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Abstract 

Multilayer thermal barrier coating (TBC) systems typically consist of three layers of 

materials: A thermal barrier top coat (TC), a thermally-grown oxide (TGO), and a bond coat 

(BC) in addition to the substrate. Local strain energy concentrations, called ‘pockets of energy 

concentration (PECs)’ in this work, often occur around the interface between the TGO and the 

BC. They have various causes, including local phase changes, and non-uniform creep and 

plastic relaxation. It is discovered that both PECs and buckling drive the spallation of a TBC 

in a new spallation mechanism. A PEC-based mechanical model is developed that describes, 

explains and predicts how blisters nucleate in a TBC under constant biaxial compressive 

residual stress, steadily and then unsteadily grow, and finally spall off. Two conditions are 

established for the occurrence of TBC spallation, which depend on the compressive residual 

strain energy density in the TC and the TGO, and the interface fracture toughness. 

Experimental validation of the model was performed using aircraft jet engine turbine blades 

with electron beam physical vapor deposition (EBPVD) TBCs. The predictions from the 

developed PEC-based mechanical model for the radii of spallation in the TBC are in a good 

agreement with experiment results. 

Keywords: Interface fracture toughness; Pockets of energy concentration; Spallation; Thermal 

barrier coatings (TBC) 
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Nomenclature 

A , B , D Extensional, coupling and bending stiffness 

xA Amplitude of upward deflection of coating blister  

b Width of straight blisters 
E Young’s modulus 

G , IG , IIG Total, mode I and mode II energy release rates 

IcG , IIcG Mode I and II interface fracture toughness 

cG Interface fracture toughness 

cG Average fracture toughness over interface 

BxM , BxN Crack tip bending moment and effective force 
R
xM , R

xN Relaxation bending moment and effective force 

h Thickness of thermal barrier coating 

BR Half-width of straight blisters; radius of circular blisters 

aU Blister energy 

sU Blister interface surface energy 

0U Blister residual strain energy  

w Blister upward deflection  
x , y Lengthwise and widthwise coordinates of straight blisters 

z Out-of-plane coordinate 
r ,  Radial and circumferential coordinates of circular blisters 
 Buckling correction factor 

R , R Relaxation strain and stress due to bending deflection 
0 , 0 Residual compressive strain and stress in thermal barrier coating 

 Poisson’s ratio 

 Measure of anisotropic coupling,    2 2AD B AD  

 Ratio of interface mode II and I fracture toughness 

Abbreviations 
BC Bond coat 
CTE Coefficient of thermal expansion 
EBPVD Electron beam physical vapor deposition 
ERR Energy release rate 
PEC Pocket of energy concentration 
TBC Thermal barrier coating 
TC Top coat 
TGO Thermally grown oxide 
YSZ Yttria-stabilized zirconia 
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1 Introduction 

Thermal barrier coating (TBC) material systems protect aero-engine components from the 

high and prolonged heat loads and improve engine durability and energy efficiency. A TBC 

material system is typically constructed from an yttria-stabilized zirconia (YSZ) ceramic top 

coat (TC) of low thermal conductivity, an MCrAlY overlay or diffusion bond coat (BC) that 

adheres the TC to an alloy substrate, and a thermally grown oxide (TGO) layer that forms at 

the interface between the TC and the BC at elevated temperature. Spallation failure, in which 

the TC detaches from the BC during service, has stimulated enormous research effort to 

understand the complex mechanisms driving the failure. Interested readers are referred to Refs. 

[1,2] for more information. The present work focuses on reporting a new mechanism of TBC 

spallation and on developing a mechanical model to describe, explain and predict the spallation 

behavior. 

The TGO layer significantly reduces the adhesion toughness between the TC and the BC 

[3,4]. In addition, the large mismatch of coefficients of thermal expansion (CTEs) between the 

TGO and the BC results in a large compressive residual stress in the TGO layer during cooling. 

This very high compressive strain energy density in the TGO layer is therefore considered [2,5] 

to be a major cause of coating spallation. Moreover, local effects are also expected, with local 

strain energy concentrations around the TGO/BC interface. These local effects can be ascribed 

to various causes, including the existence of defects [6], non-uniform plastic and creep 

relaxation [7], the local roughness [8,9], the local phase changes [10], and local grain size and 

grain boundary changes [11]. The high compressive strain energy density and local effects 

together give rise to the aforementioned new mechanism of TBC spallation. 

It is worth reviewing two recent studies [12,13] that are pertinent to the present work, in 

which the room-temperature spallation (i.e. spallation under constant biaxial compressive 

residual stress) of a single layer of α-alumina grown by oxidation on a Fe-Cr-Al alloy substrate 

is studied. The authors of these two studies, Wang, Harvey and Wang, reported that pockets of 

energy concentration (PECs) can exist in the form of pockets of tensile stress and shear stress 

in and around the interface between the TGO and the substrate. The origins of PECs were not 

determined in Refs. [12,13]; instead, the existence of PECs was taken as given and then the 

mechanical consequences for spallation behavior was predicted. Nevertheless, it was 

hypothesized that PECs can be caused by dynamic and non-uniform creep or plastic relaxation, 

or by thermal, chemical, or other processes. Based on this understanding of PECs, a mechanical 

model was developed which captured the entire process from nucleation to spallation and 
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which showed excellent agreement with the experimental measurements of circular blister 

spallation in Refs [14,15]. In contrast, the traditional buckling-driven approach, which assumes 

a pre-existing circular separation with a critical size slightly larger than the buckling size, 

cannot capture what is observed in these experiments [14,15]. Instead, the observed size of the 

α-alumina blister in nucleation and earlier stable growth stage is much smaller than the critical 

buckling size, which requests a significant amount of extra energy independent of the residual 

strain energy. It was therefore concluded that the PEC-based mechanical model [12,13] works 

very well while the traditional buckling-driven model does not. 

The original contributions of this work are in (1) developing a PEC-based mechanical model 

to predict the spallation behavior of multilayer TBC material systems with variable material 

properties through the thickness of each layer under constant biaxial compressive residual 

stresses; and (2) conducting experimental tests to observe the spallation of TBCs under the 

same conditions. An additional aim of the work is to inform researchers in the field about this 

new mechanism of TBC spallation and to thereby promote wider research on the causes of 

PECs, resulting in design improvements for TBC material systems. Note that, again, the origins 

of PECs are not explicitly considered in this work, although the probable causes have been 

mentioned above. Determination of the causes of PECs is an enormous task that is much 

beyond the scope of the present work; however, regardless of their cause, it is still possible to 

establish the mechanical consequences of their existence.  

The outline of the paper is as follows: PEC mechanical models are developed in Sections 2 

and 3 for straight and circular blisters respectively. Both blister shapes have been observed in 

TBCs. Comparisons between model predictions and experimental results are given in Section 

4. Conclusions are given in Section 5. 

2 PEC-based mechanical model for straight blisters in multilayer TBCs 

Figure 1 depicts a multilayer TBC with a straight blister of width B2R , blister thickness h

, length b , and height xA . It is assumed that the blister consists of the TC and TGO, which are 

represented by the light and dark layer respectively. That is, the delamination is assumed to be 

on the TGO/BC interface, as is usually observed in experiments with EBPVD TBCs. Due to 

the assumed delamination location, in the following the TC and TGO are referred to 

collectively as the ‘top’, and the BC and substrate are referred to collectively as the ‘bottom’. 

Note that despite this assumption, the model developed here is generally applicable to other 

multilayer material systems and other crack locations. 
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Figure 1 A straight coating blister. 

The axes in Figure 1 show only the directions and not the origin. Following the convention 

of classical laminate theory, the origin of the z  axis for the top is at its middle plane (that is, 

at the middle plane of the TC and TGO together). Likewise, the origin of the z  axis for the 

bottom is at the middle plane of the substrate and BC together. 

2.1 Residual stresses before delamination 

Since the thickness of the bottom is much greater than the thickness of the top; therefore, 

the biaxial compressive stress in the bottom is approximately zero after cooling by  botT z . 

Consequently, the total residual strain in the bottom consists only of thermal strain, which can 

be approximated as its average quantity over the thickness, as follows: 

   
bot

bot

2

bot bot bot bot2
,

h

h
C z T z dz h


  (1) 

where both  and  botC z  are the thickness and CTE of the bottom respectively. 

Assuming that the top and bottom are perfectly bonded prior to delamination, the top will 

contract by the same amount as the bottom bot  as they are cooled from temperature  0T z  to 

T  with    0T z T T z   . The biaxial residual compressive stress  0 z  in the top at 

temperature T  is therefore 

 
 
 

 0 T
bot ,

1

E z
z z

z
  


   

(2) 

where      T z C z T z    represents the free thermal strain in the top due to the CTE  C z

and cooling  T z . The Young’s modulus and Poisson’s ratio of the top are  E z  and  z

respectively; they are considered uniform in plane, but vary along the z  axis. 
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In Eq. (2),  T z  can be expressed as the superposition of a uniform  T 0 , which is the 

value at the middle plane of the top, and a relative value  T z , that is, 

         T T T0 .z C z T z z      (3) 

Now, substituting Eq. (3) into Eq. (2) gives 

 
 
 

      
 

 0 T T 0
bot 0 ,

1 1

E z E z
z z z

z z
    

 
       

(4) 

where  0 z  is the biaxial compressive residual strain in the top. For concise notation, let 0

denote  0 0  or equivalently  T
bot 0  . Now, the biaxial compressive residual stress 

 0 z  in the top can be expressed in the following form: 

 
 
 

 0 0 T .
1

E z
z z

z
  


    

(5) 

Then, the resultant compressive residual force per unit width and bending moment per unit 

width are calculated as 

 
2

0 0 * 0 T

2

h

h
N z dz A N 


    (6) 

and 

 
2

0 0 * 0 T

2
,

h

h
M z zdz B M 


   (7) 

where 

 
 

2
*

2 1

h

h

E z
A dz

z


     and    
 
 

2
*

2
,

1

h

h

E z
B zdz

z


 (8) 

and 

 
 

 
2

T T

2 1

h

h

E z
N z dz

z



  

     and    
 
 

 
2

T T

2
.

1

h

h

E z
M z zdz

z



  

 (9) 

Note that TN  and TM  in Eq. (9) are the resultant thermal force per unit width and 

thermal bending moment per unit width respectively due to  T z  in Eq. (3). Furthermore, 

Eqs. (6) and (7) show that the residual loads in the top are increased for negative  T z . This 

can be caused by TGO growth, sintering of the TC, etc. 
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2.2 Stresses after delamination 

After delamination, the shape of the blister as shown in Figure 1 is assumed to be sinusoidal 

[12,13], that is, 

 
B

1 cos ,
2

xA πx
w x

R

  
   

  
(10) 

from which the curvature κ  of the upward bending is 

22

2 2
B B

cos .
2

xAd w x
κ

dx R R

  
    

 
(11) 

Then the relaxation strains in the blister due to the upward bending,  R
xε z  and  R

yε z , 

based on classical plate theory, are 

   
2

R R

2
0x x

d w
ε z ε z

dx
      and     R 0.yε z  (12) 

Note that the relaxation strain is plane strain, which results in  R 0yε z   in Eq. (12). The 

quantity  R 0xε  in Eq. (12) is the relaxation strain at the middle surface of the blister and can 

be calculated based on the conventional von Kármán geometric nonlinearity approach [13] as 

 
B

22

R R

0
B B

1
0 .

2 4

R
x

x x

πAdw
ε ε dx

R dx R

  
     

   
 (13) 

The relaxation stresses  R
x z  and  R

y z  are then calculated as 

 
 
 

 R R

21
x x

E z
σ z z

z






    and         R R ,y xσ z z σ z (14) 

which are positive in tension. The relaxation force per unit width and bending moment per unit 

width in the blister are calculated by using Eqs. (11) to (14) as 

 
2

R R R

2

h

x x xh
N σ z dz Aε Bκ


   (15) 

and 

 
2

R R R

2
,

h

x x xh
M σ z zdz Bε Dκ


   (16) 

where the extensional stiffness A , coupling stiffness B  and bending stiffness D  are defined 

as 
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 
 

2

22
,

1

h

h

E z
A dz

z



 
 

2

22 1

h

h

E z
B zdz

z


     and    
 
 

2
2

22
.

1

h

h

E z
D z dz

z


  (17) 

The location 0z   in Eq. (17) is at the middle surface of the blister. The axial force and 

bending moment in the blister are obtained by using Eqs. (6), (7), (15) and (16), which gives 

0 R * 0 T R
x x xN N N A N Aε Bκ       (18) 

and 

0 R * 0 T R .x x xM M M B M Bε Dκ       (19) 

Note that stress relaxation only occurs in the blister due to upward bending deflection while 

the in-plane biaxial compressive residual stress  0 z  in other parts of the multilayer TBC is 

unchanged. 

2.3 Blister energy 

The key consideration in the PEC-based approach [12,13] is to describe the ‘blister energy’ 

aU , which is the net extra energy stored in the growing blister in comparison to the residual 

strain energy before blister development, 0U . Note that ‘residual’ in ‘residual strain energy’ is 

used here to mean the strain energy accrued in the top layer after cooling to room temperature 

due to the mismatch of CTEs, instead of that remaining after fracture has occurred. The blister 

energy is provided by PECs and is expressed as 

a SE s 0 .U U U U   (20) 

where SEU  is the total strain energy stored in the blister comprising the bending strain energy 

of the blister due to bending away from the substrate, and the in-plane strain energy of the 

blister due to the compressive residual stress in the film and stress relaxation in the blister from 

bending; and sU  is the surface energy of the delaminated surfaces of the blister. By studying 

the variation of the blister energy aU  with respect to the blister radius, the demand for PECs 

can be quantified, and furthermore, the blister growth behavior can be characterized. 

The sum of the strain energy SEU  is given by 
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       

       

      
 

   

B

B

B

B

0 R 0 R
2

SE 0 R 0 R2

2
2 2R * 0 R * 0 * 0

T R 0 T T

2
2 2R * 0 R * 0

B 2
B

2

2 2

2 2

2
2

R h x x

R h
y y

R x x

R

x

x x

σ z σ z z ε zb
U dzdx

σ z σ z z ε z

A D
ε Bκ A ε ε A B κ

b dx

N ε M u

A Dπ
bR ε A ε ε A

R






 

 



 



         
  

          

 
     

  
          

 
      

 

 



 T R 0 T2 2 ,xN ε ε u
         

 (21) 

in which Tu  represents the thermal strain energy density due to  T z  in Eq. (3), which is 

given by 

 
 

 
2 2T T

2

1
.

2 1

h

h

E z
u z dz

z



     (22) 

The surface energy due to the interface fracture sU  in Eq. (20) is 

s B c2 ,U bR G (23) 

where cG  is the average fracture toughness over the interface. Note that sU  includes both 

fracture surfaces. 

The residual strain energy before delamination 0U  in Eq. (20) is calculated using Eqs. (5) 

and (9) as 

     B

B

2 20 0 * 0 0 T T
0 B2

2 2 2 2 .
2

R h

R h

b
U z ε z dzdx bR A ε ε N u

 

             (24) 

Substituting the energy terms above, along with Eq. (6), into Eq. (20) leads to the blister 

energy aU  as 

 
2

2R 0 R
a B c2

B

2 .
2

x x

A Dπ
U bR ε N ε G

R

   
     

   
(25) 

2.4 Mixed-mode interface fracture based on classical plate partition theory 

2.4.1 Nucleation and stable growth 

The task is now to study the interface fracture behavior during blister development by 

invoking different partition theories [16–21] of energy release rate (ERR) for mixed-mode 

fracture. The blister grows if the ERR equals or exceeds the interface fracture toughness. The 
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measured residual stress at the blister tips in Ref. [14] highlights that the relaxation stress is 

approximately zero. Therefore, the axial force and bending moment at the blister tip are, 

respectively, 

 
B

0 R 0
B 0x x

x R
N N N N



       (26) 

and 

 

 

B
B

B

0 0 R R
B

R R8
,

x x x R
x R

x x
x R

x

M M M M M

B D B D
A

  






       

 
      

 

(27) 

in which, from Eqs. (11) and (13), the deflection curvature κ  at the blister tip is 

B

B

22

2 2
B

8
.

2
Rx
xx R

xx R

A πd w
κ

dx R A






   (28) 

Following from Ref. [18], the total ERR is 

 

2
B

2
.

2
xAM

G
AD B




(29) 

Based on the classical plate partition theory or Euler beam partition theory [16–18], the pure 

mode-I and mode-II ERRs are 

 

2
B

IE 22
xAM

G
AD B




    and    IIE IE 0,G G G   (30) 

where the subscript ‘E’ denotes classical plate or Euler beam partition theory. Eqs. (29) and 

(30) suggest the delamination is pure mode-I fracture, that is, cE IcG G  where the subscript ‘c’ 

denotes the critical ERR. The linear fracture propagation criterion is used to determine whether 

the crack advances [13,22,23], that is, the condition for fracture propagation is 

   
Ic

c

I

,
1 1

ψG
G G

G G ψ
 

 
(31) 

where IIc Icψ G G . 

Substituting Eqs. (29) and (30) into Eq. (31), and using Eqs. (13) and (27), leads to 
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 22

2 4cE
B4

8
1 .

8
x

x

AD BBA G
A R

D AD π D

 
  

 
(32) 

According to classical laminate theory,  2AD B  is always positive. This also satisfies the 

requirement for ERR in Eq. (29) to be positive. Then, xA  is obtained from Eq. (32) as 

 
1 2

2 cE
B 2GRE

4 2
1 1 ,xA

GD B
R

B D D





  
        

(33) 

where    2 2AD B AD    and the subscript ‘GR’ denotes a quantity during growth. For a 

multilayer TBC, 1 2  , and for an isotropic blister layer, 1 2  . Furthermore, it is easily 

shown that the second term inside the square brackets of Eq. (32) is generally much smaller 

than 1 and negligible. The corresponding xA  is 

   2 4cE
B4GRE GRE

16
.x

G
A R

π D
 (34) 

The mid-surface relaxation strain during growth is obtained by substituting Eq. (34) into Eq. 

(13), giving 

 
 2

cE BR GRE
2GRE

.x

G R

π D
  (35) 

Then, the blister energy during growth is then obtained by substituting Eq. (35) into Eq. (25), 

and noting that c cEG G , as shown by Eqs. (30) and (31), giving 

         
2

4 0 2cE cE
a B B B cE2 2GRE GRE GRE GRE

2 1 .
2

G GA
U b R R N R G

π D π D

 


   
     

   
 (36) 

Note that  a GRE
U  in Eq. (36) is for delamination on the TGO/BC interface only without any 

consideration for ridge cracks. It will, however, be seen in Section 4.2 that the developed 

mechanical model can still give good agreement with test results even if ridge cracks appear. 

This is may be because the surface energy associated with ridge-cracks is generally small due 

to the relatively small crack area in comparison to that associated with delamination. Moreover, 

since ridge cracks ‘consume’ a small amount of blister energy, the measured spallation radius 

is expected to be slightly smaller than the predicted one, which will be observed in Section 4.2. 

During blister nucleation, BR  is very small and the higher-order BR  terms in Eq. (36) can 

be neglected, giving 
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     a B cENUE NUE
2 1 ,U b R G   (37) 

where ‘NU’ denotes the nucleation of a blister. This is the blister nucleation energy, which 

must be supplied by some energy source if a blister is to nucleate. According to the PECs 

hypothesis, this energy source is PECs. 

Eq. (37) shows that the blister nucleation energy solely depends on the mechanical 

properties, namely, interface fracture toughness, Young’s modulus and Poisson’s ratio, and 

their through-thickness variations. Taking EBPVD TBCs as an example, the TC has a dense 

layer near to the TGO, a coarse layer near to the TC surface, and sintering on the TC surface. 

Since 1 2   for a multilayer TBC, as shown above, then  1   in Eq. (37) has a maximum 

value of 1.5, which is when the bending-stretching coupling stiffness B  is zero. TGO growth 

increases the value of B  and thus decreases the nucleation energy. 

2.4.2 Initiation of unstable growth 

After nucleation, a blister initially grows steadily and slowly, with PECs supplying the 

required energy for blister growth, as described by Eq. (36). If the required energy is not 

available, then the blister cannot grow further and stalls. Assuming a sufficient supply of 

energy for continued blister growth, then when the blister width reaches a certain critical value, 

the blister then grows unstably. Following Refs. [12,13] for a monolayer film, based on the 

buckling condition of a thin plate, the condition for unstable growth of a straight blister is 

 
2

0 R

2
B

,x

απ D
N N

R
  (38) 

where, from Eqs. (15) and (11),  BR R R
B GRE0

R

x x xN N dx R A ε  , which represents the average 

axial relaxation force. The range of α  is 0 5 1 0. α .   and the two limits correspond to the 

simply-supported and clamped edge conditions respectively. Refs. [12,13] have demonstrated 

that 0 75α .  is a good approximation for a single layer blister with a brittle interface. 

The blister half-width for the initiation of unstable growth  B UGE
R  can be obtained from 

the following by combining Eqs. (35) and (38) as 

 
1 2

2 0 2
2 E
B UGE

E

2
1 1 ,

2

π D
R

A

  



  
    

   

(39) 

where ‘UG’ denotes the unstable growth of the blister, and 
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 
200

0
E E

cE2 2

NN

A AG
       and    

0
0
E

cE

.
N

G
  (40) 

Note that   represents the ratio between the in-plane strain energy per unit width and the 

interface adhesion toughness. The   ratio plays a key role in blister development. 

From Eq. (39), unstable growth only occurs if 2
E 2α   . Since 1 2  , the maximum 

possible value of 22α   is 2α , which is for an isotropic blister. TGO growth and TC sintering 

make  T z  in Eq. (3) increasingly negative, and consequently increase E  by increasing 

0N  in Eq. (6). Furthermore, they simultaneously decrease 22α   because of the increased 

stretching-bending coupling of the TBC. When 2
E 2α   , binomial expansion of the square 

brackets in Eq. (39) leads to 

   
2

2
B 0UGE

.
α D

R
N


 (41) 

This reveals that TGO growth and TC sintering promote unstable growth by increasing the 

residual loads and decreasing  2
B UGE

R  in Eq. (41). Note that for uniform material properties 

through the blister thickness, Eq. (41) reduces to the same form given in Refs. [12,13]. 

When 2
E 2α   , the blister height, mid-surface relaxation strain and the blister energy at 

the initiation of unstable growth are derived by substituting Eq. (41) into Eqs. (34), (35) and 

(36) respectively, giving 

 
4

2

UGE
E

8
,x

Dα
A

A





(42) 

 
2

R

0UGE
E

x

α
ε




 (43) 

and 

     

   

2 4
2

a B cEUGE UGE
E

2
B cEUGE

2 1 1
4

2 1 1 .

U b R G α

b R G α

 




 
    

 

    

(44) 

2.4.3 Maximum blister energy and unstable growth 

Based on Eq. (36), the blister energy reaches its maximum value at 
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   
1 2

2 0
2 E
B MUE

E

5 13
1 1 ,

5 9

D
R

A

 



  
    

   

(45) 

where ‘MU’ denotes the maximum blister energy. Note that  2
B MUE

R  exists only if 

 E 5 1 9   . The maximum possible value of  5 1 9  is 5 6 , which is for an isotropic 

blister with 1 2  . Without considering other effects such as creep or plastic relaxation, TGO 

growth and TC sintering act to increase E  by increasing 0N  in Eq. (6), and simultaneously 

decrease  5 1 9 . When  E 5 1 9  , binomial expansion of the square brackets in 

Eq. (45) leads to 

    2
2
B 0MUE

1
.

3

D
R

N

 




 (46) 

When  E 5 1 9  , the blister height, mid-surface relaxation strain and the blister 

energy are obtained by substituting Eq. (46) into Eqs. (34), (35) and (36) respectively, giving 

   
2

2

MUE
E

8 1
,

9
x

D
A

A









(47) 

   R

0MUE
E

1

3
xε






 (48) 

and 

   
   

   
2

a B cE B cEMUE MUE MUE
E

1 2 1 4
2 1 .

36 3 3
U b R G b R G

 


   
    

  

(49) 

Since the maximum blister energy radius  B MUE
R  in Eq. (46) is greater than unstable 

growth radius  B UGE
R  in Eq. (39), after the initiation of unstable growth, the blister energy 

continues to increase up to the blister energy capacity  a MUE
U . Since the blister energy aU  is 

increasing up to this point, an energy source is still required despite the growth being unstable. 

As before, according to the hypothesis of PECs, PECs are the energy source that supplies this 

blister energy. If PECs cannot provide the required energy, then the blister cannot grow further 

and stalls. 
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2.4.4 Spallation 

After the blister energy has reached its maximum value of  a MUE
U , it then decreases with 

further blister growth, and no more energy is needed from PECs. The blister now has enough 

energy stored in itself to continue propagating, and it is therefore both fast and unstable as the 

blister energy is converted into kinetic energy. If the blister energy reduces to zero and the 

kinetic energy of the blister due to the fast unstable growth is large enough to break the blister 

edges, then the blister will spall off from the substrate. From Eq. (36), the blister half-width at 

spallation  B SPE
R  is obtained from 

   
1 2

2 0
2 E
B SPE

E

1
1 1 .

D
R

A

 



  
    

   

(50) 

Note that the negative square root in Eq. (50) is chosen to get the smaller value of  2
B SPE

R . It 

is seen that no solutions for  2
B SPE

R  exist if  E 1    , and so spallation cannot occur if this 

condition is satisfied. When  E 1   , binomial expansion of the square brackets in Eq. 

(50) leads to 

   2
2
B 0SPE

1
.

D
R

N

 




 (51) 

When  E 1   , the blister height and mid-surface relaxation strain are obtained by 

substituting Eq. (46) into Eqs. (34) and (35) respectively, giving 

   
2

2

SPE
E

8 1
x

D
A

A









(52) 

and 

   R 0
ESPE

1 .xε    (53) 

Two conditions are derived in the above for the spallation of TBCs to occur: (1) From Eq. 

(49), PECs must be able to supply sufficient energy to take the blister energy to  a MUE
U . After 

this point, the blister has stored enough energy in itself to continue propagating with no further 

energy requirement. (2) From Eq. (50), E  must be  E 1    . These two conditions 

provide valuable guidance for TBC design and optimisation to avoid spallation failure. 
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Condition 1 partly relates to the prevalence of PECs and the availability of energy for blister 

development, but this depends on the precise cause of PECs, which is beyond the scope of this 

work. The maximum blister energy  a MUE
U , however, can be increased to delay condition 1 

being satisfied. From Eqs. (46) and (49), this could be achieved by decreasing 0N —by 

decreasing 0  or by increasing TN  via  T z  as per Eq. (6)—or by increasing cEG . Note 

that   has a limited range so has a relatively minor effect. Condition 2 requires decreasing E

, which, as the ratio of in-plane strain energy density per unit width to interface adhesion 

toughness, could be achieved in the same ways as for condition 1. 

Practically, increased lifetime of EBPVD TBCs could therefore be achieved by: (1) 

Reducing the thickness of the dense-layer at the bottom of the TC. (2) Reducing the growth 

rate of the TGO. (3) Suppressing TC sintering. (4) Reducing the temperature difference across 

the coating. (5) Reducing mismatch of CTEs between the blister and the BC. 

2.5 Mixed-mode interface fracture based on first-order shear-deformable plate partition 

theory and 2D elasticity partition theory 

The mixity of a mixed-mode interface fracture depends on the partition theory. In this 

section, the PEC-based mechanical model developed in Section 2.4 using classical plate 

partition theory is adjusted for first-order shear-deformable plate partition theory (or 

equivalently, Timoshenko beam partition theory) [16,17,22–24] and for 2D elasticity partition 

theory [19,20,22,25]. The parameters cEG , E  and 0
E  in the above need to be replaced by cTG

, T , and 0
T  respectively for first-order shear-deformable plate partition theory, and by c2DG

, 2D  and 0
2D  respectively 2D elasticity partition theory. 

The ERRs based on first-order shear-deformable plate partition theory are 

 

2
B

IT 2

2

4 4
xM

G
Ah Bh D


 

    and    IIT IT .G G G  (54) 

From Eqs. (29) and (54), the fracture mode mixity is constant at 

   2 2
IT IT4 4 4 1G G AD B A Ah Bh D        . Substituting IT IT1G G ψ  into Eq. 

(31) gives 

cT IT
T

Ic IT

.
1

G ψψ
λ

G ψ ψ
 

 
(55) 
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Therefore the relationship between the critical ERR from first-order plate partition theory and 

that from classical plate partition theory is 

cT T Ic T cE .G λ G λ G  (56) 

Now T  and 0
T  are obtained by substituting Eq. (56) into Eq. (40), giving 

 
200

0 E
T T

cT T2 2

NN

A AG λ



         and     

0
0
T

cT

.
N

G
  (57) 

Similarly, the ERRs based on 2D elasticity partition theory are 

2
B

I2D 2

6
0 6227 xM

G .
Ah

      and     II2D I2D .G G G  (58) 

The fracture mode mixity is constant at    2 2 2
I2D 2D I2D0.6227 12 1G G AD B A h      . 

The quantities c2DG , 2D  and 0
2D  are determined in the same way as above, with 2Dλ

obtained by replacing ITψ  with I2Dψ  in Eq. (55), giving 

c2D 2D Ic 2D cE ,G λ G λ G  (59) 

 
200

0 E
2 2D

c2D 2D2 2
D

NN

A AG λ



         and     

0
0
2D

c2D

.
N

G
  (60) 

3 PEC-based mechanical model for circular blisters in multilayer TBCs 

The PEC-based mechanical model for the circular blisters is similar to the model for straight 

blisters, described in Section 2; therefore, only the key differences are recorded in this section. 

Figure 2 shows a multilayer circular blister of diameter B2R , blister thickness h , and height 

rA . The model is developed in polar coordinates, and so the x  coordinate in Section 2 is 

swapped to the r  coordinate where appropriate.  
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Figure 2 A circular coating blister. 

The circular blister shape is assumed to be axisymmetric and sinusoidal [12,13], obeying 

 
B

1 cos .
2

rA r
w r

R

  
   

  
(61) 

Based on the assumed blister shape, the blister energy is 

 
2

22 R 0 R
a B c2

B

.
2

x x

A Dπ
U πR ε N ε G

R

   
     

   
(62) 

Note the similarity between the blister energy in Eq. (62) for circular blisters and that for 

straight blisters in Eq. (25). 

The total ERR and its mixity for a circular blister, based on classical plate partition theory 

[16–18], are identical to those for straight blisters, as given in Eqs. (29) and (30) respectively. 

The linear fracture propagation criterion in Eq. (31) is still used to determine crack propagation. 

There are no changes to  
GRErA  and  R

GRErε , as given in Eqs (34) and (35) respectively. 

Based on these expressions, the blister energy of a circular blister during growth is 

         
2

2 4 0 2cE cE
a B B B cE2 2GRE GRE GRE GRE

1 ,
2

G GA
U R R N R G

π D π D

 
 

   
     

   
(63) 

and the nucleation energy is 

     2
a B cENUE NUE

1 .U R G   (64) 

For the initiation of unstable growth of a circular blister, there are no changes to  B UGE
R , 

 
UGErA  and  R

UGErε , as given in Eqs. (39), and (41) to (43) respectively. Note, however, that 

the range of α  now becomes 0 652 1 220. α .   where the two limits correspond to the simply-
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supported and clamped edge conditions respectively. It has been shown that 0 936α .  is a 

good approximation [12,13]. Based on these expressions together with Eq. (63), the blister 

energy of a circular blister at the initiation of unstable growth if 2
E 2α    is 

     

   

2 4
2 2

a B cEUGE UGE

2 2
B cEUGE

1 1
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α
U R G α

R G α
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 

 
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 

    

(65) 

The blister energy of a circular blister reaches its maximum value at 

   
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(66) 

There are no solutions for  2
B MUE

R  if  E 3 1 4   . When  E 3 1 4  , binomial 

expansion of the square brackets in Eq. (66) leads to 
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 
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
 (67) 

The blister height, mid-surface axial relaxation strain and the maximum blister energy are 

obtained by substituting Eq. (67) into Eqs. (34), (35) and (36) respectively, giving 
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 (69) 

and 

           
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 
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    

  

(70) 

For the spallation of a circular blister, there are no changes to Eqs. (50) to (53). The 

mechanical model given above, based on classical plate partition theory, can also be adjusted 

for first-order shear-deformable plate partition theory and for 2D elasticity partition theory by 

changing the relevant parameters, as described in Section 2.5. There is no change to those 

parameters for circular blisters. 
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4 Experimental validation 

In this section, the developed PEC-based mechanical model for multilayer material systems 

is verified first against radius measurements of alumina scale spallation [26], and then against 

radius measurements of EBPVD TBC spallation [27]. Note that all spallation happens having 

reached room temperature, that is, under constant biaxial compressive residual stress. 

4.1 Alumina scale spallation 

The relevant experimental details of the alumina spallation tests are recorded here from 

Refs. [26]. The specimens were 25.4 mm diameter discs of commercial FeCrAlY alloy (Fe–

22Cr–5Al–0.1Y–0.3Si–0.2Mn–0.1Zr–0.02C in wt%), with thicknesses of 0.477 mm, 

1.394 mm, 3.349 mm and 7.608 mm, polished to a 0.25-µm finish on both sides. The 

specimens were oxidized in a chamber furnace at the isothermal temperature of 1200 ºC, 

following heating at 3 ºC min-1, to produce a uniform flat alumina scale, adhered to the 

substrate surface. The 4.5 µm-thick alumina films were generated after being oxidized for 25 h, 

and the specimens were cooled to room temperature at various cooling rates (1, 5, 10, 30 and 

100 ºC min-1), as indicated in Table 1. Compressive residual stress was generated in the scale 

during cooling and became constant upon reaching room temperature. The residual stress in 

the scale was measured using photo-stimulated luminescence spectroscopy, and the values for 

each group are additionally recoded in Table 1. The spallation behavior of the alumina layer 

was monitored using an optical microscope as well as scanning electron microscopy (SEM). 

When the cooling rate was 1 or 100 ºC min-1, spallation was not observed but blisters were 

evident. For the intermediate cooling rates of 5, 10 and 30 ºC min-1, spallation occurred 

significantly. 
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Table 1 Values of   based on the E, T and 2D partition theories for different experimental 

samples. 

Cooling rate, substrate thickness 
h

(µm) 
0

(GPa) 



E T 2D 

30 ºC min-1, 0.477 mm 4.5 3.023 5.6037 2.2415 3.9123 

30 ºC min-1, 1.394 mm 4.5 4.142 10.5200 4.2080 7.3448 

10 ºC min-1, 1.394 mm 4.5 3.845 9.0654 3.6262 6.3293 

5 ºC min-1, 1.394 mm 4.5 3.759 8.6644 3.4658 6.0493 

30 ºC min-1, 3.349 mm 4.5 4.468 12.2411 4.8965 8.5465 

30 ºC min-1, 7.608 mm 4.5 4.947 15.0065 6.0026 10.4772 

The Young’s modulus of the alumina scale is TGO 400 GPaE   and the Poisson's ratio is 

TGO 0.25   [7,28]. The mode-I fracture toughness of the interface between the scale and the 

substrate is 2
Ic 8.6 J mG   [4] and the fracture toughness ratio   is 5 [29]. Since the alumina 

scale is isotropic,  T z  in Eq. (3) equals zero, and the fracture toughness cG , based on 

classical plate partition theory, first-order shear-deformable plate partition theory, and 2D 

elasticity partition theory, is calculated as 8.60 J m-2, 21.50 J m-2 and 12.32 J m-2 respectively. 

The values of   for the various samples are calculated and summarized in Table 1. It is seen 

that all values of   are more than 3 2  which is required by Eq. (51). Using the mechanical 

model for circular blisters with 0.936  , the radii for initiation of unstable growth and 

spallation are predicted and compared with experimental measurements in Table 2, where ‘E’, 

‘T’ and ‘2D’ denote classical plate partition theory, first-order shear-deformable plate partition 

theory, and 2D elasticity partition theory respectively. Note that the blisters were “circular” or 

“near-circular” [26] and the average diameter was measured based on ten random images from 

each sample. 

From Table 2, it is seen that spallation radii predicted by the mechanical model using each 

of the three partition theories are all in excellent agreement with the experimental 

measurements. Since 3 2  , the approximate Eqs. (41) and (51) are appropriate and also 

work very well. No radius measurements at the initiation of unstable growth are available. 

Overall, the accuracy of the mechanical model in predicting spallation radius provides strong 

support for the hypothesis that spallation is driven by both PECs and buckling. 
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Table 2 Radii for initiation of unstable growth and spallation and comparisons with 

experimental measurements (spallation only). 

BR  at initiation of unstable 

growth (µm) 
BR  at spallation (µm) 

Cooling rate,
substrate 
thickness 

Eq. (39) Eq. (41) Eq. (50) Eq. (51)

E T 2D All E T 2D All Test data 

30 ºC min-1, 
0.477 mm 

46.33 48.10 46.80 45.38 87.18 94.63 88.88 83.98 89.70±4.00

30 ºC min-1, 
1.394 mm 

39.19 39.88 39.38 38.77 73.11 75.58 73.76 71.74 74.29±4.00

10 ºC min-1, 
1.394 mm 

40.75 41.60 40.98 40.24 76.12 79.25 76.93 74.46 76.60±4.00

5 ºC min-1, 
1.394 mm 

41.23 42.15 41.48 40.70 77.08 80.44 77.94 75.31 76.60±4.00

30 ºC min-1, 
3.349 mm 

37.67 38.24 37.83 37.33 70.19 72.16 70.72 69.07 71.66±4.00

30 ºC min-1, 
7.608 mm 

35.74 36.17 35.86 35.47 66.5 67.96 66.9 65.65 67.20±4.00

Although it is not the objective of this work to determine the origin of PECs, the 

experimental observations presented in Refs. [26] suggest the following possible sources of 

PECs in the case of these FeCrAlY alloy/alumina tests: (1) Imprints of alumina grains on the 

substrate, which make rough and wrinkled interfaces; (2) dislocations of grain boundaries at 

interfaces; (3) plastic deformation; and (4) Chromium carbide segregation. 

4.2 EBPVD coating spallation  

In the third comparison, the mechanical model for multilayer material systems is verified 

by applying it to the problem of EBPVD TBC spallation after cooling to room temperature. 

Whole new turbine blades were used for testing, which were coated with an EBPVD TBC 

comprising an YSZ ceramic TC layer, a TGO layer, and a Pt-diffused BC layer on the single 

crystal CMSX-4 Ni-based superalloy substrate. The thickness of the TC is 138 µm, and its 

Young’s modulus through-thickness variation is described by 

   

3 2
5YSZ YSZ YSZ YSZ

3 2
8 10 0.0192 1.5812 85.5850

GPa μmμm μm

E z z z     
      

(71) 
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where YSZ 0z   is at the bottom of the TC and is positive upward, and the Poisson’s ratio is 

YSZ 0.2   [28]. This through-thickness variation of Young’s modulus is based on a 

polynomial fit to experimental results in Ref. [30] from testing the same TBC system after 

120 h of isothermal heating at 1150 °C. These results [30] and the polynomial fit are shown in 

Figure 3. 

Figure 3 Through-thickness variation of Young’s modulus in the YSZ ceramic TC layer after 

120 h of isothermal heating at 1150 °C [30]. 

The thickness of the TGO is considered thin enough at 5 µm to assume an average Young’s 

modulus of TGO 400 GPaE   with a Poisson's ratio of TGO 0.25   [7,28]. Scanning electron 

microscope images, such as that in Figure 4, have identified that coating spallation of this TBC 

system occurs at the interface between the TGO and the BC. This also agrees with Refs. 

[2,31,32]. The blister layer is therefore a bi-layer consisting of the TC and the TGO. Note that 

although Figure 4 shows a wavy interface, its amplitude in comparison to the thickness of the 

combined TC and TGO (as the top layer in the developed mechanical model) is negligible and 

the flat-interface model is considered valid. Figure 4 is of a coupon sample cut from the 

pressure side of the blade. It was isothermally heated at 1135 ºC for 50 h and then naturally 

cooled to room temperature in the lab environment. The sample was embedded in epoxy and 

the cross-section was polished to a 1-μm surface finish for observation. 
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Figure 4 A representative scanning electron microscope image of a TBC coupon sample 

showing cracking between the TGO and the BC. 

The stiffness per width of the top layer (i.e. the blister layer, comprising the TC and TGO) 

is given by Eq. (17): Extensional stiffness 114004 911 N mmA .   , coupling stiffness 

117 521 NB .   and bending stiffness 29 076 N mmD . . Eq. (8) then gives 

116912.560 N mmA   and 148 386 NB .     . The typical CTE mismatch between the top 

layer and the bottom layer (i.e. the BC and the substrate together) is 4 ppm °C-1 [4]. The mode-

I fracture toughness at the interface between the TGO and BC is 8.4 J m-2 [4] and the fracture 

toughness ratio   is 5 [29]. 

Specimens were isothermally oxidized at 1135 °C and cooled to room temperature at 25 °C 

in the laboratory environment. For this 1110 °C of cooling, the biaxial compressive residual 

strain is calculated as 0.44%. For the specific specimen described in this section, there were 

seven heating-cooling cycles (reaching a total 220 h of heating) until the convex surface 

spalled. The first heating period was for 100 h, which then continued with a further six heating-

cooling cycles of 20 h. No spallation failure occurred during cooling, but after the seventh 

heating-cooling cycle, the convex surface of the blade spalled off shortly after reaching room 

temperature (i.e. at a constant biaxial compressive residual stress). 

Note that eight new specimens in total were tested with slight variations in the procedure in 

order to establish the most effective technique. It was very challenging to record images over 

the whole curved surface of the blade, and over the whole duration of cooling and dwelling at 

room temperature. The results described here are for the single specimen which displayed both 

circular and straight blisters (and can therefore be modelled theoretically), and for which the 

whole spallation process was clearly captured. Qualitatively, however, all the specimens 
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displayed the same spallation behavior, even though accurate measurements are not available 

for the reasons stated above. 

Figure 5 shows a sequence of optical and processed images from Ref. [27], illustrating the 

nucleation, growth, branching, and spallation of a circular blister on the convex surface. Timing 

started when the specimen was removed from the furnace. The recording speed is 30 frames 

per second. The blister is visible due to the scattering of light from the surface (the top of each 

subfigure in Figure 5); however, to make the blister more prominent for easier blister radius 

measurements and for clearer presentation here, image (a) was subtracted from images (b) to 

(h) in post-processing to reveal just the difference between these images and image (a) (the 

bottom of each subfigure in Figure 5). The uncertainty in measuring the blister radius from 

these images is 0.1 mm. 
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Figure 5 Sequence of optical and processed images [27] showing the nucleation (b), stable 

growth (b-c) and unstable growth (c-g), branching (e-f) and spallation (h) of a blister on the 

convex surface of the turbine blade. The frame number is counted from the start of each 

second. 

The just-discernible small spot (circled in red) in image (b) is clearly much smaller than the 

buckling radius of 2.38 mm that is calculated using the conventional buckling-driven approach 

with Eq. (41) and 1 22α . . This nucleation radius is difficult to see in a still image; it is much 

clearer to see by playing a video recording. A sharpened and magnified view is also provided 

in the insert in image (b). According to the PECs hypothesis, PECs are the source of energy 

that is required to nucleate the blister, which due to its size cannot be explained by the 

conventional buckling-driven approach. The required nucleation energy predicted by the 

mechanical model is given by Eq. (64). 

After nucleation (b), the blister took about 1 s to grow steadily and its radius reached about 

1.1 mm in (c), which is still smaller than the buckling radius of 2.38 mm. According to the 

PECs hypothesis, the blister growth during this stage is being driven by PECs. 
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One frame after image (c) (i.e. 0.033 s later), the blister suddenly grew into the non-circular 

shape in (d). This is considered to be unstable growth, which according to the PECs hypothesis 

is driven by both buckling and PECs. The radius for the initiation of the unstable growth is 

therefore taken as 1.1 mm, as measured from (c). The corresponding radius from the 

mechanical model is given by Eq. (39), or by the approximate Eq. (41). 

From image (c) onwards, the blister is viewed as having a circle-shaped part plus initially 

one branch (d–e) and then two branches (f–h). The circle-shaped part is very close to circular 

and it is natural to fit a circle to this part of the blister, as demonstrated in (h). Note that although 

the blister is strictly non-circular, it is not significantly less circular than some of the alumina 

scale blisters shown in Ref. [26], for which diameter measurements are still taken. By using 

this approach, the radius of the right half-circle in (d) is measured as 2.5 mm, and in (e) as 

2.8 mm. Images (e) to (g) show further unstable growth of the blister, which according to the 

PECs hypothesis was still being driven by both PECs and buckling. One frame after (e) (i.e. 

0.033 s later), the blister branched (f); however, the right half of the blister retained its circular 

shape with a radius of about 2.8 mm. Following that, up until image (h), the blister continued 

to grow rapidly and unstably in both branching directions and also radially in the right half-

circle area. The right half-circle radius in (g) is measured as 3.1 mm, and ridge cracks are also 

visible. In (h), the blister and ridge cracks have extended further still, and the radius of the right 

half-circle is measured as 3.3 mm. Image (h) is regarded as the spallation radius since it 

represents the end of this period of rapid unstable growth. Note that the blister in (h) has not 

yet spalled off to expose the BC even though it has reached its spallation radius. This is because 

the blister energy cannot have been great enough to crack through the TGO and TC. 12 s after 

image (h), the branches extended very rapidly and detached from the substrate. This final stage 

of blister growth and spallation is considered later. 

The measured radii are compared with the corresponding radius predictions from the 

mechanical model in Table 3. Note that BR  at spallation does not depend on  , and so the 

predicted values are given only once in Table 3 and are not repeated for each value of  . As 

before, ‘E’, ‘T’ and ‘2D’ denote the use of classical plate partition theory, first-order shear-

deformable plate partition theory, and 2D elasticity partition theory respectively in the 

mechanical model. In addition, cG  and   from the mechanical model with the E, T and 2D 

theories are summarized in Table 4. These are the   values used in Table 3 to predict the 

initiation of unstable growth with Eqs. (39) and (41), and to predict the spallation radius with 

Eqs. (50) and (51). Based on 0.483   for this experiment, the   values are all significantly 
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larger than 
22α   and  1  , as required by Eqs. (39) and Eq. (50) respectively; hence, Eqs. 

(41) and (51) give good approximations. Note that the predicted spallation radius is slightly 

smaller than the measured one. As discussed in Section 2.4.1, this may be because of the 

appearance of ridge cracks which consume a small amount of blister energy. 

Table 3 Circular blister radius comparison for the initiation of unstable growth and spallation. 

BR  at initiation of unstable growth (mm) BR  at spallation (mm) 

α 

Eq. (39) Eq. (41) Eq. (50) Eq. (51)

E T 2D All 
Test 
data 

E T 2D All 
Test 
data 

0.652 1.28 1.28 1.28 1.27 1.1±0.1 
image 

(c) 

3.3±0.1 
image 

(h) 
0.936 1.84 1.85 1.84 1.83 3.45 3.49 3.46 3.43 

1.22 2.40 2.43 2.41 2.38 

Table 4 cG , λ , and   from the mechanical model based on the classical plate, first-order 

shear-deformable plate and 2D elasticity partition theories. 

cG  (J m-2) 

Eqs. (31), (56), (59) 


Eqs. (40), (57), (60) 

E 8.400 23.966 
T 17.951 11.215 

2D 10.683 18.845 

The lowest value of unstable growth radius predicted by the PEC-based mechanical model 

is 1.27 mm by taking 0 652α . . In contrast, the lowest value of unstable growth radius 

predicted by the conventional buckling-driven approach is slightly larger than 2.38 mm, which 

is given by taking 1 220α . . The measured radius at the initiation of unstable growth is 

1.1 mm, which is close to the lowest value predicted by the PEC-based mechanical model. 

The measured spallation radius is 3.3 mm, which is close to the analytical prediction of 

3.4 mm (independent of α), despite the appearance of ridge cracks in (h). These experimental 

observations, together with their good agreement with the PEC-based mechanical model, 

strongly support the hypothesis that TBC spallation is driven by both PECs and buckling in 

what represents a new spallation mechanism. 
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In the experiment, no straight blister nucleation or growth was observed; however, some 

straight-edged spallation did eventually occur, growing out of the top of the original blister, as 

shown in Figure 6 in image (i) of the sequence. The average half-width of the straight-edged 

spallation indicated on Figure 6 is 3.2 mm. This frame is from just after the coating flaked off, 

and it is therefore considered to be the straight blister spallation half-width for this TBC. The 

corresponding half-width values from the mechanical model are compared in Table 5. Note 

the mechanical model predicts that the spallation half-width of a straight blister is identical to 

the spallation radius of a circular blister. The measured half-width of 3.2 mm is slightly smaller 

than the predicted value of 3.43 mm. The difference is likely due to ridge cracking, which the 

current mechanical model does not consider; however, as discussed in Section 2.4.1, the 

predicted spallation half-width being slightly smaller than the measured one is consistent with 

ridge cracking consuming a small amount of blister energy. 

Figure 6 Spallation of the left-half straight blister. 

Table 5 Straight blister half-width comparison for spallation. 

Eq. (50) Eq. (51)

E T 2D All Test data 

Half-width (mm) 3.45 3.49 3.46 3.43 3.2±0.1 

5 Conclusions 

TBC spallation failure reduces the reliability and durability of turbine blades on gas turbine 

engines. TBC blisters can develop with circular and straight delamination edges as well as with 

other more-complex shapes. To investigate the mechanics of TBC spallation, a whole new 

turbine blade with an EBPVD TBC was isothermally heated and cooled to room temperature 

in cycles. After a certain number of cycles, the TBC eventually spalled off shortly after 

reaching room temperature under constant biaxial compressive residual stress. The blister layer 

comprised the TC and TGO. The observed spallation sequence began with blister nucleation, 
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which at first grew stably, and then grew unstably with branching, before the TBC finally 

flaked off. Blister nucleation occurred at a much smaller size than the critical buckling size, 

which proves that the spallation process cannot be explained by the conventional buckling-

driven approach. 

The authors’ PECs hypothesis [12,13] says that PECs provide the additional source of 

energy that is required for a blister to nucleate and grow. The conventional buckling-driven 

approach has no such requirement. A mechanical model based on this hypothesis of PECs was 

developed to explain and predict the experimental observations. The mechanical model 

accounts for arbitrary through-thickness variations of material properties and degree of cooling, 

which attempts to accurately capture the condition of a real turbine blade in cooling. 

The blister sizes at the initiation of unstable growth and at spallation, as measured and as 

predicted by the mechanical model, are in close agreement. Moreover, the mechanical model 

provides two conditions for the spallation of TBCs: (1) PECs must be able to supply sufficient 

energy to take the blister energy to the blister energy capacity  a MUE
U  in Eq. (49). After this 

point, the blister has stored enough energy in itself to continue propagating with no further 

energy requirement. (2) The ratio between the in-plane strain energy per unit width and the 

interface adhesion toughness,  , must be greater than  1  , where    2 2AD B AD  

. These two conditions provide valuable guidance for TBC design and optimisation to avoid 

spallation failure. 

The spallation behavior observations described above, together with the accuracy of the 

developed mechanical model, strongly suggest that a new mechanism of spallation has been 

discovered. It is now necessary to conduct further research to discover the source of PECs and 

their development under real operational conditions in order to improve the lifetime, lifetime 

variation, and operating temperature of turbine blades and other engine components with 

TBCs. When linked together with the source and development of PECs, this work is expected 

to provide the framework and understanding for significant improvements in future turbine 

blade design. 

Data availability 

The authors confirm that the data supporting the findings of this study are available within 

the article. 
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