surface roughness at 10 MHz, we can see from Figure 5a that
misalignment of A-scans is amplified in comparison to 5 MHz results. Therefore, the error in depth
estimation is amplified too.
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Figure 5. Post processing of a frame (with defect echoes) at 10 MHz: (a) before, and (b) after applying
initial processing techniques (alignment, and linear slope gain), and (c) A-scan from defective region
before and after alignment and amplification.

To address this issue in our signal processing, prior to the echo localization algorithm, all A-scans
are aligned in time domain and amplified using time gain compensation (0.85 to 0.95 dB per mm).
This is to compensate the higher attenuation we observe in 10 MHz ultrasonic wave. Figure 5b,c
illustrate the alignment and amplification, respectively, for all A-scans of a frame that include defect
echoes. As a result, the extracted depth information for defect echoes is more consistent.

2.4. Modified Echo Localization Algorithm

In this section, we present a modified echo localization algorithm that is better suited to work with
10 MHz ultrasonic data. It is worth highlighting that, prior to our echo localization algorithm, we use
data pre-processing steps (namely the alignment and time-gain-compensation of the original data).
Successively, the output data are fed to the localization algorithm for further processing. The following
changes have been implemented in the modified algorithm:

• A threshold to ignore structural noise,
• Search Window width,
• Better echo-fit search methodology.

The algorithm searches for best echo fit is changed as follows. First, the position of the strongest
echo is found from the wavelet, similar to the baseline algorithm. Then, we define a window over
the max position with a width that corresponds to envelope width where its values are above the
threshold. Next, we use cross-correlation between the reference echo model and the windowed signal
followed by search for a combination of strongest echoes. These echoes are removed from the signal
resulting in the lowest residual signal in this window. After that, the algorithm analyses the rest of
A-scan signal (called residue) that has a maximum of its envelope above the threshold.

Flowchart of the modified algorithm is presented in Figure 6. We describe these changes and
modification with more detail in what follows:

1. Calculate wavelet transform of the signal,
2. Find the location of strongest peak from the wavelet scalogram,
3. Define a window at the location of the peak showing the area where envelope is above the threshold,
4. Calculate cross-correlation of the windowed signal xW(t) and the reference signal s(t), find the

two strongest peaks with correlation coefficients a1, a2 and their lag information τ1 and τ2 for
the next step. It is worth noting that in general we may need superimposition of more than
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two echoes to model the detected defect echo. However, for our measured data, we found that
two echoes corresponding to the first two peaks of the cross-correlation are sufficient for echo
representation.

5. Define two echo models for the signal from the cross-correlation peaks information by applying
coefficients and time-lags to the reference model, i.e., ŝi(t) = ais(t− τi) for i = 1, 2,

6. Subtract ŝ1(t) and ŝ2(t) from the windowed signal and select the echo model that gives us lower
residue value,

7. The procedure in steps 1–6 is iteratively applied for all remaining peaks above the threshold.

Figure 6. Flowchart of the modified echo localization algorithm. We note that the reference echo model
and the threshold are provided as input for this algorithm.
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We note that the reference echo model is a normalized version of the back wall echo that is obtained
by averaging over multiple back wall echoes taken from a scan area with no defect. Figures 7–9
illustrate the above steps of the algorithm.

This procedure continues iteratively until the peak echo amplitude values after subtraction in the
analysis window fall below the threshold. This is presented in Figure 8 and we see that, between the
two models, echo model 1 will be selected because it produces the lowest residual signal. As depicted
in Figure 9, after completing the echo localization in the first window, we have a new signal showing
detected echoes of the signal (solid black line), and one signal consists of extracted echoes’ peaks
information (peak value as a positive or negative real number, and its location is time) plotted in solid
red line. As seen in Figure 9b, the residual signal is updated and if it has a peak above the threshold,
the algorithm starts again to localize remaining echoes.

An important factor here is the right value of the threshold. If it is too low, we will see wrong
peaks detected due to having structural noise above the threshold. On the other side, if we select a too
high threshold, we may miss some defect echoes.

Figure 7. (a) Full wave A-scan with its envelope, threshold, and a window showing the area
where envelope is above the threshold, (b) reference echo model, and (c) cross-correlation between
the windowed signal and the reference model. A few largest peaks (based on absolute value of
cross-correlation) are shown with red markers.
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Figure 8. Full wave A-scan with two possible choices of echo models that differ by location, amplitude
and phase in (a,b), and corresponding residue signals after subtracting echo models from the signal
in (c,d).

Figure 9. (a) Original A-scan and its approximate (new signal) after the 1st step of performing echo
localization, (b) residue of the 1st step and its envelope that feeds back to the algorithm for next step,
and the peak echo information.
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2.5. Smart Thresholding

In order to optimise the detection process, we are looking for a solution that gives us a threshold
that is adaptive with respect to the structural noise level to avoid being wrongly detected as defect
echoes. We note that the structural noise should have the same shape as front wall and back wall
echoes except having lower amplitudes.

In this study, we select threshold following a data driven strategy. To realise this approach,
we analyze the distribution of the structural noise of the A-scans in the part of material with minimal
influence from the defect-related echoes. This allows for effective threshold selection due to various
conditions imposed by different amplitudes of the wave packet propagating in the media and variations
in the structure of the inspected material.

In order to analyze the distribution of peak absolute value amplitudes of the structural noise,
each A-scan is divided into three zones (see Figure 10): (i) Zone 1 or the dead zone that includes front
wall echo, (ii) Zone 2 that only include back wall echo, and (iii) Zone 3 or the area between Zone 1 and
Zone 2, and it contains structural noise and any possible defects. It is worth noting that these zones
can be defined by having the prior knowledge of the dead zone and the thickness of the inspected
composite material. Whenever there is any defect in Zone 3, the amplitude of front wall and/or back
wall in Zones 1 and 2 will be affected. Analysing the amplitudes in Zones 1 and 2, we have been able to
remove A-scans that include any defect in Zone 3 and obtain the distribution of structural noise with
minimal influence from the defect echoes. Figure 11 shows an example of applying such procedure for
a calibration sample (we analyse the results in more details in the next section). Comparing those two
histograms, we realize that the structural noise has a distribution on the left-hand side of the histogram
(with a peak approximately at 20 mV), with longer right tail as some of the few defect echoes are still
remaining in the search domain.

Observing the shape of the distribution in Figure 11a,b we can assume that the underlying
distribution is close to Gaussian. Therefore, to remove the anomalous right-tail of the structural
noise distribution, we have decomposed the empirical distribution of the noise into the mixture of
two Gaussian distributions. The decomposed distribution with lower mean is believed to be a close
representation of the true structural noise distribution in an area with no defects. The mean value (µ)
and standard deviation (σ) of this distribution are used to define the smart threshold. For example,
we use (µ + 4σ) as the smart threshold in the modified echo localization algorithm.

Figure 10. Zones 1, 2 and 3 for three different A-scans with and without defects.
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(a)

(b)
Figure 11. Histogram of the absolute peak values in Zone 3 for (a) all A-scans, and (b) A-scans with
no defects.

3. Three-Dimensional (3D) Visualization

Our algorithm extracts depth information of defects (based on time of flight information) for all
A-scans and visualize the results in 3D plot. It is also capable of slicing the depth information into
several zones and customizing each slice size which can be set, conveniently, equal to thickness of
the composite layer. Detection is performed in each slice separately, for example, based on amplitude
information. The depth of the zone is calculated according to time of flight information and a 3D plot
containing detected defects from each zone (slice) is created. Using this technique, it is possible to
quantify the defects layer-by-layer.

Figure 12 shows the result of using our signal processing, on the 10 MHz scan data in the
calibration sample with 12 layers and different types of inserts of size 6 × 6 mm located between
8th and 9th layers of the specimen, i.e., at a depth of eight layers [37]. Figure 12a shows a schematic
diagram of the inserts between 8th and 9th layers of the calibration sample with the following material
types from left to right: Teflon, Paper, Release tape, Bag tape, and Peel ply. Figure 12b shows a
volumetric plot of all echoes (with an amplitude above the threshold) versus thickness. It includes
echoes from front wall, back wall and defects. The colour map shows the amplitude of the echo at each
point considering the actual amplitude information from the full waveform A-scan signal (i.e., it can be
either positive or negative). Front wall peak position is taken as the reference for depth measurement.
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(a)

(b)
Figure 12. (a) Schematic of inserts (artificial defects) in the calibration sample and (b) 3D visualization
of localized echoes using our modified algorithm and the smart thresholding.

Figure 13a,b plots the size and depth information of defects. Size and depth estimates of these
artificial defects (6 × 6 mm inserts) are shown in Table 1 in more details. Sizing is performed by a
part of our code and it calculates the surface of detected defects in Figure 13b in mm2. We see that
estimated depth is quite accurate. Regarding the sizing at the first look, we see that some inserts are
oversized. One can notice that different materials have different reflectivity. For example, Teflon and
Release tape inserts have stronger reflections compared to other types. This effect is reflected in Table 1,
where size estimation for these two types are larger compared with others. Furthermore, Figure 13a
shows that outer borders of detected defects have lower amplitude compared to the inside areas.

(a)

(b)
Figure 13. (a) sizing, and (b) depth information of 6x6 mm inserts in the calibration sample.

We believe that the observed error in detected defect sizes is due to different reflection properties of
different insert materials. We address this issue by removing a lower 40th percentile of the cumulative
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distribution function (CDF) of absolute peak values of detected defect echoes shown in Figure 14a.
Results of such procedure are shown in Figure 14b. For this case, we achieve following defect sizes
(in mm2): Teflon (reduced to 36.6), Paper (no change, 21), Release tape (reduced to 44.4), Bag tape
(reduced to 30.6), and Peel-ply (no change, 12).

Table 1. Size and depth estimation of different types of defects with the size (6× 6 mm) at the design
depth 1.47 mm in the reference standard specimen.

Teflon Paper Release Tape Bag Tape Peel Ply

Automated defect depth (deepest) estimate (mm) 1.50 1.39 1.52 1.57 1.54
Automated defect depth estimate error (%) 2% 5.4% 3.4% 6.8% 4.8%
C-scan Manual defect size estimate (mm2) 30 9 38.4 faintly detected 8.4
Automated defect size estimate (mm2) 53.4 21 59.4 43.2 12
Automated defect size estimate error (%) 43.8% −41.7% 65% 20% −66.7%
Manual defect size estimate error (%) −17% −75% 7% not applicable −77%

(a)

(b)
Figure 14. (a) Empirical CDF of absolute peak of defect echoes, and (b) refined size estimation after
resizing defects with a wide range of amplitude spread.

4. Conclusions

In this paper, we analyzed signal processing challenges of NDT of aerospace grade composite
using an ultrasonic PA module in an autonomous inspection platform designed for the EU-H2020
FET-OPEN CompInnova project. The post processing of the PA data with the proposed algorithm
leads to resolving overlapped echoes and improving defect detection and axial (depth) resolution.
We demonstrated an approach that allows achieving good results at low hardware and computational
costs. We addressed the signal processing challenges for the use of high frequency 10 MHz PA
transducers, and proposed solutions to overcome these problems. The proposed hardware solution
is relatively inexpensive due to a conservative selection of the frequency (10 MHz), and it is going
to be deployed using the robotic platform developed within the CompInnova project. This solution
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allows for eliminating some of the adverse effects of manual scanning related to non-uniform pressure
distribution and couplant application, and increased repeatability of the scanning process.

The proposed modification of the resolution enhancement algorithm allows for robust detection of
the defects close to either front or back walls of the inspected structure and resolution improvement up
to the ply thickness of composite material while remaining simple in implementation. The algorithm
also benefits from the smart thresholding technique that allows for keeping good performance in
terms of peaks due to structural noise overlapping with defect echoes, while keeping defect detection
sensitivity at or above the level of conventional immersion-based ultrasonic scanning. Another
advantage of the proposed approach is intuitive 3D visualization of the inspected material volume that
is highly suitable for semi-automated data analysis and interpretation, where routine post-processing
tasks are automated and an inspector is only evaluating results presented in easy to perceive 3D form.
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